|  | /* bnx2x_init_ops.h: Broadcom Everest network driver. | 
|  | *               Static functions needed during the initialization. | 
|  | *               This file is "included" in bnx2x_main.c. | 
|  | * | 
|  | * Copyright (c) 2007-2013 Broadcom Corporation | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License as published by | 
|  | * the Free Software Foundation. | 
|  | * | 
|  | * Maintained by: Ariel Elior <ariel.elior@qlogic.com> | 
|  | * Written by: Vladislav Zolotarov | 
|  | */ | 
|  |  | 
|  | #pragma once | 
|  |  | 
|  |  | 
|  | #ifndef BP_ILT | 
|  | #define BP_ILT(bp)	NULL | 
|  | #endif | 
|  |  | 
|  | #ifndef BP_FUNC | 
|  | #define BP_FUNC(bp)	0 | 
|  | #endif | 
|  |  | 
|  | #ifndef BP_PORT | 
|  | #define BP_PORT(bp)	0 | 
|  | #endif | 
|  |  | 
|  | #ifndef BNX2X_ILT_FREE | 
|  | #define BNX2X_ILT_FREE(x, y, sz) | 
|  | #endif | 
|  |  | 
|  | #ifndef BNX2X_ILT_ZALLOC | 
|  | #define BNX2X_ILT_ZALLOC(x, y, sz) | 
|  | #endif | 
|  |  | 
|  | #ifndef ILOG2 | 
|  | #define ILOG2(x)	x | 
|  | #endif | 
|  |  | 
|  | static int bnx2x_gunzip(struct bnx2x *bp, const uint8_t *zbuf, int len); | 
|  | static void bnx2x_reg_wr_ind(struct bnx2x *bp, uint32_t addr, uint32_t val); | 
|  | static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, | 
|  | dma_addr_t phys_addr, uint32_t addr, | 
|  | uint32_t len); | 
|  |  | 
|  | static void bnx2x_init_str_wr(struct bnx2x *bp, uint32_t addr, | 
|  | const uint32_t *data, uint32_t len) | 
|  | { | 
|  | uint32_t i; | 
|  |  | 
|  | for (i = 0; i < len; i++) | 
|  | REG_WR(bp, addr + i*4, data[i]); | 
|  | } | 
|  |  | 
|  | static void bnx2x_init_ind_wr(struct bnx2x *bp, uint32_t addr, | 
|  | const uint32_t *data, uint32_t len) | 
|  | { | 
|  | uint32_t i; | 
|  |  | 
|  | for (i = 0; i < len; i++) | 
|  | bnx2x_reg_wr_ind(bp, addr + i*4, data[i]); | 
|  | } | 
|  |  | 
|  | static void bnx2x_write_big_buf(struct bnx2x *bp, uint32_t addr, | 
|  | uint32_t len, | 
|  | uint8_t wb) | 
|  | { | 
|  | if (bp->dmae_ready) | 
|  | bnx2x_write_dmae_phys_len(bp, GUNZIP_PHYS(bp), addr, len); | 
|  |  | 
|  | /* in E1 chips BIOS initiated ZLR may interrupt widebus writes */ | 
|  | else if (wb && CHIP_IS_E1(bp)) | 
|  | bnx2x_init_ind_wr(bp, addr, GUNZIP_BUF(bp), len); | 
|  |  | 
|  | /* in later chips PXP root complex handles BIOS ZLR w/o interrupting */ | 
|  | else | 
|  | bnx2x_init_str_wr(bp, addr, GUNZIP_BUF(bp), len); | 
|  | } | 
|  |  | 
|  | static void bnx2x_init_fill(struct bnx2x *bp, uint32_t addr, int fill, | 
|  | uint32_t len, uint8_t wb) | 
|  | { | 
|  | uint32_t buf_len = (((len*4) > FW_BUF_SIZE) ? FW_BUF_SIZE : (len*4)); | 
|  | uint32_t buf_len32 = buf_len/4; | 
|  | uint32_t i; | 
|  |  | 
|  | memset(GUNZIP_BUF(bp), (uint8_t)fill, buf_len); | 
|  |  | 
|  | for (i = 0; i < len; i += buf_len32) { | 
|  | uint32_t cur_len = MIN(buf_len32, len - i); | 
|  |  | 
|  | bnx2x_write_big_buf(bp, addr + i*4, cur_len, wb); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void bnx2x_write_big_buf_wb(struct bnx2x *bp, uint32_t addr, | 
|  | uint32_t len) | 
|  | { | 
|  | if (bp->dmae_ready) | 
|  | bnx2x_write_dmae_phys_len(bp, GUNZIP_PHYS(bp), addr, len); | 
|  |  | 
|  | /* in E1 chips BIOS initiated ZLR may interrupt widebus writes */ | 
|  | else if (CHIP_IS_E1(bp)) | 
|  | bnx2x_init_ind_wr(bp, addr, GUNZIP_BUF(bp), len); | 
|  |  | 
|  | /* in later chips PXP root complex handles BIOS ZLR w/o interrupting */ | 
|  | else | 
|  | bnx2x_init_str_wr(bp, addr, GUNZIP_BUF(bp), len); | 
|  | } | 
|  |  | 
|  | static void bnx2x_init_wr_64(struct bnx2x *bp, uint32_t addr, | 
|  | const uint32_t *data, uint32_t len64) | 
|  | { | 
|  | uint32_t buf_len32 = FW_BUF_SIZE/4; | 
|  | uint32_t len = len64*2; | 
|  | uint64_t data64 = 0; | 
|  | uint32_t i; | 
|  |  | 
|  | /* 64 bit value is in a blob: first low DWORD, then high DWORD */ | 
|  | data64 = HILO_U64((*(data + 1)), (*data)); | 
|  |  | 
|  | len64 = MIN((uint32_t)(FW_BUF_SIZE / 8), len64); | 
|  | for (i = 0; i < len64; i++) { | 
|  | uint64_t *pdata = ((uint64_t *)(GUNZIP_BUF(bp))) + i; | 
|  |  | 
|  | *pdata = data64; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < len; i += buf_len32) { | 
