|  | /* bnx2x_main.c: Broadcom Everest network driver. | 
|  | * | 
|  | * Copyright (c) 2007-2013 Broadcom Corporation | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License as published by | 
|  | * the Free Software Foundation. | 
|  | * | 
|  | * Maintained by: Ariel Elior <ariel.elior@qlogic.com> | 
|  | * Written by: Eliezer Tamir | 
|  | * Based on code from Michael Chan's bnx2 driver | 
|  | * UDP CSUM errata workaround by Arik Gendelman | 
|  | * Slowpath and fastpath rework by Vladislav Zolotarov | 
|  | * Statistics and Link management by Yitchak Gertner | 
|  | * | 
|  | */ | 
|  |  | 
|  | #include <linux_compat.h> | 
|  |  | 
|  | #include "bnx2x.h" | 
|  | #include "bnx2x_init.h" | 
|  | #include "bnx2x_init_ops.h" | 
|  | #include "bnx2x_cmn.h" | 
|  | #include "bnx2x_vfpf.h" | 
|  | #include "bnx2x_dcb.h" | 
|  | #include "bnx2x_sp.h" | 
|  | #include "bnx2x_fw_file_hdr.h" | 
|  | /* FW files */ | 
|  | #define FW_FILE_VERSION					\ | 
|  | __stringify(BCM_5710_FW_MAJOR_VERSION) "."	\ | 
|  | __stringify(BCM_5710_FW_MINOR_VERSION) "."	\ | 
|  | __stringify(BCM_5710_FW_REVISION_VERSION) "."	\ | 
|  | __stringify(BCM_5710_FW_ENGINEERING_VERSION) | 
|  | #define FW_FILE_NAME_E1		"bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw" | 
|  | #define FW_FILE_NAME_E1H	"bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw" | 
|  | #define FW_FILE_NAME_E2		"bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw" | 
|  |  | 
|  | /* Time in jiffies before concluding the transmitter is hung */ | 
|  | #define TX_TIMEOUT		(5*HZ) | 
|  |  | 
|  | static char version[] = | 
|  | "Broadcom NetXtreme II 5771x/578xx 10/20-Gigabit Ethernet Driver " | 
|  | DRV_MODULE_NAME " " DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n"; | 
|  |  | 
|  | MODULE_AUTHOR("Eliezer Tamir"); | 
|  | MODULE_DESCRIPTION("Broadcom NetXtreme II " | 
|  | "BCM57710/57711/57711E/" | 
|  | "57712/57712_MF/57800/57800_MF/57810/57810_MF/" | 
|  | "57840/57840_MF Driver"); | 
|  | MODULE_LICENSE("GPL"); | 
|  | MODULE_VERSION(DRV_MODULE_VERSION); | 
|  | MODULE_FIRMWARE(FW_FILE_NAME_E1); | 
|  | MODULE_FIRMWARE(FW_FILE_NAME_E1H); | 
|  | MODULE_FIRMWARE(FW_FILE_NAME_E2); | 
|  |  | 
|  | int bnx2x_num_queues = 16;	// AKAROS_PORT try for the max | 
|  | module_param_named(num_queues, bnx2x_num_queues, int, S_IRUGO); | 
|  | MODULE_PARM_DESC(num_queues, | 
|  | " Set number of queues (default is as a number of CPUs)"); | 
|  |  | 
|  | static int disable_tpa; | 
|  | module_param(disable_tpa, int, S_IRUGO); | 
|  | MODULE_PARM_DESC(disable_tpa, " Disable the TPA (LRO) feature"); | 
|  |  | 
|  | static int int_mode; | 
|  | module_param(int_mode, int, S_IRUGO); | 
|  | MODULE_PARM_DESC(int_mode, " Force interrupt mode other than MSI-X " | 
|  | "(1 INT#x; 2 MSI)"); | 
|  |  | 
|  | static int dropless_fc; | 
|  | module_param(dropless_fc, int, S_IRUGO); | 
|  | MODULE_PARM_DESC(dropless_fc, " Pause on exhausted host ring"); | 
|  |  | 
|  | static int mrrs = -1; | 
|  | module_param(mrrs, int, S_IRUGO); | 
|  | MODULE_PARM_DESC(mrrs, " Force Max Read Req Size (0..3) (for debug)"); | 
|  |  | 
|  | /* Set this for debugging during boot */ | 
|  | static int debug; // = 0xffffffff & ~BNX2X_MSG_DMAE; | 
|  | module_param(debug, int, S_IRUGO); | 
|  | MODULE_PARM_DESC(debug, " Default debug msglevel"); | 
|  |  | 
|  | static struct workqueue_struct *bnx2x_wq; | 
|  | struct workqueue_struct *bnx2x_iov_wq; | 
|  |  | 
|  | struct bnx2x_mac_vals { | 
|  | uint32_t xmac_addr; | 
|  | uint32_t xmac_val; | 
|  | uint32_t emac_addr; | 
|  | uint32_t emac_val; | 
|  | uint32_t umac_addr; | 
|  | uint32_t umac_val; | 
|  | uint32_t bmac_addr; | 
|  | uint32_t bmac_val[2]; | 
|  | }; | 
|  |  | 
|  | enum bnx2x_board_type { | 
|  | BCM57710 = 0, | 
|  | BCM57711, | 
|  | BCM57711E, | 
|  | BCM57712, | 
|  | BCM57712_MF, | 
|  | BCM57712_VF, | 
|  | BCM57800, | 
|  | BCM57800_MF, | 
|  | BCM57800_VF, | 
|  | BCM57810, | 
|  | BCM57810_MF, | 
|  | BCM57810_VF, | 
|  | BCM57840_4_10, | 
|  | BCM57840_2_20, | 
|  | BCM57840_MF, | 
|  | BCM57840_VF, | 
|  | BCM57811, | 
|  | BCM57811_MF, | 
|  | BCM57840_O, | 
|  | BCM57840_MFO, | 
|  | BCM57811_VF | 
|  | }; | 
|  |  | 
|  | /* indexed by board_type, above */ | 
|  | static struct { | 
|  | char *name; | 
|  | } board_info[] = { | 
|  | [BCM57710]	= { "Broadcom NetXtreme II BCM57710 10 Gigabit PCIe [Everest]" }, | 
|  | [BCM57711]	= { "Broadcom NetXtreme II BCM57711 10 Gigabit PCIe" }, | 
|  | [BCM57711E]	= { "Broadcom NetXtreme II BCM57711E 10 Gigabit PCIe" }, | 
|  | [BCM57712]	= { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet" }, | 
|  | [BCM57712_MF]	= { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Multi Function" }, | 
|  | [BCM57712_VF]	= { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Virtual Function" }, | 
|  | [BCM57800]	= { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet" }, | 
|  | [BCM57800_MF]	= { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Multi Function" }, | 
|  | [BCM57800_VF]	= { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Virtual Function" }, | 
|  | [BCM57810]	= { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet" }, | 
|  | [BCM57810_MF]	= { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Multi Function" }, | 
|  | [BCM57810_VF]	= { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Virtual Function" }, | 
|  | [BCM57840_4_10]	= { "Broadcom NetXtreme II BCM57840 10 Gigabit Ethernet" }, | 
|  | [BCM57840_2_20]	= { "Broadcom NetXtreme II BCM57840 20 Gigabit Ethernet" }, | 
|  | [BCM57840_MF]	= { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Multi Function" }, | 
|  | [BCM57840_VF]	= { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Virtual Function" }, | 
|  | [BCM57811]	= { "Broadcom NetXtreme II BCM57811 10 Gigabit Ethernet" }, | 
|  | [BCM57811_MF]	= { "Broadcom NetXtreme II BCM57811 10 Gigabit Ethernet Multi Function" }, | 
|  | [BCM57840_O]	= { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet" }, | 
|  | [BCM57840_MFO]	= { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Multi Function" }, | 
|  | [BCM57811_VF]	= { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Virtual Function" } | 
|  | }; | 
|  |  | 
|  | #ifndef PCI_DEVICE_ID_NX2_57710 | 
|  | #define PCI_DEVICE_ID_NX2_57710		CHIP_NUM_57710 | 
|  | #endif | 
|  | #ifndef PCI_DEVICE_ID_NX2_57711 | 
|  | #define PCI_DEVICE_ID_NX2_57711		CHIP_NUM_57711 | 
|  | #endif | 
|  | #ifndef PCI_DEVICE_ID_NX2_57711E | 
|  | #define PCI_DEVICE_ID_NX2_57711E	CHIP_NUM_57711E | 
|  | #endif | 
|  | #ifndef PCI_DEVICE_ID_NX2_57712 | 
|  | #define PCI_DEVICE_ID_NX2_57712		CHIP_NUM_57712 | 
|  | #endif | 
|  | #ifndef PCI_DEVICE_ID_NX2_57712_MF | 
|  | #define PCI_DEVICE_ID_NX2_57712_MF	CHIP_NUM_57712_MF | 
|  | #endif | 
|  | #ifndef PCI_DEVICE_ID_NX2_57712_VF | 
|  | #define PCI_DEVICE_ID_NX2_57712_VF	CHIP_NUM_57712_VF | 
|  | #endif | 
|  | #ifndef PCI_DEVICE_ID_NX2_57800 | 
|  | #define PCI_DEVICE_ID_NX2_57800		CHIP_NUM_57800 | 
|  | #endif | 
|  | #ifndef PCI_DEVICE_ID_NX2_57800_MF | 
|  | #define PCI_DEVICE_ID_NX2_57800_MF	CHIP_NUM_57800_MF | 
|  | #endif | 
|  | #ifndef PCI_DEVICE_ID_NX2_57800_VF | 
|  | #define PCI_DEVICE_ID_NX2_57800_VF	CHIP_NUM_57800_VF | 
|  | #endif | 
|  | #ifndef PCI_DEVICE_ID_NX2_57810 | 
|  | #define PCI_DEVICE_ID_NX2_57810		CHIP_NUM_57810 | 
|  | #endif | 
|  | #ifndef PCI_DEVICE_ID_NX2_57810_MF | 
|  | #define PCI_DEVICE_ID_NX2_57810_MF	CHIP_NUM_57810_MF | 
|  | #endif | 
|  | #ifndef PCI_DEVICE_ID_NX2_57840_O | 
|  | #define PCI_DEVICE_ID_NX2_57840_O	CHIP_NUM_57840_OBSOLETE | 
|  | #endif | 
|  | #ifndef PCI_DEVICE_ID_NX2_57810_VF | 
|  | #define PCI_DEVICE_ID_NX2_57810_VF	CHIP_NUM_57810_VF | 
|  | #endif | 
|  | #ifndef PCI_DEVICE_ID_NX2_57840_4_10 | 
|  | #define PCI_DEVICE_ID_NX2_57840_4_10	CHIP_NUM_57840_4_10 | 
|  | #endif | 
|  | #ifndef PCI_DEVICE_ID_NX2_57840_2_20 | 
|  | #define PCI_DEVICE_ID_NX2_57840_2_20	CHIP_NUM_57840_2_20 | 
|  | #endif | 
|  | #ifndef PCI_DEVICE_ID_NX2_57840_MFO | 
|  | #define PCI_DEVICE_ID_NX2_57840_MFO	CHIP_NUM_57840_MF_OBSOLETE | 
|  | #endif | 
|  | #ifndef PCI_DEVICE_ID_NX2_57840_MF | 
|  | #define PCI_DEVICE_ID_NX2_57840_MF	CHIP_NUM_57840_MF | 
|  | #endif | 
|  | #ifndef PCI_DEVICE_ID_NX2_57840_VF | 
|  | #define PCI_DEVICE_ID_NX2_57840_VF	CHIP_NUM_57840_VF | 
|  | #endif | 
|  | #ifndef PCI_DEVICE_ID_NX2_57811 | 
|  | #define PCI_DEVICE_ID_NX2_57811		CHIP_NUM_57811 | 
|  | #endif | 
|  | #ifndef PCI_DEVICE_ID_NX2_57811_MF | 
|  | #define PCI_DEVICE_ID_NX2_57811_MF	CHIP_NUM_57811_MF | 
|  | #endif | 
|  | #ifndef PCI_DEVICE_ID_NX2_57811_VF | 
|  | #define PCI_DEVICE_ID_NX2_57811_VF	CHIP_NUM_57811_VF | 
|  | #endif | 
|  |  | 
|  | static const struct pci_device_id bnx2x_pci_tbl[] = { | 
|  | { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57710), BCM57710 }, | 
|  | { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711), BCM57711 }, | 
|  | { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711E), BCM57711E }, | 
|  | { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712), BCM57712 }, | 
|  | { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_MF), BCM57712_MF }, | 
|  | { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_VF), BCM57712_VF }, | 
|  | { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800), BCM57800 }, | 
|  | { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_MF), BCM57800_MF }, | 
|  | { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_VF), BCM57800_VF }, | 
|  | { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810), BCM57810 }, | 
|  | { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_MF), BCM57810_MF }, | 
|  | { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_O), BCM57840_O }, | 
|  | { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 }, | 
|  | { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_2_20), BCM57840_2_20 }, | 
|  | { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_VF), BCM57810_VF }, | 
|  | { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MFO), BCM57840_MFO }, | 
|  | { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF }, | 
|  | { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF }, | 
|  | { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811), BCM57811 }, | 
|  | { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_MF), BCM57811_MF }, | 
|  | { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_VF), BCM57811_VF }, | 
|  | { 0 } | 
|  | }; | 
|  |  | 
|  | const struct pci_device_id *srch_bnx2x_pci_tbl(struct pci_device *needle) | 
|  | { | 
|  | const struct pci_device_id *tbl = bnx2x_pci_tbl; | 
|  | return srch_linux_pci_tbl(tbl, needle); | 
|  | } | 
|  |  | 
|  | MODULE_DEVICE_TABLE(pci, bnx2x_pci_tbl); | 
|  |  | 
|  | /* Global resources for unloading a previously loaded device */ | 
|  | #define BNX2X_PREV_WAIT_NEEDED 1 | 
|  | static DEFINE_SEMAPHORE(bnx2x_prev_sem); | 
|  | static LINUX_LIST_HEAD(bnx2x_prev_list); | 
|  |  | 
|  | /* Forward declaration */ | 
|  | static struct cnic_eth_dev *bnx2x_cnic_probe(struct ether *dev); | 
|  | static uint32_t bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp); | 
|  | static int bnx2x_set_storm_rx_mode(struct bnx2x *bp); | 
|  |  | 
|  | /**************************************************************************** | 
|  | * General service functions | 
|  | ****************************************************************************/ | 
|  |  | 
|  | static int bnx2x_hwtstamp_ioctl(struct bnx2x *bp, struct ifreq *ifr); | 
|  |  | 
|  | static void __storm_memset_dma_mapping(struct bnx2x *bp, | 
|  | uint32_t addr, dma_addr_t mapping) | 
|  | { | 
|  | REG_WR(bp,  addr, U64_LO(mapping)); | 
|  | REG_WR(bp,  addr + 4, U64_HI(mapping)); | 
|  | } | 
|  |  | 
|  | static void storm_memset_spq_addr(struct bnx2x *bp, | 
|  | dma_addr_t mapping, uint16_t abs_fid) | 
|  | { | 
|  | uint32_t addr = XSEM_REG_FAST_MEMORY + | 
|  | XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid); | 
|  |  | 
|  | __storm_memset_dma_mapping(bp, addr, mapping); | 
|  | } | 
|  |  | 
|  | static void storm_memset_vf_to_pf(struct bnx2x *bp, uint16_t abs_fid, | 
|  | uint16_t pf_id) | 
|  | { | 
|  | REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid), | 
|  | pf_id); | 
|  | REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid), | 
|  | pf_id); | 
|  | REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid), | 
|  | pf_id); | 
|  | REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid), | 
|  | pf_id); | 
|  | } | 
|  |  | 
|  | static void storm_memset_func_en(struct bnx2x *bp, uint16_t abs_fid, | 
|  | uint8_t enable) | 
|  | { | 
|  | REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid), | 
|  | enable); | 
|  | REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid), | 
|  | enable); | 
|  | REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid), | 
|  | enable); | 
|  | REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid), | 
|  | enable); | 
|  | } | 
|  |  | 
|  | static void storm_memset_eq_data(struct bnx2x *bp, | 
|  | struct event_ring_data *eq_data, | 
|  | uint16_t pfid) | 
|  | { | 
|  | size_t size = sizeof(struct event_ring_data); | 
|  |  | 
|  | uint32_t addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid); | 
|  |  | 
|  | __storm_memset_struct(bp, addr, size, (uint32_t *)eq_data); | 
|  | } | 
|  |  | 
|  | static void storm_memset_eq_prod(struct bnx2x *bp, uint16_t eq_prod, | 
|  | uint16_t pfid) | 
|  | { | 
|  | uint32_t addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_PROD_OFFSET(pfid); | 
|  | REG_WR16(bp, addr, eq_prod); | 
|  | } | 
|  |  | 
|  | /* used only at init | 
|  | * locking is done by mcp | 
|  | */ | 
|  | static void bnx2x_reg_wr_ind(struct bnx2x *bp, uint32_t addr, uint32_t val) | 
|  | { | 
|  | pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr); | 
|  | pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val); | 
|  | pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, | 
|  | PCICFG_VENDOR_ID_OFFSET); | 
|  | } | 
|  |  | 
|  | static uint32_t bnx2x_reg_rd_ind(struct bnx2x *bp, uint32_t addr) | 
|  | { | 
|  | uint32_t val; | 
|  |  | 
|  | pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr); | 
|  | pci_read_config_dword(bp->pdev, PCICFG_GRC_DATA, &val); | 
|  | pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, | 
|  | PCICFG_VENDOR_ID_OFFSET); | 
|  |  | 
|  | return val; | 
|  | } | 
|  |  | 
|  | #define DMAE_DP_SRC_GRC		"grc src_addr [%08x]" | 
|  | #define DMAE_DP_SRC_PCI		"pci src_addr [%x:%08x]" | 
|  | #define DMAE_DP_DST_GRC		"grc dst_addr [%08x]" | 
|  | #define DMAE_DP_DST_PCI		"pci dst_addr [%x:%08x]" | 
|  | #define DMAE_DP_DST_NONE	"dst_addr [none]" | 
|  |  | 
|  | static void bnx2x_dp_dmae(struct bnx2x *bp, | 
|  | struct dmae_command *dmae, int msglvl) | 
|  | { | 
|  | uint32_t src_type = dmae->opcode & DMAE_COMMAND_SRC; | 
|  | int i; | 
|  |  | 
|  | switch (dmae->opcode & DMAE_COMMAND_DST) { | 
|  | case DMAE_CMD_DST_PCI: | 
|  | if (src_type == DMAE_CMD_SRC_PCI) | 
|  | DP(msglvl, "DMAE: opcode 0x%08x\n" | 
|  | "src [%x:%08x], len [%d*4], dst [%x:%08x]\n" | 
|  | "comp_addr [%x:%08x], comp_val 0x%08x\n", | 
|  | dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo, | 
|  | dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo, | 
|  | dmae->comp_addr_hi, dmae->comp_addr_lo, | 
|  | dmae->comp_val); | 
|  | else | 
|  | DP(msglvl, "DMAE: opcode 0x%08x\n" | 
|  | "src [%08x], len [%d*4], dst [%x:%08x]\n" | 
|  | "comp_addr [%x:%08x], comp_val 0x%08x\n", | 
|  | dmae->opcode, dmae->src_addr_lo >> 2, | 
|  | dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo, | 
|  | dmae->comp_addr_hi, dmae->comp_addr_lo, | 
|  | dmae->comp_val); | 
|  | break; | 
|  | case DMAE_CMD_DST_GRC: | 
|  | if (src_type == DMAE_CMD_SRC_PCI) | 
|  | DP(msglvl, "DMAE: opcode 0x%08x\n" | 
|  | "src [%x:%08x], len [%d*4], dst_addr [%08x]\n" | 
|  | "comp_addr [%x:%08x], comp_val 0x%08x\n", | 
|  | dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo, | 
|  | dmae->len, dmae->dst_addr_lo >> 2, | 
|  | dmae->comp_addr_hi, dmae->comp_addr_lo, | 
|  | dmae->comp_val); | 
|  | else | 
|  | DP(msglvl, "DMAE: opcode 0x%08x\n" | 
|  | "src [%08x], len [%d*4], dst [%08x]\n" | 
|  | "comp_addr [%x:%08x], comp_val 0x%08x\n", | 
|  | dmae->opcode, dmae->src_addr_lo >> 2, | 
|  | dmae->len, dmae->dst_addr_lo >> 2, | 
|  | dmae->comp_addr_hi, dmae->comp_addr_lo, | 
|  | dmae->comp_val); | 
|  | break; | 
|  | default: | 
|  | if (src_type == DMAE_CMD_SRC_PCI) | 
|  | DP(msglvl, "DMAE: opcode 0x%08x\n" | 
|  | "src_addr [%x:%08x]  len [%d * 4]  dst_addr [none]\n" | 
|  | "comp_addr [%x:%08x]  comp_val 0x%08x\n", | 
|  | dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo, | 
|  | dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo, | 
|  | dmae->comp_val); | 
|  | else | 
|  | DP(msglvl, "DMAE: opcode 0x%08x\n" | 
|  | "src_addr [%08x]  len [%d * 4]  dst_addr [none]\n" | 
|  | "comp_addr [%x:%08x]  comp_val 0x%08x\n", | 
|  | dmae->opcode, dmae->src_addr_lo >> 2, | 
|  | dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo, | 
|  | dmae->comp_val); | 
|  | break; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < (sizeof(struct dmae_command)/4); i++) | 
|  | DP(msglvl, "DMAE RAW [%02d]: 0x%08x\n", | 
|  | i, *(((uint32_t *)dmae) + i)); | 
|  | } | 
|  |  | 
|  | /* copy command into DMAE command memory and set DMAE command go */ | 
|  | void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx) | 
|  | { | 
|  | uint32_t cmd_offset; | 
|  | int i; | 
|  |  | 
|  | cmd_offset = (DMAE_REG_CMD_MEM + sizeof(struct dmae_command) * idx); | 
|  | for (i = 0; i < (sizeof(struct dmae_command)/4); i++) { | 
|  | REG_WR(bp, cmd_offset + i*4, *(((uint32_t *)dmae) + i)); | 
|  | } | 
|  | REG_WR(bp, dmae_reg_go_c[idx], 1); | 
|  | } | 
|  |  | 
|  | uint32_t bnx2x_dmae_opcode_add_comp(uint32_t opcode, uint8_t comp_type) | 
|  | { | 
|  | return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) | | 
|  | DMAE_CMD_C_ENABLE); | 
|  | } | 
|  |  | 
|  | uint32_t bnx2x_dmae_opcode_clr_src_reset(uint32_t opcode) | 
|  | { | 
|  | return opcode & ~DMAE_CMD_SRC_RESET; | 
|  | } | 
|  |  | 
|  | uint32_t bnx2x_dmae_opcode(struct bnx2x *bp, uint8_t src_type, uint8_t dst_type, | 
|  | bool with_comp, uint8_t comp_type) | 
|  | { | 
|  | uint32_t opcode = 0; | 
|  |  | 
|  | opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) | | 
|  | (dst_type << DMAE_COMMAND_DST_SHIFT)); | 
|  |  | 
|  | opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET); | 
|  |  | 
|  | opcode |= (BP_PORT(bp) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0); | 
|  | opcode |= ((BP_VN(bp) << DMAE_CMD_E1HVN_SHIFT) | | 
|  | (BP_VN(bp) << DMAE_COMMAND_DST_VN_SHIFT)); | 
|  | opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT); | 
|  |  | 
|  | #ifdef __BIG_ENDIAN | 
|  | opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP; | 
|  | #else | 
|  | opcode |= DMAE_CMD_ENDIANITY_DW_SWAP; | 
|  | #endif | 
|  | if (with_comp) | 
|  | opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type); | 
|  | return opcode; | 
|  | } | 
|  |  | 
|  | void bnx2x_prep_dmae_with_comp(struct bnx2x *bp, | 
|  | struct dmae_command *dmae, | 
|  | uint8_t src_type, uint8_t dst_type) | 
|  | { | 
|  | memset(dmae, 0, sizeof(struct dmae_command)); | 
|  |  | 
|  | /* set the opcode */ | 
|  | dmae->opcode = bnx2x_dmae_opcode(bp, src_type, dst_type, | 
|  | true, DMAE_COMP_PCI); | 
|  |  | 
|  | /* fill in the completion parameters */ | 
|  | dmae->comp_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_comp)); | 
|  | dmae->comp_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_comp)); | 
|  | dmae->comp_val = DMAE_COMP_VAL; | 
|  | } | 
|  |  | 
|  | /* issue a dmae command over the init-channel and wait for completion */ | 
|  | int bnx2x_issue_dmae_with_comp(struct bnx2x *bp, struct dmae_command *dmae, | 
|  | uint32_t *comp) | 
|  | { | 
|  | int cnt = CHIP_REV_IS_SLOW(bp) ? (400000) : 4000; | 
|  | int rc = 0; | 
|  |  | 
|  | bnx2x_dp_dmae(bp, dmae, BNX2X_MSG_DMAE); | 
|  |  | 
|  | /* Lock the dmae channel. Disable BHs to prevent a dead-lock | 
|  | * as long as this code is called both from syscall context and | 
|  | * from ndo_set_rx_mode() flow that may be called from BH. | 
|  | */ | 
|  |  | 
|  | spin_lock(&bp->dmae_lock); | 
|  |  | 
|  | /* reset completion */ | 
|  | *comp = 0; | 
|  |  | 
|  | /* post the command on the channel used for initializations */ | 
|  | bnx2x_post_dmae(bp, dmae, INIT_DMAE_C(bp)); | 
|  |  | 
|  | /* wait for completion */ | 
|  | udelay(5); | 
|  | while ((*comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) { | 
|  |  | 
|  | if (!cnt || | 
|  | (bp->recovery_state != BNX2X_RECOVERY_DONE && | 
|  | bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) { | 
|  | BNX2X_ERR("DMAE timeout!\n"); | 
|  | rc = DMAE_TIMEOUT; | 
|  | goto unlock; | 
|  | } | 
|  | cnt--; | 
|  | udelay(50); | 
|  | } | 
|  | if (*comp & DMAE_PCI_ERR_FLAG) { | 
|  | BNX2X_ERR("DMAE PCI error!\n"); | 
|  | rc = DMAE_PCI_ERROR; | 
|  | } | 
|  |  | 
|  | unlock: | 
|  |  | 
|  | spin_unlock(&bp->dmae_lock); | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, | 
|  | uint32_t dst_addr, | 
|  | uint32_t len32) | 
|  | { | 
|  | int rc; | 
|  | struct dmae_command dmae; | 
|  |  | 
|  | if (!bp->dmae_ready) { | 
|  | uint32_t *data = bnx2x_sp(bp, wb_data[0]); | 
|  |  | 
|  | if (CHIP_IS_E1(bp)) | 
|  | bnx2x_init_ind_wr(bp, dst_addr, data, len32); | 
|  | else | 
|  | bnx2x_init_str_wr(bp, dst_addr, data, len32); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* set opcode and fixed command fields */ | 
|  | bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC); | 
|  |  | 
|  | /* fill in addresses and len */ | 
|  | dmae.src_addr_lo = U64_LO(dma_addr); | 
|  | dmae.src_addr_hi = U64_HI(dma_addr); | 
|  | dmae.dst_addr_lo = dst_addr >> 2; | 
|  | dmae.dst_addr_hi = 0; | 
|  | dmae.len = len32; | 
|  |  | 
|  | /* issue the command and wait for completion */ | 
|  | rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp)); | 
|  | if (rc) { | 
|  | BNX2X_ERR("DMAE returned failure %d\n", rc); | 
|  | #ifdef BNX2X_STOP_ON_ERROR | 
|  | bnx2x_panic(); | 
|  | #endif | 
|  | } | 
|  | } | 
|  |  | 
|  | void bnx2x_read_dmae(struct bnx2x *bp, uint32_t src_addr, uint32_t len32) | 
|  | { | 
|  | int rc; | 
|  | struct dmae_command dmae; | 
|  |  | 
|  | if (!bp->dmae_ready) { | 
|  | uint32_t *data = bnx2x_sp(bp, wb_data[0]); | 
|  | int i; | 
|  |  | 
|  | if (CHIP_IS_E1(bp)) | 
|  | for (i = 0; i < len32; i++) | 
|  | data[i] = bnx2x_reg_rd_ind(bp, src_addr + i*4); | 
|  | else | 
|  | for (i = 0; i < len32; i++) | 
|  | data[i] = REG_RD(bp, src_addr + i*4); | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* set opcode and fixed command fields */ | 
|  | bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI); | 
|  |  | 
|  | /* fill in addresses and len */ | 
|  | dmae.src_addr_lo = src_addr >> 2; | 
|  | dmae.src_addr_hi = 0; | 
|  | dmae.dst_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_data)); | 
|  | dmae.dst_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_data)); | 
|  | dmae.len = len32; | 
|  |  | 
|  | /* issue the command and wait for completion */ | 
|  | rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp)); | 
|  | if (rc) { | 
|  | BNX2X_ERR("DMAE returned failure %d\n", rc); | 
|  | #ifdef BNX2X_STOP_ON_ERROR | 
|  | bnx2x_panic(); | 
|  | #endif | 
|  | } | 
|  | } | 
|  |  | 
|  | static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr, | 
|  | uint32_t addr, uint32_t len) | 
|  | { | 
|  | int dmae_wr_max = DMAE_LEN32_WR_MAX(bp); | 
|  | int offset = 0; | 
|  |  | 
|  | while (len > dmae_wr_max) { | 
|  | bnx2x_write_dmae(bp, phys_addr + offset, | 
|  | addr + offset, dmae_wr_max); | 
|  | offset += dmae_wr_max * 4; | 
|  | len -= dmae_wr_max; | 
|  | } | 
|  |  | 
|  | bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, len); | 
|  | } | 
|  |  | 
|  | enum storms { | 
|  | XSTORM, | 
|  | TSTORM, | 
|  | CSTORM, | 
|  | USTORM, | 
|  | MAX_STORMS | 
|  | }; | 
|  |  | 
|  | #define STORMS_NUM 4 | 
|  | #define REGS_IN_ENTRY 4 | 
|  |  | 
|  | static inline int bnx2x_get_assert_list_entry(struct bnx2x *bp, | 
|  | enum storms storm, | 
|  | int entry) | 
|  | { | 
|  | switch (storm) { | 
|  | case XSTORM: | 
|  | return XSTORM_ASSERT_LIST_OFFSET(entry); | 
|  | case TSTORM: | 
|  | return TSTORM_ASSERT_LIST_OFFSET(entry); | 
|  | case CSTORM: | 
|  | return CSTORM_ASSERT_LIST_OFFSET(entry); | 
|  | case USTORM: | 
|  | return USTORM_ASSERT_LIST_OFFSET(entry); | 
|  | case MAX_STORMS: | 
|  | default: | 
|  | BNX2X_ERR("unknown storm\n"); | 
|  | } | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | static int bnx2x_mc_assert(struct bnx2x *bp) | 
|  | { | 
|  | char last_idx; | 
|  | int i, j, rc = 0; | 
|  | enum storms storm; | 
|  | uint32_t regs[REGS_IN_ENTRY]; | 
|  | uint32_t bar_storm_intmem[STORMS_NUM] = { | 
|  | BAR_XSTRORM_INTMEM, | 
|  | BAR_TSTRORM_INTMEM, | 
|  | BAR_CSTRORM_INTMEM, | 
|  | BAR_USTRORM_INTMEM | 
|  | }; | 
|  | uint32_t storm_assert_list_index[STORMS_NUM] = { | 
|  | XSTORM_ASSERT_LIST_INDEX_OFFSET, | 
|  | TSTORM_ASSERT_LIST_INDEX_OFFSET, | 
|  | CSTORM_ASSERT_LIST_INDEX_OFFSET, | 
|  | USTORM_ASSERT_LIST_INDEX_OFFSET | 
|  | }; | 
|  | char *storms_string[STORMS_NUM] = { | 
|  | "XSTORM", | 
|  | "TSTORM", | 
|  | "CSTORM", | 
|  | "USTORM" | 
|  | }; | 
|  |  | 
|  | for (storm = XSTORM; storm < MAX_STORMS; storm++) { | 
|  | last_idx = REG_RD8(bp, bar_storm_intmem[storm] + | 
|  | storm_assert_list_index[storm]); | 
|  | if (last_idx) | 
|  | BNX2X_ERR("%s_ASSERT_LIST_INDEX 0x%x\n", | 
|  | storms_string[storm], last_idx); | 
|  |  | 
|  | /* print the asserts */ | 
|  | for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) { | 
|  | /* read a single assert entry */ | 
|  | for (j = 0; j < REGS_IN_ENTRY; j++) | 
|  | regs[j] = REG_RD(bp, bar_storm_intmem[storm] + | 
|  | bnx2x_get_assert_list_entry(bp, | 
|  | storm, | 
|  | i) + | 
|  | sizeof(uint32_t) * j); | 
|  |  | 
|  | /* log entry if it contains a valid assert */ | 
|  | if (regs[0] != COMMON_ASM_INVALID_ASSERT_OPCODE) { | 
|  | BNX2X_ERR("%s_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", | 
|  | storms_string[storm], i, regs[3], | 
|  | regs[2], regs[1], regs[0]); | 
|  | rc++; | 
|  | } else { | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | BNX2X_ERR("Chip Revision: %s, FW Version: %d_%d_%d\n", | 
|  | CHIP_IS_E1(bp) ? "everest1" : | 
|  | CHIP_IS_E1H(bp) ? "everest1h" : | 
|  | CHIP_IS_E2(bp) ? "everest2" : "everest3", | 
|  | BCM_5710_FW_MAJOR_VERSION, | 
|  | BCM_5710_FW_MINOR_VERSION, | 
|  | BCM_5710_FW_REVISION_VERSION); | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | #define MCPR_TRACE_BUFFER_SIZE	(0x800) | 
|  | #define SCRATCH_BUFFER_SIZE(bp)	\ | 
|  | (CHIP_IS_E1(bp) ? 0x10000 : (CHIP_IS_E1H(bp) ? 0x20000 : 0x28000)) | 
|  |  | 
|  | void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl) | 
|  | { | 
|  | uint32_t addr, val; | 
|  | uint32_t mark, offset; | 
|  | __be32 data[9]; | 
|  | int word; | 
|  | uint32_t trace_shmem_base; | 
|  | if (BP_NOMCP(bp)) { | 
|  | BNX2X_ERR("NO MCP - can not dump\n"); | 
|  | return; | 
|  | } | 
|  | netdev_printk(lvl, bp->dev, "bc %d.%d.%d\n", | 
|  | (bp->common.bc_ver & 0xff0000) >> 16, | 
|  | (bp->common.bc_ver & 0xff00) >> 8, | 
|  | (bp->common.bc_ver & 0xff)); | 
|  |  | 
|  | val = REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER); | 
|  | if (val == REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER)) | 
|  | BNX2X_ERR("%s" "MCP PC at 0x%x\n", lvl, val); | 
|  |  | 
|  | if (BP_PATH(bp) == 0) | 
|  | trace_shmem_base = bp->common.shmem_base; | 
|  | else | 
|  | trace_shmem_base = SHMEM2_RD(bp, other_shmem_base_addr); | 
|  |  | 
|  | /* sanity */ | 
|  | if (trace_shmem_base < MCPR_SCRATCH_BASE(bp) + MCPR_TRACE_BUFFER_SIZE || | 
|  | trace_shmem_base >= MCPR_SCRATCH_BASE(bp) + | 
|  | SCRATCH_BUFFER_SIZE(bp)) { | 
|  | BNX2X_ERR("Unable to dump trace buffer (mark %x)\n", | 
|  | trace_shmem_base); | 
|  | return; | 
|  | } | 
|  |  | 
|  | addr = trace_shmem_base - MCPR_TRACE_BUFFER_SIZE; | 
|  |  | 
|  | /* validate TRCB signature */ | 
|  | mark = REG_RD(bp, addr); | 
|  | if (mark != MFW_TRACE_SIGNATURE) { | 
|  | BNX2X_ERR("Trace buffer signature is missing."); | 
|  | return ; | 
|  | } | 
|  |  | 
|  | /* read cyclic buffer pointer */ | 
|  | addr += 4; | 
|  | mark = REG_RD(bp, addr); | 
|  | mark = MCPR_SCRATCH_BASE(bp) + ((mark + 0x3) & ~0x3) - 0x08000000; | 
|  | if (mark >= trace_shmem_base || mark < addr + 4) { | 
|  | BNX2X_ERR("Mark doesn't fall inside Trace Buffer\n"); | 
|  | return; | 
|  | } | 
|  | printk("%s" "begin fw dump (mark 0x%x)\n", lvl, mark); | 
|  |  | 
|  | printk("%s", lvl); | 
|  |  | 
|  | /* dump buffer after the mark */ | 
|  | for (offset = mark; offset < trace_shmem_base; offset += 0x8*4) { | 
|  | for (word = 0; word < 8; word++) | 
|  | data[word] = cpu_to_be32(REG_RD(bp, | 
|  | offset + 4 * word)); | 
|  | data[8] = 0x0; | 
|  | pr_cont("%s", (char *)data); | 
|  | } | 
|  |  | 
|  | /* dump buffer before the mark */ | 
|  | for (offset = addr + 4; offset <= mark; offset += 0x8*4) { | 
|  | for (word = 0; word < 8; word++) | 
|  | data[word] = cpu_to_be32(REG_RD(bp, | 
|  | offset + 4 * word)); | 
|  | data[8] = 0x0; | 
|  | pr_cont("%s", (char *)data); | 
|  | } | 
|  | printk("%s" "end of fw dump\n", lvl); | 
|  | } | 
|  |  | 
|  | static void bnx2x_fw_dump(struct bnx2x *bp) | 
|  | { | 
|  | bnx2x_fw_dump_lvl(bp, KERN_ERR); | 
|  | } | 
|  |  | 
|  | static void bnx2x_hc_int_disable(struct bnx2x *bp) | 
|  | { | 
|  | int port = BP_PORT(bp); | 
|  | uint32_t addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0; | 
|  | uint32_t val = REG_RD(bp, addr); | 
|  |  | 
|  | /* in E1 we must use only PCI configuration space to disable | 
|  | * MSI/MSIX capability | 
|  | * It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC block | 
|  | */ | 
|  | if (CHIP_IS_E1(bp)) { | 
|  | /* Since IGU_PF_CONF_MSI_MSIX_EN still always on | 
|  | * Use mask register to prevent from HC sending interrupts | 
|  | * after we exit the function | 
|  | */ | 
|  | REG_WR(bp, HC_REG_INT_MASK + port*4, 0); | 
|  |  | 
|  | val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | | 
|  | HC_CONFIG_0_REG_INT_LINE_EN_0 | | 
|  | HC_CONFIG_0_REG_ATTN_BIT_EN_0); | 
|  | } else | 
|  | val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | | 
|  | HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | | 
|  | HC_CONFIG_0_REG_INT_LINE_EN_0 | | 
|  | HC_CONFIG_0_REG_ATTN_BIT_EN_0); | 
|  |  | 
|  | DP(NETIF_MSG_IFDOWN, | 
|  | "write %x to HC %d (addr 0x%x)\n", | 
|  | val, port, addr); | 
|  |  | 
|  | /* flush all outstanding writes */ | 
|  | bus_wmb(); | 
|  |  | 
|  | REG_WR(bp, addr, val); | 
|  | if (REG_RD(bp, addr) != val) | 
|  | BNX2X_ERR("BUG! Proper val not read from IGU!\n"); | 
|  | } | 
|  |  | 
|  | static void bnx2x_igu_int_disable(struct bnx2x *bp) | 
|  | { | 
|  | uint32_t val = REG_RD(bp, IGU_REG_PF_CONFIGURATION); | 
|  |  | 
|  | val &= ~(IGU_PF_CONF_MSI_MSIX_EN | | 
|  | IGU_PF_CONF_INT_LINE_EN | | 
|  | IGU_PF_CONF_ATTN_BIT_EN); | 
|  |  | 
|  | DP(NETIF_MSG_IFDOWN, "write %x to IGU\n", val); | 
|  |  | 
|  | /* flush all outstanding writes */ | 
|  | bus_wmb(); | 
|  |  | 
|  | REG_WR(bp, IGU_REG_PF_CONFIGURATION, val); | 
|  | if (REG_RD(bp, IGU_REG_PF_CONFIGURATION) != val) | 
|  | BNX2X_ERR("BUG! Proper val not read from IGU!\n"); | 
|  | } | 
|  |  | 
|  | static void bnx2x_int_disable(struct bnx2x *bp) | 
|  | { | 
|  | if (bp->common.int_block == INT_BLOCK_HC) | 
|  | bnx2x_hc_int_disable(bp); | 
|  | else | 
|  | bnx2x_igu_int_disable(bp); | 
|  | } | 
|  |  | 
|  | void bnx2x_panic_dump(struct bnx2x *bp, bool disable_int) | 
|  | { | 
|  | int i; | 
|  | uint16_t j; | 
|  | struct hc_sp_status_block_data sp_sb_data; | 
|  | int func = BP_FUNC(bp); | 
|  | #ifdef BNX2X_STOP_ON_ERROR | 
|  | uint16_t start = 0, end = 0; | 
|  | uint8_t cos; | 
|  | #endif | 
|  | if (IS_PF(bp) && disable_int) | 
|  | bnx2x_int_disable(bp); | 
|  |  | 
|  | bp->stats_state = STATS_STATE_DISABLED; | 
|  | bp->eth_stats.unrecoverable_error++; | 
|  | DP(BNX2X_MSG_STATS, "stats_state - DISABLED\n"); | 
|  |  | 
|  | BNX2X_ERR("begin crash dump -----------------\n"); | 
|  |  | 
|  | /* Indices */ | 
|  | /* Common */ | 
|  | if (IS_PF(bp)) { | 
|  | struct host_sp_status_block *def_sb = bp->def_status_blk; | 
|  | int data_size, cstorm_offset; | 
|  |  | 
|  | BNX2X_ERR("def_idx(0x%x)  def_att_idx(0x%x)  attn_state(0x%x)  spq_prod_idx(0x%x) next_stats_cnt(0x%x)\n", | 
|  | bp->def_idx, bp->def_att_idx, bp->attn_state, | 
|  | bp->spq_prod_idx, bp->stats_counter); | 
|  | BNX2X_ERR("DSB: attn bits(0x%x)  ack(0x%x)  id(0x%x)  idx(0x%x)\n", | 
|  | def_sb->atten_status_block.attn_bits, | 
|  | def_sb->atten_status_block.attn_bits_ack, | 
|  | def_sb->atten_status_block.status_block_id, | 
|  | def_sb->atten_status_block.attn_bits_index); | 
|  | BNX2X_ERR("     def ("); | 
|  | for (i = 0; i < HC_SP_SB_MAX_INDICES; i++) | 
|  | pr_cont("0x%x%s", | 
|  | def_sb->sp_sb.index_values[i], | 
|  | (i == HC_SP_SB_MAX_INDICES - 1) ? ")  " : " "); | 
|  |  | 
|  | data_size = sizeof(struct hc_sp_status_block_data) / | 
|  | sizeof(uint32_t); | 
|  | cstorm_offset = CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func); | 
|  | for (i = 0; i < data_size; i++) | 
|  | *((uint32_t *)&sp_sb_data + i) = | 
|  | REG_RD(bp, BAR_CSTRORM_INTMEM + cstorm_offset + | 
|  | i * sizeof(uint32_t)); | 
|  |  | 
|  | pr_cont("igu_sb_id(0x%x)  igu_seg_id(0x%x) pf_id(0x%x)  vnic_id(0x%x)  vf_id(0x%x)  vf_valid (0x%x) state(0x%x)\n", | 
|  | sp_sb_data.igu_sb_id, | 
|  | sp_sb_data.igu_seg_id, | 
|  | sp_sb_data.p_func.pf_id, | 
|  | sp_sb_data.p_func.vnic_id, | 
|  | sp_sb_data.p_func.vf_id, | 
|  | sp_sb_data.p_func.vf_valid, | 
|  | sp_sb_data.state); | 
|  | } | 
|  |  | 
|  | for_each_eth_queue(bp, i) { | 
|  | struct bnx2x_fastpath *fp = &bp->fp[i]; | 
|  | int loop; | 
|  | struct hc_status_block_data_e2 sb_data_e2; | 
|  | struct hc_status_block_data_e1x sb_data_e1x; | 
|  | struct hc_status_block_sm  *hc_sm_p = | 
|  | CHIP_IS_E1x(bp) ? | 
|  | sb_data_e1x.common.state_machine : | 
|  | sb_data_e2.common.state_machine; | 
|  | struct hc_index_data *hc_index_p = | 
|  | CHIP_IS_E1x(bp) ? | 
|  | sb_data_e1x.index_data : | 
|  | sb_data_e2.index_data; | 
|  | uint8_t data_size, cos; | 
|  | uint32_t *sb_data_p; | 
|  | struct bnx2x_fp_txdata txdata; | 
|  |  | 
|  | if (!bp->fp) | 
|  | break; | 
|  |  | 
|  | if (!fp->rx_cons_sb) | 
|  | continue; | 
|  |  | 
|  | /* Rx */ | 
|  | BNX2X_ERR("fp%d: rx_bd_prod(0x%x)  rx_bd_cons(0x%x)  rx_comp_prod(0x%x)  rx_comp_cons(0x%x)  *rx_cons_sb(0x%x)\n", | 
|  | i, fp->rx_bd_prod, fp->rx_bd_cons, | 
|  | fp->rx_comp_prod, | 
|  | fp->rx_comp_cons, le16_to_cpu(*fp->rx_cons_sb)); | 
|  | BNX2X_ERR("     rx_sge_prod(0x%x)  last_max_sge(0x%x)  fp_hc_idx(0x%x)\n", | 
|  | fp->rx_sge_prod, fp->last_max_sge, | 
|  | le16_to_cpu(fp->fp_hc_idx)); | 
|  |  | 
|  | /* Tx */ | 
|  | for_each_cos_in_tx_queue(fp, cos) | 
|  | { | 
|  | if (!fp->txdata_ptr[cos]) | 
|  | break; | 
|  |  | 
|  | txdata = *fp->txdata_ptr[cos]; | 
|  |  | 
|  | if (!txdata.tx_cons_sb) | 
|  | continue; | 
|  |  | 
|  | BNX2X_ERR("fp%d: tx_pkt_prod(0x%x)  tx_pkt_cons(0x%x)  tx_bd_prod(0x%x)  tx_bd_cons(0x%x)  *tx_cons_sb(0x%x)\n", | 
|  | i, txdata.tx_pkt_prod, | 
|  | txdata.tx_pkt_cons, txdata.tx_bd_prod, | 
|  | txdata.tx_bd_cons, | 
|  | le16_to_cpu(*txdata.tx_cons_sb)); | 
|  | } | 
|  |  | 
|  | loop = CHIP_IS_E1x(bp) ? | 
|  | HC_SB_MAX_INDICES_E1X : HC_SB_MAX_INDICES_E2; | 
|  |  | 
|  | /* host sb data */ | 
|  |  | 
|  | if (IS_FCOE_FP(fp)) | 
|  | continue; | 
|  |  | 
|  | BNX2X_ERR("     run indexes ("); | 
|  | for (j = 0; j < HC_SB_MAX_SM; j++) | 
|  | pr_cont("0x%x%s", | 
|  | fp->sb_running_index[j], | 
|  | (j == HC_SB_MAX_SM - 1) ? ")" : " "); | 
|  |  | 
|  | BNX2X_ERR("     indexes ("); | 
|  | for (j = 0; j < loop; j++) | 
|  | pr_cont("0x%x%s", | 
|  | fp->sb_index_values[j], | 
|  | (j == loop - 1) ? ")" : " "); | 
|  |  | 
|  | /* VF cannot access FW refelection for status block */ | 
|  | if (IS_VF(bp)) | 
|  | continue; | 
|  |  | 
|  | /* fw sb data */ | 
|  | data_size = CHIP_IS_E1x(bp) ? | 
|  | sizeof(struct hc_status_block_data_e1x) : | 
|  | sizeof(struct hc_status_block_data_e2); | 
|  | data_size /= sizeof(uint32_t); | 
|  | sb_data_p = CHIP_IS_E1x(bp) ? | 
|  | (uint32_t *)&sb_data_e1x : | 
|  | (uint32_t *)&sb_data_e2; | 
|  | /* copy sb data in here */ | 
|  | for (j = 0; j < data_size; j++) | 
|  | *(sb_data_p + j) = REG_RD(bp, BAR_CSTRORM_INTMEM + | 
|  | CSTORM_STATUS_BLOCK_DATA_OFFSET(fp->fw_sb_id) + | 
|  | j * sizeof(uint32_t)); | 
|  |  | 
|  | if (!CHIP_IS_E1x(bp)) { | 
|  | pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n", | 
|  | sb_data_e2.common.p_func.pf_id, | 
|  | sb_data_e2.common.p_func.vf_id, | 
|  | sb_data_e2.common.p_func.vf_valid, | 
|  | sb_data_e2.common.p_func.vnic_id, | 
|  | sb_data_e2.common.same_igu_sb_1b, | 
|  | sb_data_e2.common.state); | 
|  | } else { | 
|  | pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n", | 
|  | sb_data_e1x.common.p_func.pf_id, | 
|  | sb_data_e1x.common.p_func.vf_id, | 
|  | sb_data_e1x.common.p_func.vf_valid, | 
|  | sb_data_e1x.common.p_func.vnic_id, | 
|  | sb_data_e1x.common.same_igu_sb_1b, | 
|  | sb_data_e1x.common.state); | 
|  | } | 
|  |  | 
|  | /* SB_SMs data */ | 
|  | for (j = 0; j < HC_SB_MAX_SM; j++) { | 
|  | pr_cont("SM[%d] __flags (0x%x) igu_sb_id (0x%x)  igu_seg_id(0x%x) time_to_expire (0x%x) timer_value(0x%x)\n", | 
|  | j, hc_sm_p[j].__flags, | 
|  | hc_sm_p[j].igu_sb_id, | 
|  | hc_sm_p[j].igu_seg_id, | 
|  | hc_sm_p[j].time_to_expire, | 
|  | hc_sm_p[j].timer_value); | 
|  | } | 
|  |  | 
|  | /* Indices data */ | 
|  | for (j = 0; j < loop; j++) { | 
|  | pr_cont("INDEX[%d] flags (0x%x) timeout (0x%x)\n", j, | 
|  | hc_index_p[j].flags, | 
|  | hc_index_p[j].timeout); | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifdef BNX2X_STOP_ON_ERROR | 
|  | if (IS_PF(bp)) { | 
|  | /* event queue */ | 
|  | BNX2X_ERR("eq cons %x prod %x\n", bp->eq_cons, bp->eq_prod); | 
|  | for (i = 0; i < NUM_EQ_DESC; i++) { | 
|  | uint32_t *data = (uint32_t *)&bp->eq_ring[i].message.data; | 
|  |  | 
|  | BNX2X_ERR("event queue [%d]: header: opcode %d, error %d\n", | 
|  | i, bp->eq_ring[i].message.opcode, | 
|  | bp->eq_ring[i].message.error); | 
|  | BNX2X_ERR("data: %x %x %x\n", | 
|  | data[0], data[1], data[2]); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Rings */ | 
|  | /* Rx */ | 
|  | for_each_valid_rx_queue(bp, i) { | 
|  | struct bnx2x_fastpath *fp = &bp->fp[i]; | 
|  |  | 
|  | if (!bp->fp) | 
|  | break; | 
|  |  | 
|  | if (!fp->rx_cons_sb) | 
|  | continue; | 
|  |  | 
|  | start = RX_BD(le16_to_cpu(*fp->rx_cons_sb) - 10); | 
|  | end = RX_BD(le16_to_cpu(*fp->rx_cons_sb) + 503); | 
|  | for (j = start; j != end; j = RX_BD(j + 1)) { | 
|  | uint32_t *rx_bd = (uint32_t *)&fp->rx_desc_ring[j]; | 
|  | struct sw_rx_bd *sw_bd = &fp->rx_buf_ring[j]; | 
|  |  | 
|  | BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x]  sw_bd=[%p]\n", | 
|  | i, j, rx_bd[1], rx_bd[0], sw_bd->data); | 
|  | } | 
|  |  | 
|  | start = RX_SGE(fp->rx_sge_prod); | 
|  | end = RX_SGE(fp->last_max_sge); | 
|  | for (j = start; j != end; j = RX_SGE(j + 1)) { | 
|  | uint32_t *rx_sge = (uint32_t *)&fp->rx_sge_ring[j]; | 
|  | struct sw_rx_page *sw_page = &fp->rx_page_ring[j]; | 
|  |  | 
|  | BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x]  sw_page=[%p]\n", | 
|  | i, j, rx_sge[1], rx_sge[0], sw_page->page); | 
|  | } | 
|  |  | 
|  | start = RCQ_BD(fp->rx_comp_cons - 10); | 
|  | end = RCQ_BD(fp->rx_comp_cons + 503); | 
|  | for (j = start; j != end; j = RCQ_BD(j + 1)) { | 
|  | uint32_t *cqe = (uint32_t *)&fp->rx_comp_ring[j]; | 
|  |  | 
|  | BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n", | 
|  | i, j, cqe[0], cqe[1], cqe[2], cqe[3]); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Tx */ | 
|  | for_each_valid_tx_queue(bp, i) { | 
|  | struct bnx2x_fastpath *fp = &bp->fp[i]; | 
|  |  | 
|  | if (!bp->fp) | 
|  | break; | 
|  |  | 
|  | for_each_cos_in_tx_queue(fp, cos) { | 
|  | struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos]; | 
|  |  | 
|  | if (!fp->txdata_ptr[cos]) | 
|  | break; | 
|  |  | 
|  | if (!txdata->tx_cons_sb) | 
|  | continue; | 
|  |  | 
|  | start = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) - 10); | 
|  | end = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) + 245); | 
|  | for (j = start; j != end; j = TX_BD(j + 1)) { | 
|  | struct sw_tx_bd *sw_bd = | 
|  | &txdata->tx_buf_ring[j]; | 
|  |  | 
|  | BNX2X_ERR("fp%d: txdata %d, packet[%x]=[%p,%x]\n", | 
|  | i, cos, j, sw_bd->skb, | 
|  | sw_bd->first_bd); | 
|  | } | 
|  |  | 
|  | start = TX_BD(txdata->tx_bd_cons - 10); | 
|  | end = TX_BD(txdata->tx_bd_cons + 254); | 
|  | for (j = start; j != end; j = TX_BD(j + 1)) { | 
|  | uint32_t *tx_bd = (uint32_t *)&txdata->tx_desc_ring[j]; | 
|  |  | 
|  | BNX2X_ERR("fp%d: txdata %d, tx_bd[%x]=[%x:%x:%x:%x]\n", | 
|  | i, cos, j, tx_bd[0], tx_bd[1], | 
|  | tx_bd[2], tx_bd[3]); | 
|  | } | 
|  | } | 
|  | } | 
|  | #endif | 
|  | if (IS_PF(bp)) { | 
|  | bnx2x_fw_dump(bp); | 
|  | bnx2x_mc_assert(bp); | 
|  | } | 
|  | BNX2X_ERR("end crash dump -----------------\n"); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * FLR Support for E2 | 
|  | * | 
|  | * bnx2x_pf_flr_clnup() is called during nic_load in the per function HW | 
|  | * initialization. | 
|  | */ | 
|  | #define FLR_WAIT_USEC		10000	/* 10 milliseconds */ | 
|  | #define FLR_WAIT_INTERVAL	50	/* usec */ | 
|  | #define	FLR_POLL_CNT		(FLR_WAIT_USEC/FLR_WAIT_INTERVAL) /* 200 */ | 
|  |  | 
|  | struct pbf_pN_buf_regs { | 
|  | int pN; | 
|  | uint32_t init_crd; | 
|  | uint32_t crd; | 
|  | uint32_t crd_freed; | 
|  | }; | 
|  |  | 
|  | struct pbf_pN_cmd_regs { | 
|  | int pN; | 
|  | uint32_t lines_occup; | 
|  | uint32_t lines_freed; | 
|  | }; | 
|  |  | 
|  | static void bnx2x_pbf_pN_buf_flushed(struct bnx2x *bp, | 
|  | struct pbf_pN_buf_regs *regs, | 
|  | uint32_t poll_count) | 
|  | { | 
|  | uint32_t init_crd, crd, crd_start, crd_freed, crd_freed_start; | 
|  | uint32_t cur_cnt = poll_count; | 
|  |  | 
|  | crd_freed = crd_freed_start = REG_RD(bp, regs->crd_freed); | 
|  | crd = crd_start = REG_RD(bp, regs->crd); | 
|  | init_crd = REG_RD(bp, regs->init_crd); | 
|  |  | 
|  | DP(BNX2X_MSG_SP, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd); | 
|  | DP(BNX2X_MSG_SP, "CREDIT[%d]      : s:%x\n", regs->pN, crd); | 
|  | DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed); | 
|  |  | 
|  | while ((crd != init_crd) && ((uint32_t)SUB_S32(crd_freed, crd_freed_start) < | 
|  | (init_crd - crd_start))) { | 
|  | if (cur_cnt--) { | 
|  | udelay(FLR_WAIT_INTERVAL); | 
|  | crd = REG_RD(bp, regs->crd); | 
|  | crd_freed = REG_RD(bp, regs->crd_freed); | 
|  | } else { | 
|  | DP(BNX2X_MSG_SP, "PBF tx buffer[%d] timed out\n", | 
|  | regs->pN); | 
|  | DP(BNX2X_MSG_SP, "CREDIT[%d]      : c:%x\n", | 
|  | regs->pN, crd); | 
|  | DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: c:%x\n", | 
|  | regs->pN, crd_freed); | 
|  | break; | 
|  | } | 
|  | } | 
|  | DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF tx buffer[%d]\n", | 
|  | poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN); | 
|  | } | 
|  |  | 
|  | static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x *bp, | 
|  | struct pbf_pN_cmd_regs *regs, | 
|  | uint32_t poll_count) | 
|  | { | 
|  | uint32_t occup, to_free, freed, freed_start; | 
|  | uint32_t cur_cnt = poll_count; | 
|  |  | 
|  | occup = to_free = REG_RD(bp, regs->lines_occup); | 
|  | freed = freed_start = REG_RD(bp, regs->lines_freed); | 
|  |  | 
|  | DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup); | 
|  | DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", regs->pN, freed); | 
|  |  | 
|  | while (occup && ((uint32_t)SUB_S32(freed, freed_start) < to_free)) { | 
|  | if (cur_cnt--) { | 
|  | udelay(FLR_WAIT_INTERVAL); | 
|  | occup = REG_RD(bp, regs->lines_occup); | 
|  | freed = REG_RD(bp, regs->lines_freed); | 
|  | } else { | 
|  | DP(BNX2X_MSG_SP, "PBF cmd queue[%d] timed out\n", | 
|  | regs->pN); | 
|  | DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n", | 
|  | regs->pN, occup); | 
|  | DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", | 
|  | regs->pN, freed); | 
|  | break; | 
|  | } | 
|  | } | 
|  | DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF cmd queue[%d]\n", | 
|  | poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN); | 
|  | } | 
|  |  | 
|  | static uint32_t bnx2x_flr_clnup_reg_poll(struct bnx2x *bp, uint32_t reg, | 
|  | uint32_t expected, uint32_t poll_count) | 
|  | { | 
|  | uint32_t cur_cnt = poll_count; | 
|  | uint32_t val; | 
|  |  | 
|  | while ((val = REG_RD(bp, reg)) != expected && cur_cnt--) | 
|  | udelay(FLR_WAIT_INTERVAL); | 
|  |  | 
|  | return val; | 
|  | } | 
|  |  | 
|  | int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, uint32_t reg, | 
|  | char *msg, uint32_t poll_cnt) | 
|  | { | 
|  | uint32_t val = bnx2x_flr_clnup_reg_poll(bp, reg, 0, poll_cnt); | 
|  | if (val != 0) { | 
|  | BNX2X_ERR("%s usage count=%d\n", msg, val); | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Common routines with VF FLR cleanup */ | 
|  | uint32_t bnx2x_flr_clnup_poll_count(struct bnx2x *bp) | 
|  | { | 
|  | /* adjust polling timeout */ | 
|  | if (CHIP_REV_IS_EMUL(bp)) | 
|  | return FLR_POLL_CNT * 2000; | 
|  |  | 
|  | if (CHIP_REV_IS_FPGA(bp)) | 
|  | return FLR_POLL_CNT * 120; | 
|  |  | 
|  | return FLR_POLL_CNT; | 
|  | } | 
|  |  | 
|  | void bnx2x_tx_hw_flushed(struct bnx2x *bp, uint32_t poll_count) | 
|  | { | 
|  | struct pbf_pN_cmd_regs cmd_regs[] = { | 
|  | {0, (CHIP_IS_E3B0(bp)) ? | 
|  | PBF_REG_TQ_OCCUPANCY_Q0 : | 
|  | PBF_REG_P0_TQ_OCCUPANCY, | 
|  | (CHIP_IS_E3B0(bp)) ? | 
|  | PBF_REG_TQ_LINES_FREED_CNT_Q0 : | 
|  | PBF_REG_P0_TQ_LINES_FREED_CNT}, | 
|  | {1, (CHIP_IS_E3B0(bp)) ? | 
|  | PBF_REG_TQ_OCCUPANCY_Q1 : | 
|  | PBF_REG_P1_TQ_OCCUPANCY, | 
|  | (CHIP_IS_E3B0(bp)) ? | 
|  | PBF_REG_TQ_LINES_FREED_CNT_Q1 : | 
|  | PBF_REG_P1_TQ_LINES_FREED_CNT}, | 
|  | {4, (CHIP_IS_E3B0(bp)) ? | 
|  | PBF_REG_TQ_OCCUPANCY_LB_Q : | 
|  | PBF_REG_P4_TQ_OCCUPANCY, | 
|  | (CHIP_IS_E3B0(bp)) ? | 
|  | PBF_REG_TQ_LINES_FREED_CNT_LB_Q : | 
|  | PBF_REG_P4_TQ_LINES_FREED_CNT} | 
|  | }; | 
|  |  | 
|  | struct pbf_pN_buf_regs buf_regs[] = { | 
|  | {0, (CHIP_IS_E3B0(bp)) ? | 
|  | PBF_REG_INIT_CRD_Q0 : | 
|  | PBF_REG_P0_INIT_CRD , | 
|  | (CHIP_IS_E3B0(bp)) ? | 
|  | PBF_REG_CREDIT_Q0 : | 
|  | PBF_REG_P0_CREDIT, | 
|  | (CHIP_IS_E3B0(bp)) ? | 
|  | PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 : | 
|  | PBF_REG_P0_INTERNAL_CRD_FREED_CNT}, | 
|  | {1, (CHIP_IS_E3B0(bp)) ? | 
|  | PBF_REG_INIT_CRD_Q1 : | 
|  | PBF_REG_P1_INIT_CRD, | 
|  | (CHIP_IS_E3B0(bp)) ? | 
|  | PBF_REG_CREDIT_Q1 : | 
|  | PBF_REG_P1_CREDIT, | 
|  | (CHIP_IS_E3B0(bp)) ? | 
|  | PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 : | 
|  | PBF_REG_P1_INTERNAL_CRD_FREED_CNT}, | 
|  | {4, (CHIP_IS_E3B0(bp)) ? | 
|  | PBF_REG_INIT_CRD_LB_Q : | 
|  | PBF_REG_P4_INIT_CRD, | 
|  | (CHIP_IS_E3B0(bp)) ? | 
|  | PBF_REG_CREDIT_LB_Q : | 
|  | PBF_REG_P4_CREDIT, | 
|  | (CHIP_IS_E3B0(bp)) ? | 
|  | PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q : | 
|  | PBF_REG_P4_INTERNAL_CRD_FREED_CNT}, | 
|  | }; | 
|  |  | 
|  | int i; | 
|  |  | 
|  | /* Verify the command queues are flushed P0, P1, P4 */ | 
|  | for (i = 0; i < ARRAY_SIZE(cmd_regs); i++) | 
|  | bnx2x_pbf_pN_cmd_flushed(bp, &cmd_regs[i], poll_count); | 
|  |  | 
|  | /* Verify the transmission buffers are flushed P0, P1, P4 */ | 
|  | for (i = 0; i < ARRAY_SIZE(buf_regs); i++) | 
|  | bnx2x_pbf_pN_buf_flushed(bp, &buf_regs[i], poll_count); | 
|  | } | 
|  |  | 
|  | #define OP_GEN_PARAM(param) \ | 
|  | (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM) | 
|  |  | 
|  | #define OP_GEN_TYPE(type) \ | 
|  | (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE) | 
|  |  | 
|  | #define OP_GEN_AGG_VECT(index) \ | 
|  | (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX) | 
|  |  | 
|  | int bnx2x_send_final_clnup(struct bnx2x *bp, uint8_t clnup_func, | 
|  | uint32_t poll_cnt) | 
|  | { | 
|  | uint32_t op_gen_command = 0; | 
|  | uint32_t comp_addr = BAR_CSTRORM_INTMEM + | 
|  | CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func); | 
|  | int ret = 0; | 
|  |  | 
|  | if (REG_RD(bp, comp_addr)) { | 