|  | uint32_t cur_len = MIN(buf_len32, len - i); | 
|  |  | 
|  | bnx2x_write_big_buf_wb(bp, addr + i*4, cur_len); | 
|  | } | 
|  | } | 
|  |  | 
|  | /********************************************************* | 
|  | There are different blobs for each PRAM section. | 
|  | In addition, each blob write operation is divided into a few operations | 
|  | in order to decrease the amount of phys. contiguous buffer needed. | 
|  | Thus, when we select a blob the address may be with some offset | 
|  | from the beginning of PRAM section. | 
|  | The same holds for the INT_TABLE sections. | 
|  | **********************************************************/ | 
|  | #define IF_IS_INT_TABLE_ADDR(base, addr) \ | 
|  | if (((base) <= (addr)) && ((base) + 0x400 >= (addr))) | 
|  |  | 
|  | #define IF_IS_PRAM_ADDR(base, addr) \ | 
|  | if (((base) <= (addr)) && ((base) + 0x40000 >= (addr))) | 
|  |  | 
|  | static const uint8_t *bnx2x_sel_blob(struct bnx2x *bp, uint32_t addr, | 
|  | const uint8_t *data) | 
|  | { | 
|  | IF_IS_INT_TABLE_ADDR(TSEM_REG_INT_TABLE, addr) | 
|  | data = INIT_TSEM_INT_TABLE_DATA(bp); | 
|  | else | 
|  | IF_IS_INT_TABLE_ADDR(CSEM_REG_INT_TABLE, addr) | 
|  | data = INIT_CSEM_INT_TABLE_DATA(bp); | 
|  | else | 
|  | IF_IS_INT_TABLE_ADDR(USEM_REG_INT_TABLE, addr) | 
|  | data = INIT_USEM_INT_TABLE_DATA(bp); | 
|  | else | 
|  | IF_IS_INT_TABLE_ADDR(XSEM_REG_INT_TABLE, addr) | 
|  | data = INIT_XSEM_INT_TABLE_DATA(bp); | 
|  | else | 
|  | IF_IS_PRAM_ADDR(TSEM_REG_PRAM, addr) | 
|  | data = INIT_TSEM_PRAM_DATA(bp); | 
|  | else | 
|  | IF_IS_PRAM_ADDR(CSEM_REG_PRAM, addr) | 
|  | data = INIT_CSEM_PRAM_DATA(bp); | 
|  | else | 
|  | IF_IS_PRAM_ADDR(USEM_REG_PRAM, addr) | 
|  | data = INIT_USEM_PRAM_DATA(bp); | 
|  | else | 
|  | IF_IS_PRAM_ADDR(XSEM_REG_PRAM, addr) | 
|  | data = INIT_XSEM_PRAM_DATA(bp); | 
|  |  | 
|  | return data; | 
|  | } | 
|  |  | 
|  | static void bnx2x_init_wr_wb(struct bnx2x *bp, uint32_t addr, | 
|  | const uint32_t *data, uint32_t len) | 
|  | { | 
|  | if (bp->dmae_ready) | 
|  | VIRT_WR_DMAE_LEN(bp, data, addr, len, 0); | 
|  |  | 
|  | /* in E1 chips BIOS initiated ZLR may interrupt widebus writes */ | 
|  | else if (CHIP_IS_E1(bp)) | 
|  | bnx2x_init_ind_wr(bp, addr, data, len); | 
|  |  | 
|  | /* in later chips PXP root complex handles BIOS ZLR w/o interrupting */ | 
|  | else | 
|  | bnx2x_init_str_wr(bp, addr, data, len); | 
|  | } | 
|  |  | 
|  | static void bnx2x_wr_64(struct bnx2x *bp, uint32_t reg, uint32_t val_lo, | 
|  | uint32_t val_hi) | 
|  | { | 
|  | uint32_t wb_write[2]; | 
|  |  | 
|  | wb_write[0] = val_lo; | 
|  | wb_write[1] = val_hi; | 
|  | REG_WR_DMAE_LEN(bp, reg, wb_write, 2); | 
|  | } | 
|  | static void bnx2x_init_wr_zp(struct bnx2x *bp, uint32_t addr, uint32_t len, | 
|  | uint32_t blob_off) | 
|  | { | 
|  | const uint8_t *data = NULL; | 
|  | int rc; | 
|  | uint32_t i; | 
|  |  | 
|  | data = bnx2x_sel_blob(bp, addr, data) + blob_off*4; | 
|  |  | 
|  | rc = bnx2x_gunzip(bp, data, len); | 
|  | if (rc) | 
|  | return; | 
|  |  | 
|  | /* gunzip_outlen is in dwords */ | 
|  | len = GUNZIP_OUTLEN(bp); | 
|  | for (i = 0; i < len; i++) | 
|  | ((uint32_t *)GUNZIP_BUF(bp))[i] = (__force uint32_t) | 
|  | cpu_to_le32(((uint32_t *)GUNZIP_BUF(bp))[i]); | 
|  |  | 
|  | bnx2x_write_big_buf_wb(bp, addr, len); | 
|  | } | 
|  |  | 
|  | static void bnx2x_init_block(struct bnx2x *bp, uint32_t block, | 
|  | uint32_t stage) | 
|  | { | 
|  | uint16_t op_start = | 
|  | INIT_OPS_OFFSETS(bp)[BLOCK_OPS_IDX(block, stage, | 
|  | STAGE_START)]; | 
|  | uint16_t op_end = | 
|  | INIT_OPS_OFFSETS(bp)[BLOCK_OPS_IDX(block, stage, | 
|  | STAGE_END)]; | 
|  | const union init_op *op; | 
|  | uint32_t op_idx, op_type, addr, len; | 
|  | const uint32_t *data, *data_base; | 
|  |  | 
|  | /* If empty block */ | 
|  | if (op_start == op_end) | 
|  | return; | 
|  |  | 
|  | data_base = INIT_DATA(bp); | 
|  |  | 
|  | for (op_idx = op_start; op_idx < op_end; op_idx++) { | 
|  |  | 
|  | op = (const union init_op *)&(INIT_OPS(bp)[op_idx]); | 
|  | /* Get generic data */ | 
|  | op_type = op->raw.op; | 
|  | addr = op->raw.offset; | 
|  | /* Get data that's used for OP_SW, OP_WB, OP_FW, OP_ZP and | 