|  | BNX2X_ERR("Cleanup complete was not 0 before sending\n"); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX); | 
|  | op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE); | 
|  | op_gen_command |= OP_GEN_AGG_VECT(clnup_func); | 
|  | op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT; | 
|  |  | 
|  | DP(BNX2X_MSG_SP, "sending FW Final cleanup\n"); | 
|  | REG_WR(bp, XSDM_REG_OPERATION_GEN, op_gen_command); | 
|  |  | 
|  | if (bnx2x_flr_clnup_reg_poll(bp, comp_addr, 1, poll_cnt) != 1) { | 
|  | BNX2X_ERR("FW final cleanup did not succeed\n"); | 
|  | DP(BNX2X_MSG_SP, "At timeout completion address contained %x\n", | 
|  | (REG_RD(bp, comp_addr))); | 
|  | bnx2x_panic(); | 
|  | return 1; | 
|  | } | 
|  | /* Zero completion for next FLR */ | 
|  | REG_WR(bp, comp_addr, 0); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | uint8_t bnx2x_is_pcie_pending(struct pci_device *dev) | 
|  | { | 
|  | uint16_t status; | 
|  |  | 
|  | pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status); | 
|  | return status & PCI_EXP_DEVSTA_TRPND; | 
|  | } | 
|  |  | 
|  | /* PF FLR specific routines | 
|  | */ | 
|  | static int bnx2x_poll_hw_usage_counters(struct bnx2x *bp, uint32_t poll_cnt) | 
|  | { | 
|  | /* wait for CFC PF usage-counter to zero (includes all the VFs) */ | 
|  | if (bnx2x_flr_clnup_poll_hw_counter(bp, | 
|  | CFC_REG_NUM_LCIDS_INSIDE_PF, | 
|  | "CFC PF usage counter timed out", | 
|  | poll_cnt)) | 
|  | return 1; | 
|  |  | 
|  | /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */ | 
|  | if (bnx2x_flr_clnup_poll_hw_counter(bp, | 
|  | DORQ_REG_PF_USAGE_CNT, | 
|  | "DQ PF usage counter timed out", | 
|  | poll_cnt)) | 
|  | return 1; | 
|  |  | 
|  | /* Wait for QM PF usage-counter to zero (until DQ cleanup) */ | 
|  | if (bnx2x_flr_clnup_poll_hw_counter(bp, | 
|  | QM_REG_PF_USG_CNT_0 + 4*BP_FUNC(bp), | 
|  | "QM PF usage counter timed out", | 
|  | poll_cnt)) | 
|  | return 1; | 
|  |  | 
|  | /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */ | 
|  | if (bnx2x_flr_clnup_poll_hw_counter(bp, | 
|  | TM_REG_LIN0_VNIC_UC + 4*BP_PORT(bp), | 
|  | "Timers VNIC usage counter timed out", | 
|  | poll_cnt)) | 
|  | return 1; | 
|  | if (bnx2x_flr_clnup_poll_hw_counter(bp, | 
|  | TM_REG_LIN0_NUM_SCANS + 4*BP_PORT(bp), | 
|  | "Timers NUM_SCANS usage counter timed out", | 
|  | poll_cnt)) | 
|  | return 1; | 
|  |  | 
|  | /* Wait DMAE PF usage counter to zero */ | 
|  | if (bnx2x_flr_clnup_poll_hw_counter(bp, | 
|  | dmae_reg_go_c[INIT_DMAE_C(bp)], | 
|  | "DMAE command register timed out", | 
|  | poll_cnt)) | 
|  | return 1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void bnx2x_hw_enable_status(struct bnx2x *bp) | 
|  | { | 
|  | uint32_t val; | 
|  |  | 
|  | val = REG_RD(bp, CFC_REG_WEAK_ENABLE_PF); | 
|  | DP(BNX2X_MSG_SP, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val); | 
|  |  | 
|  | val = REG_RD(bp, PBF_REG_DISABLE_PF); | 
|  | DP(BNX2X_MSG_SP, "PBF_REG_DISABLE_PF is 0x%x\n", val); | 
|  |  | 
|  | val = REG_RD(bp, IGU_REG_PCI_PF_MSI_EN); | 
|  | DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val); | 
|  |  | 
|  | val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_EN); | 
|  | DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val); | 
|  |  | 
|  | val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_FUNC_MASK); | 
|  | DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val); | 
|  |  | 
|  | val = REG_RD(bp, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR); | 
|  | DP(BNX2X_MSG_SP, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val); | 
|  |  | 
|  | val = REG_RD(bp, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR); | 
|  | DP(BNX2X_MSG_SP, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val); | 
|  |  | 
|  | val = REG_RD(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER); | 
|  | DP(BNX2X_MSG_SP, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n", | 
|  | val); | 
|  | } | 
|  |  | 
|  | static int bnx2x_pf_flr_clnup(struct bnx2x *bp) | 
|  | { | 
|  | uint32_t poll_cnt = bnx2x_flr_clnup_poll_count(bp); | 
|  |  | 
|  | DP(BNX2X_MSG_SP, "Cleanup after FLR PF[%d]\n", BP_ABS_FUNC(bp)); | 
|  |  | 
|  | /* Re-enable PF target read access */ | 
|  | REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1); | 
|  |  | 
|  | /* Poll HW usage counters */ | 
|  | DP(BNX2X_MSG_SP, "Polling usage counters\n"); | 
|  | if (bnx2x_poll_hw_usage_counters(bp, poll_cnt)) | 
|  | return -EBUSY; | 
|  |  | 
|  | /* Zero the igu 'trailing edge' and 'leading edge' */ | 
|  |  | 
|  | /* Send the FW cleanup command */ | 
|  | if (bnx2x_send_final_clnup(bp, (uint8_t)BP_FUNC(bp), poll_cnt)) | 
|  | return -EBUSY; | 
|  |  | 
|  | /* ATC cleanup */ | 
|  |  | 
|  | /* Verify TX hw is flushed */ | 
|  | bnx2x_tx_hw_flushed(bp, poll_cnt); | 
|  |  | 
|  | /* Wait 100ms (not adjusted according to platform) */ | 
|  | kthread_usleep(1000 * 100); | 
|  |  | 
|  | /* Verify no pending pci transactions */ | 
|  | if (bnx2x_is_pcie_pending(bp->pdev)) | 
|  | BNX2X_ERR("PCIE Transactions still pending\n"); | 
|  |  | 
|  | /* Debug */ | 
|  | bnx2x_hw_enable_status(bp); | 
|  |  | 
|  | /* | 
|  | * Master enable - Due to WB DMAE writes performed before this | 
|  | * register is re-initialized as part of the regular function init | 
|  | */ | 
|  | REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void bnx2x_hc_int_enable(struct bnx2x *bp) | 
|  | { | 
|  | int port = BP_PORT(bp); | 
|  | uint32_t addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0; | 
|  | uint32_t val = REG_RD(bp, addr); | 
|  | bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false; | 
|  | bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false; | 
|  | bool msi = (bp->flags & USING_MSI_FLAG) ? true : false; | 
|  |  | 
|  | if (msix) { | 
|  | val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | | 
|  | HC_CONFIG_0_REG_INT_LINE_EN_0); | 
|  | val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | | 
|  | HC_CONFIG_0_REG_ATTN_BIT_EN_0); | 
|  | if (single_msix) | 
|  | val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0; | 
|  | } else if (msi) { | 
|  | val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0; | 
|  | val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | | 
|  | HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | | 
|  | HC_CONFIG_0_REG_ATTN_BIT_EN_0); | 
|  | } else { | 
|  | val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | | 
|  | HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | | 
|  | HC_CONFIG_0_REG_INT_LINE_EN_0 | | 
|  | HC_CONFIG_0_REG_ATTN_BIT_EN_0); | 
|  |  | 
|  | if (!CHIP_IS_E1(bp)) { | 
|  | DP(NETIF_MSG_IFUP, | 
|  | "write %x to HC %d (addr 0x%x)\n", val, port, addr); | 
|  |  | 
|  | REG_WR(bp, addr, val); | 
|  |  | 
|  | val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (CHIP_IS_E1(bp)) | 
|  | REG_WR(bp, HC_REG_INT_MASK + port*4, 0x1FFFF); | 
|  |  | 
|  | DP(NETIF_MSG_IFUP, | 
|  | "write %x to HC %d (addr 0x%x) mode %s\n", val, port, addr, | 
|  | (msix ? "MSI-X" : (msi ? "MSI" : "INTx"))); | 
|  |  | 
|  | REG_WR(bp, addr, val); | 
|  | /* | 
|  | * Ensure that HC_CONFIG is written before leading/trailing edge config | 
|  | */ | 
|  | bus_wmb(); | 
|  | cmb(); | 
|  |  | 
|  | if (!CHIP_IS_E1(bp)) { | 
|  | /* init leading/trailing edge */ | 
|  | if (IS_MF(bp)) { | 
|  | val = (0xee0f | (1 << (BP_VN(bp) + 4))); | 
|  | if (bp->port.pmf) | 
|  | /* enable nig and gpio3 attention */ | 
|  | val |= 0x1100; | 
|  | } else | 
|  | val = 0xffff; | 
|  |  | 
|  | REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val); | 
|  | REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val); | 
|  | } | 
|  |  | 
|  | /* Make sure that interrupts are indeed enabled from here on */ | 
|  | bus_wmb(); | 
|  | } | 
|  |  | 
|  | static void bnx2x_igu_int_enable(struct bnx2x *bp) | 
|  | { | 
|  | panic("Not implemented"); | 
|  | #if 0 // AKAROS_PORT | 
|  | uint32_t val; | 
|  | bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false; | 
|  | bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false; | 
|  | bool msi = (bp->flags & USING_MSI_FLAG) ? true : false; | 
|  |  | 
|  | val = REG_RD(bp, IGU_REG_PF_CONFIGURATION); | 
|  |  | 
|  | if (msix) { | 
|  | val &= ~(IGU_PF_CONF_INT_LINE_EN | | 
|  | IGU_PF_CONF_SINGLE_ISR_EN); | 
|  | val |= (IGU_PF_CONF_MSI_MSIX_EN | | 
|  | IGU_PF_CONF_ATTN_BIT_EN); | 
|  |  | 
|  | if (single_msix) | 
|  | val |= IGU_PF_CONF_SINGLE_ISR_EN; | 
|  | } else if (msi) { | 
|  | val &= ~IGU_PF_CONF_INT_LINE_EN; | 
|  | val |= (IGU_PF_CONF_MSI_MSIX_EN | | 
|  | IGU_PF_CONF_ATTN_BIT_EN | | 
|  | IGU_PF_CONF_SINGLE_ISR_EN); | 
|  | } else { | 
|  | val &= ~IGU_PF_CONF_MSI_MSIX_EN; | 
|  | val |= (IGU_PF_CONF_INT_LINE_EN | | 
|  | IGU_PF_CONF_ATTN_BIT_EN | | 
|  | IGU_PF_CONF_SINGLE_ISR_EN); | 
|  | } | 
|  |  | 
|  | /* Clean previous status - need to configure igu prior to ack*/ | 
|  | if ((!msix) || single_msix) { | 
|  | REG_WR(bp, IGU_REG_PF_CONFIGURATION, val); | 
|  | bnx2x_ack_int(bp); | 
|  | } | 
|  |  | 
|  | val |= IGU_PF_CONF_FUNC_EN; | 
|  |  | 
|  | DP(NETIF_MSG_IFUP, "write 0x%x to IGU  mode %s\n", | 
|  | val, (msix ? "MSI-X" : (msi ? "MSI" : "INTx"))); | 
|  |  | 
|  | REG_WR(bp, IGU_REG_PF_CONFIGURATION, val); | 
|  |  | 
|  | if (val & IGU_PF_CONF_INT_LINE_EN) | 
|  | pci_intx(bp->pdev, true); | 
|  |  | 
|  | cmb(); | 
|  |  | 
|  | /* init leading/trailing edge */ | 
|  | if (IS_MF(bp)) { | 
|  | val = (0xee0f | (1 << (BP_VN(bp) + 4))); | 
|  | if (bp->port.pmf) | 
|  | /* enable nig and gpio3 attention */ | 
|  | val |= 0x1100; | 
|  | } else | 
|  | val = 0xffff; | 
|  |  | 
|  | REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val); | 
|  | REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val); | 
|  |  | 
|  | /* Make sure that interrupts are indeed enabled from here on */ | 
|  | bus_wmb(); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | void bnx2x_int_enable(struct bnx2x *bp) | 
|  | { | 
|  | if (bp->common.int_block == INT_BLOCK_HC) | 
|  | bnx2x_hc_int_enable(bp); | 
|  | else | 
|  | bnx2x_igu_int_enable(bp); | 
|  | } | 
|  |  | 
|  | void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw) | 
|  | { | 
|  | int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0; | 
|  | int i, offset; | 
|  |  | 
|  | if (disable_hw) | 
|  | /* prevent the HW from sending interrupts */ | 
|  | bnx2x_int_disable(bp); | 
|  |  | 
|  | /* make sure all ISRs are done */ | 
|  | if (msix) { | 
|  | synchronize_irq(bp->msix_table[0].vector); | 
|  | offset = 1; | 
|  | if (CNIC_SUPPORT(bp)) | 
|  | offset++; | 
|  | for_each_eth_queue(bp, i) | 
|  | synchronize_irq(bp->msix_table[offset++].vector); | 
|  | } else | 
|  | synchronize_irq(bp->pdev->irqline); | 
|  |  | 
|  | /* make sure sp_task is not running */ | 
|  | cancel_delayed_work(&bp->sp_task); | 
|  | cancel_delayed_work(&bp->period_task); | 
|  | flush_workqueue(bnx2x_wq); | 
|  | } | 
|  |  | 
|  | /* fast path */ | 
|  |  | 
|  | /* | 
|  | * General service functions | 
|  | */ | 
|  |  | 
|  | /* Return true if succeeded to acquire the lock */ | 
|  | static bool bnx2x_trylock_hw_lock(struct bnx2x *bp, uint32_t resource) | 
|  | { | 
|  | uint32_t lock_status; | 
|  | uint32_t resource_bit = (1 << resource); | 
|  | int func = BP_FUNC(bp); | 
|  | uint32_t hw_lock_control_reg; | 
|  |  | 
|  | DP(NETIF_MSG_HW | NETIF_MSG_IFUP, | 
|  | "Trying to take a lock on resource %d\n", resource); | 
|  |  | 
|  | /* Validating that the resource is within range */ | 
|  | if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { | 
|  | DP(NETIF_MSG_HW | NETIF_MSG_IFUP, | 
|  | "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n", | 
|  | resource, HW_LOCK_MAX_RESOURCE_VALUE); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (func <= 5) | 
|  | hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8); | 
|  | else | 
|  | hw_lock_control_reg = | 
|  | (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8); | 
|  |  | 
|  | /* Try to acquire the lock */ | 
|  | REG_WR(bp, hw_lock_control_reg + 4, resource_bit); | 
|  | lock_status = REG_RD(bp, hw_lock_control_reg); | 
|  | if (lock_status & resource_bit) | 
|  | return true; | 
|  |  | 
|  | DP(NETIF_MSG_HW | NETIF_MSG_IFUP, | 
|  | "Failed to get a lock on resource %d\n", resource); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * bnx2x_get_leader_lock_resource - get the recovery leader resource id | 
|  | * | 
|  | * @bp:	driver handle | 
|  | * | 
|  | * Returns the recovery leader resource id according to the engine this function | 
|  | * belongs to. Currently only only 2 engines is supported. | 
|  | */ | 
|  | static int bnx2x_get_leader_lock_resource(struct bnx2x *bp) | 
|  | { | 
|  | if (BP_PATH(bp)) | 
|  | return HW_LOCK_RESOURCE_RECOVERY_LEADER_1; | 
|  | else | 
|  | return HW_LOCK_RESOURCE_RECOVERY_LEADER_0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * bnx2x_trylock_leader_lock- try to acquire a leader lock. | 
|  | * | 
|  | * @bp: driver handle | 
|  | * | 
|  | * Tries to acquire a leader lock for current engine. | 
|  | */ | 
|  | static bool bnx2x_trylock_leader_lock(struct bnx2x *bp) | 
|  | { | 
|  | return bnx2x_trylock_hw_lock(bp, bnx2x_get_leader_lock_resource(bp)); | 
|  | } | 
|  |  | 
|  | static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, uint8_t err); | 
|  |  | 
|  | /* schedule the sp task and mark that interrupt occurred (runs from ISR) */ | 
|  | static int bnx2x_schedule_sp_task(struct bnx2x *bp) | 
|  | { | 
|  | /* Set the interrupt occurred bit for the sp-task to recognize it | 
|  | * must ack the interrupt and transition according to the IGU | 
|  | * state machine. | 
|  | */ | 
|  | atomic_set(&bp->interrupt_occurred, 1); | 
|  |  | 
|  | /* The sp_task must execute only after this bit | 
|  | * is set, otherwise we will get out of sync and miss all | 
|  | * further interrupts. Hence, the barrier. | 
|  | */ | 
|  | wmb(); | 
|  |  | 
|  | /* schedule sp_task to workqueue */ | 
|  | return queue_delayed_work(bnx2x_wq, &bp->sp_task, 0); | 
|  | } | 
|  |  | 
|  | void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe) | 
|  | { | 
|  | struct bnx2x *bp = fp->bp; | 
|  | int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data); | 
|  | int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data); | 
|  | enum bnx2x_queue_cmd drv_cmd = BNX2X_Q_CMD_MAX; | 
|  | struct bnx2x_queue_sp_obj *q_obj = &bnx2x_sp_obj(bp, fp).q_obj; | 
|  |  | 
|  | DP(BNX2X_MSG_SP, | 
|  | "fp %d  cid %d  got ramrod #%d  state is %x  type is %d\n", | 
|  | fp->index, cid, command, bp->state, | 
|  | rr_cqe->ramrod_cqe.ramrod_type); | 
|  |  | 
|  | /* If cid is within VF range, replace the slowpath object with the | 
|  | * one corresponding to this VF | 
|  | */ | 
|  | if (cid >= BNX2X_FIRST_VF_CID  && | 
|  | cid < BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS) | 
|  | bnx2x_iov_set_queue_sp_obj(bp, cid, &q_obj); | 
|  |  | 
|  | switch (command) { | 
|  | case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE): | 
|  | DP(BNX2X_MSG_SP, "got UPDATE ramrod. CID %d\n", cid); | 
|  | drv_cmd = BNX2X_Q_CMD_UPDATE; | 
|  | break; | 
|  |  | 
|  | case (RAMROD_CMD_ID_ETH_CLIENT_SETUP): | 
|  | DP(BNX2X_MSG_SP, "got MULTI[%d] setup ramrod\n", cid); | 
|  | drv_cmd = BNX2X_Q_CMD_SETUP; | 
|  | break; | 
|  |  | 
|  | case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP): | 
|  | DP(BNX2X_MSG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid); | 
|  | drv_cmd = BNX2X_Q_CMD_SETUP_TX_ONLY; | 
|  | break; | 
|  |  | 
|  | case (RAMROD_CMD_ID_ETH_HALT): | 
|  | DP(BNX2X_MSG_SP, "got MULTI[%d] halt ramrod\n", cid); | 
|  | drv_cmd = BNX2X_Q_CMD_HALT; | 
|  | break; | 
|  |  | 
|  | case (RAMROD_CMD_ID_ETH_TERMINATE): | 
|  | DP(BNX2X_MSG_SP, "got MULTI[%d] terminate ramrod\n", cid); | 
|  | drv_cmd = BNX2X_Q_CMD_TERMINATE; | 
|  | break; | 
|  |  | 
|  | case (RAMROD_CMD_ID_ETH_EMPTY): | 
|  | DP(BNX2X_MSG_SP, "got MULTI[%d] empty ramrod\n", cid); | 
|  | drv_cmd = BNX2X_Q_CMD_EMPTY; | 
|  | break; | 
|  |  | 
|  | case (RAMROD_CMD_ID_ETH_TPA_UPDATE): | 
|  | DP(BNX2X_MSG_SP, "got tpa update ramrod CID=%d\n", cid); | 
|  | drv_cmd = BNX2X_Q_CMD_UPDATE_TPA; | 
|  | break; | 
|  |  | 
|  | default: | 
|  | BNX2X_ERR("unexpected MC reply (%d) on fp[%d]\n", | 
|  | command, fp->index); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if ((drv_cmd != BNX2X_Q_CMD_MAX) && | 
|  | q_obj->complete_cmd(bp, q_obj, drv_cmd)) | 
|  | /* q_obj->complete_cmd() failure means that this was | 
|  | * an unexpected completion. | 
|  | * | 
|  | * In this case we don't want to increase the bp->spq_left | 
|  | * because apparently we haven't sent this command the first | 
|  | * place. | 
|  | */ | 
|  | #ifdef BNX2X_STOP_ON_ERROR | 
|  | bnx2x_panic(); | 
|  | #else | 
|  | return; | 
|  | #endif | 
|  |  | 
|  | cmb(); | 
|  | atomic_inc(&bp->cq_spq_left); | 
|  | /* push the change in bp->spq_left and towards the memory */ | 
|  | cmb(); | 
|  |  | 
|  | DP(BNX2X_MSG_SP, "bp->cq_spq_left %x\n", atomic_read(&bp->cq_spq_left)); | 
|  |  | 
|  | if ((drv_cmd == BNX2X_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) && | 
|  | (!!test_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state))) { | 
|  | /* if Q update ramrod is completed for last Q in AFEX vif set | 
|  | * flow, then ACK MCP at the end | 
|  | * | 
|  | * mark pending ACK to MCP bit. | 
|  | * prevent case that both bits are cleared. | 
|  | * At the end of load/unload driver checks that | 
|  | * sp_state is cleared, and this order prevents | 
|  | * races | 
|  | */ | 
|  | cmb(); | 
|  | set_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK, &bp->sp_state); | 
|  | wmb(); | 
|  | clear_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state); | 
|  | cmb(); | 
|  |  | 
|  | /* schedule the sp task as mcp ack is required */ | 
|  | bnx2x_schedule_sp_task(bp); | 
|  | } | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | void bnx2x_interrupt(struct hw_trapframe *hw_tf, void *dev_instance) | 
|  | { | 
|  | panic("Not implemented"); | 
|  | #if 0 // AKAROS_PORT | 
|  | struct bnx2x *bp = netdev_priv(dev_instance); | 
|  | uint16_t status = bnx2x_ack_int(bp); | 
|  | uint16_t mask; | 
|  | int i; | 
|  | uint8_t cos; | 
|  |  | 
|  | /* Return here if interrupt is shared and it's not for us */ | 
|  | if (unlikely(status == 0)) { | 
|  | DP(NETIF_MSG_INTR, "not our interrupt!\n"); | 
|  | return; | 
|  | } | 
|  | DP(NETIF_MSG_INTR, "got an interrupt  status 0x%x\n", status); | 
|  |  | 
|  | #ifdef BNX2X_STOP_ON_ERROR | 
|  | if (unlikely(bp->panic)) | 
|  | return; | 
|  | #endif | 
|  |  | 
|  | for_each_eth_queue(bp, i) { | 
|  | struct bnx2x_fastpath *fp = &bp->fp[i]; | 
|  |  | 
|  | mask = 0x2 << (fp->index + CNIC_SUPPORT(bp)); | 
|  | if (status & mask) { | 
|  | /* Handle Rx or Tx according to SB id */ | 
|  | for_each_cos_in_tx_queue(fp, cos) | 
|  | prefetch(fp->txdata_ptr[cos]->tx_cons_sb); | 
|  | prefetch(&fp->sb_running_index[SM_RX_ID]); | 
|  | napi_schedule_irqoff(&bnx2x_fp(bp, fp->index, napi)); | 
|  | status &= ~mask; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (CNIC_SUPPORT(bp)) { | 
|  | mask = 0x2; | 
|  | if (status & (mask | 0x1)) { | 
|  | struct cnic_ops *c_ops = NULL; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | c_ops = rcu_dereference(bp->cnic_ops); | 
|  | if (c_ops && (bp->cnic_eth_dev.drv_state & | 
|  | CNIC_DRV_STATE_HANDLES_IRQ)) | 
|  | c_ops->cnic_handler(bp->cnic_data, NULL); | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | status &= ~mask; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (unlikely(status & 0x1)) { | 
|  |  | 
|  | /* schedule sp task to perform default status block work, ack | 
|  | * attentions and enable interrupts. | 
|  | */ | 
|  | bnx2x_schedule_sp_task(bp); | 
|  |  | 
|  | status &= ~0x1; | 
|  | if (!status) | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (unlikely(status)) | 
|  | DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n", | 
|  | status); | 
|  |  | 
|  | return; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* Link */ | 
|  |  | 
|  | /* | 
|  | * General service functions | 
|  | */ | 
|  |  | 
|  | int bnx2x_acquire_hw_lock(struct bnx2x *bp, uint32_t resource) | 
|  | { | 
|  | uint32_t lock_status; | 
|  | uint32_t resource_bit = (1 << resource); | 
|  | int func = BP_FUNC(bp); | 
|  | uint32_t hw_lock_control_reg; | 
|  | int cnt; | 
|  |  | 
|  | /* Validating that the resource is within range */ | 
|  | if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { | 
|  | BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n", | 
|  | resource, HW_LOCK_MAX_RESOURCE_VALUE); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (func <= 5) { | 
|  | hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8); | 
|  | } else { | 
|  | hw_lock_control_reg = | 
|  | (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8); | 
|  | } | 
|  |  | 
|  | /* Validating that the resource is not already taken */ | 
|  | lock_status = REG_RD(bp, hw_lock_control_reg); | 
|  | if (lock_status & resource_bit) { | 
|  | BNX2X_ERR("lock_status 0x%x  resource_bit 0x%x\n", | 
|  | lock_status, resource_bit); | 
|  | return -EEXIST; | 
|  | } | 
|  |  | 
|  | /* Try for 5 second every 5ms */ | 
|  | for (cnt = 0; cnt < 1000; cnt++) { | 
|  | /* Try to acquire the lock */ | 
|  | REG_WR(bp, hw_lock_control_reg + 4, resource_bit); | 
|  | lock_status = REG_RD(bp, hw_lock_control_reg); | 
|  | if (lock_status & resource_bit) | 
|  | return 0; | 
|  |  | 
|  | kthread_usleep(5000); | 
|  | } | 
|  | BNX2X_ERR("Timeout\n"); | 
|  | return -EAGAIN; | 
|  | } | 
|  |  | 
|  | int bnx2x_release_leader_lock(struct bnx2x *bp) | 
|  | { | 
|  | return bnx2x_release_hw_lock(bp, bnx2x_get_leader_lock_resource(bp)); | 
|  | } | 
|  |  | 
|  | int bnx2x_release_hw_lock(struct bnx2x *bp, uint32_t resource) | 
|  | { | 
|  | uint32_t lock_status; | 
|  | uint32_t resource_bit = (1 << resource); | 
|  | int func = BP_FUNC(bp); | 
|  | uint32_t hw_lock_control_reg; | 
|  |  | 
|  | /* Validating that the resource is within range */ | 
|  | if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { | 
|  | BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n", | 
|  | resource, HW_LOCK_MAX_RESOURCE_VALUE); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (func <= 5) { | 
|  | hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8); | 
|  | } else { | 
|  | hw_lock_control_reg = | 
|  | (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8); | 
|  | } | 
|  |  | 
|  | /* Validating that the resource is currently taken */ | 
|  | lock_status = REG_RD(bp, hw_lock_control_reg); | 
|  | if (!(lock_status & resource_bit)) { | 
|  | BNX2X_ERR("lock_status 0x%x resource_bit 0x%x. Unlock was called but lock wasn't taken!\n", | 
|  | lock_status, resource_bit); | 
|  | return -EFAULT; | 
|  | } | 
|  |  | 
|  | REG_WR(bp, hw_lock_control_reg, resource_bit); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, uint8_t port) | 
|  | { | 
|  | /* The GPIO should be swapped if swap register is set and active */ | 
|  | int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) && | 
|  | REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port; | 
|  | int gpio_shift = gpio_num + | 
|  | (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0); | 
|  | uint32_t gpio_mask = (1 << gpio_shift); | 
|  | uint32_t gpio_reg; | 
|  | int value; | 
|  |  | 
|  | if (gpio_num > MISC_REGISTERS_GPIO_3) { | 
|  | BNX2X_ERR("Invalid GPIO %d\n", gpio_num); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* read GPIO value */ | 
|  | gpio_reg = REG_RD(bp, MISC_REG_GPIO); | 
|  |  | 
|  | /* get the requested pin value */ | 
|  | if ((gpio_reg & gpio_mask) == gpio_mask) | 
|  | value = 1; | 
|  | else | 
|  | value = 0; | 
|  |  | 
|  | return value; | 
|  | } | 
|  |  | 
|  | int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, uint32_t mode, | 
|  | uint8_t port) | 
|  | { | 
|  | /* The GPIO should be swapped if swap register is set and active */ | 
|  | int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) && | 
|  | REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port; | 
|  | int gpio_shift = gpio_num + | 
|  | (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0); | 
|  | uint32_t gpio_mask = (1 << gpio_shift); | 
|  | uint32_t gpio_reg; | 
|  |  | 