|  | * OP_WR64 (we assume that op_arr_write and op_write have the | 
|  | * same structure). | 
|  | */ | 
|  | len = op->arr_wr.data_len; | 
|  | data = data_base + op->arr_wr.data_off; | 
|  |  | 
|  | switch (op_type) { | 
|  | case OP_RD: | 
|  | REG_RD(bp, addr); | 
|  | break; | 
|  | case OP_WR: | 
|  | REG_WR(bp, addr, op->write.val); | 
|  | break; | 
|  | case OP_SW: | 
|  | bnx2x_init_str_wr(bp, addr, data, len); | 
|  | break; | 
|  | case OP_WB: | 
|  | bnx2x_init_wr_wb(bp, addr, data, len); | 
|  | break; | 
|  | case OP_ZR: | 
|  | bnx2x_init_fill(bp, addr, 0, op->zero.len, 0); | 
|  | break; | 
|  | case OP_WB_ZR: | 
|  | bnx2x_init_fill(bp, addr, 0, op->zero.len, 1); | 
|  | break; | 
|  | case OP_ZP: | 
|  | bnx2x_init_wr_zp(bp, addr, len, | 
|  | op->arr_wr.data_off); | 
|  | break; | 
|  | case OP_WR_64: | 
|  | bnx2x_init_wr_64(bp, addr, data, len); | 
|  | break; | 
|  | case OP_IF_MODE_AND: | 
|  | /* if any of the flags doesn't match, skip the | 
|  | * conditional block. | 
|  | */ | 
|  | if ((INIT_MODE_FLAGS(bp) & | 
|  | op->if_mode.mode_bit_map) != | 
|  | op->if_mode.mode_bit_map) | 
|  | op_idx += op->if_mode.cmd_offset; | 
|  | break; | 
|  | case OP_IF_MODE_OR: | 
|  | /* if all the flags don't match, skip the conditional | 
|  | * block. | 
|  | */ | 
|  | if ((INIT_MODE_FLAGS(bp) & | 
|  | op->if_mode.mode_bit_map) == 0) | 
|  | op_idx += op->if_mode.cmd_offset; | 
|  | break; | 
|  | default: | 
|  | /* Should never get here! */ | 
|  |  | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /**************************************************************************** | 
|  | * PXP Arbiter | 
|  | ****************************************************************************/ | 
|  | /* | 
|  | * This code configures the PCI read/write arbiter | 
|  | * which implements a weighted round robin | 
|  | * between the virtual queues in the chip. | 
|  | * | 
|  | * The values were derived for each PCI max payload and max request size. | 
|  | * since max payload and max request size are only known at run time, | 
|  | * this is done as a separate init stage. | 
|  | */ | 
|  |  | 
|  | #define NUM_WR_Q			13 | 
|  | #define NUM_RD_Q			29 | 
|  | #define MAX_RD_ORD			3 | 
|  | #define MAX_WR_ORD			2 | 
|  |  | 
|  | /* configuration for one arbiter queue */ | 
|  | struct arb_line { | 
|  | int l; | 
|  | int add; | 
|  | int ubound; | 
|  | }; | 
|  |  | 
|  | /* derived configuration for each read queue for each max request size */ | 
|  | static const struct arb_line read_arb_data[NUM_RD_Q][MAX_RD_ORD + 1] = { | 
|  | /* 1 */	{ {8, 64, 25}, {16, 64, 25}, {32, 64, 25}, {64, 64, 41} }, | 
|  | { {4, 8,  4},  {4,  8,  4},  {4,  8,  4},  {4,  8,  4}  }, | 
|  | { {4, 3,  3},  {4,  3,  3},  {4,  3,  3},  {4,  3,  3}  }, | 
|  | { {8, 3,  6},  {16, 3,  11}, {16, 3,  11}, {16, 3,  11} }, | 
|  | { {8, 64, 25}, {16, 64, 25}, {32, 64, 25}, {64, 64, 41} }, | 
|  | { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {64, 3,  41} }, | 
|  | { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {64, 3,  41} }, | 
|  | { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {64, 3,  41} }, | 
|  | { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {64, 3,  41} }, | 
|  | /* 10 */{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} }, | 
|  | { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} }, | 
|  | { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} }, | 
|  | { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} }, | 
|  | { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} }, | 
|  | { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} }, | 
|  | { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} }, | 
|  | { {8, 64, 6},  {16, 64, 11}, {32, 64, 21}, {32, 64, 21} }, | 
|  | { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} }, | 
|  | { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} }, | 
|  | /* 20 */{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} }, | 
|  | { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} }, | 
|  | { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} }, | 
|  | { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} }, | 
|  | { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} }, | 