|  | if (gpio_num > MISC_REGISTERS_GPIO_3) { | 
|  | BNX2X_ERR("Invalid GPIO %d\n", gpio_num); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO); | 
|  | /* read GPIO and mask except the float bits */ | 
|  | gpio_reg = (REG_RD(bp, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT); | 
|  |  | 
|  | switch (mode) { | 
|  | case MISC_REGISTERS_GPIO_OUTPUT_LOW: | 
|  | DP(NETIF_MSG_LINK, | 
|  | "Set GPIO %d (shift %d) -> output low\n", | 
|  | gpio_num, gpio_shift); | 
|  | /* clear FLOAT and set CLR */ | 
|  | gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); | 
|  | gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS); | 
|  | break; | 
|  |  | 
|  | case MISC_REGISTERS_GPIO_OUTPUT_HIGH: | 
|  | DP(NETIF_MSG_LINK, | 
|  | "Set GPIO %d (shift %d) -> output high\n", | 
|  | gpio_num, gpio_shift); | 
|  | /* clear FLOAT and set SET */ | 
|  | gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); | 
|  | gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_SET_POS); | 
|  | break; | 
|  |  | 
|  | case MISC_REGISTERS_GPIO_INPUT_HI_Z: | 
|  | DP(NETIF_MSG_LINK, | 
|  | "Set GPIO %d (shift %d) -> input\n", | 
|  | gpio_num, gpio_shift); | 
|  | /* set FLOAT */ | 
|  | gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | REG_WR(bp, MISC_REG_GPIO, gpio_reg); | 
|  | bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int bnx2x_set_mult_gpio(struct bnx2x *bp, uint8_t pins, uint32_t mode) | 
|  | { | 
|  | uint32_t gpio_reg = 0; | 
|  | int rc = 0; | 
|  |  | 
|  | /* Any port swapping should be handled by caller. */ | 
|  |  | 
|  | bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO); | 
|  | /* read GPIO and mask except the float bits */ | 
|  | gpio_reg = REG_RD(bp, MISC_REG_GPIO); | 
|  | gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS); | 
|  | gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS); | 
|  | gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS); | 
|  |  | 
|  | switch (mode) { | 
|  | case MISC_REGISTERS_GPIO_OUTPUT_LOW: | 
|  | DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output low\n", pins); | 
|  | /* set CLR */ | 
|  | gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS); | 
|  | break; | 
|  |  | 
|  | case MISC_REGISTERS_GPIO_OUTPUT_HIGH: | 
|  | DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output high\n", pins); | 
|  | /* set SET */ | 
|  | gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS); | 
|  | break; | 
|  |  | 
|  | case MISC_REGISTERS_GPIO_INPUT_HI_Z: | 
|  | DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> input\n", pins); | 
|  | /* set FLOAT */ | 
|  | gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | BNX2X_ERR("Invalid GPIO mode assignment %d\n", mode); | 
|  | rc = -EINVAL; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (rc == 0) | 
|  | REG_WR(bp, MISC_REG_GPIO, gpio_reg); | 
|  |  | 
|  | bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO); | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, uint32_t mode, | 
|  | uint8_t port) | 
|  | { | 
|  | /* The GPIO should be swapped if swap register is set and active */ | 
|  | int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) && | 
|  | REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port; | 
|  | int gpio_shift = gpio_num + | 
|  | (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0); | 
|  | uint32_t gpio_mask = (1 << gpio_shift); | 
|  | uint32_t gpio_reg; | 
|  |  | 
|  | if (gpio_num > MISC_REGISTERS_GPIO_3) { | 
|  | BNX2X_ERR("Invalid GPIO %d\n", gpio_num); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO); | 
|  | /* read GPIO int */ | 
|  | gpio_reg = REG_RD(bp, MISC_REG_GPIO_INT); | 
|  |  | 
|  | switch (mode) { | 
|  | case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR: | 
|  | DP(NETIF_MSG_LINK, | 
|  | "Clear GPIO INT %d (shift %d) -> output low\n", | 
|  | gpio_num, gpio_shift); | 
|  | /* clear SET and set CLR */ | 
|  | gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS); | 
|  | gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS); | 
|  | break; | 
|  |  | 
|  | case MISC_REGISTERS_GPIO_INT_OUTPUT_SET: | 
|  | DP(NETIF_MSG_LINK, | 
|  | "Set GPIO INT %d (shift %d) -> output high\n", | 
|  | gpio_num, gpio_shift); | 
|  | /* clear CLR and set SET */ | 
|  | gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS); | 
|  | gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | REG_WR(bp, MISC_REG_GPIO_INT, gpio_reg); | 
|  | bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int bnx2x_set_spio(struct bnx2x *bp, int spio, uint32_t mode) | 
|  | { | 
|  | uint32_t spio_reg; | 
|  |  | 
|  | /* Only 2 SPIOs are configurable */ | 
|  | if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) { | 
|  | BNX2X_ERR("Invalid SPIO 0x%x\n", spio); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_SPIO); | 
|  | /* read SPIO and mask except the float bits */ | 
|  | spio_reg = (REG_RD(bp, MISC_REG_SPIO) & MISC_SPIO_FLOAT); | 
|  |  | 
|  | switch (mode) { | 
|  | case MISC_SPIO_OUTPUT_LOW: | 
|  | DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output low\n", spio); | 
|  | /* clear FLOAT and set CLR */ | 
|  | spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS); | 
|  | spio_reg |=  (spio << MISC_SPIO_CLR_POS); | 
|  | break; | 
|  |  | 
|  | case MISC_SPIO_OUTPUT_HIGH: | 
|  | DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output high\n", spio); | 
|  | /* clear FLOAT and set SET */ | 
|  | spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS); | 
|  | spio_reg |=  (spio << MISC_SPIO_SET_POS); | 
|  | break; | 
|  |  | 
|  | case MISC_SPIO_INPUT_HI_Z: | 
|  | DP(NETIF_MSG_HW, "Set SPIO 0x%x -> input\n", spio); | 
|  | /* set FLOAT */ | 
|  | spio_reg |= (spio << MISC_SPIO_FLOAT_POS); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | REG_WR(bp, MISC_REG_SPIO, spio_reg); | 
|  | bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_SPIO); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void bnx2x_calc_fc_adv(struct bnx2x *bp) | 
|  | { | 
|  | uint8_t cfg_idx = bnx2x_get_link_cfg_idx(bp); | 
|  | switch (bp->link_vars.ieee_fc & | 
|  | MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) { | 
|  | case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE: | 
|  | bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause | | 
|  | ADVERTISED_Pause); | 
|  | break; | 
|  |  | 
|  | case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH: | 
|  | bp->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause | | 
|  | ADVERTISED_Pause); | 
|  | break; | 
|  |  | 
|  | case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC: | 
|  | bp->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause; | 
|  | break; | 
|  |  | 
|  | default: | 
|  | bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause | | 
|  | ADVERTISED_Pause); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void bnx2x_set_requested_fc(struct bnx2x *bp) | 
|  | { | 
|  | /* Initialize link parameters structure variables | 
|  | * It is recommended to turn off RX FC for jumbo frames | 
|  | *  for better performance | 
|  | */ | 
|  | if (CHIP_IS_E1x(bp) && (bp->dev->mtu > 5000)) | 
|  | bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_TX; | 
|  | else | 
|  | bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_BOTH; | 
|  | } | 
|  |  | 
|  | static void bnx2x_init_dropless_fc(struct bnx2x *bp) | 
|  | { | 
|  | uint32_t pause_enabled = 0; | 
|  |  | 
|  | if (!CHIP_IS_E1(bp) && bp->dropless_fc && bp->link_vars.link_up) { | 
|  | if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX) | 
|  | pause_enabled = 1; | 
|  |  | 
|  | REG_WR(bp, BAR_USTRORM_INTMEM + | 
|  | USTORM_ETH_PAUSE_ENABLED_OFFSET(BP_PORT(bp)), | 
|  | pause_enabled); | 
|  | } | 
|  |  | 
|  | DP(NETIF_MSG_IFUP | NETIF_MSG_LINK, "dropless_fc is %s\n", | 
|  | pause_enabled ? "enabled" : "disabled"); | 
|  | } | 
|  |  | 
|  | int bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode) | 
|  | { | 
|  | int rc, cfx_idx = bnx2x_get_link_cfg_idx(bp); | 
|  | uint16_t req_line_speed = bp->link_params.req_line_speed[cfx_idx]; | 
|  |  | 
|  | if (!BP_NOMCP(bp)) { | 
|  | bnx2x_set_requested_fc(bp); | 
|  | bnx2x_acquire_phy_lock(bp); | 
|  |  | 
|  | if (load_mode == LOAD_DIAG) { | 
|  | struct link_params *lp = &bp->link_params; | 
|  | lp->loopback_mode = LOOPBACK_XGXS; | 
|  | /* do PHY loopback at 10G speed, if possible */ | 
|  | if (lp->req_line_speed[cfx_idx] < SPEED_10000) { | 
|  | if (lp->speed_cap_mask[cfx_idx] & | 
|  | PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) | 
|  | lp->req_line_speed[cfx_idx] = | 
|  | SPEED_10000; | 
|  | else | 
|  | lp->req_line_speed[cfx_idx] = | 
|  | SPEED_1000; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (load_mode == LOAD_LOOPBACK_EXT) { | 
|  | struct link_params *lp = &bp->link_params; | 
|  | lp->loopback_mode = LOOPBACK_EXT; | 
|  | } | 
|  |  | 
|  | rc = bnx2x_phy_init(&bp->link_params, &bp->link_vars); | 
|  |  | 
|  | bnx2x_release_phy_lock(bp); | 
|  |  | 
|  | bnx2x_init_dropless_fc(bp); | 
|  |  | 
|  | bnx2x_calc_fc_adv(bp); | 
|  |  | 
|  | if (bp->link_vars.link_up) { | 
|  | bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP); | 
|  | bnx2x_link_report(bp); | 
|  | } | 
|  | queue_delayed_work(bnx2x_wq, &bp->period_task, 0); | 
|  | bp->link_params.req_line_speed[cfx_idx] = req_line_speed; | 
|  | return rc; | 
|  | } | 
|  | BNX2X_ERR("Bootcode is missing - can not initialize link\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | void bnx2x_link_set(struct bnx2x *bp) | 
|  | { | 
|  | if (!BP_NOMCP(bp)) { | 
|  | bnx2x_acquire_phy_lock(bp); | 
|  | bnx2x_phy_init(&bp->link_params, &bp->link_vars); | 
|  | bnx2x_release_phy_lock(bp); | 
|  |  | 
|  | bnx2x_init_dropless_fc(bp); | 
|  |  | 
|  | bnx2x_calc_fc_adv(bp); | 
|  | } else | 
|  | BNX2X_ERR("Bootcode is missing - can not set link\n"); | 
|  | } | 
|  |  | 
|  | static void bnx2x__link_reset(struct bnx2x *bp) | 
|  | { | 
|  | if (!BP_NOMCP(bp)) { | 
|  | bnx2x_acquire_phy_lock(bp); | 
|  | bnx2x_lfa_reset(&bp->link_params, &bp->link_vars); | 
|  | bnx2x_release_phy_lock(bp); | 
|  | } else | 
|  | BNX2X_ERR("Bootcode is missing - can not reset link\n"); | 
|  | } | 
|  |  | 
|  | void bnx2x_force_link_reset(struct bnx2x *bp) | 
|  | { | 
|  | bnx2x_acquire_phy_lock(bp); | 
|  | bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1); | 
|  | bnx2x_release_phy_lock(bp); | 
|  | } | 
|  |  | 
|  | uint8_t bnx2x_link_test(struct bnx2x *bp, uint8_t is_serdes) | 
|  | { | 
|  | uint8_t rc = 0; | 
|  |  | 
|  | if (!BP_NOMCP(bp)) { | 
|  | bnx2x_acquire_phy_lock(bp); | 
|  | rc = bnx2x_test_link(&bp->link_params, &bp->link_vars, | 
|  | is_serdes); | 
|  | bnx2x_release_phy_lock(bp); | 
|  | } else | 
|  | BNX2X_ERR("Bootcode is missing - can not test link\n"); | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /* Calculates the sum of vn_min_rates. | 
|  | It's needed for further normalizing of the min_rates. | 
|  | Returns: | 
|  | sum of vn_min_rates. | 
|  | or | 
|  | 0 - if all the min_rates are 0. | 
|  | In the later case fairness algorithm should be deactivated. | 
|  | If not all min_rates are zero then those that are zeroes will be set to 1. | 
|  | */ | 
|  | static void bnx2x_calc_vn_min(struct bnx2x *bp, | 
|  | struct cmng_init_input *input) | 
|  | { | 
|  | int all_zero = 1; | 
|  | int vn; | 
|  |  | 
|  | for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) { | 
|  | uint32_t vn_cfg = bp->mf_config[vn]; | 
|  | uint32_t vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >> | 
|  | FUNC_MF_CFG_MIN_BW_SHIFT) * 100; | 
|  |  | 
|  | /* Skip hidden vns */ | 
|  | if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) | 
|  | vn_min_rate = 0; | 
|  | /* If min rate is zero - set it to 1 */ | 
|  | else if (!vn_min_rate) | 
|  | vn_min_rate = DEF_MIN_RATE; | 
|  | else | 
|  | all_zero = 0; | 
|  |  | 
|  | input->vnic_min_rate[vn] = vn_min_rate; | 
|  | } | 
|  |  | 
|  | /* if ETS or all min rates are zeros - disable fairness */ | 
|  | if (BNX2X_IS_ETS_ENABLED(bp)) { | 
|  | input->flags.cmng_enables &= | 
|  | ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN; | 
|  | DP(NETIF_MSG_IFUP, "Fairness will be disabled due to ETS\n"); | 
|  | } else if (all_zero) { | 
|  | input->flags.cmng_enables &= | 
|  | ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN; | 
|  | DP(NETIF_MSG_IFUP, | 
|  | "All MIN values are zeroes fairness will be disabled\n"); | 
|  | } else | 
|  | input->flags.cmng_enables |= | 
|  | CMNG_FLAGS_PER_PORT_FAIRNESS_VN; | 
|  | } | 
|  |  | 
|  | static void bnx2x_calc_vn_max(struct bnx2x *bp, int vn, | 
|  | struct cmng_init_input *input) | 
|  | { | 
|  | uint16_t vn_max_rate; | 
|  | uint32_t vn_cfg = bp->mf_config[vn]; | 
|  |  | 
|  | if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) | 
|  | vn_max_rate = 0; | 
|  | else { | 
|  | uint32_t maxCfg = bnx2x_extract_max_cfg(bp, vn_cfg); | 
|  |  | 
|  | if (IS_MF_SI(bp)) { | 
|  | /* maxCfg in percents of linkspeed */ | 
|  | vn_max_rate = (bp->link_vars.line_speed * maxCfg) / 100; | 
|  | } else /* SD modes */ | 
|  | /* maxCfg is absolute in 100Mb units */ | 
|  | vn_max_rate = maxCfg * 100; | 
|  | } | 
|  |  | 
|  | DP(NETIF_MSG_IFUP, "vn %d: vn_max_rate %d\n", vn, vn_max_rate); | 
|  |  | 
|  | input->vnic_max_rate[vn] = vn_max_rate; | 
|  | } | 
|  |  | 
|  | static int bnx2x_get_cmng_fns_mode(struct bnx2x *bp) | 
|  | { | 
|  | if (CHIP_REV_IS_SLOW(bp)) | 
|  | return CMNG_FNS_NONE; | 
|  | if (IS_MF(bp)) | 
|  | return CMNG_FNS_MINMAX; | 
|  |  | 
|  | return CMNG_FNS_NONE; | 
|  | } | 
|  |  | 
|  | void bnx2x_read_mf_cfg(struct bnx2x *bp) | 
|  | { | 
|  | int vn, n = (CHIP_MODE_IS_4_PORT(bp) ? 2 : 1); | 
|  |  | 
|  | if (BP_NOMCP(bp)) | 
|  | return; /* what should be the default value in this case */ | 
|  |  | 
|  | /* For 2 port configuration the absolute function number formula | 
|  | * is: | 
|  | *      abs_func = 2 * vn + BP_PORT + BP_PATH | 
|  | * | 
|  | *      and there are 4 functions per port | 
|  | * | 
|  | * For 4 port configuration it is | 
|  | *      abs_func = 4 * vn + 2 * BP_PORT + BP_PATH | 
|  | * | 
|  | *      and there are 2 functions per port | 
|  | */ | 
|  | for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) { | 
|  | int /*abs*/func = n * (2 * vn + BP_PORT(bp)) + BP_PATH(bp); | 
|  |  | 
|  | if (func >= E1H_FUNC_MAX) | 
|  | break; | 
|  |  | 
|  | bp->mf_config[vn] = | 
|  | MF_CFG_RD(bp, func_mf_config[func].config); | 
|  | } | 
|  | if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) { | 
|  | DP(NETIF_MSG_IFUP, "mf_cfg function disabled\n"); | 
|  | bp->flags |= MF_FUNC_DIS; | 
|  | } else { | 
|  | DP(NETIF_MSG_IFUP, "mf_cfg function enabled\n"); | 
|  | bp->flags &= ~MF_FUNC_DIS; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void bnx2x_cmng_fns_init(struct bnx2x *bp, uint8_t read_cfg, | 
|  | uint8_t cmng_type) | 
|  | { | 
|  | struct cmng_init_input input; | 
|  | memset(&input, 0, sizeof(struct cmng_init_input)); | 
|  |  | 
|  | input.port_rate = bp->link_vars.line_speed; | 
|  |  | 
|  | if (cmng_type == CMNG_FNS_MINMAX && input.port_rate) { | 
|  | int vn; | 
|  |  | 
|  | /* read mf conf from shmem */ | 
|  | if (read_cfg) | 
|  | bnx2x_read_mf_cfg(bp); | 
|  |  | 
|  | /* vn_weight_sum and enable fairness if not 0 */ | 
|  | bnx2x_calc_vn_min(bp, &input); | 
|  |  | 
|  | /* calculate and set min-max rate for each vn */ | 
|  | if (bp->port.pmf) | 
|  | for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) | 
|  | bnx2x_calc_vn_max(bp, vn, &input); | 
|  |  | 
|  | /* always enable rate shaping and fairness */ | 
|  | input.flags.cmng_enables |= | 
|  | CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN; | 
|  |  | 
|  | bnx2x_init_cmng(&input, &bp->cmng); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* rate shaping and fairness are disabled */ | 
|  | DP(NETIF_MSG_IFUP, | 
|  | "rate shaping and fairness are disabled\n"); | 
|  | } | 
|  |  | 
|  | static void storm_memset_cmng(struct bnx2x *bp, | 
|  | struct cmng_init *cmng, | 
|  | uint8_t port) | 
|  | { | 
|  | int vn; | 
|  | size_t size = sizeof(struct cmng_struct_per_port); | 
|  |  | 
|  | uint32_t addr = BAR_XSTRORM_INTMEM + | 
|  | XSTORM_CMNG_PER_PORT_VARS_OFFSET(port); | 
|  |  | 
|  | __storm_memset_struct(bp, addr, size, (uint32_t *)&cmng->port); | 
|  |  | 
|  | for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) { | 
|  | int func = func_by_vn(bp, vn); | 
|  |  | 
|  | addr = BAR_XSTRORM_INTMEM + | 
|  | XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func); | 
|  | size = sizeof(struct rate_shaping_vars_per_vn); | 
|  | __storm_memset_struct(bp, addr, size, | 
|  | (uint32_t *)&cmng->vnic.vnic_max_rate[vn]); | 
|  |  | 
|  | addr = BAR_XSTRORM_INTMEM + | 
|  | XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func); | 
|  | size = sizeof(struct fairness_vars_per_vn); | 
|  | __storm_memset_struct(bp, addr, size, | 
|  | (uint32_t *)&cmng->vnic.vnic_min_rate[vn]); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* init cmng mode in HW according to local configuration */ | 
|  | void bnx2x_set_local_cmng(struct bnx2x *bp) | 
|  | { | 
|  | int cmng_fns = bnx2x_get_cmng_fns_mode(bp); | 
|  |  | 
|  | if (cmng_fns != CMNG_FNS_NONE) { | 
|  | bnx2x_cmng_fns_init(bp, false, cmng_fns); | 
|  | storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp)); | 
|  | } else { | 
|  | /* rate shaping and fairness are disabled */ | 
|  | DP(NETIF_MSG_IFUP, | 
|  | "single function mode without fairness\n"); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* This function is called upon link interrupt */ | 
|  | static void bnx2x_link_attn(struct bnx2x *bp) | 
|  | { | 
|  | /* Make sure that we are synced with the current statistics */ | 
|  | bnx2x_stats_handle(bp, STATS_EVENT_STOP); | 
|  |  | 
|  | bnx2x_link_update(&bp->link_params, &bp->link_vars); | 
|  |  | 
|  | bnx2x_init_dropless_fc(bp); | 
|  |  | 
|  | if (bp->link_vars.link_up) { | 
|  |  | 
|  | if (bp->link_vars.mac_type != MAC_TYPE_EMAC) { | 
|  | struct host_port_stats *pstats; | 
|  |  | 
|  | pstats = bnx2x_sp(bp, port_stats); | 
|  | /* reset old mac stats */ | 
|  | memset(&(pstats->mac_stx[0]), 0, | 
|  | sizeof(struct mac_stx)); | 
|  | } | 
|  | if (bp->state == BNX2X_STATE_OPEN) | 
|  | bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP); | 
|  | } | 
|  |  | 
|  | if (bp->link_vars.link_up && bp->link_vars.line_speed) | 
|  | bnx2x_set_local_cmng(bp); | 
|  |  | 
|  | __bnx2x_link_report(bp); | 
|  |  | 
|  | if (IS_MF(bp)) | 
|  | bnx2x_link_sync_notify(bp); | 
|  | } | 
|  |  | 
|  | void bnx2x__link_status_update(struct bnx2x *bp) | 
|  | { | 
|  | panic("Not implemented"); | 
|  | #if 0 // AKAROS_PORT | 
|  | if (bp->state != BNX2X_STATE_OPEN) | 
|  | return; | 
|  |  | 
|  | /* read updated dcb configuration */ | 
|  | if (IS_PF(bp)) { | 
|  | bnx2x_dcbx_pmf_update(bp); | 
|  | bnx2x_link_status_update(&bp->link_params, &bp->link_vars); | 
|  | if (bp->link_vars.link_up) | 
|  | bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP); | 
|  | else | 
|  | bnx2x_stats_handle(bp, STATS_EVENT_STOP); | 
|  | /* indicate link status */ | 
|  | bnx2x_link_report(bp); | 
|  |  | 
|  | } else { /* VF */ | 
|  | bp->port.supported[0] |= (SUPPORTED_10baseT_Half | | 
|  | SUPPORTED_10baseT_Full | | 
|  | SUPPORTED_100baseT_Half | | 
|  | SUPPORTED_100baseT_Full | | 
|  | SUPPORTED_1000baseT_Full | | 
|  | SUPPORTED_2500baseX_Full | | 
|  | SUPPORTED_10000baseT_Full | | 
|  | SUPPORTED_TP | | 
|  | SUPPORTED_FIBRE | | 
|  | SUPPORTED_Autoneg | | 
|  | SUPPORTED_Pause | | 
|  | SUPPORTED_Asym_Pause); | 
|  | bp->port.advertising[0] = bp->port.supported[0]; | 
|  |  | 
|  | bp->link_params.bp = bp; | 
|  | bp->link_params.port = BP_PORT(bp); | 
|  | bp->link_params.req_duplex[0] = DUPLEX_FULL; | 
|  | bp->link_params.req_flow_ctrl[0] = BNX2X_FLOW_CTRL_NONE; | 
|  | bp->link_params.req_line_speed[0] = SPEED_10000; | 
|  | bp->link_params.speed_cap_mask[0] = 0x7f0000; | 
|  | bp->link_params.switch_cfg = SWITCH_CFG_10G; | 
|  | bp->link_vars.mac_type = MAC_TYPE_BMAC; | 
|  | bp->link_vars.line_speed = SPEED_10000; | 
|  | bp->link_vars.link_status = | 
|  | (LINK_STATUS_LINK_UP | | 
|  | LINK_STATUS_SPEED_AND_DUPLEX_10GTFD); | 
|  | bp->link_vars.link_up = 1; | 
|  | bp->link_vars.duplex = DUPLEX_FULL; | 
|  | bp->link_vars.flow_ctrl = BNX2X_FLOW_CTRL_NONE; | 
|  | __bnx2x_link_report(bp); | 
|  |  | 
|  | bnx2x_sample_bulletin(bp); | 
|  |  | 
|  | /* if bulletin board did not have an update for link status | 
|  | * __bnx2x_link_report will report current status | 
|  | * but it will NOT duplicate report in case of already reported | 
|  | * during sampling bulletin board. | 
|  | */ | 
|  | bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP); | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static int bnx2x_afex_func_update(struct bnx2x *bp, uint16_t vifid, | 
|  | uint16_t vlan_val, uint8_t allowed_prio) | 
|  | { | 
|  | struct bnx2x_func_state_params func_params = {NULL}; | 
|  | struct bnx2x_func_afex_update_params *f_update_params = | 
|  | &func_params.params.afex_update; | 
|  |  | 
|  | func_params.f_obj = &bp->func_obj; | 
|  | func_params.cmd = BNX2X_F_CMD_AFEX_UPDATE; | 
|  |  | 
|  | /* no need to wait for RAMROD completion, so don't | 
|  | * set RAMROD_COMP_WAIT flag | 
|  | */ | 
|  |  | 
|  | f_update_params->vif_id = vifid; | 
|  | f_update_params->afex_default_vlan = vlan_val; | 
|  | f_update_params->allowed_priorities = allowed_prio; | 
|  |  | 
|  | /* if ramrod can not be sent, response to MCP immediately */ | 
|  | if (bnx2x_func_state_change(bp, &func_params) < 0) | 
|  | bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int bnx2x_afex_handle_vif_list_cmd(struct bnx2x *bp, uint8_t cmd_type, | 
|  | uint16_t vif_index, | 
|  | uint8_t func_bit_map) | 
|  | { | 
|  | struct bnx2x_func_state_params func_params = {NULL}; | 
|  | struct bnx2x_func_afex_viflists_params *update_params = | 
|  | &func_params.params.afex_viflists; | 
|  | int rc; | 
|  | uint32_t drv_msg_code; | 
|  |  | 
|  | /* validate only LIST_SET and LIST_GET are received from switch */ | 
|  | if ((cmd_type != VIF_LIST_RULE_GET) && (cmd_type != VIF_LIST_RULE_SET)) | 
|  | BNX2X_ERR("BUG! afex_handle_vif_list_cmd invalid type 0x%x\n", | 
|  | cmd_type); | 
|  |  | 
|  | func_params.f_obj = &bp->func_obj; | 
|  | func_params.cmd = BNX2X_F_CMD_AFEX_VIFLISTS; | 
|  |  | 
|  | /* set parameters according to cmd_type */ | 
|  | update_params->afex_vif_list_command = cmd_type; | 
|  | update_params->vif_list_index = vif_index; | 
|  | update_params->func_bit_map = | 
|  | (cmd_type == VIF_LIST_RULE_GET) ? 0 : func_bit_map; | 
|  | update_params->func_to_clear = 0; | 
|  | drv_msg_code = | 
|  | (cmd_type == VIF_LIST_RULE_GET) ? | 
|  | DRV_MSG_CODE_AFEX_LISTGET_ACK : | 
|  | DRV_MSG_CODE_AFEX_LISTSET_ACK; | 
|  |  | 
|  | /* if ramrod can not be sent, respond to MCP immediately for | 
|  | * SET and GET requests (other are not triggered from MCP) | 
|  | */ | 
|  | rc = bnx2x_func_state_change(bp, &func_params); | 
|  | if (rc < 0) | 
|  | bnx2x_fw_command(bp, drv_msg_code, 0); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void bnx2x_handle_afex_cmd(struct bnx2x *bp, uint32_t cmd) | 
|  | { | 
|  | panic("Not implemented"); | 
|  | #if 0 // AKAROS_PORT | 
|  | struct afex_stats afex_stats; | 
|  | uint32_t func = BP_ABS_FUNC(bp); | 
|  | uint32_t mf_config; | 
|  | uint16_t vlan_val; | 
|  | uint32_t vlan_prio; | 
|  | uint16_t vif_id; | 
|  | uint8_t allowed_prio; | 
|  | uint8_t vlan_mode; | 
|  | uint32_t addr_to_write, vifid, addrs, stats_type, i; | 
|  |  | 
|  | if (cmd & DRV_STATUS_AFEX_LISTGET_REQ) { | 
|  | vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]); | 
|  | DP(BNX2X_MSG_MCP, | 
|  | "afex: got MCP req LISTGET_REQ for vifid 0x%x\n", vifid); | 
|  | bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_GET, vifid, 0); | 
|  | } | 
|  |  | 
|  | if (cmd & DRV_STATUS_AFEX_LISTSET_REQ) { | 
|  | vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]); | 
|  | addrs = SHMEM2_RD(bp, afex_param2_to_driver[BP_FW_MB_IDX(bp)]); | 
|  | DP(BNX2X_MSG_MCP, | 
|  | "afex: got MCP req LISTSET_REQ for vifid 0x%x addrs 0x%x\n", | 
|  | vifid, addrs); | 
|  | bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_SET, vifid, | 
|  | addrs); | 
|  | } | 
|  |  | 