|  | { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} }, | 
|  | { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} }, | 
|  | { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} }, | 
|  | { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} }, | 
|  | { {8, 64, 25}, {16, 64, 41}, {32, 64, 81}, {64, 64, 120} } | 
|  | }; | 
|  |  | 
|  | /* derived configuration for each write queue for each max request size */ | 
|  | static const struct arb_line write_arb_data[NUM_WR_Q][MAX_WR_ORD + 1] = { | 
|  | /* 1 */	{ {4, 6,  3},  {4,  6,  3},  {4,  6,  3} }, | 
|  | { {4, 2,  3},  {4,  2,  3},  {4,  2,  3} }, | 
|  | { {8, 2,  6},  {16, 2,  11}, {16, 2,  11} }, | 
|  | { {8, 2,  6},  {16, 2,  11}, {32, 2,  21} }, | 
|  | { {8, 2,  6},  {16, 2,  11}, {32, 2,  21} }, | 
|  | { {8, 2,  6},  {16, 2,  11}, {32, 2,  21} }, | 
|  | { {8, 64, 25}, {16, 64, 25}, {32, 64, 25} }, | 
|  | { {8, 2,  6},  {16, 2,  11}, {16, 2,  11} }, | 
|  | { {8, 2,  6},  {16, 2,  11}, {16, 2,  11} }, | 
|  | /* 10 */{ {8, 9,  6},  {16, 9,  11}, {32, 9,  21} }, | 
|  | { {8, 47, 19}, {16, 47, 19}, {32, 47, 21} }, | 
|  | { {8, 9,  6},  {16, 9,  11}, {16, 9,  11} }, | 
|  | { {8, 64, 25}, {16, 64, 41}, {32, 64, 81} } | 
|  | }; | 
|  |  | 
|  | /* register addresses for read queues */ | 
|  | static const struct arb_line read_arb_addr[NUM_RD_Q-1] = { | 
|  | /* 1 */	{PXP2_REG_RQ_BW_RD_L0, PXP2_REG_RQ_BW_RD_ADD0, | 
|  | PXP2_REG_RQ_BW_RD_UBOUND0}, | 
|  | {PXP2_REG_PSWRQ_BW_L1, PXP2_REG_PSWRQ_BW_ADD1, | 
|  | PXP2_REG_PSWRQ_BW_UB1}, | 
|  | {PXP2_REG_PSWRQ_BW_L2, PXP2_REG_PSWRQ_BW_ADD2, | 
|  | PXP2_REG_PSWRQ_BW_UB2}, | 
|  | {PXP2_REG_PSWRQ_BW_L3, PXP2_REG_PSWRQ_BW_ADD3, | 
|  | PXP2_REG_PSWRQ_BW_UB3}, | 
|  | {PXP2_REG_RQ_BW_RD_L4, PXP2_REG_RQ_BW_RD_ADD4, | 
|  | PXP2_REG_RQ_BW_RD_UBOUND4}, | 
|  | {PXP2_REG_RQ_BW_RD_L5, PXP2_REG_RQ_BW_RD_ADD5, | 
|  | PXP2_REG_RQ_BW_RD_UBOUND5}, | 
|  | {PXP2_REG_PSWRQ_BW_L6, PXP2_REG_PSWRQ_BW_ADD6, | 
|  | PXP2_REG_PSWRQ_BW_UB6}, | 
|  | {PXP2_REG_PSWRQ_BW_L7, PXP2_REG_PSWRQ_BW_ADD7, | 
|  | PXP2_REG_PSWRQ_BW_UB7}, | 
|  | {PXP2_REG_PSWRQ_BW_L8, PXP2_REG_PSWRQ_BW_ADD8, | 
|  | PXP2_REG_PSWRQ_BW_UB8}, | 
|  | /* 10 */{PXP2_REG_PSWRQ_BW_L9, PXP2_REG_PSWRQ_BW_ADD9, | 
|  | PXP2_REG_PSWRQ_BW_UB9}, | 
|  | {PXP2_REG_PSWRQ_BW_L10, PXP2_REG_PSWRQ_BW_ADD10, | 
|  | PXP2_REG_PSWRQ_BW_UB10}, | 
|  | {PXP2_REG_PSWRQ_BW_L11, PXP2_REG_PSWRQ_BW_ADD11, | 
|  | PXP2_REG_PSWRQ_BW_UB11}, | 
|  | {PXP2_REG_RQ_BW_RD_L12, PXP2_REG_RQ_BW_RD_ADD12, | 
|  | PXP2_REG_RQ_BW_RD_UBOUND12}, | 
|  | {PXP2_REG_RQ_BW_RD_L13, PXP2_REG_RQ_BW_RD_ADD13, | 
|  | PXP2_REG_RQ_BW_RD_UBOUND13}, | 
|  | {PXP2_REG_RQ_BW_RD_L14, PXP2_REG_RQ_BW_RD_ADD14, | 
|  | PXP2_REG_RQ_BW_RD_UBOUND14}, | 
|  | {PXP2_REG_RQ_BW_RD_L15, PXP2_REG_RQ_BW_RD_ADD15, | 
|  | PXP2_REG_RQ_BW_RD_UBOUND15}, | 
|  | {PXP2_REG_RQ_BW_RD_L16, PXP2_REG_RQ_BW_RD_ADD16, | 
|  | PXP2_REG_RQ_BW_RD_UBOUND16}, | 
|  | {PXP2_REG_RQ_BW_RD_L17, PXP2_REG_RQ_BW_RD_ADD17, | 
|  | PXP2_REG_RQ_BW_RD_UBOUND17}, | 
|  | {PXP2_REG_RQ_BW_RD_L18, PXP2_REG_RQ_BW_RD_ADD18, | 
|  | PXP2_REG_RQ_BW_RD_UBOUND18}, | 
|  | /* 20 */{PXP2_REG_RQ_BW_RD_L19, PXP2_REG_RQ_BW_RD_ADD19, | 
|  | PXP2_REG_RQ_BW_RD_UBOUND19}, | 
|  | {PXP2_REG_RQ_BW_RD_L20, PXP2_REG_RQ_BW_RD_ADD20, | 
|  | PXP2_REG_RQ_BW_RD_UBOUND20}, | 
|  | {PXP2_REG_RQ_BW_RD_L22, PXP2_REG_RQ_BW_RD_ADD22, | 
|  | PXP2_REG_RQ_BW_RD_UBOUND22}, | 
|  | {PXP2_REG_RQ_BW_RD_L23, PXP2_REG_RQ_BW_RD_ADD23, | 
|  | PXP2_REG_RQ_BW_RD_UBOUND23}, | 
|  | {PXP2_REG_RQ_BW_RD_L24, PXP2_REG_RQ_BW_RD_ADD24, | 
|  | PXP2_REG_RQ_BW_RD_UBOUND24}, | 
|  | {PXP2_REG_RQ_BW_RD_L25, PXP2_REG_RQ_BW_RD_ADD25, | 
|  | PXP2_REG_RQ_BW_RD_UBOUND25}, | 
|  | {PXP2_REG_RQ_BW_RD_L26, PXP2_REG_RQ_BW_RD_ADD26, | 
|  | PXP2_REG_RQ_BW_RD_UBOUND26}, | 
|  | {PXP2_REG_RQ_BW_RD_L27, PXP2_REG_RQ_BW_RD_ADD27, | 
|  | PXP2_REG_RQ_BW_RD_UBOUND27}, | 
|  | {PXP2_REG_PSWRQ_BW_L28, PXP2_REG_PSWRQ_BW_ADD28, | 
|  | PXP2_REG_PSWRQ_BW_UB28} | 
|  | }; | 
|  |  | 
|  | /* register addresses for write queues */ | 
|  | static const struct arb_line write_arb_addr[NUM_WR_Q-1] = { | 
|  | /* 1 */	{PXP2_REG_PSWRQ_BW_L1, PXP2_REG_PSWRQ_BW_ADD1, | 
|  | PXP2_REG_PSWRQ_BW_UB1}, | 
|  | {PXP2_REG_PSWRQ_BW_L2, PXP2_REG_PSWRQ_BW_ADD2, | 
|  | PXP2_REG_PSWRQ_BW_UB2}, | 
|  | {PXP2_REG_PSWRQ_BW_L3, PXP2_REG_PSWRQ_BW_ADD3, | 
|  | PXP2_REG_PSWRQ_BW_UB3}, | 
|  | {PXP2_REG_PSWRQ_BW_L6, PXP2_REG_PSWRQ_BW_ADD6, | 
|  | PXP2_REG_PSWRQ_BW_UB6}, | 
|  | {PXP2_REG_PSWRQ_BW_L7, PXP2_REG_PSWRQ_BW_ADD7, | 
|  | PXP2_REG_PSWRQ_BW_UB7}, | 
|  | {PXP2_REG_PSWRQ_BW_L8, PXP2_REG_PSWRQ_BW_ADD8, | 
|  | PXP2_REG_PSWRQ_BW_UB8}, | 
|  | {PXP2_REG_PSWRQ_BW_L9, PXP2_REG_PSWRQ_BW_ADD9, | 
|  | PXP2_REG_PSWRQ_BW_UB9}, | 
|  | {PXP2_REG_PSWRQ_BW_L10, PXP2_REG_PSWRQ_BW_ADD10, | 
|  | PXP2_REG_PSWRQ_BW_UB10}, | 
|  | {PXP2_REG_PSWRQ_BW_L11, PXP2_REG_PSWRQ_BW_ADD11, | 
|  | PXP2_REG_PSWRQ_BW_UB11}, | 
|  | /* 10 */{PXP2_REG_PSWRQ_BW_L28, PXP2_REG_PSWRQ_BW_ADD28, | 
|  | PXP2_REG_PSWRQ_BW_UB28}, | 
|  | {PXP2_REG_RQ_BW_WR_L29, PXP2_REG_RQ_BW_WR_ADD29, | 
|  | PXP2_REG_RQ_BW_WR_UBOUND29}, | 
|  | {PXP2_REG_RQ_BW_WR_L30, PXP2_REG_RQ_BW_WR_ADD30, | 
|  | PXP2_REG_RQ_BW_WR_UBOUND30} | 
|  | }; | 
|  |  | 
|  | static void bnx2x_init_pxp_arb(struct bnx2x *bp, int r_order, | 
|  | int w_order) | 
|  | { | 
|  | uint32_t val, i; | 
|  |  | 
|  | if (r_order > MAX_RD_ORD) { | 
|  | DP(NETIF_MSG_HW, "read order of %d  order adjusted to %d\n", | 
|  | r_order, MAX_RD_ORD); | 
|  | r_order = MAX_RD_ORD; | 
|  | } | 
|  | if (w_order > MAX_WR_ORD) { | 
|  | DP(NETIF_MSG_HW, "write order of %d  order adjusted to %d\n", | 
|  | w_order, MAX_WR_ORD); | 
|  | w_order = MAX_WR_ORD; | 
|  | } | 
|  | if (CHIP_REV_IS_FPGA(bp)) { | 
|  | DP(NETIF_MSG_HW, "write order adjusted to 1 for FPGA\n"); | 
|  | w_order = 0; | 
|  | } | 
|  | DP(NETIF_MSG_HW, "read order %d  write order %d\n", r_order, w_order); | 
|  |  | 
|  | for (i = 0; i < NUM_RD_Q-1; i++) { | 
|  | REG_WR(bp, read_arb_addr[i].l, read_arb_data[i][r_order].l); | 
|  | REG_WR(bp, read_arb_addr[i].add, | 
|  | read_arb_data[i][r_order].add); | 
|  | REG_WR(bp, read_arb_addr[i].ubound, | 
|  | read_arb_data[i][r_order].ubound); | 
|  | } | 
|  |  | 
|  | for (i = 0; i < NUM_WR_Q-1; i++) { | 
|  | if ((write_arb_addr[i].l == PXP2_REG_RQ_BW_WR_L29) || | 
|  | (write_arb_addr[i].l == PXP2_REG_RQ_BW_WR_L30)) { | 
|  |  | 
|  | REG_WR(bp, write_arb_addr[i].l, | 
|  | write_arb_data[i][w_order].l); | 
|  |  | 
|  | REG_WR(bp, write_arb_addr[i].add, | 
|  | write_arb_data[i][w_order].add); | 
|  |  | 
|  | REG_WR(bp, write_arb_addr[i].ubound, | 
|  | write_arb_data[i][w_order].ubound); | 
|  | } else { | 
|  |  | 
|  | val = REG_RD(bp, write_arb_addr[i].l); | 
|  | REG_WR(bp, write_arb_addr[i].l, | 
|  | val | (write_arb_data[i][w_order].l << 10)); | 
|  |  | 
|  | val = REG_RD(bp, write_arb_addr[i].add); | 
|  | REG_WR(bp, write_arb_addr[i].add, | 
|  | val | (write_arb_data[i][w_order].add << 10)); | 
|  |  | 
|  | val = REG_RD(bp, write_arb_addr[i].ubound); | 
|  | REG_WR(bp, write_arb_addr[i].ubound, | 
|  | val | (write_arb_data[i][w_order].ubound << 7)); | 
|  | } | 
|  | } | 
|  |  | 
|  | val =  write_arb_data[NUM_WR_Q-1][w_order].add; | 
|  | val += write_arb_data[NUM_WR_Q-1][w_order].ubound << 10; | 
|  | val += write_arb_data[NUM_WR_Q-1][w_order].l << 17; | 
|  | REG_WR(bp, PXP2_REG_PSWRQ_BW_RD, val); | 
|  |  | 
|  | val =  read_arb_data[NUM_RD_Q-1][r_order].add; | 
|  | val += read_arb_data[NUM_RD_Q-1][r_order].ubound << 10; | 
|  | val += read_arb_data[NUM_RD_Q-1][r_order].l << 17; | 
|  | REG_WR(bp, PXP2_REG_PSWRQ_BW_WR, val); | 
|  |  | 
|  | REG_WR(bp, PXP2_REG_RQ_WR_MBS0, w_order); | 
|  | REG_WR(bp, PXP2_REG_RQ_WR_MBS1, w_order); | 
|  | REG_WR(bp, PXP2_REG_RQ_RD_MBS0, r_order); | 
|  | REG_WR(bp, PXP2_REG_RQ_RD_MBS1, r_order); | 
|  |  | 
|  | if ((CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) && (r_order == MAX_RD_ORD)) | 
|  | REG_WR(bp, PXP2_REG_RQ_PDR_LIMIT, 0xe00); | 
|  |  | 
|  | if (CHIP_IS_E3(bp)) | 
|  | REG_WR(bp, PXP2_REG_WR_USDMDP_TH, (0x4 << w_order)); | 
|  | else if (CHIP_IS_E2(bp)) | 
|  | REG_WR(bp, PXP2_REG_WR_USDMDP_TH, (0x8 << w_order)); | 
|  | else | 
|  | REG_WR(bp, PXP2_REG_WR_USDMDP_TH, (0x18 << w_order)); | 
|  |  | 
|  | if (!CHIP_IS_E1(bp)) { | 
|  | /*    MPS      w_order     optimal TH      presently TH | 
|  | *    128         0             0               2 | 
|  | *    256         1             1               3 | 