|  | if (cmd & DRV_STATUS_AFEX_STATSGET_REQ) { | 
|  | addr_to_write = SHMEM2_RD(bp, | 
|  | afex_scratchpad_addr_to_write[BP_FW_MB_IDX(bp)]); | 
|  | stats_type = SHMEM2_RD(bp, | 
|  | afex_param1_to_driver[BP_FW_MB_IDX(bp)]); | 
|  |  | 
|  | DP(BNX2X_MSG_MCP, | 
|  | "afex: got MCP req STATSGET_REQ, write to addr 0x%x\n", | 
|  | addr_to_write); | 
|  |  | 
|  | bnx2x_afex_collect_stats(bp, (void *)&afex_stats, stats_type); | 
|  |  | 
|  | /* write response to scratchpad, for MCP */ | 
|  | for (i = 0; i < (sizeof(struct afex_stats)/sizeof(uint32_t)); i++) | 
|  | REG_WR(bp, addr_to_write + i*sizeof(uint32_t), | 
|  | *(((uint32_t *)(&afex_stats))+i)); | 
|  |  | 
|  | /* send ack message to MCP */ | 
|  | bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_STATSGET_ACK, 0); | 
|  | } | 
|  |  | 
|  | if (cmd & DRV_STATUS_AFEX_VIFSET_REQ) { | 
|  | mf_config = MF_CFG_RD(bp, func_mf_config[func].config); | 
|  | bp->mf_config[BP_VN(bp)] = mf_config; | 
|  | DP(BNX2X_MSG_MCP, | 
|  | "afex: got MCP req VIFSET_REQ, mf_config 0x%x\n", | 
|  | mf_config); | 
|  |  | 
|  | /* if VIF_SET is "enabled" */ | 
|  | if (!(mf_config & FUNC_MF_CFG_FUNC_DISABLED)) { | 
|  | /* set rate limit directly to internal RAM */ | 
|  | struct cmng_init_input cmng_input; | 
|  | struct rate_shaping_vars_per_vn m_rs_vn; | 
|  | size_t size = sizeof(struct rate_shaping_vars_per_vn); | 
|  | uint32_t addr = BAR_XSTRORM_INTMEM + | 
|  | XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(BP_FUNC(bp)); | 
|  |  | 
|  | bp->mf_config[BP_VN(bp)] = mf_config; | 
|  |  | 
|  | bnx2x_calc_vn_max(bp, BP_VN(bp), &cmng_input); | 
|  | m_rs_vn.vn_counter.rate = | 
|  | cmng_input.vnic_max_rate[BP_VN(bp)]; | 
|  | m_rs_vn.vn_counter.quota = | 
|  | (m_rs_vn.vn_counter.rate * | 
|  | RS_PERIODIC_TIMEOUT_USEC) / 8; | 
|  |  | 
|  | __storm_memset_struct(bp, addr, size, | 
|  | (uint32_t *)&m_rs_vn); | 
|  |  | 
|  | /* read relevant values from mf_cfg struct in shmem */ | 
|  | vif_id = | 
|  | (MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) & | 
|  | FUNC_MF_CFG_E1HOV_TAG_MASK) >> | 
|  | FUNC_MF_CFG_E1HOV_TAG_SHIFT; | 
|  | vlan_val = | 
|  | (MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) & | 
|  | FUNC_MF_CFG_AFEX_VLAN_MASK) >> | 
|  | FUNC_MF_CFG_AFEX_VLAN_SHIFT; | 
|  | vlan_prio = (mf_config & | 
|  | FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >> | 
|  | FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT; | 
|  | vlan_val |= (vlan_prio << VLAN_PRIO_SHIFT); | 
|  | vlan_mode = | 
|  | (MF_CFG_RD(bp, | 
|  | func_mf_config[func].afex_config) & | 
|  | FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >> | 
|  | FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT; | 
|  | allowed_prio = | 
|  | (MF_CFG_RD(bp, | 
|  | func_mf_config[func].afex_config) & | 
|  | FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >> | 
|  | FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT; | 
|  |  | 
|  | /* send ramrod to FW, return in case of failure */ | 
|  | if (bnx2x_afex_func_update(bp, vif_id, vlan_val, | 
|  | allowed_prio)) | 
|  | return; | 
|  |  | 
|  | bp->afex_def_vlan_tag = vlan_val; | 
|  | bp->afex_vlan_mode = vlan_mode; | 
|  | } else { | 
|  | /* notify link down because BP->flags is disabled */ | 
|  | bnx2x_link_report(bp); | 
|  |  | 
|  | /* send INVALID VIF ramrod to FW */ | 
|  | bnx2x_afex_func_update(bp, 0xFFFF, 0, 0); | 
|  |  | 
|  | /* Reset the default afex VLAN */ | 
|  | bp->afex_def_vlan_tag = -1; | 
|  | } | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static void bnx2x_handle_update_svid_cmd(struct bnx2x *bp) | 
|  | { | 
|  | struct bnx2x_func_switch_update_params *switch_update_params; | 
|  | struct bnx2x_func_state_params func_params; | 
|  |  | 
|  | memset(&func_params, 0, sizeof(struct bnx2x_func_state_params)); | 
|  | switch_update_params = &func_params.params.switch_update; | 
|  | func_params.f_obj = &bp->func_obj; | 
|  | func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE; | 
|  |  | 
|  | if (IS_MF_UFP(bp)) { | 
|  | int func = BP_ABS_FUNC(bp); | 
|  | uint32_t val; | 
|  |  | 
|  | /* Re-learn the S-tag from shmem */ | 
|  | val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) & | 
|  | FUNC_MF_CFG_E1HOV_TAG_MASK; | 
|  | if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) { | 
|  | bp->mf_ov = val; | 
|  | } else { | 
|  | BNX2X_ERR("Got an SVID event, but no tag is configured in shmem\n"); | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | /* Configure new S-tag in LLH */ | 
|  | REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + BP_PORT(bp) * 8, | 
|  | bp->mf_ov); | 
|  |  | 
|  | /* Send Ramrod to update FW of change */ | 
|  | __set_bit(BNX2X_F_UPDATE_SD_VLAN_TAG_CHNG, | 
|  | &switch_update_params->changes); | 
|  | switch_update_params->vlan = bp->mf_ov; | 
|  |  | 
|  | if (bnx2x_func_state_change(bp, &func_params) < 0) { | 
|  | BNX2X_ERR("Failed to configure FW of S-tag Change to %02x\n", | 
|  | bp->mf_ov); | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | DP(BNX2X_MSG_MCP, "Configured S-tag %02x\n", bp->mf_ov); | 
|  |  | 
|  | bnx2x_fw_command(bp, DRV_MSG_CODE_OEM_UPDATE_SVID_OK, 0); | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* not supported by SW yet */ | 
|  | fail: | 
|  | bnx2x_fw_command(bp, DRV_MSG_CODE_OEM_UPDATE_SVID_FAILURE, 0); | 
|  | } | 
|  |  | 
|  | static void bnx2x_pmf_update(struct bnx2x *bp) | 
|  | { | 
|  | int port = BP_PORT(bp); | 
|  | uint32_t val; | 
|  |  | 
|  | bp->port.pmf = 1; | 
|  | DP(BNX2X_MSG_MCP, "pmf %d\n", bp->port.pmf); | 
|  |  | 
|  | /* | 
|  | * We need the mb() to ensure the ordering between the writing to | 
|  | * bp->port.pmf here and reading it from the bnx2x_periodic_task(). | 
|  | */ | 
|  | mb(); | 
|  |  | 
|  | /* queue a periodic task */ | 
|  | queue_delayed_work(bnx2x_wq, &bp->period_task, 0); | 
|  |  | 
|  | bnx2x_dcbx_pmf_update(bp); | 
|  |  | 
|  | /* enable nig attention */ | 
|  | val = (0xff0f | (1 << (BP_VN(bp) + 4))); | 
|  | if (bp->common.int_block == INT_BLOCK_HC) { | 
|  | REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val); | 
|  | REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val); | 
|  | } else if (!CHIP_IS_E1x(bp)) { | 
|  | REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val); | 
|  | REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val); | 
|  | } | 
|  |  | 
|  | bnx2x_stats_handle(bp, STATS_EVENT_PMF); | 
|  | } | 
|  |  | 
|  | /* end of Link */ | 
|  |  | 
|  | /* slow path */ | 
|  |  | 
|  | /* | 
|  | * General service functions | 
|  | */ | 
|  |  | 
|  | /* send the MCP a request, block until there is a reply */ | 
|  | uint32_t bnx2x_fw_command(struct bnx2x *bp, uint32_t command, uint32_t param) | 
|  | { | 
|  | int mb_idx = BP_FW_MB_IDX(bp); | 
|  | uint32_t seq; | 
|  | uint32_t rc = 0; | 
|  | uint32_t cnt = 1; | 
|  | uint8_t delay = CHIP_REV_IS_SLOW(bp) ? 100 : 10; | 
|  |  | 
|  | qlock(&bp->fw_mb_mutex); | 
|  | seq = ++bp->fw_seq; | 
|  | SHMEM_WR(bp, func_mb[mb_idx].drv_mb_param, param); | 
|  | SHMEM_WR(bp, func_mb[mb_idx].drv_mb_header, (command | seq)); | 
|  |  | 
|  | DP(BNX2X_MSG_MCP, "wrote command (%x) to FW MB param 0x%08x\n", | 
|  | (command | seq), param); | 
|  |  | 
|  | do { | 
|  | /* let the FW do it's magic ... */ | 
|  | kthread_usleep(1000 * delay); | 
|  |  | 
|  | rc = SHMEM_RD(bp, func_mb[mb_idx].fw_mb_header); | 
|  |  | 
|  | /* Give the FW up to 5 second (500*10ms) */ | 
|  | } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500)); | 
|  |  | 
|  | DP(BNX2X_MSG_MCP, "[after %d ms] read (%x) seq is (%x) from FW MB\n", | 
|  | cnt*delay, rc, seq); | 
|  |  | 
|  | /* is this a reply to our command? */ | 
|  | if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK)) | 
|  | rc &= FW_MSG_CODE_MASK; | 
|  | else { | 
|  | /* FW BUG! */ | 
|  | BNX2X_ERR("FW failed to respond!\n"); | 
|  | bnx2x_fw_dump(bp); | 
|  | rc = 0; | 
|  | } | 
|  | qunlock(&bp->fw_mb_mutex); | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static void storm_memset_func_cfg(struct bnx2x *bp, | 
|  | struct tstorm_eth_function_common_config *tcfg, | 
|  | uint16_t abs_fid) | 
|  | { | 
|  | size_t size = sizeof(struct tstorm_eth_function_common_config); | 
|  |  | 
|  | uint32_t addr = BAR_TSTRORM_INTMEM + | 
|  | TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid); | 
|  |  | 
|  | __storm_memset_struct(bp, addr, size, (uint32_t *)tcfg); | 
|  | } | 
|  |  | 
|  | void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p) | 
|  | { | 
|  | if (CHIP_IS_E1x(bp)) { | 
|  | struct tstorm_eth_function_common_config tcfg = {0}; | 
|  |  | 
|  | storm_memset_func_cfg(bp, &tcfg, p->func_id); | 
|  | } | 
|  |  | 
|  | /* Enable the function in the FW */ | 
|  | storm_memset_vf_to_pf(bp, p->func_id, p->pf_id); | 
|  | storm_memset_func_en(bp, p->func_id, 1); | 
|  |  | 
|  | /* spq */ | 
|  | if (p->func_flgs & FUNC_FLG_SPQ) { | 
|  | storm_memset_spq_addr(bp, p->spq_map, p->func_id); | 
|  | REG_WR(bp, XSEM_REG_FAST_MEMORY + | 
|  | XSTORM_SPQ_PROD_OFFSET(p->func_id), p->spq_prod); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * bnx2x_get_common_flags - Return common flags | 
|  | * | 
|  | * @bp		device handle | 
|  | * @fp		queue handle | 
|  | * @zero_stats	TRUE if statistics zeroing is needed | 
|  | * | 
|  | * Return the flags that are common for the Tx-only and not normal connections. | 
|  | */ | 
|  | static unsigned long bnx2x_get_common_flags(struct bnx2x *bp, | 
|  | struct bnx2x_fastpath *fp, | 
|  | bool zero_stats) | 
|  | { | 
|  | unsigned long flags = 0; | 
|  |  | 
|  | /* PF driver will always initialize the Queue to an ACTIVE state */ | 
|  | __set_bit(BNX2X_Q_FLG_ACTIVE, &flags); | 
|  |  | 
|  | /* tx only connections collect statistics (on the same index as the | 
|  | * parent connection). The statistics are zeroed when the parent | 
|  | * connection is initialized. | 
|  | */ | 
|  |  | 
|  | __set_bit(BNX2X_Q_FLG_STATS, &flags); | 
|  | if (zero_stats) | 
|  | __set_bit(BNX2X_Q_FLG_ZERO_STATS, &flags); | 
|  |  | 
|  | if (bp->flags & TX_SWITCHING) | 
|  | __set_bit(BNX2X_Q_FLG_TX_SWITCH, &flags); | 
|  |  | 
|  | __set_bit(BNX2X_Q_FLG_PCSUM_ON_PKT, &flags); | 
|  | __set_bit(BNX2X_Q_FLG_TUN_INC_INNER_IP_ID, &flags); | 
|  |  | 
|  | #ifdef BNX2X_STOP_ON_ERROR | 
|  | __set_bit(BNX2X_Q_FLG_TX_SEC, &flags); | 
|  | #endif | 
|  |  | 
|  | return flags; | 
|  | } | 
|  |  | 
|  | static unsigned long bnx2x_get_q_flags(struct bnx2x *bp, | 
|  | struct bnx2x_fastpath *fp, | 
|  | bool leading) | 
|  | { | 
|  | unsigned long flags = 0; | 
|  |  | 
|  | /* calculate other queue flags */ | 
|  | if (IS_MF_SD(bp)) | 
|  | __set_bit(BNX2X_Q_FLG_OV, &flags); | 
|  |  | 
|  | if (IS_FCOE_FP(fp)) { | 
|  | __set_bit(BNX2X_Q_FLG_FCOE, &flags); | 
|  | /* For FCoE - force usage of default priority (for afex) */ | 
|  | __set_bit(BNX2X_Q_FLG_FORCE_DEFAULT_PRI, &flags); | 
|  | } | 
|  |  | 
|  | if (!fp->disable_tpa) { | 
|  | __set_bit(BNX2X_Q_FLG_TPA, &flags); | 
|  | __set_bit(BNX2X_Q_FLG_TPA_IPV6, &flags); | 
|  | if (fp->mode == TPA_MODE_GRO) | 
|  | __set_bit(BNX2X_Q_FLG_TPA_GRO, &flags); | 
|  | } | 
|  |  | 
|  | if (leading) { | 
|  | __set_bit(BNX2X_Q_FLG_LEADING_RSS, &flags); | 
|  | __set_bit(BNX2X_Q_FLG_MCAST, &flags); | 
|  | } | 
|  |  | 
|  | /* Always set HW VLAN stripping */ | 
|  | __set_bit(BNX2X_Q_FLG_VLAN, &flags); | 
|  |  | 
|  | /* configure silent vlan removal */ | 
|  | if (IS_MF_AFEX(bp)) | 
|  | __set_bit(BNX2X_Q_FLG_SILENT_VLAN_REM, &flags); | 
|  |  | 
|  | return flags | bnx2x_get_common_flags(bp, fp, true); | 
|  | } | 
|  |  | 
|  | static void bnx2x_pf_q_prep_general(struct bnx2x *bp, | 
|  | struct bnx2x_fastpath *fp, struct bnx2x_general_setup_params *gen_init, | 
|  | uint8_t cos) | 
|  | { | 
|  | gen_init->stat_id = bnx2x_stats_id(fp); | 
|  | gen_init->spcl_id = fp->cl_id; | 
|  |  | 
|  | /* Always use mini-jumbo MTU for FCoE L2 ring */ | 
|  | if (IS_FCOE_FP(fp)) | 
|  | gen_init->mtu = BNX2X_FCOE_MINI_JUMBO_MTU; | 
|  | else | 
|  | gen_init->mtu = bp->dev->mtu; | 
|  |  | 
|  | gen_init->cos = cos; | 
|  |  | 
|  | gen_init->fp_hsi = ETH_FP_HSI_VERSION; | 
|  | } | 
|  |  | 
|  | static void bnx2x_pf_rx_q_prep(struct bnx2x *bp, | 
|  | struct bnx2x_fastpath *fp, struct rxq_pause_params *pause, | 
|  | struct bnx2x_rxq_setup_params *rxq_init) | 
|  | { | 
|  | uint8_t max_sge = 0; | 
|  | uint16_t sge_sz = 0; | 
|  | uint16_t tpa_agg_size = 0; | 
|  |  | 
|  | if (!fp->disable_tpa) { | 
|  | pause->sge_th_lo = SGE_TH_LO(bp); | 
|  | pause->sge_th_hi = SGE_TH_HI(bp); | 
|  |  | 
|  | /* validate SGE ring has enough to cross high threshold */ | 
|  | warn_on(bp->dropless_fc && | 
|  | pause->sge_th_hi + FW_PREFETCH_CNT > | 
|  | MAX_RX_SGE_CNT * NUM_RX_SGE_PAGES); | 
|  |  | 
|  | /* TODO XME this is based on MAX_SKB_FRAGS */ | 
|  | tpa_agg_size = TPA_AGG_SIZE; | 
|  | max_sge = SGE_PAGE_ALIGN(bp->dev->mtu) >> | 
|  | SGE_PAGE_SHIFT; | 
|  | max_sge = ((max_sge + PAGES_PER_SGE - 1) & | 
|  | (~(PAGES_PER_SGE-1))) >> PAGES_PER_SGE_SHIFT; | 
|  | sge_sz = (uint16_t)MIN_T(uint32_t, SGE_PAGES, 0xffff); | 
|  | } | 
|  |  | 
|  | /* pause - not for e1 */ | 
|  | if (!CHIP_IS_E1(bp)) { | 
|  | pause->bd_th_lo = BD_TH_LO(bp); | 
|  | pause->bd_th_hi = BD_TH_HI(bp); | 
|  |  | 
|  | pause->rcq_th_lo = RCQ_TH_LO(bp); | 
|  | pause->rcq_th_hi = RCQ_TH_HI(bp); | 
|  | /* | 
|  | * validate that rings have enough entries to cross | 
|  | * high thresholds | 
|  | */ | 
|  | warn_on(bp->dropless_fc && | 
|  | pause->bd_th_hi + FW_PREFETCH_CNT > | 
|  | bp->rx_ring_size); | 
|  | warn_on(bp->dropless_fc && | 
|  | pause->rcq_th_hi + FW_PREFETCH_CNT > | 
|  | NUM_RCQ_RINGS * MAX_RCQ_DESC_CNT); | 
|  |  | 
|  | pause->pri_map = 1; | 
|  | } | 
|  |  | 
|  | /* rxq setup */ | 
|  | rxq_init->dscr_map = fp->rx_desc_mapping; | 
|  | rxq_init->sge_map = fp->rx_sge_mapping; | 
|  | rxq_init->rcq_map = fp->rx_comp_mapping; | 
|  | rxq_init->rcq_np_map = fp->rx_comp_mapping + BCM_PAGE_SIZE; | 
|  |  | 
|  | /* This should be a maximum number of data bytes that may be | 
|  | * placed on the BD (not including paddings). | 
|  | */ | 
|  | rxq_init->buf_sz = fp->rx_buf_size - BNX2X_FW_RX_ALIGN_START - | 
|  | BNX2X_FW_RX_ALIGN_END - IP_HEADER_ALIGNMENT_PADDING; | 
|  |  | 
|  | rxq_init->cl_qzone_id = fp->cl_qzone_id; | 
|  | rxq_init->tpa_agg_sz = tpa_agg_size; | 
|  | rxq_init->sge_buf_sz = sge_sz; | 
|  | rxq_init->max_sges_pkt = max_sge; | 
|  | rxq_init->rss_engine_id = BP_FUNC(bp); | 
|  | rxq_init->mcast_engine_id = BP_FUNC(bp); | 
|  |  | 
|  | /* Maximum number or simultaneous TPA aggregation for this Queue. | 
|  | * | 
|  | * For PF Clients it should be the maximum available number. | 
|  | * VF driver(s) may want to define it to a smaller value. | 
|  | */ | 
|  | rxq_init->max_tpa_queues = MAX_AGG_QS(bp); | 
|  |  | 
|  | rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT; | 
|  | rxq_init->fw_sb_id = fp->fw_sb_id; | 
|  |  | 
|  | if (IS_FCOE_FP(fp)) | 
|  | rxq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS; | 
|  | else | 
|  | rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS; | 
|  | /* configure silent vlan removal | 
|  | * if multi function mode is afex, then mask default vlan | 
|  | */ | 
|  | if (IS_MF_AFEX(bp)) { | 
|  | rxq_init->silent_removal_value = bp->afex_def_vlan_tag; | 
|  | rxq_init->silent_removal_mask = VLAN_VID_MASK; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void bnx2x_pf_tx_q_prep(struct bnx2x *bp, | 
|  | struct bnx2x_fastpath *fp, struct bnx2x_txq_setup_params *txq_init, | 
|  | uint8_t cos) | 
|  | { | 
|  | txq_init->dscr_map = fp->txdata_ptr[cos]->tx_desc_mapping; | 
|  | txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos; | 
|  | txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW; | 
|  | txq_init->fw_sb_id = fp->fw_sb_id; | 
|  |  | 
|  | /* | 
|  | * set the tss leading client id for TX classification == | 
|  | * leading RSS client id | 
|  | */ | 
|  | txq_init->tss_leading_cl_id = bnx2x_fp(bp, 0, cl_id); | 
|  |  | 
|  | if (IS_FCOE_FP(fp)) { | 
|  | txq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS; | 
|  | txq_init->traffic_type = LLFC_TRAFFIC_TYPE_FCOE; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void bnx2x_pf_init(struct bnx2x *bp) | 
|  | { | 
|  | struct bnx2x_func_init_params func_init = {0}; | 
|  | struct event_ring_data eq_data = { {0} }; | 
|  | uint16_t flags; | 
|  |  | 
|  | if (!CHIP_IS_E1x(bp)) { | 
|  | /* reset IGU PF statistics: MSIX + ATTN */ | 
|  | /* PF */ | 
|  | REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT + | 
|  | BNX2X_IGU_STAS_MSG_VF_CNT*4 + | 
|  | (CHIP_MODE_IS_4_PORT(bp) ? | 
|  | BP_FUNC(bp) : BP_VN(bp))*4, 0); | 
|  | /* ATTN */ | 
|  | REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT + | 
|  | BNX2X_IGU_STAS_MSG_VF_CNT*4 + | 
|  | BNX2X_IGU_STAS_MSG_PF_CNT*4 + | 
|  | (CHIP_MODE_IS_4_PORT(bp) ? | 
|  | BP_FUNC(bp) : BP_VN(bp))*4, 0); | 
|  | } | 
|  |  | 
|  | /* function setup flags */ | 
|  | flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ); | 
|  |  | 
|  | /* This flag is relevant for E1x only. | 
|  | * E2 doesn't have a TPA configuration in a function level. | 
|  | */ | 
|  | flags |= (bp->flags & TPA_ENABLE_FLAG) ? FUNC_FLG_TPA : 0; | 
|  |  | 
|  | func_init.func_flgs = flags; | 
|  | func_init.pf_id = BP_FUNC(bp); | 
|  | func_init.func_id = BP_FUNC(bp); | 
|  | func_init.spq_map = bp->spq_mapping; | 
|  | func_init.spq_prod = bp->spq_prod_idx; | 
|  |  | 
|  | bnx2x_func_init(bp, &func_init); | 
|  |  | 
|  | memset(&(bp->cmng), 0, sizeof(struct cmng_struct_per_port)); | 
|  |  | 
|  | /* | 
|  | * Congestion management values depend on the link rate | 
|  | * There is no active link so initial link rate is set to 10 Gbps. | 
|  | * When the link comes up The congestion management values are | 
|  | * re-calculated according to the actual link rate. | 
|  | */ | 
|  | bp->link_vars.line_speed = SPEED_10000; | 
|  | bnx2x_cmng_fns_init(bp, true, bnx2x_get_cmng_fns_mode(bp)); | 
|  |  | 
|  | /* Only the PMF sets the HW */ | 
|  | if (bp->port.pmf) | 
|  | storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp)); | 
|  |  | 
|  | /* init Event Queue - PCI bus guarantees correct endianity*/ | 
|  | eq_data.base_addr.hi = U64_HI(bp->eq_mapping); | 
|  | eq_data.base_addr.lo = U64_LO(bp->eq_mapping); | 
|  | eq_data.producer = bp->eq_prod; | 
|  | eq_data.index_id = HC_SP_INDEX_EQ_CONS; | 
|  | eq_data.sb_id = DEF_SB_ID; | 
|  | storm_memset_eq_data(bp, &eq_data, BP_FUNC(bp)); | 
|  | } | 
|  |  | 
|  | static void bnx2x_e1h_disable(struct bnx2x *bp) | 
|  | { | 
|  | int port = BP_PORT(bp); | 
|  |  | 
|  | bnx2x_tx_disable(bp); | 
|  |  | 
|  | REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0); | 
|  | } | 
|  |  | 
|  | static void bnx2x_e1h_enable(struct bnx2x *bp) | 
|  | { | 
|  | panic("Not implemented"); | 
|  | #if 0 // AKAROS_PORT | 
|  | int port = BP_PORT(bp); | 
|  |  | 
|  | if (!(IS_MF_UFP(bp) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp))) | 
|  | REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port * 8, 1); | 
|  |  | 
|  | /* Tx queue should be only re-enabled */ | 
|  | netif_tx_wake_all_queues(bp->dev); | 
|  |  | 
|  | /* | 
|  | * Should not call netif_carrier_on since it will be called if the link | 
|  | * is up when checking for link state | 
|  | */ | 
|  | #endif | 
|  | } | 
|  |  | 
|  | #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3 | 
|  |  | 
|  | static void bnx2x_drv_info_ether_stat(struct bnx2x *bp) | 
|  | { | 
|  | panic("Not implemented"); | 
|  | #if 0 // AKAROS_PORT | 
|  | struct eth_stats_info *ether_stat = | 
|  | &bp->slowpath->drv_info_to_mcp.ether_stat; | 
|  | struct bnx2x_vlan_mac_obj *mac_obj = | 
|  | &bp->sp_objs->mac_obj; | 
|  | int i; | 
|  |  | 
|  | strlcpy(ether_stat->version, DRV_MODULE_VERSION, | 
|  | ETH_STAT_INFO_VERSION_LEN); | 
|  |  | 
|  | /* get DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED macs, placing them in the | 
|  | * mac_local field in ether_stat struct. The base address is offset by 2 | 
|  | * bytes to account for the field being 8 bytes but a mac address is | 
|  | * only 6 bytes. Likewise, the stride for the get_n_elements function is | 
|  | * 2 bytes to compensate from the 6 bytes of a mac to the 8 bytes | 
|  | * allocated by the ether_stat struct, so the macs will land in their | 
|  | * proper positions. | 
|  | */ | 
|  | for (i = 0; i < DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED; i++) | 
|  | memset(ether_stat->mac_local + i, 0, | 
|  | sizeof(ether_stat->mac_local[0])); | 
|  | mac_obj->get_n_elements(bp, &bp->sp_objs[0].mac_obj, | 
|  | DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED, | 
|  | ether_stat->mac_local + MAC_PAD, MAC_PAD, | 
|  | Eaddrlen); | 
|  | ether_stat->mtu_size = bp->dev->mtu; | 
|  | if (bp->dev->feat & NETIF_F_RXCSUM) | 
|  | ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK; | 
|  | if (bp->dev->feat & NETIF_F_TSO) | 
|  | ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK; | 
|  | ether_stat->feature_flags |= bp->common.boot_mode; | 
|  |  | 
|  | #if 0 // AKAROS_PORT | 
|  | ether_stat->promiscuous_mode = (bp->dev->flags & IFF_PROMISC) ? 1 : 0; | 
|  | #endif | 
|  |  | 
|  | ether_stat->txq_size = bp->tx_ring_size; | 
|  | ether_stat->rxq_size = bp->rx_ring_size; | 
|  |  | 
|  | #ifdef CONFIG_BNX2X_SRIOV | 
|  | ether_stat->vf_cnt = IS_SRIOV(bp) ? bp->vfdb->sriov.nr_virtfn : 0; | 
|  | #endif | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static void bnx2x_drv_info_fcoe_stat(struct bnx2x *bp) | 
|  | { | 
|  | struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app; | 
|  | struct fcoe_stats_info *fcoe_stat = | 
|  | &bp->slowpath->drv_info_to_mcp.fcoe_stat; | 
|  |  | 
|  | if (!CNIC_LOADED(bp)) | 
|  | return; | 
|  |  | 
|  | memcpy(fcoe_stat->mac_local + MAC_PAD, bp->fip_mac, Eaddrlen); | 
|  |  | 
|  | fcoe_stat->qos_priority = | 
|  | app->traffic_type_priority[LLFC_TRAFFIC_TYPE_FCOE]; | 
|  |  | 
|  | /* insert FCoE stats from ramrod response */ | 
|  | if (!NO_FCOE(bp)) { | 
|  | struct tstorm_per_queue_stats *fcoe_q_tstorm_stats = | 
|  | &bp->fw_stats_data->queue_stats[FCOE_IDX(bp)]. | 
|  | tstorm_queue_statistics; | 
|  |  | 
|  | struct xstorm_per_queue_stats *fcoe_q_xstorm_stats = | 
|  | &bp->fw_stats_data->queue_stats[FCOE_IDX(bp)]. | 
|  | xstorm_queue_statistics; | 
|  |  | 
|  | struct fcoe_statistics_params *fw_fcoe_stat = | 
|  | &bp->fw_stats_data->fcoe; | 
|  |  | 
|  | ADD_64_LE(fcoe_stat->rx_bytes_hi, LE32_0, | 
|  | fcoe_stat->rx_bytes_lo, | 
|  | fw_fcoe_stat->rx_stat0.fcoe_rx_byte_cnt); | 
|  |  | 
|  | ADD_64_LE(fcoe_stat->rx_bytes_hi, | 
|  | fcoe_q_tstorm_stats->rcv_ucast_bytes.hi, | 
|  | fcoe_stat->rx_bytes_lo, | 
|  | fcoe_q_tstorm_stats->rcv_ucast_bytes.lo); | 
|  |  | 
|  | ADD_64_LE(fcoe_stat->rx_bytes_hi, | 
|  | fcoe_q_tstorm_stats->rcv_bcast_bytes.hi, | 
|  | fcoe_stat->rx_bytes_lo, | 
|  | fcoe_q_tstorm_stats->rcv_bcast_bytes.lo); | 
|  |  | 
|  | ADD_64_LE(fcoe_stat->rx_bytes_hi, | 
|  | fcoe_q_tstorm_stats->rcv_mcast_bytes.hi, | 
|  | fcoe_stat->rx_bytes_lo, | 
|  | fcoe_q_tstorm_stats->rcv_mcast_bytes.lo); | 
|  |  | 
|  | ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0, | 
|  | fcoe_stat->rx_frames_lo, | 
|  | fw_fcoe_stat->rx_stat0.fcoe_rx_pkt_cnt); | 
|  |  | 
|  | ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0, | 
|  | fcoe_stat->rx_frames_lo, | 
|  | fcoe_q_tstorm_stats->rcv_ucast_pkts); | 
|  |  | 
|  | ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0, | 
|  | fcoe_stat->rx_frames_lo, | 
|  | fcoe_q_tstorm_stats->rcv_bcast_pkts); | 
|  |  | 
|  | ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0, | 
|  | fcoe_stat->rx_frames_lo, | 
|  | fcoe_q_tstorm_stats->rcv_mcast_pkts); | 
|  |  | 
|  | ADD_64_LE(fcoe_stat->tx_bytes_hi, LE32_0, | 
|  | fcoe_stat->tx_bytes_lo, | 
|  | fw_fcoe_stat->tx_stat.fcoe_tx_byte_cnt); | 
|  |  | 
|  | ADD_64_LE(fcoe_stat->tx_bytes_hi, | 
|  | fcoe_q_xstorm_stats->ucast_bytes_sent.hi, | 
|  | fcoe_stat->tx_bytes_lo, | 
|  | fcoe_q_xstorm_stats->ucast_bytes_sent.lo); | 
|  |  | 
|  | ADD_64_LE(fcoe_stat->tx_bytes_hi, | 
|  | fcoe_q_xstorm_stats->bcast_bytes_sent.hi, | 
|  | fcoe_stat->tx_bytes_lo, | 
|  | fcoe_q_xstorm_stats->bcast_bytes_sent.lo); | 
|  |  | 
|  | ADD_64_LE(fcoe_stat->tx_bytes_hi, | 
|  | fcoe_q_xstorm_stats->mcast_bytes_sent.hi, | 