|  | *    >=512       2             2               3 | 
|  | */ | 
|  | /* DMAE is special */ | 
|  | if (!CHIP_IS_E1H(bp)) { | 
|  | /* E2 can use optimal TH */ | 
|  | val = w_order; | 
|  | REG_WR(bp, PXP2_REG_WR_DMAE_MPS, val); | 
|  | } else { | 
|  | val = ((w_order == 0) ? 2 : 3); | 
|  | REG_WR(bp, PXP2_REG_WR_DMAE_MPS, 2); | 
|  | } | 
|  |  | 
|  | REG_WR(bp, PXP2_REG_WR_HC_MPS, val); | 
|  | REG_WR(bp, PXP2_REG_WR_USDM_MPS, val); | 
|  | REG_WR(bp, PXP2_REG_WR_CSDM_MPS, val); | 
|  | REG_WR(bp, PXP2_REG_WR_TSDM_MPS, val); | 
|  | REG_WR(bp, PXP2_REG_WR_XSDM_MPS, val); | 
|  | REG_WR(bp, PXP2_REG_WR_QM_MPS, val); | 
|  | REG_WR(bp, PXP2_REG_WR_TM_MPS, val); | 
|  | REG_WR(bp, PXP2_REG_WR_SRC_MPS, val); | 
|  | REG_WR(bp, PXP2_REG_WR_DBG_MPS, val); | 
|  | REG_WR(bp, PXP2_REG_WR_CDU_MPS, val); | 
|  | } | 
|  |  | 
|  | /* Validate number of tags suppoted by device */ | 
|  | #define PCIE_REG_PCIER_TL_HDR_FC_ST		0x2980 | 
|  | val = REG_RD(bp, PCIE_REG_PCIER_TL_HDR_FC_ST); | 
|  | val &= 0xFF; | 
|  | if (val <= 0x20) | 
|  | REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x20); | 
|  | } | 
|  |  | 
|  | /**************************************************************************** | 
|  | * ILT management | 
|  | ****************************************************************************/ | 
|  | /* | 
|  | * This codes hides the low level HW interaction for ILT management and | 
|  | * configuration. The API consists of a shadow ILT table which is set by the | 
|  | * driver and a set of routines to use it to configure the HW. | 
|  | * | 
|  | */ | 
|  |  | 
|  | /* ILT HW init operations */ | 
|  |  | 
|  | /* ILT memory management operations */ | 
|  | #define ILT_MEMOP_ALLOC		0 | 
|  | #define ILT_MEMOP_FREE		1 | 
|  |  | 
|  | /* the phys address is shifted right 12 bits and has an added | 
|  | * 1=valid bit added to the 53rd bit | 
|  | * then since this is a wide register(TM) | 
|  | * we split it into two 32 bit writes | 
|  | */ | 
|  | #define ILT_ADDR1(x)		((uint32_t)(((uint64_t)x >> 12) & 0xFFFFFFFF)) | 
|  | #define ILT_ADDR2(x)		((uint32_t)((1 << 20) | ((uint64_t)x >> 44))) | 
|  | #define ILT_RANGE(f, l)		(((l) << 10) | f) | 
|  |  | 
|  | static int bnx2x_ilt_line_mem_op(struct bnx2x *bp, | 
|  | struct ilt_line *line, uint32_t size, | 
|  | uint8_t memop) | 
|  | { | 
|  | if (memop == ILT_MEMOP_FREE) { | 
|  | BNX2X_ILT_FREE(line->page, line->page_mapping, line->size); | 
|  | return 0; | 
|  | } | 
|  | BNX2X_ILT_ZALLOC(line->page, &line->page_mapping, size); | 
|  | if (!line->page) | 
|  | return -1; | 
|  | line->size = size; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | static int bnx2x_ilt_client_mem_op(struct bnx2x *bp, int cli_num, | 
|  | uint8_t memop) | 
|  | { | 
|  | int i, rc; | 
|  | struct bnx2x_ilt *ilt = BP_ILT(bp); | 
|  | struct ilt_client_info *ilt_cli = &ilt->clients[cli_num]; | 
|  |  | 
|  | if (!ilt || !ilt->lines) | 
|  | return -1; | 
|  |  | 
|  | if (ilt_cli->flags & (ILT_CLIENT_SKIP_INIT | ILT_CLIENT_SKIP_MEM)) | 
|  | return 0; | 
|  |  | 
|  | for (rc = 0, i = ilt_cli->start; i <= ilt_cli->end && !rc; i++) { | 
|  | rc = bnx2x_ilt_line_mem_op(bp, &ilt->lines[i], | 
|  | ilt_cli->page_size, memop); | 
|  | } | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static int bnx2x_ilt_mem_op_cnic(struct bnx2x *bp, uint8_t memop) | 
|  | { | 
|  | int rc = 0; | 
|  |  | 
|  | if (CONFIGURE_NIC_MODE(bp)) | 
|  | rc = bnx2x_ilt_client_mem_op(bp, ILT_CLIENT_SRC, memop); | 
|  | if (!rc) | 
|  | rc = bnx2x_ilt_client_mem_op(bp, ILT_CLIENT_TM, memop); | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static int bnx2x_ilt_mem_op(struct bnx2x *bp, uint8_t memop) | 
|  | { | 
|  | int rc = bnx2x_ilt_client_mem_op(bp, ILT_CLIENT_CDU, memop); | 
|  | if (!rc) | 
|  | rc = bnx2x_ilt_client_mem_op(bp, ILT_CLIENT_QM, memop); | 
|  | if (!rc && CNIC_SUPPORT(bp) && !CONFIGURE_NIC_MODE(bp)) | 
|  | rc = bnx2x_ilt_client_mem_op(bp, ILT_CLIENT_SRC, memop); | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static void bnx2x_ilt_line_wr(struct bnx2x *bp, int abs_idx, | 
|  | dma_addr_t page_mapping) | 
|  | { | 
|  | uint32_t reg; | 
|  |  | 
|  | if (CHIP_IS_E1(bp)) | 
|  | reg = PXP2_REG_RQ_ONCHIP_AT + abs_idx*8; | 