|  | fcoe_stat->tx_bytes_lo, | 
|  | fcoe_q_xstorm_stats->mcast_bytes_sent.lo); | 
|  |  | 
|  | ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0, | 
|  | fcoe_stat->tx_frames_lo, | 
|  | fw_fcoe_stat->tx_stat.fcoe_tx_pkt_cnt); | 
|  |  | 
|  | ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0, | 
|  | fcoe_stat->tx_frames_lo, | 
|  | fcoe_q_xstorm_stats->ucast_pkts_sent); | 
|  |  | 
|  | ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0, | 
|  | fcoe_stat->tx_frames_lo, | 
|  | fcoe_q_xstorm_stats->bcast_pkts_sent); | 
|  |  | 
|  | ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0, | 
|  | fcoe_stat->tx_frames_lo, | 
|  | fcoe_q_xstorm_stats->mcast_pkts_sent); | 
|  | } | 
|  |  | 
|  | /* ask L5 driver to add data to the struct */ | 
|  | bnx2x_cnic_notify(bp, CNIC_CTL_FCOE_STATS_GET_CMD); | 
|  | } | 
|  |  | 
|  | static void bnx2x_drv_info_iscsi_stat(struct bnx2x *bp) | 
|  | { | 
|  | struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app; | 
|  | struct iscsi_stats_info *iscsi_stat = | 
|  | &bp->slowpath->drv_info_to_mcp.iscsi_stat; | 
|  |  | 
|  | if (!CNIC_LOADED(bp)) | 
|  | return; | 
|  |  | 
|  | memcpy(iscsi_stat->mac_local + MAC_PAD, bp->cnic_eth_dev.iscsi_mac, | 
|  | Eaddrlen); | 
|  |  | 
|  | iscsi_stat->qos_priority = | 
|  | app->traffic_type_priority[LLFC_TRAFFIC_TYPE_ISCSI]; | 
|  |  | 
|  | /* ask L5 driver to add data to the struct */ | 
|  | bnx2x_cnic_notify(bp, CNIC_CTL_ISCSI_STATS_GET_CMD); | 
|  | } | 
|  |  | 
|  | /* called due to MCP event (on pmf): | 
|  | *	reread new bandwidth configuration | 
|  | *	configure FW | 
|  | *	notify others function about the change | 
|  | */ | 
|  | static void bnx2x_config_mf_bw(struct bnx2x *bp) | 
|  | { | 
|  | if (bp->link_vars.link_up) { | 
|  | bnx2x_cmng_fns_init(bp, true, CMNG_FNS_MINMAX); | 
|  | bnx2x_link_sync_notify(bp); | 
|  | } | 
|  | storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp)); | 
|  | } | 
|  |  | 
|  | static void bnx2x_set_mf_bw(struct bnx2x *bp) | 
|  | { | 
|  | bnx2x_config_mf_bw(bp); | 
|  | bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW_ACK, 0); | 
|  | } | 
|  |  | 
|  | static void bnx2x_handle_eee_event(struct bnx2x *bp) | 
|  | { | 
|  | DP(BNX2X_MSG_MCP, "EEE - LLDP event\n"); | 
|  | bnx2x_fw_command(bp, DRV_MSG_CODE_EEE_RESULTS_ACK, 0); | 
|  | } | 
|  |  | 
|  | #define BNX2X_UPDATE_DRV_INFO_IND_LENGTH	(20) | 
|  | #define BNX2X_UPDATE_DRV_INFO_IND_COUNT		(25) | 
|  |  | 
|  | static void bnx2x_handle_drv_info_req(struct bnx2x *bp) | 
|  | { | 
|  | enum drv_info_opcode op_code; | 
|  | uint32_t drv_info_ctl = SHMEM2_RD(bp, drv_info_control); | 
|  | bool release = false; | 
|  | int wait; | 
|  |  | 
|  | /* if drv_info version supported by MFW doesn't match - send NACK */ | 
|  | if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) { | 
|  | bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0); | 
|  | return; | 
|  | } | 
|  |  | 
|  | op_code = (drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >> | 
|  | DRV_INFO_CONTROL_OP_CODE_SHIFT; | 
|  |  | 
|  | /* Must prevent other flows from accessing drv_info_to_mcp */ | 
|  | qlock(&bp->drv_info_mutex); | 
|  |  | 
|  | memset(&bp->slowpath->drv_info_to_mcp, 0, | 
|  | sizeof(union drv_info_to_mcp)); | 
|  |  | 
|  | switch (op_code) { | 
|  | case ETH_STATS_OPCODE: | 
|  | bnx2x_drv_info_ether_stat(bp); | 
|  | break; | 
|  | case FCOE_STATS_OPCODE: | 
|  | bnx2x_drv_info_fcoe_stat(bp); | 
|  | break; | 
|  | case ISCSI_STATS_OPCODE: | 
|  | bnx2x_drv_info_iscsi_stat(bp); | 
|  | break; | 
|  | default: | 
|  | /* if op code isn't supported - send NACK */ | 
|  | bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* if we got drv_info attn from MFW then these fields are defined in | 
|  | * shmem2 for sure | 
|  | */ | 
|  | SHMEM2_WR(bp, drv_info_host_addr_lo, | 
|  | U64_LO(bnx2x_sp_mapping(bp, drv_info_to_mcp))); | 
|  | SHMEM2_WR(bp, drv_info_host_addr_hi, | 
|  | U64_HI(bnx2x_sp_mapping(bp, drv_info_to_mcp))); | 
|  |  | 
|  | bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_ACK, 0); | 
|  |  | 
|  | /* Since possible management wants both this and get_driver_version | 
|  | * need to wait until management notifies us it finished utilizing | 
|  | * the buffer. | 
|  | */ | 
|  | if (!SHMEM2_HAS(bp, mfw_drv_indication)) { | 
|  | DP(BNX2X_MSG_MCP, "Management does not support indication\n"); | 
|  | } else if (!bp->drv_info_mng_owner) { | 
|  | uint32_t bit = MFW_DRV_IND_READ_DONE_OFFSET((BP_ABS_FUNC(bp) >> 1)); | 
|  |  | 
|  | for (wait = 0; wait < BNX2X_UPDATE_DRV_INFO_IND_COUNT; wait++) { | 
|  | uint32_t indication = SHMEM2_RD(bp, mfw_drv_indication); | 
|  |  | 
|  | /* Management is done; need to clear indication */ | 
|  | if (indication & bit) { | 
|  | SHMEM2_WR(bp, mfw_drv_indication, | 
|  | indication & ~bit); | 
|  | release = true; | 
|  | break; | 
|  | } | 
|  |  | 
|  | kthread_usleep(1000 * BNX2X_UPDATE_DRV_INFO_IND_LENGTH); | 
|  | } | 
|  | } | 
|  | if (!release) { | 
|  | DP(BNX2X_MSG_MCP, "Management did not release indication\n"); | 
|  | bp->drv_info_mng_owner = true; | 
|  | } | 
|  |  | 
|  | out: | 
|  | qunlock(&bp->drv_info_mutex); | 
|  | } | 
|  |  | 
|  | static uint32_t bnx2x_update_mng_version_utility(char *version, | 
|  | bool bnx2x_format) | 
|  | { | 
|  | uint8_t vals[4]; | 
|  | int i = 0; | 
|  |  | 
|  | if (bnx2x_format) { | 
|  | i = sscanf(version, "1.%c%hhd.%hhd.%hhd", | 
|  | &vals[0], &vals[1], &vals[2], &vals[3]); | 
|  | if (i > 0) | 
|  | vals[0] -= '0'; | 
|  | } else { | 
|  | i = sscanf(version, "%hhd.%hhd.%hhd.%hhd", | 
|  | &vals[0], &vals[1], &vals[2], &vals[3]); | 
|  | } | 
|  |  | 
|  | while (i < 4) | 
|  | vals[i++] = 0; | 
|  |  | 
|  | return (vals[0] << 24) | (vals[1] << 16) | (vals[2] << 8) | vals[3]; | 
|  | } | 
|  |  | 
|  | void bnx2x_update_mng_version(struct bnx2x *bp) | 
|  | { | 
|  | uint32_t iscsiver = DRV_VER_NOT_LOADED; | 
|  | uint32_t fcoever = DRV_VER_NOT_LOADED; | 
|  | uint32_t ethver = DRV_VER_NOT_LOADED; | 
|  | int idx = BP_FW_MB_IDX(bp); | 
|  | char *version; // AKAROS_PORT (type conversion issues) | 
|  |  | 
|  | if (!SHMEM2_HAS(bp, func_os_drv_ver)) | 
|  | return; | 
|  |  | 
|  | qlock(&bp->drv_info_mutex); | 
|  | /* Must not proceed when `bnx2x_handle_drv_info_req' is feasible */ | 
|  | if (bp->drv_info_mng_owner) | 
|  | goto out; | 
|  |  | 
|  | if (bp->state != BNX2X_STATE_OPEN) | 
|  | goto out; | 
|  |  | 
|  | /* Parse ethernet driver version */ | 
|  | ethver = bnx2x_update_mng_version_utility(DRV_MODULE_VERSION, true); | 
|  | if (!CNIC_LOADED(bp)) | 
|  | goto out; | 
|  |  | 
|  | /* Try getting storage driver version via cnic */ | 
|  | memset(&bp->slowpath->drv_info_to_mcp, 0, | 
|  | sizeof(union drv_info_to_mcp)); | 
|  | bnx2x_drv_info_iscsi_stat(bp); | 
|  | version = (char*)bp->slowpath->drv_info_to_mcp.iscsi_stat.version; | 
|  | iscsiver = bnx2x_update_mng_version_utility(version, false); | 
|  |  | 
|  | memset(&bp->slowpath->drv_info_to_mcp, 0, | 
|  | sizeof(union drv_info_to_mcp)); | 
|  | bnx2x_drv_info_fcoe_stat(bp); | 
|  | version = (char*)bp->slowpath->drv_info_to_mcp.fcoe_stat.version; | 
|  | fcoever = bnx2x_update_mng_version_utility(version, false); | 
|  |  | 
|  | out: | 
|  | SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_ETHERNET], ethver); | 
|  | SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_ISCSI], iscsiver); | 
|  | SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_FCOE], fcoever); | 
|  |  | 
|  | qunlock(&bp->drv_info_mutex); | 
|  |  | 
|  | DP(BNX2X_MSG_MCP, "Setting driver version: ETH [%08x] iSCSI [%08x] FCoE [%08x]\n", | 
|  | ethver, iscsiver, fcoever); | 
|  | } | 
|  |  | 
|  | static void bnx2x_oem_event(struct bnx2x *bp, uint32_t event) | 
|  | { | 
|  | uint32_t cmd_ok, cmd_fail; | 
|  |  | 
|  | /* sanity */ | 
|  | if (event & DRV_STATUS_DCC_EVENT_MASK && | 
|  | event & DRV_STATUS_OEM_EVENT_MASK) { | 
|  | BNX2X_ERR("Received simultaneous events %08x\n", event); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (event & DRV_STATUS_DCC_EVENT_MASK) { | 
|  | cmd_fail = DRV_MSG_CODE_DCC_FAILURE; | 
|  | cmd_ok = DRV_MSG_CODE_DCC_OK; | 
|  | } else /* if (event & DRV_STATUS_OEM_EVENT_MASK) */ { | 
|  | cmd_fail = DRV_MSG_CODE_OEM_FAILURE; | 
|  | cmd_ok = DRV_MSG_CODE_OEM_OK; | 
|  | } | 
|  |  | 
|  | DP(BNX2X_MSG_MCP, "oem_event 0x%x\n", event); | 
|  |  | 
|  | if (event & (DRV_STATUS_DCC_DISABLE_ENABLE_PF | | 
|  | DRV_STATUS_OEM_DISABLE_ENABLE_PF)) { | 
|  | /* This is the only place besides the function initialization | 
|  | * where the bp->flags can change so it is done without any | 
|  | * locks | 
|  | */ | 
|  | if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) { | 
|  | DP(BNX2X_MSG_MCP, "mf_cfg function disabled\n"); | 
|  | bp->flags |= MF_FUNC_DIS; | 
|  |  | 
|  | bnx2x_e1h_disable(bp); | 
|  | } else { | 
|  | DP(BNX2X_MSG_MCP, "mf_cfg function enabled\n"); | 
|  | bp->flags &= ~MF_FUNC_DIS; | 
|  |  | 
|  | bnx2x_e1h_enable(bp); | 
|  | } | 
|  | event &= ~(DRV_STATUS_DCC_DISABLE_ENABLE_PF | | 
|  | DRV_STATUS_OEM_DISABLE_ENABLE_PF); | 
|  | } | 
|  |  | 
|  | if (event & (DRV_STATUS_DCC_BANDWIDTH_ALLOCATION | | 
|  | DRV_STATUS_OEM_BANDWIDTH_ALLOCATION)) { | 
|  | bnx2x_config_mf_bw(bp); | 
|  | event &= ~(DRV_STATUS_DCC_BANDWIDTH_ALLOCATION | | 
|  | DRV_STATUS_OEM_BANDWIDTH_ALLOCATION); | 
|  | } | 
|  |  | 
|  | /* Report results to MCP */ | 
|  | if (event) | 
|  | bnx2x_fw_command(bp, cmd_fail, 0); | 
|  | else | 
|  | bnx2x_fw_command(bp, cmd_ok, 0); | 
|  | } | 
|  |  | 
|  | /* must be called under the spq lock */ | 
|  | static struct eth_spe *bnx2x_sp_get_next(struct bnx2x *bp) | 
|  | { | 
|  | struct eth_spe *next_spe = bp->spq_prod_bd; | 
|  |  | 
|  | if (bp->spq_prod_bd == bp->spq_last_bd) { | 
|  | bp->spq_prod_bd = bp->spq; | 
|  | bp->spq_prod_idx = 0; | 
|  | DP(BNX2X_MSG_SP, "end of spq\n"); | 
|  | } else { | 
|  | bp->spq_prod_bd++; | 
|  | bp->spq_prod_idx++; | 
|  | } | 
|  | return next_spe; | 
|  | } | 
|  |  | 
|  | /* must be called under the spq lock */ | 
|  | static void bnx2x_sp_prod_update(struct bnx2x *bp) | 
|  | { | 
|  | int func = BP_FUNC(bp); | 
|  |  | 
|  | /* | 
|  | * Make sure that BD data is updated before writing the producer: | 
|  | * BD data is written to the memory, the producer is read from the | 
|  | * memory, thus we need a full memory barrier to ensure the ordering. | 
|  | */ | 
|  | mb(); | 
|  |  | 
|  | REG_WR16(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func), | 
|  | bp->spq_prod_idx); | 
|  | bus_wmb(); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * bnx2x_is_contextless_ramrod - check if the current command ends on EQ | 
|  | * | 
|  | * @cmd:	command to check | 
|  | * @cmd_type:	command type | 
|  | */ | 
|  | static bool bnx2x_is_contextless_ramrod(int cmd, int cmd_type) | 
|  | { | 
|  | if ((cmd_type == NONE_CONNECTION_TYPE) || | 
|  | (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) || | 
|  | (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) || | 
|  | (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) || | 
|  | (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) || | 
|  | (cmd == RAMROD_CMD_ID_ETH_SET_MAC) || | 
|  | (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE)) | 
|  | return true; | 
|  | else | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * bnx2x_sp_post - place a single command on an SP ring | 
|  | * | 
|  | * @bp:		driver handle | 
|  | * @command:	command to place (e.g. SETUP, FILTER_RULES, etc.) | 
|  | * @cid:	SW CID the command is related to | 
|  | * @data_hi:	command private data address (high 32 bits) | 
|  | * @data_lo:	command private data address (low 32 bits) | 
|  | * @cmd_type:	command type (e.g. NONE, ETH) | 
|  | * | 
|  | * SP data is handled as if it's always an address pair, thus data fields are | 
|  | * not swapped to little endian in upper functions. Instead this function swaps | 
|  | * data as if it's two u32 fields. | 
|  | */ | 
|  | int bnx2x_sp_post(struct bnx2x *bp, int command, int cid, | 
|  | uint32_t data_hi, uint32_t data_lo, int cmd_type) | 
|  | { | 
|  | struct eth_spe *spe; | 
|  | uint16_t type; | 
|  | bool common = bnx2x_is_contextless_ramrod(command, cmd_type); | 
|  |  | 
|  | #ifdef BNX2X_STOP_ON_ERROR | 
|  | if (unlikely(bp->panic)) { | 
|  | BNX2X_ERR("Can't post SP when there is panic\n"); | 
|  | return -EIO; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | spin_lock(&bp->spq_lock); | 
|  |  | 
|  | if (common) { | 
|  | if (!atomic_read(&bp->eq_spq_left)) { | 
|  | BNX2X_ERR("BUG! EQ ring full!\n"); | 
|  | spin_unlock(&bp->spq_lock); | 
|  | bnx2x_panic(); | 
|  | return -EBUSY; | 
|  | } | 
|  | } else if (!atomic_read(&bp->cq_spq_left)) { | 
|  | BNX2X_ERR("BUG! SPQ ring full!\n"); | 
|  | spin_unlock(&bp->spq_lock); | 
|  | bnx2x_panic(); | 
|  | return -EBUSY; | 
|  | } | 
|  |  | 
|  | spe = bnx2x_sp_get_next(bp); | 
|  |  | 
|  | /* CID needs port number to be encoded int it */ | 
|  | spe->hdr.conn_and_cmd_data = | 
|  | cpu_to_le32((command << SPE_HDR_CMD_ID_SHIFT) | | 
|  | HW_CID(bp, cid)); | 
|  |  | 
|  | /* In some cases, type may already contain the func-id | 
|  | * mainly in SRIOV related use cases, so we add it here only | 
|  | * if it's not already set. | 
|  | */ | 
|  | if (!(cmd_type & SPE_HDR_FUNCTION_ID)) { | 
|  | type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) & | 
|  | SPE_HDR_CONN_TYPE; | 
|  | type |= ((BP_FUNC(bp) << SPE_HDR_FUNCTION_ID_SHIFT) & | 
|  | SPE_HDR_FUNCTION_ID); | 
|  | } else { | 
|  | type = cmd_type; | 
|  | } | 
|  |  | 
|  | spe->hdr.type = cpu_to_le16(type); | 
|  |  | 
|  | spe->data.update_data_addr.hi = cpu_to_le32(data_hi); | 
|  | spe->data.update_data_addr.lo = cpu_to_le32(data_lo); | 
|  |  | 
|  | /* | 
|  | * It's ok if the actual decrement is issued towards the memory | 
|  | * somewhere between the spin_lock and spin_unlock. Thus no | 
|  | * more explicit memory barrier is needed. | 
|  | */ | 
|  | if (common) | 
|  | atomic_dec(&bp->eq_spq_left); | 
|  | else | 
|  | atomic_dec(&bp->cq_spq_left); | 
|  |  | 
|  | DP(BNX2X_MSG_SP, | 
|  | "SPQE[%x] (%x:%x)  (cmd, common?) (%d,%d)  hw_cid %x  data (%x:%x) type(0x%x) left (CQ, EQ) (%x,%x)\n", | 
|  | bp->spq_prod_idx, (uint32_t)U64_HI(bp->spq_mapping), | 
|  | (uint32_t)(U64_LO(bp->spq_mapping) + | 
|  | (void *)bp->spq_prod_bd - (void *)bp->spq), command, common, | 
|  | HW_CID(bp, cid), data_hi, data_lo, type, | 
|  | atomic_read(&bp->cq_spq_left), atomic_read(&bp->eq_spq_left)); | 
|  |  | 
|  | bnx2x_sp_prod_update(bp); | 
|  | spin_unlock(&bp->spq_lock); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* acquire split MCP access lock register */ | 
|  | static int bnx2x_acquire_alr(struct bnx2x *bp) | 
|  | { | 
|  | uint32_t j, val; | 
|  | int rc = 0; | 
|  |  | 
|  | might_sleep(); | 
|  | for (j = 0; j < 1000; j++) { | 
|  | REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, MCPR_ACCESS_LOCK_LOCK); | 
|  | val = REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK); | 
|  | if (val & MCPR_ACCESS_LOCK_LOCK) | 
|  | break; | 
|  |  | 
|  | kthread_usleep(5000); | 
|  | } | 
|  | if (!(val & MCPR_ACCESS_LOCK_LOCK)) { | 
|  | BNX2X_ERR("Cannot acquire MCP access lock register\n"); | 
|  | rc = -EBUSY; | 
|  | } | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /* release split MCP access lock register */ | 
|  | static void bnx2x_release_alr(struct bnx2x *bp) | 
|  | { | 
|  | REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, 0); | 
|  | } | 
|  |  | 
|  | #define BNX2X_DEF_SB_ATT_IDX	0x0001 | 
|  | #define BNX2X_DEF_SB_IDX	0x0002 | 
|  |  | 
|  | static uint16_t bnx2x_update_dsb_idx(struct bnx2x *bp) | 
|  | { | 
|  | struct host_sp_status_block *def_sb = bp->def_status_blk; | 
|  | uint16_t rc = 0; | 
|  |  | 
|  | cmb(); /* status block is written to by the chip */ | 
|  | if (bp->def_att_idx != def_sb->atten_status_block.attn_bits_index) { | 
|  | bp->def_att_idx = def_sb->atten_status_block.attn_bits_index; | 
|  | rc |= BNX2X_DEF_SB_ATT_IDX; | 
|  | } | 
|  |  | 
|  | if (bp->def_idx != def_sb->sp_sb.running_index) { | 
|  | bp->def_idx = def_sb->sp_sb.running_index; | 
|  | rc |= BNX2X_DEF_SB_IDX; | 
|  | } | 
|  |  | 
|  | /* Do not reorder: indices reading should complete before handling */ | 
|  | cmb(); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * slow path service functions | 
|  | */ | 
|  |  | 
|  | static void bnx2x_attn_int_asserted(struct bnx2x *bp, uint32_t asserted) | 
|  | { | 
|  | int port = BP_PORT(bp); | 
|  | uint32_t aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 : | 
|  | MISC_REG_AEU_MASK_ATTN_FUNC_0; | 
|  | uint32_t nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 : | 
|  | NIG_REG_MASK_INTERRUPT_PORT0; | 
|  | uint32_t aeu_mask; | 
|  | uint32_t nig_mask = 0; | 
|  | uint32_t reg_addr; | 
|  |  | 
|  | if (bp->attn_state & asserted) | 
|  | BNX2X_ERR("IGU ERROR\n"); | 
|  |  | 
|  | bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); | 
|  | aeu_mask = REG_RD(bp, aeu_addr); | 
|  |  | 
|  | DP(NETIF_MSG_HW, "aeu_mask %x  newly asserted %x\n", | 
|  | aeu_mask, asserted); | 
|  | aeu_mask &= ~(asserted & 0x3ff); | 
|  | DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask); | 
|  |  | 
|  | REG_WR(bp, aeu_addr, aeu_mask); | 
|  | bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); | 
|  |  | 
|  | DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state); | 
|  | bp->attn_state |= asserted; | 
|  | DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state); | 
|  |  | 
|  | if (asserted & ATTN_HARD_WIRED_MASK) { | 
|  | if (asserted & ATTN_NIG_FOR_FUNC) { | 
|  |  | 
|  | bnx2x_acquire_phy_lock(bp); | 
|  |  | 
|  | /* save nig interrupt mask */ | 
|  | nig_mask = REG_RD(bp, nig_int_mask_addr); | 
|  |  | 
|  | /* If nig_mask is not set, no need to call the update | 
|  | * function. | 
|  | */ | 
|  | if (nig_mask) { | 
|  | REG_WR(bp, nig_int_mask_addr, 0); | 
|  |  | 
|  | bnx2x_link_attn(bp); | 
|  | } | 
|  |  | 
|  | /* handle unicore attn? */ | 
|  | } | 
|  | if (asserted & ATTN_SW_TIMER_4_FUNC) | 
|  | DP(NETIF_MSG_HW, "ATTN_SW_TIMER_4_FUNC!\n"); | 
|  |  | 
|  | if (asserted & GPIO_2_FUNC) | 
|  | DP(NETIF_MSG_HW, "GPIO_2_FUNC!\n"); | 
|  |  | 
|  | if (asserted & GPIO_3_FUNC) | 
|  | DP(NETIF_MSG_HW, "GPIO_3_FUNC!\n"); | 
|  |  | 
|  | if (asserted & GPIO_4_FUNC) | 
|  | DP(NETIF_MSG_HW, "GPIO_4_FUNC!\n"); | 
|  |  | 
|  | if (port == 0) { | 
|  | if (asserted & ATTN_GENERAL_ATTN_1) { | 
|  | DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_1!\n"); | 
|  | REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_1, 0x0); | 
|  | } | 
|  | if (asserted & ATTN_GENERAL_ATTN_2) { | 
|  | DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_2!\n"); | 
|  | REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_2, 0x0); | 
|  | } | 
|  | if (asserted & ATTN_GENERAL_ATTN_3) { | 
|  | DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_3!\n"); | 
|  | REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_3, 0x0); | 
|  | } | 
|  | } else { | 
|  | if (asserted & ATTN_GENERAL_ATTN_4) { | 
|  | DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_4!\n"); | 
|  | REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_4, 0x0); | 
|  | } | 
|  | if (asserted & ATTN_GENERAL_ATTN_5) { | 
|  | DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_5!\n"); | 
|  | REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_5, 0x0); | 
|  | } | 
|  | if (asserted & ATTN_GENERAL_ATTN_6) { | 
|  | DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_6!\n"); | 
|  | REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_6, 0x0); | 
|  | } | 
|  | } | 
|  |  | 
|  | } /* if hardwired */ | 
|  |  | 
|  | if (bp->common.int_block == INT_BLOCK_HC) | 
|  | reg_addr = (HC_REG_COMMAND_REG + port*32 + | 
|  | COMMAND_REG_ATTN_BITS_SET); | 
|  | else | 
|  | reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8); | 
|  |  | 
|  | DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", asserted, | 
|  | (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr); | 
|  | REG_WR(bp, reg_addr, asserted); | 
|  |  | 
|  | /* now set back the mask */ | 
|  | if (asserted & ATTN_NIG_FOR_FUNC) { | 
|  | /* Verify that IGU ack through BAR was written before restoring | 
|  | * NIG mask. This loop should exit after 2-3 iterations max. | 
|  | */ | 
|  | if (bp->common.int_block != INT_BLOCK_HC) { | 
|  | uint32_t cnt = 0, igu_acked; | 
|  | do { | 
|  | igu_acked = REG_RD(bp, | 
|  | IGU_REG_ATTENTION_ACK_BITS); | 
|  | } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) && | 
|  | (++cnt < MAX_IGU_ATTN_ACK_TO)); | 
|  | if (!igu_acked) | 
|  | DP(NETIF_MSG_HW, | 
|  | "Failed to verify IGU ack on time\n"); | 
|  | cmb(); | 
|  | } | 
|  | REG_WR(bp, nig_int_mask_addr, nig_mask); | 
|  | bnx2x_release_phy_lock(bp); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void bnx2x_fan_failure(struct bnx2x *bp) | 
|  | { | 
|  | int port = BP_PORT(bp); | 
|  | uint32_t ext_phy_config; | 
|  | /* mark the failure */ | 
|  | ext_phy_config = | 
|  | SHMEM_RD(bp, | 
|  | dev_info.port_hw_config[port].external_phy_config); | 
|  |  | 
|  | ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK; | 
|  | ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE; | 
|  | SHMEM_WR(bp, dev_info.port_hw_config[port].external_phy_config, | 
|  | ext_phy_config); | 
|  |  | 
|  | /* log the failure */ | 
|  | netdev_err(bp->dev, "Fan Failure on Network Controller has caused the driver to shutdown the card to prevent permanent damage.\n" | 
|  | "Please contact OEM Support for assistance\n"); | 
|  |  | 
|  | /* Schedule device reset (unload) | 
|  | * This is due to some boards consuming sufficient power when driver is | 
|  | * up to overheat if fan fails. | 
|  | */ | 
|  | bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_FAN_FAILURE, 0); | 
|  | } | 
|  |  | 
|  | static void bnx2x_attn_int_deasserted0(struct bnx2x *bp, uint32_t attn) | 
|  | { | 
|  | int port = BP_PORT(bp); | 
|  | int reg_offset; | 
|  | uint32_t val; | 
|  |  | 
|  | reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : | 
|  | MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0); | 
|  |  | 
|  | if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) { | 
|  |  | 
|  | val = REG_RD(bp, reg_offset); | 
|  | val &= ~AEU_INPUTS_ATTN_BITS_SPIO5; | 
|  | REG_WR(bp, reg_offset, val); | 
|  |  | 
|  | BNX2X_ERR("SPIO5 hw attention\n"); | 
|  |  | 
|  | /* Fan failure attention */ | 
|  | bnx2x_hw_reset_phy(&bp->link_params); | 
|  | bnx2x_fan_failure(bp); | 
|  | } | 
|  |  | 
|  | if ((attn & bp->link_vars.aeu_int_mask) && bp->port.pmf) { | 
|  | bnx2x_acquire_phy_lock(bp); | 
|  | bnx2x_handle_module_detect_int(&bp->link_params); | 
|  | bnx2x_release_phy_lock(bp); | 
|  | } | 
|  |  | 
|  | if (attn & HW_INTERRUT_ASSERT_SET_0) { | 
|  |  | 
|  | val = REG_RD(bp, reg_offset); | 
|  | val &= ~(attn & HW_INTERRUT_ASSERT_SET_0); | 
|  | REG_WR(bp, reg_offset, val); | 
|  |  | 
|  | BNX2X_ERR("FATAL HW block attention set0 0x%x\n", | 
|  | (uint32_t)(attn & HW_INTERRUT_ASSERT_SET_0)); | 
|  | bnx2x_panic(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void bnx2x_attn_int_deasserted1(struct bnx2x *bp, uint32_t attn) | 
|  | { | 
|  | uint32_t val; | 
|  |  | 
|  | if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) { | 
|  |  | 
|  | val = REG_RD(bp, DORQ_REG_DORQ_INT_STS_CLR); | 
|  | BNX2X_ERR("DB hw attention 0x%x\n", val); | 
|  | /* DORQ discard attention */ | 
|  | if (val & 0x2) | 
|  | BNX2X_ERR("FATAL error from DORQ\n"); | 
|  | } | 
|  |  | 
|  | if (attn & HW_INTERRUT_ASSERT_SET_1) { | 
|  |  | 
|  | int port = BP_PORT(bp); | 
|  | int reg_offset; | 
|  |  | 
|  | reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 : | 
|  | MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1); | 
|  |  | 
|  | val = REG_RD(bp, reg_offset); | 
|  | val &= ~(attn & HW_INTERRUT_ASSERT_SET_1); | 
|  | REG_WR(bp, reg_offset, val); | 
|  |  | 
|  | BNX2X_ERR("FATAL HW block attention set1 0x%x\n", | 
|  | (uint32_t)(attn & HW_INTERRUT_ASSERT_SET_1)); | 
|  | bnx2x_panic(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void bnx2x_attn_int_deasserted2(struct bnx2x *bp, uint32_t attn) | 
|  | { | 
|  | uint32_t val; | 
|  |  | 
|  | if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) { | 
|  |  | 
|  | val = REG_RD(bp, CFC_REG_CFC_INT_STS_CLR); | 
|  | BNX2X_ERR("CFC hw attention 0x%x\n", val); | 
|  | /* CFC error attention */ | 
|  | if (val & 0x2) | 
|  | BNX2X_ERR("FATAL error from CFC\n"); | 
|  | } | 
|  |  | 
|  | if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) { | 
|  | val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_0); | 
|  | BNX2X_ERR("PXP hw attention-0 0x%x\n", val); | 
|  | /* RQ_USDMDP_FIFO_OVERFLOW */ | 
|  | if (val & 0x18000) | 
|  | BNX2X_ERR("FATAL error from PXP\n"); | 
|  |  | 
|  | if (!CHIP_IS_E1x(bp)) { | 
|  | val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_1); | 
|  | BNX2X_ERR("PXP hw attention-1 0x%x\n", val); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (attn & HW_INTERRUT_ASSERT_SET_2) { | 
|  |  | 
|  | int port = BP_PORT(bp); | 
|  | int reg_offset; | 
|  |  | 
|  | reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 : | 
|  | MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2); | 
|  |  | 
|  | val = REG_RD(bp, reg_offset); | 
|  | val &= ~(attn & HW_INTERRUT_ASSERT_SET_2); | 
|  | REG_WR(bp, reg_offset, val); | 
|  |  | 
|  | BNX2X_ERR("FATAL HW block attention set2 0x%x\n", | 
|  | (uint32_t)(attn & HW_INTERRUT_ASSERT_SET_2)); | 
|  | bnx2x_panic(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void bnx2x_attn_int_deasserted3(struct bnx2x *bp, uint32_t attn) | 
|  | { | 
|  | uint32_t val; | 
|  |  | 
|  | if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) { | 
|  |  | 
|  | if (attn & BNX2X_PMF_LINK_ASSERT) { | 
|  | int func = BP_FUNC(bp); | 
|  |  | 
|  | REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0); | 
|  | bnx2x_read_mf_cfg(bp); | 
|  | bp->mf_config[BP_VN(bp)] = MF_CFG_RD(bp, | 
|  | func_mf_config[BP_ABS_FUNC(bp)].config); | 
|  | val = SHMEM_RD(bp, | 
|  | func_mb[BP_FW_MB_IDX(bp)].drv_status); | 
|  |  | 
|  | if (val & (DRV_STATUS_DCC_EVENT_MASK | | 
|  | DRV_STATUS_OEM_EVENT_MASK)) | 
|  | bnx2x_oem_event(bp, | 
|  | (val & (DRV_STATUS_DCC_EVENT_MASK | | 
|  | DRV_STATUS_OEM_EVENT_MASK))); | 
|  |  | 
|  | if (val & DRV_STATUS_SET_MF_BW) | 
|  | bnx2x_set_mf_bw(bp); | 
|  |  | 
|  | if (val & DRV_STATUS_DRV_INFO_REQ) | 
|  | bnx2x_handle_drv_info_req(bp); | 
|  |  | 
|  | if (val & DRV_STATUS_VF_DISABLED) | 
|  | bnx2x_schedule_iov_task(bp, | 
|  | BNX2X_IOV_HANDLE_FLR); | 
|  |  | 
|  | if ((bp->port.pmf == 0) && (val & DRV_STATUS_PMF)) | 
|  | bnx2x_pmf_update(bp); | 
|  |  | 
|  | if (bp->port.pmf && | 
|  | (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) && | 
|  | bp->dcbx_enabled > 0) | 
|  | /* start dcbx state machine */ | 
|  | bnx2x_dcbx_set_params(bp, | 
|  | BNX2X_DCBX_STATE_NEG_RECEIVED); | 
|  | if (val & DRV_STATUS_AFEX_EVENT_MASK) | 
|  | bnx2x_handle_afex_cmd(bp, | 
|  | val & DRV_STATUS_AFEX_EVENT_MASK); | 
|  | if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS) | 
|  | bnx2x_handle_eee_event(bp); | 
|  |  | 
|  | if (val & DRV_STATUS_OEM_UPDATE_SVID) | 
|  | bnx2x_handle_update_svid_cmd(bp); | 
|  |  | 
|  | if (bp->link_vars.periodic_flags & | 
|  | PERIODIC_FLAGS_LINK_EVENT) { | 
|  | /*  sync with link */ | 
|  | bnx2x_acquire_phy_lock(bp); | 
|  | bp->link_vars.periodic_flags &= | 
|  | ~PERIODIC_FLAGS_LINK_EVENT; | 
|  | bnx2x_release_phy_lock(bp); | 
|  | if (IS_MF(bp)) | 
|  | bnx2x_link_sync_notify(bp); | 
|  | bnx2x_link_report(bp); | 
|  | } | 
|  | /* Always call it here: bnx2x_link_report() will | 
|  | * prevent the link indication duplication. | 
|  | */ | 
|  | bnx2x__link_status_update(bp); | 
|  | } else if (attn & BNX2X_MC_ASSERT_BITS) { | 
|  |  | 
|  | BNX2X_ERR("MC assert!\n"); | 
|  | bnx2x_mc_assert(bp); | 
|  | REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_10, 0); | 
|  | REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_9, 0); | 
|  | REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_8, 0); | 
|  | REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_7, 0); | 
|  | bnx2x_panic(); | 
|  |  | 
|  | } else if (attn & BNX2X_MCP_ASSERT) { | 
|  |  | 
|  | BNX2X_ERR("MCP assert!\n"); | 
|  | REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_11, 0); | 
|  | bnx2x_fw_dump(bp); | 
|  |  | 
|  | } else | 
|  | BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn); | 
|  | } | 
|  |  | 
|  | if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) { | 
|  | BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn); | 
|  | if (attn & BNX2X_GRC_TIMEOUT) { | 
|  | val = CHIP_IS_E1(bp) ? 0 : | 
|  | REG_RD(bp, MISC_REG_GRC_TIMEOUT_ATTN); | 
|  | BNX2X_ERR("GRC time-out 0x%08x\n", val); | 
|  | } | 
|  | if (attn & BNX2X_GRC_RSV) { | 
|  | val = CHIP_IS_E1(bp) ? 0 : | 
|  | REG_RD(bp, MISC_REG_GRC_RSV_ATTN); | 
|  | BNX2X_ERR("GRC reserved 0x%08x\n", val); | 
|  | } | 
|  | REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Bits map: | 
|  | * 0-7   - Engine0 load counter. | 
|  | * 8-15  - Engine1 load counter. | 
|  | * 16    - Engine0 RESET_IN_PROGRESS bit. | 
|  | * 17    - Engine1 RESET_IN_PROGRESS bit. | 
|  | * 18    - Engine0 ONE_IS_LOADED. Set when there is at least one active function | 
|  | *         on the engine | 
|  | * 19    - Engine1 ONE_IS_LOADED. | 
|  | * 20    - Chip reset flow bit. When set none-leader must wait for both engines | 
|  | *         leader to complete (check for both RESET_IN_PROGRESS bits and not for | 
|  | *         just the one belonging to its engine). | 
|  | * | 
|  | */ | 
|  | #define BNX2X_RECOVERY_GLOB_REG		MISC_REG_GENERIC_POR_1 | 
|  |  | 
|  | #define BNX2X_PATH0_LOAD_CNT_MASK	0x000000ff | 
|  | #define BNX2X_PATH0_LOAD_CNT_SHIFT	0 | 
|  | #define BNX2X_PATH1_LOAD_CNT_MASK	0x0000ff00 | 
|  | #define BNX2X_PATH1_LOAD_CNT_SHIFT	8 | 
|  | #define BNX2X_PATH0_RST_IN_PROG_BIT	0x00010000 | 
|  | #define BNX2X_PATH1_RST_IN_PROG_BIT	0x00020000 | 
|  | #define BNX2X_GLOBAL_RESET_BIT		0x00040000 | 
|  |  | 
|  | /* | 
|  | * Set the GLOBAL_RESET bit. | 
|  | * | 
|  | * Should be run under rtnl lock | 
|  | */ | 
|  | void bnx2x_set_reset_global(struct bnx2x *bp) | 
|  | { | 
|  | uint32_t val; | 
|  | bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); | 
|  | val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); | 
|  | REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT); | 
|  | bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Clear the GLOBAL_RESET bit. | 
|  | * | 
|  | * Should be run under rtnl lock | 
|  | */ | 
|  | static void bnx2x_clear_reset_global(struct bnx2x *bp) | 
|  | { | 
|  | uint32_t val; | 
|  | bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); | 
|  | val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); | 
|  | REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT)); | 
|  | bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Checks the GLOBAL_RESET bit. | 
|  | * | 
|  | * should be run under rtnl lock | 
|  | */ | 
|  | static bool bnx2x_reset_is_global(struct bnx2x *bp) | 
|  | { | 
|  | uint32_t val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); | 
|  |  | 
|  | DP(NETIF_MSG_HW, "GEN_REG_VAL=0x%08x\n", val); | 
|  | return (val & BNX2X_GLOBAL_RESET_BIT) ? true : false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Clear RESET_IN_PROGRESS bit for the current engine. | 
|  | * | 
|  | * Should be run under rtnl lock | 
|  | */ | 
|  | static void bnx2x_set_reset_done(struct bnx2x *bp) | 
|  | { | 
|  | uint32_t val; | 
|  | uint32_t bit = BP_PATH(bp) ? | 
|  | BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT; | 
|  | bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); | 
|  | val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); | 
|  |  | 
|  | /* Clear the bit */ | 
|  | val &= ~bit; | 
|  | REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val); | 
|  |  | 
|  | bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set RESET_IN_PROGRESS for the current engine. | 
|  | * | 
|  | * should be run under rtnl lock | 
|  | */ | 
|  | void bnx2x_set_reset_in_progress(struct bnx2x *bp) | 
|  | { | 
|  | uint32_t val; | 
|  | uint32_t bit = BP_PATH(bp) ? | 
|  | BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT; | 
|  | bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); | 
|  | val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); | 
|  |  | 
|  | /* Set the bit */ | 
|  | val |= bit; | 
|  | REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val); | 
|  | bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Checks the RESET_IN_PROGRESS bit for the given engine. | 
|  | * should be run under rtnl lock | 
|  | */ | 
|  | bool bnx2x_reset_is_done(struct bnx2x *bp, int engine) | 
|  | { | 
|  | uint32_t val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); | 
|  | uint32_t bit = engine ? | 
|  | BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT; | 
|  |  | 
|  | /* return false if bit is set */ | 
|  | return (val & bit) ? false : true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * set pf load for the current pf. | 
|  | * | 
|  | * should be run under rtnl lock | 
|  | */ | 
|  | void bnx2x_set_pf_load(struct bnx2x *bp) | 
|  | { | 
|  | uint32_t val1, val; | 
|  | uint32_t mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK : | 
|  | BNX2X_PATH0_LOAD_CNT_MASK; | 
|  | uint32_t shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT : | 
|  | BNX2X_PATH0_LOAD_CNT_SHIFT; | 
|  |  | 
|  | bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); | 
|  | val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); | 
|  |  | 
|  | DP(NETIF_MSG_IFUP, "Old GEN_REG_VAL=0x%08x\n", val); | 
|  |  | 
|  | /* get the current counter value */ | 
|  | val1 = (val & mask) >> shift; | 
|  |  | 
|  | /* set bit of that PF */ | 
|  | val1 |= (1 << bp->pf_num); | 
|  |  | 
|  | /* clear the old value */ | 
|  | val &= ~mask; | 
|  |  | 
|  | /* set the new one */ | 
|  | val |= ((val1 << shift) & mask); | 
|  |  | 
|  | REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val); | 
|  | bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * bnx2x_clear_pf_load - clear pf load mark | 
|  | * | 
|  | * @bp:		driver handle | 
|  | * | 
|  | * Should be run under rtnl lock. | 
|  | * Decrements the load counter for the current engine. Returns | 
|  | * whether other functions are still loaded | 
|  | */ | 
|  | bool bnx2x_clear_pf_load(struct bnx2x *bp) | 
|  | { | 
|  | uint32_t val1, val; | 
|  | uint32_t mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK : | 
|  | BNX2X_PATH0_LOAD_CNT_MASK; | 
|  | uint32_t shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT : | 
|  | BNX2X_PATH0_LOAD_CNT_SHIFT; | 
|  |  | 
|  | bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); | 
|  | val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); | 
|  | DP(NETIF_MSG_IFDOWN, "Old GEN_REG_VAL=0x%08x\n", val); | 
|  |  | 
|  | /* get the current counter value */ | 
|  | val1 = (val & mask) >> shift; | 
|  |  | 
|  | /* clear bit of that PF */ | 
|  | val1 &= ~(1 << bp->pf_num); | 
|  |  | 
|  | /* clear the old value */ | 
|  | val &= ~mask; | 
|  |  | 
|  | /* set the new one */ | 
|  | val |= ((val1 << shift) & mask); | 
|  |  | 
|  | REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val); | 
|  | bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG); | 
|  | return val1 != 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Read the load status for the current engine. | 
|  | * | 
|  | * should be run under rtnl lock | 
|  | */ | 
|  | static bool bnx2x_get_load_status(struct bnx2x *bp, int engine) | 
|  | { | 
|  | uint32_t mask = (engine ? BNX2X_PATH1_LOAD_CNT_MASK : | 
|  | BNX2X_PATH0_LOAD_CNT_MASK); | 
|  | uint32_t shift = (engine ? BNX2X_PATH1_LOAD_CNT_SHIFT : | 
|  | BNX2X_PATH0_LOAD_CNT_SHIFT); | 
|  | uint32_t val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG); | 
|  |  | 
|  | DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "GLOB_REG=0x%08x\n", val); | 
|  |  | 
|  | val = (val & mask) >> shift; | 
|  |  | 
|  | DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "load mask for engine %d = 0x%x\n", | 
|  | engine, val); | 
|  |  | 
|  | return val != 0; | 
|  | } | 
|  |  | 
|  | static void _print_parity(struct bnx2x *bp, uint32_t reg) | 
|  | { | 
|  | pr_cont(" [0x%08x] ", REG_RD(bp, reg)); | 
|  | } | 
|  |  | 
|  | static void _print_next_block(int idx, const char *blk) | 
|  | { | 
|  | pr_cont("%s%s", idx ? ", " : "", blk); | 
|  | } | 
|  |  | 
|  | static bool bnx2x_check_blocks_with_parity0(struct bnx2x *bp, uint32_t sig, | 
|  | int *par_num, bool print) | 
|  | { | 
|  | uint32_t cur_bit; | 
|  | bool res; | 
|  | int i; | 
|  |  | 
|  | res = false; | 
|  |  | 
|  | for (i = 0; sig; i++) { | 
|  | cur_bit = (0x1UL << i); | 
|  | if (sig & cur_bit) { | 
|  | res |= true; /* Each bit is real error! */ | 
|  |  | 
|  | if (print) { | 
|  | switch (cur_bit) { | 
|  | case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR: | 
|  | _print_next_block((*par_num)++, "BRB"); | 
|  | _print_parity(bp, | 
|  | BRB1_REG_BRB1_PRTY_STS); | 
|  | break; | 
|  | case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR: | 
|  | _print_next_block((*par_num)++, | 
|  | "PARSER"); | 
|  | _print_parity(bp, PRS_REG_PRS_PRTY_STS); | 
|  | break; | 
|  | case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR: | 
|  | _print_next_block((*par_num)++, "TSDM"); | 
|  | _print_parity(bp, | 
|  | TSDM_REG_TSDM_PRTY_STS); | 
|  | break; | 
|  | case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR: | 
|  | _print_next_block((*par_num)++, | 
|  | "SEARCHER"); | 
|  | _print_parity(bp, SRC_REG_SRC_PRTY_STS); | 
|  | break; | 
|  | case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR: | 
|  | _print_next_block((*par_num)++, "TCM"); | 
|  | _print_parity(bp, TCM_REG_TCM_PRTY_STS); | 
|  | break; | 
|  | case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR: | 
|  | _print_next_block((*par_num)++, | 
|  | "TSEMI"); | 
|  | _print_parity(bp, | 
|  | TSEM_REG_TSEM_PRTY_STS_0); | 
|  | _print_parity(bp, | 
|  | TSEM_REG_TSEM_PRTY_STS_1); | 
|  | break; | 
|  | case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR: | 
|  | _print_next_block((*par_num)++, "XPB"); | 
|  | _print_parity(bp, GRCBASE_XPB + | 
|  | PB_REG_PB_PRTY_STS); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Clear the bit */ | 
|  | sig &= ~cur_bit; | 
|  | } | 
|  | } | 
|  |  | 
|  | return res; | 
|  | } | 
|  |  | 
|  | static bool bnx2x_check_blocks_with_parity1(struct bnx2x *bp, uint32_t sig, | 
|  | int *par_num, bool *global, | 
|  | bool print) | 
|  | { | 
|  | uint32_t cur_bit; | 
|  | bool res; | 
|  | int i; | 
|  |  | 
|  | res = false; | 
|  |  | 
|  | for (i = 0; sig; i++) { | 
|  | cur_bit = (0x1UL << i); | 
|  | if (sig & cur_bit) { | 
|  | res |= true; /* Each bit is real error! */ | 
|  | switch (cur_bit) { | 
|  | case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR: | 
|  | if (print) { | 
|  | _print_next_block((*par_num)++, "PBF"); | 
|  | _print_parity(bp, PBF_REG_PBF_PRTY_STS); | 
|  | } | 
|  | break; | 
|  | case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR: | 
|  | if (print) { | 
|  | _print_next_block((*par_num)++, "QM"); | 
|  | _print_parity(bp, QM_REG_QM_PRTY_STS); | 
|  | } | 
|  | break; | 
|  | case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR: | 
|  | if (print) { | 
|  | _print_next_block((*par_num)++, "TM"); | 
|  | _print_parity(bp, TM_REG_TM_PRTY_STS); | 
|  | } | 
|  | break; | 
|  | case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR: | 
|  | if (print) { | 
|  | _print_next_block((*par_num)++, "XSDM"); | 
|  | _print_parity(bp, | 
|  | XSDM_REG_XSDM_PRTY_STS); | 
|  | } | 
|  | break; | 
|  | case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR: | 
|  | if (print) { | 
|  | _print_next_block((*par_num)++, "XCM"); | 
|  | _print_parity(bp, XCM_REG_XCM_PRTY_STS); | 
|  | } | 
|  | break; | 
|  | case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR: | 
|  | if (print) { | 
|  | _print_next_block((*par_num)++, | 
|  | "XSEMI"); | 
|  | _print_parity(bp, | 
|  | XSEM_REG_XSEM_PRTY_STS_0); | 
|  | _print_parity(bp, | 
|  | XSEM_REG_XSEM_PRTY_STS_1); | 
|  | } | 
|  | break; | 
|  | case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR: | 
|  | if (print) { | 
|  | _print_next_block((*par_num)++, | 
|  | "DOORBELLQ"); | 
|  | _print_parity(bp, | 
|  | DORQ_REG_DORQ_PRTY_STS); | 
|  | } | 
|  | break; | 
|  | case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR: | 
|  | if (print) { | 
|  | _print_next_block((*par_num)++, "NIG"); | 
|  | if (CHIP_IS_E1x(bp)) { | 
|  | _print_parity(bp, | 
|  | NIG_REG_NIG_PRTY_STS); | 
|  | } else { | 
|  | _print_parity(bp, | 
|  | NIG_REG_NIG_PRTY_STS_0); | 
|  | _print_parity(bp, | 
|  | NIG_REG_NIG_PRTY_STS_1); | 
|  | } | 
|  | } | 
|  | break; | 
|  | case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR: | 
|  | if (print) | 
|  | _print_next_block((*par_num)++, | 
|  | "VAUX PCI CORE"); | 
|  | *global = true; | 
|  | break; | 
|  | case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR: | 
|  | if (print) { | 
|  | _print_next_block((*par_num)++, | 
|  | "DEBUG"); | 
|  | _print_parity(bp, DBG_REG_DBG_PRTY_STS); | 
|  | } | 
|  | break; | 
|  | case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR: | 
|  | if (print) { | 
|  | _print_next_block((*par_num)++, "USDM"); | 
|  | _print_parity(bp, | 
|  | USDM_REG_USDM_PRTY_STS); | 
|  | } | 
|  | break; | 
|  | case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR: | 
|  | if (print) { | 
|  | _print_next_block((*par_num)++, "UCM"); | 
|  | _print_parity(bp, UCM_REG_UCM_PRTY_STS); | 
|  | } | 
|  | break; | 
|  | case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR: | 
|  | if (print) { | 
|  | _print_next_block((*par_num)++, | 
|  | "USEMI"); | 
|  | _print_parity(bp, | 
|  | USEM_REG_USEM_PRTY_STS_0); | 
|  | _print_parity(bp, | 
|  | USEM_REG_USEM_PRTY_STS_1); | 
|  | } | 
|  | break; | 
|  | case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR: | 
|  | if (print) { | 
|  | _print_next_block((*par_num)++, "UPB"); | 
|  | _print_parity(bp, GRCBASE_UPB + | 
|  | PB_REG_PB_PRTY_STS); | 
|  | } | 
|  | break; | 
|  | case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR: | 
|  | if (print) { | 
|  | _print_next_block((*par_num)++, "CSDM"); | 
|  | _print_parity(bp, | 
|  | CSDM_REG_CSDM_PRTY_STS); | 
|  | } | 
|  | break; | 
|  | case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR: | 
|  | if (print) { | 
|  | _print_next_block((*par_num)++, "CCM"); | 
|  | _print_parity(bp, CCM_REG_CCM_PRTY_STS); | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Clear the bit */ | 
|  | sig &= ~cur_bit; | 
|  | } | 
|  | } | 
|  |  | 
|  | return res; | 
|  | } | 
|  |  | 
|  | static bool bnx2x_check_blocks_with_parity2(struct bnx2x *bp, uint32_t sig, | 
|  | int *par_num, bool print) | 
|  | { | 
|  | uint32_t cur_bit; | 
|  | bool res; | 
|  | int i; | 
|  |  | 
|  | res = false; | 
|  |  | 
|  | for (i = 0; sig; i++) { | 
|  | cur_bit = (0x1UL << i); | 
|  | if (sig & cur_bit) { | 
|  | res = true; /* Each bit is real error! */ | 
|  | if (print) { | 
|  | switch (cur_bit) { | 
|  | case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR: | 
|  | _print_next_block((*par_num)++, | 
|  | "CSEMI"); | 
|  | _print_parity(bp, | 
|  | CSEM_REG_CSEM_PRTY_STS_0); | 
|  | _print_parity(bp, | 
|  | CSEM_REG_CSEM_PRTY_STS_1); | 
|  | break; | 
|  | case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR: | 
|  | _print_next_block((*par_num)++, "PXP"); | 
|  | _print_parity(bp, PXP_REG_PXP_PRTY_STS); | 
|  | _print_parity(bp, | 
|  | PXP2_REG_PXP2_PRTY_STS_0); | 
|  | _print_parity(bp, | 
|  | PXP2_REG_PXP2_PRTY_STS_1); | 
|  | break; | 
|  | case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR: | 
|  | _print_next_block((*par_num)++, | 
|  | "PXPPCICLOCKCLIENT"); | 
|  | break; | 
|  | case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR: | 
|  | _print_next_block((*par_num)++, "CFC"); | 
|  | _print_parity(bp, | 
|  | CFC_REG_CFC_PRTY_STS); | 
|  | break; | 
|  | case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR: | 
|  | _print_next_block((*par_num)++, "CDU"); | 
|  | _print_parity(bp, CDU_REG_CDU_PRTY_STS); | 
|  | break; | 
|  | case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR: | 
|  | _print_next_block((*par_num)++, "DMAE"); | 
|  | _print_parity(bp, | 
|  | DMAE_REG_DMAE_PRTY_STS); | 
|  | break; | 
|  | case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR: | 
|  | _print_next_block((*par_num)++, "IGU"); | 
|  | if (CHIP_IS_E1x(bp)) | 
|  | _print_parity(bp, | 
|  | HC_REG_HC_PRTY_STS); | 
|  | else | 
|  | _print_parity(bp, | 
|  | IGU_REG_IGU_PRTY_STS); | 
|  | break; | 
|  | case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR: | 
|  | _print_next_block((*par_num)++, "MISC"); | 
|  | _print_parity(bp, | 
|  | MISC_REG_MISC_PRTY_STS); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Clear the bit */ | 
|  | sig &= ~cur_bit; | 
|  | } | 
|  | } | 
|  |  | 
|  | return res; | 
|  | } | 
|  |  | 
|  | static bool bnx2x_check_blocks_with_parity3(struct bnx2x *bp, uint32_t sig, | 
|  | int *par_num, bool *global, | 
|  | bool print) | 
|  | { | 
|  | bool res = false; | 
|  | uint32_t cur_bit; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; sig; i++) { | 
|  | cur_bit = (0x1UL << i); | 
|  | if (sig & cur_bit) { | 
|  | switch (cur_bit) { | 
|  | case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY: | 
|  | if (print) | 
|  | _print_next_block((*par_num)++, | 
|  | "MCP ROM"); | 
|  | *global = true; | 
|  | res = true; | 
|  | break; | 
|  | case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY: | 
|  | if (print) | 
|  | _print_next_block((*par_num)++, | 
|  | "MCP UMP RX"); | 
|  | *global = true; | 
|  | res = true; | 
|  | break; | 
|  | case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY: | 
|  | if (print) | 
|  | _print_next_block((*par_num)++, | 
|  | "MCP UMP TX"); | 
|  | *global = true; | 
|  | res = true; | 
|  | break; | 
|  | case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY: | 
|  | if (print) | 
|  | _print_next_block((*par_num)++, | 
|  | "MCP SCPAD"); | 
|  | /* clear latched SCPAD PATIRY from MCP */ | 
|  | REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, | 
|  | 1UL << 10); | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Clear the bit */ | 
|  | sig &= ~cur_bit; | 
|  | } | 
|  | } | 
|  |  | 
|  | return res; | 
|  | } | 
|  |  | 
|  | static bool bnx2x_check_blocks_with_parity4(struct bnx2x *bp, uint32_t sig, | 
|  | int *par_num, bool print) | 
|  | { | 
|  | uint32_t cur_bit; | 
|  | bool res; | 
|  | int i; | 
|  |  | 
|  | res = false; | 
|  |  | 
|  | for (i = 0; sig; i++) { | 
|  | cur_bit = (0x1UL << i); | 
|  | if (sig & cur_bit) { | 
|  | res = true; /* Each bit is real error! */ | 
|  | if (print) { | 
|  | switch (cur_bit) { | 
|  | case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR: | 
|  | _print_next_block((*par_num)++, | 
|  | "PGLUE_B"); | 
|  | _print_parity(bp, | 
|  | PGLUE_B_REG_PGLUE_B_PRTY_STS); | 
|  | break; | 
|  | case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR: | 
|  | _print_next_block((*par_num)++, "ATC"); | 
|  | _print_parity(bp, | 
|  | ATC_REG_ATC_PRTY_STS); | 
|  | break; | 
|  | } | 
|  | } | 
|  | /* Clear the bit */ | 
|  | sig &= ~cur_bit; | 
|  | } | 
|  | } | 
|  |  | 
|  | return res; | 
|  | } | 
|  |  | 
|  | static bool bnx2x_parity_attn(struct bnx2x *bp, bool *global, bool print, | 
|  | uint32_t *sig) | 
|  | { | 
|  | bool res = false; | 
|  |  | 
|  | if ((sig[0] & HW_PRTY_ASSERT_SET_0) || | 
|  | (sig[1] & HW_PRTY_ASSERT_SET_1) || | 
|  | (sig[2] & HW_PRTY_ASSERT_SET_2) || | 
|  | (sig[3] & HW_PRTY_ASSERT_SET_3) || | 
|  | (sig[4] & HW_PRTY_ASSERT_SET_4)) { | 
|  | int par_num = 0; | 
|  | DP(NETIF_MSG_HW, "Was parity error: HW block parity attention:\n" | 
|  | "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n", | 
|  | sig[0] & HW_PRTY_ASSERT_SET_0, | 
|  | sig[1] & HW_PRTY_ASSERT_SET_1, | 
|  | sig[2] & HW_PRTY_ASSERT_SET_2, | 
|  | sig[3] & HW_PRTY_ASSERT_SET_3, | 
|  | sig[4] & HW_PRTY_ASSERT_SET_4); | 
|  | if (print) | 
|  | netdev_err(bp->dev, | 
|  | "Parity errors detected in blocks: "); | 
|  | res |= bnx2x_check_blocks_with_parity0(bp, | 
|  | sig[0] & HW_PRTY_ASSERT_SET_0, &par_num, print); | 
|  | res |= bnx2x_check_blocks_with_parity1(bp, | 
|  | sig[1] & HW_PRTY_ASSERT_SET_1, &par_num, global, print); | 