|  | else | 
|  | reg = PXP2_REG_RQ_ONCHIP_AT_B0 + abs_idx*8; | 
|  |  | 
|  | bnx2x_wr_64(bp, reg, ILT_ADDR1(page_mapping), ILT_ADDR2(page_mapping)); | 
|  | } | 
|  |  | 
|  | static void bnx2x_ilt_line_init_op(struct bnx2x *bp, | 
|  | struct bnx2x_ilt *ilt, int idx, | 
|  | uint8_t initop) | 
|  | { | 
|  | dma_addr_t	null_mapping; | 
|  | int abs_idx = ilt->start_line + idx; | 
|  |  | 
|  |  | 
|  | switch (initop) { | 
|  | case INITOP_INIT: | 
|  | /* set in the init-value array */ | 
|  | case INITOP_SET: | 
|  | bnx2x_ilt_line_wr(bp, abs_idx, ilt->lines[idx].page_mapping); | 
|  | break; | 
|  | case INITOP_CLEAR: | 
|  | null_mapping = 0; | 
|  | bnx2x_ilt_line_wr(bp, abs_idx, null_mapping); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void bnx2x_ilt_boundry_init_op(struct bnx2x *bp, | 
|  | struct ilt_client_info *ilt_cli, | 
|  | uint32_t ilt_start, uint8_t initop) | 
|  | { | 
|  | uint32_t start_reg = 0; | 
|  | uint32_t end_reg = 0; | 
|  |  | 
|  | /* The boundary is either SET or INIT, | 
|  | CLEAR => SET and for now SET ~~ INIT */ | 
|  |  | 
|  | /* find the appropriate regs */ | 
|  | if (CHIP_IS_E1(bp)) { | 
|  | switch (ilt_cli->client_num) { | 
|  | case ILT_CLIENT_CDU: | 
|  | start_reg = PXP2_REG_PSWRQ_CDU0_L2P; | 
|  | break; | 
|  | case ILT_CLIENT_QM: | 
|  | start_reg = PXP2_REG_PSWRQ_QM0_L2P; | 
|  | break; | 
|  | case ILT_CLIENT_SRC: | 
|  | start_reg = PXP2_REG_PSWRQ_SRC0_L2P; | 
|  | break; | 
|  | case ILT_CLIENT_TM: | 
|  | start_reg = PXP2_REG_PSWRQ_TM0_L2P; | 
|  | break; | 
|  | } | 
|  | REG_WR(bp, start_reg + BP_FUNC(bp)*4, | 
|  | ILT_RANGE((ilt_start + ilt_cli->start), | 
|  | (ilt_start + ilt_cli->end))); | 
|  | } else { | 
|  | switch (ilt_cli->client_num) { | 
|  | case ILT_CLIENT_CDU: | 
|  | start_reg = PXP2_REG_RQ_CDU_FIRST_ILT; | 
|  | end_reg = PXP2_REG_RQ_CDU_LAST_ILT; | 
|  | break; | 
|  | case ILT_CLIENT_QM: | 
|  | start_reg = PXP2_REG_RQ_QM_FIRST_ILT; | 
|  | end_reg = PXP2_REG_RQ_QM_LAST_ILT; | 
|  | break; | 
|  | case ILT_CLIENT_SRC: | 
|  | start_reg = PXP2_REG_RQ_SRC_FIRST_ILT; | 
|  | end_reg = PXP2_REG_RQ_SRC_LAST_ILT; | 
|  | break; | 
|  | case ILT_CLIENT_TM: | 
|  | start_reg = PXP2_REG_RQ_TM_FIRST_ILT; | 
|  | end_reg = PXP2_REG_RQ_TM_LAST_ILT; | 
|  | break; | 
|  | } | 
|  | REG_WR(bp, start_reg, (ilt_start + ilt_cli->start)); | 
|  | REG_WR(bp, end_reg, (ilt_start + ilt_cli->end)); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void bnx2x_ilt_client_init_op_ilt(struct bnx2x *bp, | 
|  | struct bnx2x_ilt *ilt, | 
|  | struct ilt_client_info *ilt_cli, | 
|  | uint8_t initop) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | if (ilt_cli->flags & ILT_CLIENT_SKIP_INIT) | 
|  | return; | 
|  |  | 
|  | for (i = ilt_cli->start; i <= ilt_cli->end; i++) | 
|  | bnx2x_ilt_line_init_op(bp, ilt, i, initop); | 
|  |  | 
|  | /* init/clear the ILT boundries */ | 
|  | bnx2x_ilt_boundry_init_op(bp, ilt_cli, ilt->start_line, initop); | 
|  | } | 
|  |  | 
|  | static void bnx2x_ilt_client_init_op(struct bnx2x *bp, | 
|  | struct ilt_client_info *ilt_cli, | 
|  | uint8_t initop) | 
|  | { | 
|  | struct bnx2x_ilt *ilt = BP_ILT(bp); | 
|  |  | 
|  | bnx2x_ilt_client_init_op_ilt(bp, ilt, ilt_cli, initop); | 
|  | } | 
|  |  | 
|  | static void bnx2x_ilt_client_id_init_op(struct bnx2x *bp, | 
|  | int cli_num, uint8_t initop) | 
|  | { | 
|  | struct bnx2x_ilt *ilt = BP_ILT(bp); | 
|  | struct ilt_client_info *ilt_cli = &ilt->clients[cli_num]; | 
|  |  | 
|  | bnx2x_ilt_client_init_op(bp, ilt_cli, initop); | 
|  | } | 
|  |  | 
|  | static void bnx2x_ilt_init_op_cnic(struct bnx2x *bp, uint8_t initop) | 
|  | { | 
|  | if (CONFIGURE_NIC_MODE(bp)) | 
|  | bnx2x_ilt_client_id_init_op(bp, ILT_CLIENT_SRC, initop); | 
|  | bnx2x_ilt_client_id_init_op(bp, ILT_CLIENT_TM, initop); | 
|  | } | 
|  |  | 
|  | static void bnx2x_ilt_init_op(struct bnx2x *bp, uint8_t initop) | 
|  | { | 
|  | bnx2x_ilt_client_id_init_op(bp, ILT_CLIENT_CDU, initop); | 
|  | bnx2x_ilt_client_id_init_op(bp, ILT_CLIENT_QM, initop); | 
|  | if (CNIC_SUPPORT(bp) && !CONFIGURE_NIC_MODE(bp)) | 
|  | bnx2x_ilt_client_id_init_op(bp, ILT_CLIENT_SRC, initop); | 
|  | } | 
|  |  | 
|  | static void bnx2x_ilt_init_client_psz(struct bnx2x *bp, int cli_num, | 
|  | uint32_t psz_reg, uint8_t initop) | 
|  | { | 
|  | struct bnx2x_ilt *ilt = BP_ILT(bp); | 
|  | struct ilt_client_info *ilt_cli = &ilt->clients[cli_num]; | 
|  |  | 
|  | if (ilt_cli->flags & ILT_CLIENT_SKIP_INIT) | 
|  | return; | 
|  |  | 
|  | switch (initop) { | 
|  | case INITOP_INIT: | 
|  | /* set in the init-value array */ | 
|  | case INITOP_SET: | 
|  | REG_WR(bp, psz_reg, ILOG2(ilt_cli->page_size >> 12)); | 
|  | break; | 
|  | case INITOP_CLEAR: | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * called during init common stage, ilt clients should be initialized | 
|  | * prioir to calling this function | 
|  | */ | 
|  | static void bnx2x_ilt_init_page_size(struct bnx2x *bp, uint8_t initop) | 
|  | { | 
|  | bnx2x_ilt_init_client_psz(bp, ILT_CLIENT_CDU, | 
|  | PXP2_REG_RQ_CDU_P_SIZE, initop); | 
|  | bnx2x_ilt_init_client_psz(bp, ILT_CLIENT_QM, | 
|  | PXP2_REG_RQ_QM_P_SIZE, initop); | 
|  | bnx2x_ilt_init_client_psz(bp, ILT_CLIENT_SRC, | 
|  | PXP2_REG_RQ_SRC_P_SIZE, initop); | 
|  | bnx2x_ilt_init_client_psz(bp, ILT_CLIENT_TM, | 
|  | PXP2_REG_RQ_TM_P_SIZE, initop); | 
|  | } | 
|  |  | 
|  | /**************************************************************************** | 
|  | * QM initializations | 
|  | ****************************************************************************/ | 
|  | #define QM_QUEUES_PER_FUNC	16 /* E1 has 32, but only 16 are used */ | 
|  | #define QM_INIT_MIN_CID_COUNT	31 | 
|  | #define QM_INIT(cid_cnt)	(cid_cnt > QM_INIT_MIN_CID_COUNT) | 
|  |  | 
|  | /* called during init port stage */ | 
|  | static void bnx2x_qm_init_cid_count(struct bnx2x *bp, int qm_cid_count, | 
|  | uint8_t initop) | 
|  | { | 
|  | int port = BP_PORT(bp); | 
|  |  | 
|  | if (QM_INIT(qm_cid_count)) { | 
|  | switch (initop) { | 
|  | case INITOP_INIT: | 
|  | /* set in the init-value array */ | 
|  | case INITOP_SET: | 
|  | REG_WR(bp, QM_REG_CONNNUM_0 + port*4, | 
|  | qm_cid_count/16 - 1); | 
|  | break; | 
|  | case INITOP_CLEAR: | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void bnx2x_qm_set_ptr_table(struct bnx2x *bp, int qm_cid_count, | 
|  | uint32_t base_reg, uint32_t reg) | 
|  | { | 
|  | int i; | 
|  | uint32_t wb_data[2] = {0, 0}; | 
|  | for (i = 0; i < 4 * QM_QUEUES_PER_FUNC; i++) { | 
|  | REG_WR(bp, base_reg + i*4, | 
|  | qm_cid_count * 4 * (i % QM_QUEUES_PER_FUNC)); | 
|  | bnx2x_init_wr_wb(bp, reg + i*8,	 wb_data, 2); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* called during init common stage */ | 
|  | static void bnx2x_qm_init_ptr_table(struct bnx2x *bp, int qm_cid_count, | 
|  | uint8_t initop) | 
|  | { | 
|  | if (!QM_INIT(qm_cid_count)) | 
|  | return; | 
|  |  | 
|  | switch (initop) { | 
|  | case INITOP_INIT: | 
|  | /* set in the init-value array */ | 
|  | case INITOP_SET: | 
|  | bnx2x_qm_set_ptr_table(bp, qm_cid_count, | 
|  | QM_REG_BASEADDR, QM_REG_PTRTBL); | 
|  | if (CHIP_IS_E1H(bp)) | 
|  | bnx2x_qm_set_ptr_table(bp, qm_cid_count, | 
|  | QM_REG_BASEADDR_EXT_A, | 
|  | QM_REG_PTRTBL_EXT_A); | 
|  | break; | 
|  | case INITOP_CLEAR: | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /**************************************************************************** | 
|  | * SRC initializations | 
|  | ****************************************************************************/ | 
|  | /* called during init func stage */ | 
|  | static void bnx2x_src_init_t2(struct bnx2x *bp, struct src_ent *t2, | 
|  | dma_addr_t t2_mapping, int src_cid_count) | 
|  | { | 
|  | int i; | 
|  | int port = BP_PORT(bp); | 
|  |  | 
|  | /* Initialize T2 */ | 
|  | for (i = 0; i < src_cid_count-1; i++) | 
|  | t2[i].next = (uint64_t)(t2_mapping + | 
|  | (i+1)*sizeof(struct src_ent)); | 
|  |  | 
|  | /* tell the searcher where the T2 table is */ | 
|  | REG_WR(bp, SRC_REG_COUNTFREE0 + port*4, src_cid_count); | 
|  |  | 
|  | bnx2x_wr_64(bp, SRC_REG_FIRSTFREE0 + port*16, | 
|  | U64_LO(t2_mapping), U64_HI(t2_mapping)); | 
|  |  | 
|  | bnx2x_wr_64(bp, SRC_REG_LASTFREE0 + port*16, | 
|  | U64_LO((uint64_t)t2_mapping + | 
|  | (src_cid_count-1) * sizeof(struct src_ent)), | 
|  | U64_HI((uint64_t)t2_mapping + | 
|  | (src_cid_count-1) * sizeof(struct src_ent))); | 
|  | } |