|  | res |= bnx2x_check_blocks_with_parity2(bp, | 
|  | sig[2] & HW_PRTY_ASSERT_SET_2, &par_num, print); | 
|  | res |= bnx2x_check_blocks_with_parity3(bp, | 
|  | sig[3] & HW_PRTY_ASSERT_SET_3, &par_num, global, print); | 
|  | res |= bnx2x_check_blocks_with_parity4(bp, | 
|  | sig[4] & HW_PRTY_ASSERT_SET_4, &par_num, print); | 
|  |  | 
|  | if (print) | 
|  | pr_cont("\n"); | 
|  | } | 
|  |  | 
|  | return res; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * bnx2x_chk_parity_attn - checks for parity attentions. | 
|  | * | 
|  | * @bp:		driver handle | 
|  | * @global:	true if there was a global attention | 
|  | * @print:	show parity attention in syslog | 
|  | */ | 
|  | bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print) | 
|  | { | 
|  | struct attn_route attn = { {0} }; | 
|  | int port = BP_PORT(bp); | 
|  |  | 
|  | attn.sig[0] = REG_RD(bp, | 
|  | MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + | 
|  | port*4); | 
|  | attn.sig[1] = REG_RD(bp, | 
|  | MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + | 
|  | port*4); | 
|  | attn.sig[2] = REG_RD(bp, | 
|  | MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + | 
|  | port*4); | 
|  | attn.sig[3] = REG_RD(bp, | 
|  | MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + | 
|  | port*4); | 
|  | /* Since MCP attentions can't be disabled inside the block, we need to | 
|  | * read AEU registers to see whether they're currently disabled | 
|  | */ | 
|  | attn.sig[3] &= ((REG_RD(bp, | 
|  | !port ? MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0 | 
|  | : MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0) & | 
|  | MISC_AEU_ENABLE_MCP_PRTY_BITS) | | 
|  | ~MISC_AEU_ENABLE_MCP_PRTY_BITS); | 
|  |  | 
|  | if (!CHIP_IS_E1x(bp)) | 
|  | attn.sig[4] = REG_RD(bp, | 
|  | MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + | 
|  | port*4); | 
|  |  | 
|  | return bnx2x_parity_attn(bp, global, print, attn.sig); | 
|  | } | 
|  |  | 
|  | static void bnx2x_attn_int_deasserted4(struct bnx2x *bp, uint32_t attn) | 
|  | { | 
|  | uint32_t val; | 
|  | if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) { | 
|  |  | 
|  | val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS_CLR); | 
|  | BNX2X_ERR("PGLUE hw attention 0x%x\n", val); | 
|  | if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR) | 
|  | BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n"); | 
|  | if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR) | 
|  | BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n"); | 
|  | if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) | 
|  | BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n"); | 
|  | if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN) | 
|  | BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n"); | 
|  | if (val & | 
|  | PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN) | 
|  | BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n"); | 
|  | if (val & | 
|  | PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN) | 
|  | BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n"); | 
|  | if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN) | 
|  | BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n"); | 
|  | if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN) | 
|  | BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n"); | 
|  | if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW) | 
|  | BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n"); | 
|  | } | 
|  | if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) { | 
|  | val = REG_RD(bp, ATC_REG_ATC_INT_STS_CLR); | 
|  | BNX2X_ERR("ATC hw attention 0x%x\n", val); | 
|  | if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR) | 
|  | BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n"); | 
|  | if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND) | 
|  | BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n"); | 
|  | if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS) | 
|  | BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n"); | 
|  | if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT) | 
|  | BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n"); | 
|  | if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR) | 
|  | BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n"); | 
|  | if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU) | 
|  | BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n"); | 
|  | } | 
|  |  | 
|  | if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR | | 
|  | AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) { | 
|  | BNX2X_ERR("FATAL parity attention set4 0x%x\n", | 
|  | (uint32_t)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR | | 
|  | AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR))); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void bnx2x_attn_int_deasserted(struct bnx2x *bp, uint32_t deasserted) | 
|  | { | 
|  | struct attn_route attn, *group_mask; | 
|  | int port = BP_PORT(bp); | 
|  | int index; | 
|  | uint32_t reg_addr; | 
|  | uint32_t val; | 
|  | uint32_t aeu_mask; | 
|  | bool global = false; | 
|  |  | 
|  | /* need to take HW lock because MCP or other port might also | 
|  | try to handle this event */ | 
|  | bnx2x_acquire_alr(bp); | 
|  |  | 
|  | if (bnx2x_chk_parity_attn(bp, &global, true)) { | 
|  | #ifndef BNX2X_STOP_ON_ERROR | 
|  | bp->recovery_state = BNX2X_RECOVERY_INIT; | 
|  | schedule_delayed_work(&bp->sp_rtnl_task, 0); | 
|  | /* Disable HW interrupts */ | 
|  | bnx2x_int_disable(bp); | 
|  | /* In case of parity errors don't handle attentions so that | 
|  | * other function would "see" parity errors. | 
|  | */ | 
|  | #else | 
|  | bnx2x_panic(); | 
|  | #endif | 
|  | bnx2x_release_alr(bp); | 
|  | return; | 
|  | } | 
|  |  | 
|  | attn.sig[0] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4); | 
|  | attn.sig[1] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4); | 
|  | attn.sig[2] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4); | 
|  | attn.sig[3] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4); | 
|  | if (!CHIP_IS_E1x(bp)) | 
|  | attn.sig[4] = | 
|  | REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4); | 
|  | else | 
|  | attn.sig[4] = 0; | 
|  |  | 
|  | DP(NETIF_MSG_HW, "attn: %08x %08x %08x %08x %08x\n", | 
|  | attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]); | 
|  |  | 
|  | for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) { | 
|  | if (deasserted & (1 << index)) { | 
|  | group_mask = &bp->attn_group[index]; | 
|  |  | 
|  | DP(NETIF_MSG_HW, "group[%d]: %08x %08x %08x %08x %08x\n", | 
|  | index, | 
|  | group_mask->sig[0], group_mask->sig[1], | 
|  | group_mask->sig[2], group_mask->sig[3], | 
|  | group_mask->sig[4]); | 
|  |  | 
|  | bnx2x_attn_int_deasserted4(bp, | 
|  | attn.sig[4] & group_mask->sig[4]); | 
|  | bnx2x_attn_int_deasserted3(bp, | 
|  | attn.sig[3] & group_mask->sig[3]); | 
|  | bnx2x_attn_int_deasserted1(bp, | 
|  | attn.sig[1] & group_mask->sig[1]); | 
|  | bnx2x_attn_int_deasserted2(bp, | 
|  | attn.sig[2] & group_mask->sig[2]); | 
|  | bnx2x_attn_int_deasserted0(bp, | 
|  | attn.sig[0] & group_mask->sig[0]); | 
|  | } | 
|  | } | 
|  |  | 
|  | bnx2x_release_alr(bp); | 
|  |  | 
|  | if (bp->common.int_block == INT_BLOCK_HC) | 
|  | reg_addr = (HC_REG_COMMAND_REG + port*32 + | 
|  | COMMAND_REG_ATTN_BITS_CLR); | 
|  | else | 
|  | reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8); | 
|  |  | 
|  | val = ~deasserted; | 
|  | DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", val, | 
|  | (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr); | 
|  | REG_WR(bp, reg_addr, val); | 
|  |  | 
|  | if (~bp->attn_state & deasserted) | 
|  | BNX2X_ERR("IGU ERROR\n"); | 
|  |  | 
|  | reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 : | 
|  | MISC_REG_AEU_MASK_ATTN_FUNC_0; | 
|  |  | 
|  | bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); | 
|  | aeu_mask = REG_RD(bp, reg_addr); | 
|  |  | 
|  | DP(NETIF_MSG_HW, "aeu_mask %x  newly deasserted %x\n", | 
|  | aeu_mask, deasserted); | 
|  | aeu_mask |= (deasserted & 0x3ff); | 
|  | DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask); | 
|  |  | 
|  | REG_WR(bp, reg_addr, aeu_mask); | 
|  | bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); | 
|  |  | 
|  | DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state); | 
|  | bp->attn_state &= ~deasserted; | 
|  | DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state); | 
|  | } | 
|  |  | 
|  | static void bnx2x_attn_int(struct bnx2x *bp) | 
|  | { | 
|  | /* read local copy of bits */ | 
|  | uint32_t attn_bits = le32_to_cpu(bp->def_status_blk->atten_status_block. | 
|  | attn_bits); | 
|  | uint32_t attn_ack = le32_to_cpu(bp->def_status_blk->atten_status_block. | 
|  | attn_bits_ack); | 
|  | uint32_t attn_state = bp->attn_state; | 
|  |  | 
|  | /* look for changed bits */ | 
|  | uint32_t asserted   =  attn_bits & ~attn_ack & ~attn_state; | 
|  | uint32_t deasserted = ~attn_bits &  attn_ack &  attn_state; | 
|  |  | 
|  | DP(NETIF_MSG_HW, | 
|  | "attn_bits %x  attn_ack %x  asserted %x  deasserted %x\n", | 
|  | attn_bits, attn_ack, asserted, deasserted); | 
|  |  | 
|  | if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state)) | 
|  | BNX2X_ERR("BAD attention state\n"); | 
|  |  | 
|  | /* handle bits that were raised */ | 
|  | if (asserted) | 
|  | bnx2x_attn_int_asserted(bp, asserted); | 
|  |  | 
|  | if (deasserted) | 
|  | bnx2x_attn_int_deasserted(bp, deasserted); | 
|  | } | 
|  |  | 
|  | void bnx2x_igu_ack_sb(struct bnx2x *bp, uint8_t igu_sb_id, uint8_t segment, | 
|  | uint16_t index, uint8_t op, uint8_t update) | 
|  | { | 
|  | uint32_t igu_addr = bp->igu_base_addr; | 
|  | igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8; | 
|  | bnx2x_igu_ack_sb_gen(bp, igu_sb_id, segment, index, op, update, | 
|  | igu_addr); | 
|  | } | 
|  |  | 
|  | static void bnx2x_update_eq_prod(struct bnx2x *bp, uint16_t prod) | 
|  | { | 
|  | /* No memory barriers */ | 
|  | storm_memset_eq_prod(bp, prod, BP_FUNC(bp)); | 
|  | bus_wmb(); /* keep prod updates ordered */ | 
|  | } | 
|  |  | 
|  | static int  bnx2x_cnic_handle_cfc_del(struct bnx2x *bp, uint32_t cid, | 
|  | union event_ring_elem *elem) | 
|  | { | 
|  | uint8_t err = elem->message.error; | 
|  |  | 
|  | if (!bp->cnic_eth_dev.starting_cid  || | 
|  | (cid < bp->cnic_eth_dev.starting_cid && | 
|  | cid != bp->cnic_eth_dev.iscsi_l2_cid)) | 
|  | return 1; | 
|  |  | 
|  | DP(BNX2X_MSG_SP, "got delete ramrod for CNIC CID %d\n", cid); | 
|  |  | 
|  | if (unlikely(err)) { | 
|  |  | 
|  | BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n", | 
|  | cid); | 
|  | bnx2x_panic_dump(bp, false); | 
|  | } | 
|  | bnx2x_cnic_cfc_comp(bp, cid, err); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void bnx2x_handle_mcast_eqe(struct bnx2x *bp) | 
|  | { | 
|  | struct bnx2x_mcast_ramrod_params rparam; | 
|  | int rc; | 
|  |  | 
|  | memset(&rparam, 0, sizeof(rparam)); | 
|  |  | 
|  | rparam.mcast_obj = &bp->mcast_obj; | 
|  |  | 
|  | qlock(&bp->dev->qlock); | 
|  |  | 
|  | /* Clear pending state for the last command */ | 
|  | bp->mcast_obj.raw.clear_pending(&bp->mcast_obj.raw); | 
|  |  | 
|  | /* If there are pending mcast commands - send them */ | 
|  | if (bp->mcast_obj.check_pending(&bp->mcast_obj)) { | 
|  | rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT); | 
|  | if (rc < 0) | 
|  | BNX2X_ERR("Failed to send pending mcast commands: %d\n", | 
|  | rc); | 
|  | } | 
|  |  | 
|  | qunlock(&bp->dev->qlock); | 
|  | } | 
|  |  | 
|  | static void bnx2x_handle_classification_eqe(struct bnx2x *bp, | 
|  | union event_ring_elem *elem) | 
|  | { | 
|  | unsigned long ramrod_flags = 0; | 
|  | int rc = 0; | 
|  | uint32_t cid = elem->message.data.eth_event.echo & BNX2X_SWCID_MASK; | 
|  | struct bnx2x_vlan_mac_obj *vlan_mac_obj; | 
|  |  | 
|  | /* Always push next commands out, don't wait here */ | 
|  | __set_bit(RAMROD_CONT, &ramrod_flags); | 
|  |  | 
|  | switch (le32_to_cpu((__force __le32)elem->message.data.eth_event.echo) | 
|  | >> BNX2X_SWCID_SHIFT) { | 
|  | case BNX2X_FILTER_MAC_PENDING: | 
|  | DP(BNX2X_MSG_SP, "Got SETUP_MAC completions\n"); | 
|  | if (CNIC_LOADED(bp) && (cid == BNX2X_ISCSI_ETH_CID(bp))) | 
|  | vlan_mac_obj = &bp->iscsi_l2_mac_obj; | 
|  | else | 
|  | vlan_mac_obj = &bp->sp_objs[cid].mac_obj; | 
|  |  | 
|  | break; | 
|  | case BNX2X_FILTER_MCAST_PENDING: | 
|  | DP(BNX2X_MSG_SP, "Got SETUP_MCAST completions\n"); | 
|  | /* This is only relevant for 57710 where multicast MACs are | 
|  | * configured as unicast MACs using the same ramrod. | 
|  | */ | 
|  | bnx2x_handle_mcast_eqe(bp); | 
|  | return; | 
|  | default: | 
|  | BNX2X_ERR("Unsupported classification command: %d\n", | 
|  | elem->message.data.eth_event.echo); | 
|  | return; | 
|  | } | 
|  |  | 
|  | rc = vlan_mac_obj->complete(bp, vlan_mac_obj, elem, &ramrod_flags); | 
|  |  | 
|  | if (rc < 0) | 
|  | BNX2X_ERR("Failed to schedule new commands: %d\n", rc); | 
|  | else if (rc > 0) | 
|  | DP(BNX2X_MSG_SP, "Scheduled next pending commands...\n"); | 
|  | } | 
|  |  | 
|  | static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start); | 
|  |  | 
|  | static void bnx2x_handle_rx_mode_eqe(struct bnx2x *bp) | 
|  | { | 
|  | qlock(&bp->dev->qlock); | 
|  |  | 
|  | clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state); | 
|  |  | 
|  | /* Send rx_mode command again if was requested */ | 
|  | if (test_and_clear_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state)) | 
|  | bnx2x_set_storm_rx_mode(bp); | 
|  | else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, | 
|  | &bp->sp_state)) | 
|  | bnx2x_set_iscsi_eth_rx_mode(bp, true); | 
|  | else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, | 
|  | &bp->sp_state)) | 
|  | bnx2x_set_iscsi_eth_rx_mode(bp, false); | 
|  |  | 
|  | qunlock(&bp->dev->qlock); | 
|  | } | 
|  |  | 
|  | static void bnx2x_after_afex_vif_lists(struct bnx2x *bp, | 
|  | union event_ring_elem *elem) | 
|  | { | 
|  | if (elem->message.data.vif_list_event.echo == VIF_LIST_RULE_GET) { | 
|  | DP(BNX2X_MSG_SP, | 
|  | "afex: ramrod completed VIF LIST_GET, addrs 0x%x\n", | 
|  | elem->message.data.vif_list_event.func_bit_map); | 
|  | bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTGET_ACK, | 
|  | elem->message.data.vif_list_event.func_bit_map); | 
|  | } else if (elem->message.data.vif_list_event.echo == | 
|  | VIF_LIST_RULE_SET) { | 
|  | DP(BNX2X_MSG_SP, "afex: ramrod completed VIF LIST_SET\n"); | 
|  | bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTSET_ACK, 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* called with rtnl_lock */ | 
|  | static void bnx2x_after_function_update(struct bnx2x *bp) | 
|  | { | 
|  | panic("Not implemented"); | 
|  | #if 0 // AKAROS_PORT | 
|  | int q, rc; | 
|  | struct bnx2x_fastpath *fp; | 
|  | struct bnx2x_queue_state_params queue_params = {NULL}; | 
|  | struct bnx2x_queue_update_params *q_update_params = | 
|  | &queue_params.params.update; | 
|  |  | 
|  | /* Send Q update command with afex vlan removal values for all Qs */ | 
|  | queue_params.cmd = BNX2X_Q_CMD_UPDATE; | 
|  |  | 
|  | /* set silent vlan removal values according to vlan mode */ | 
|  | __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG, | 
|  | &q_update_params->update_flags); | 
|  | __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM, | 
|  | &q_update_params->update_flags); | 
|  | __set_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags); | 
|  |  | 
|  | /* in access mode mark mask and value are 0 to strip all vlans */ | 
|  | if (bp->afex_vlan_mode == FUNC_MF_CFG_AFEX_VLAN_ACCESS_MODE) { | 
|  | q_update_params->silent_removal_value = 0; | 
|  | q_update_params->silent_removal_mask = 0; | 
|  | } else { | 
|  | q_update_params->silent_removal_value = | 
|  | (bp->afex_def_vlan_tag & VLAN_VID_MASK); | 
|  | q_update_params->silent_removal_mask = VLAN_VID_MASK; | 
|  | } | 
|  |  | 
|  | for_each_eth_queue(bp, q) { | 
|  | /* Set the appropriate Queue object */ | 
|  | fp = &bp->fp[q]; | 
|  | queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj; | 
|  |  | 
|  | /* send the ramrod */ | 
|  | rc = bnx2x_queue_state_change(bp, &queue_params); | 
|  | if (rc < 0) | 
|  | BNX2X_ERR("Failed to config silent vlan rem for Q %d\n", | 
|  | q); | 
|  | } | 
|  |  | 
|  | if (!NO_FCOE(bp) && CNIC_ENABLED(bp)) { | 
|  | fp = &bp->fp[FCOE_IDX(bp)]; | 
|  | queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj; | 
|  |  | 
|  | /* clear pending completion bit */ | 
|  | __clear_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags); | 
|  |  | 
|  | /* mark latest Q bit */ | 
|  | cmb(); | 
|  | set_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state); | 
|  | cmb(); | 
|  |  | 
|  | /* send Q update ramrod for FCoE Q */ | 
|  | rc = bnx2x_queue_state_change(bp, &queue_params); | 
|  | if (rc < 0) | 
|  | BNX2X_ERR("Failed to config silent vlan rem for Q %d\n", | 
|  | q); | 
|  | } else { | 
|  | /* If no FCoE ring - ACK MCP now */ | 
|  | bnx2x_link_report(bp); | 
|  | bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0); | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static struct bnx2x_queue_sp_obj *bnx2x_cid_to_q_obj( | 
|  | struct bnx2x *bp, uint32_t cid) | 
|  | { | 
|  | DP(BNX2X_MSG_SP, "retrieving fp from cid %d\n", cid); | 
|  |  | 
|  | if (CNIC_LOADED(bp) && (cid == BNX2X_FCOE_ETH_CID(bp))) | 
|  | return &bnx2x_fcoe_sp_obj(bp, q_obj); | 
|  | else | 
|  | return &bp->sp_objs[CID_TO_FP(cid, bp)].q_obj; | 
|  | } | 
|  |  | 
|  | static void bnx2x_eq_int(struct bnx2x *bp) | 
|  | { | 
|  | uint16_t hw_cons, sw_cons, sw_prod; | 
|  | union event_ring_elem *elem; | 
|  | uint8_t echo; | 
|  | uint32_t cid; | 
|  | uint8_t opcode; | 
|  | int rc, spqe_cnt = 0; | 
|  | struct bnx2x_queue_sp_obj *q_obj; | 
|  | struct bnx2x_func_sp_obj *f_obj = &bp->func_obj; | 
|  | struct bnx2x_raw_obj *rss_raw = &bp->rss_conf_obj.raw; | 
|  |  | 
|  | hw_cons = le16_to_cpu(*bp->eq_cons_sb); | 
|  |  | 
|  | /* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256. | 
|  | * when we get the next-page we need to adjust so the loop | 
|  | * condition below will be met. The next element is the size of a | 
|  | * regular element and hence incrementing by 1 | 
|  | */ | 
|  | if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE) | 
|  | hw_cons++; | 
|  |  | 
|  | /* This function may never run in parallel with itself for a | 
|  | * specific bp, thus there is no need in "paired" read memory | 
|  | * barrier here. | 
|  | */ | 
|  | sw_cons = bp->eq_cons; | 
|  | sw_prod = bp->eq_prod; | 
|  |  | 
|  | DP(BNX2X_MSG_SP, "EQ:  hw_cons %u  sw_cons %u bp->eq_spq_left %x\n", | 
|  | hw_cons, sw_cons, atomic_read(&bp->eq_spq_left)); | 
|  |  | 
|  | for (; sw_cons != hw_cons; | 
|  | sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) { | 
|  |  | 
|  | elem = &bp->eq_ring[EQ_DESC(sw_cons)]; | 
|  |  | 
|  | rc = bnx2x_iov_eq_sp_event(bp, elem); | 
|  | if (!rc) { | 
|  | DP(BNX2X_MSG_IOV, "bnx2x_iov_eq_sp_event returned %d\n", | 
|  | rc); | 
|  | goto next_spqe; | 
|  | } | 
|  |  | 
|  | /* elem CID originates from FW; actually LE */ | 
|  | cid = SW_CID((__force __le32) | 
|  | elem->message.data.cfc_del_event.cid); | 
|  | opcode = elem->message.opcode; | 
|  |  | 
|  | /* handle eq element */ | 
|  | switch (opcode) { | 
|  | case EVENT_RING_OPCODE_VF_PF_CHANNEL: | 
|  | bnx2x_vf_mbx_schedule(bp, | 
|  | &elem->message.data.vf_pf_event); | 
|  | continue; | 
|  |  | 
|  | case EVENT_RING_OPCODE_STAT_QUERY: | 
|  | DP_AND((BNX2X_MSG_SP | BNX2X_MSG_STATS), | 
|  | "got statistics comp event %d\n", | 
|  | bp->stats_comp++); | 
|  | /* nothing to do with stats comp */ | 
|  | goto next_spqe; | 
|  |  | 
|  | case EVENT_RING_OPCODE_CFC_DEL: | 
|  | /* handle according to cid range */ | 
|  | /* | 
|  | * we may want to verify here that the bp state is | 
|  | * HALTING | 
|  | */ | 
|  | DP(BNX2X_MSG_SP, | 
|  | "got delete ramrod for MULTI[%d]\n", cid); | 
|  |  | 
|  | if (CNIC_LOADED(bp) && | 
|  | !bnx2x_cnic_handle_cfc_del(bp, cid, elem)) | 
|  | goto next_spqe; | 
|  |  | 
|  | q_obj = bnx2x_cid_to_q_obj(bp, cid); | 
|  |  | 
|  | if (q_obj->complete_cmd(bp, q_obj, BNX2X_Q_CMD_CFC_DEL)) | 
|  | break; | 
|  |  | 
|  | goto next_spqe; | 
|  |  | 
|  | case EVENT_RING_OPCODE_STOP_TRAFFIC: | 
|  | DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got STOP TRAFFIC\n"); | 
|  | bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_PAUSED); | 
|  | if (f_obj->complete_cmd(bp, f_obj, | 
|  | BNX2X_F_CMD_TX_STOP)) | 
|  | break; | 
|  | goto next_spqe; | 
|  |  | 
|  | case EVENT_RING_OPCODE_START_TRAFFIC: | 
|  | DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got START TRAFFIC\n"); | 
|  | bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_RELEASED); | 
|  | if (f_obj->complete_cmd(bp, f_obj, | 
|  | BNX2X_F_CMD_TX_START)) | 
|  | break; | 
|  | goto next_spqe; | 
|  |  | 
|  | case EVENT_RING_OPCODE_FUNCTION_UPDATE: | 
|  | echo = elem->message.data.function_update_event.echo; | 
|  | if (echo == SWITCH_UPDATE) { | 
|  | DP(BNX2X_MSG_SP | NETIF_MSG_IFUP, | 
|  | "got FUNC_SWITCH_UPDATE ramrod\n"); | 
|  | if (f_obj->complete_cmd( | 
|  | bp, f_obj, BNX2X_F_CMD_SWITCH_UPDATE)) | 
|  | break; | 
|  |  | 
|  | } else { | 
|  | int cmd = BNX2X_SP_RTNL_AFEX_F_UPDATE; | 
|  |  | 
|  | DP(BNX2X_MSG_SP | BNX2X_MSG_MCP, | 
|  | "AFEX: ramrod completed FUNCTION_UPDATE\n"); | 
|  | f_obj->complete_cmd(bp, f_obj, | 
|  | BNX2X_F_CMD_AFEX_UPDATE); | 
|  |  | 
|  | /* We will perform the Queues update from | 
|  | * sp_rtnl task as all Queue SP operations | 
|  | * should run under rtnl_lock. | 
|  | */ | 
|  | bnx2x_schedule_sp_rtnl(bp, cmd, 0); | 
|  | } | 
|  |  | 
|  | goto next_spqe; | 
|  |  | 
|  | case EVENT_RING_OPCODE_AFEX_VIF_LISTS: | 
|  | f_obj->complete_cmd(bp, f_obj, | 
|  | BNX2X_F_CMD_AFEX_VIFLISTS); | 
|  | bnx2x_after_afex_vif_lists(bp, elem); | 
|  | goto next_spqe; | 
|  | case EVENT_RING_OPCODE_FUNCTION_START: | 
|  | DP(BNX2X_MSG_SP | NETIF_MSG_IFUP, | 
|  | "got FUNC_START ramrod\n"); | 
|  | if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_START)) | 
|  | break; | 
|  |  | 
|  | goto next_spqe; | 
|  |  | 
|  | case EVENT_RING_OPCODE_FUNCTION_STOP: | 
|  | DP(BNX2X_MSG_SP | NETIF_MSG_IFUP, | 
|  | "got FUNC_STOP ramrod\n"); | 
|  | if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_STOP)) | 
|  | break; | 
|  |  | 
|  | goto next_spqe; | 
|  |  | 
|  | case EVENT_RING_OPCODE_SET_TIMESYNC: | 
|  | DP(BNX2X_MSG_SP | BNX2X_MSG_PTP, | 
|  | "got set_timesync ramrod completion\n"); | 
|  | if (f_obj->complete_cmd(bp, f_obj, | 
|  | BNX2X_F_CMD_SET_TIMESYNC)) | 
|  | break; | 
|  | goto next_spqe; | 
|  | } | 
|  |  | 
|  | switch (opcode | bp->state) { | 
|  | case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | | 
|  | BNX2X_STATE_OPEN): | 
|  | case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | | 
|  | BNX2X_STATE_OPENING_WAIT4_PORT): | 
|  | cid = elem->message.data.eth_event.echo & | 
|  | BNX2X_SWCID_MASK; | 
|  | DP(BNX2X_MSG_SP, "got RSS_UPDATE ramrod. CID %d\n", | 
|  | cid); | 
|  | rss_raw->clear_pending(rss_raw); | 
|  | break; | 
|  |  | 
|  | case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN): | 
|  | case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG): | 
|  | case (EVENT_RING_OPCODE_SET_MAC | | 
|  | BNX2X_STATE_CLOSING_WAIT4_HALT): | 
|  | case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | | 
|  | BNX2X_STATE_OPEN): | 
|  | case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | | 
|  | BNX2X_STATE_DIAG): | 
|  | case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | | 
|  | BNX2X_STATE_CLOSING_WAIT4_HALT): | 
|  | DP(BNX2X_MSG_SP, "got (un)set mac ramrod\n"); | 
|  | bnx2x_handle_classification_eqe(bp, elem); | 
|  | break; | 
|  |  | 
|  | case (EVENT_RING_OPCODE_MULTICAST_RULES | | 
|  | BNX2X_STATE_OPEN): | 
|  | case (EVENT_RING_OPCODE_MULTICAST_RULES | | 
|  | BNX2X_STATE_DIAG): | 
|  | case (EVENT_RING_OPCODE_MULTICAST_RULES | | 
|  | BNX2X_STATE_CLOSING_WAIT4_HALT): | 
|  | DP(BNX2X_MSG_SP, "got mcast ramrod\n"); | 
|  | bnx2x_handle_mcast_eqe(bp); | 
|  | break; | 
|  |  | 
|  | case (EVENT_RING_OPCODE_FILTERS_RULES | | 
|  | BNX2X_STATE_OPEN): | 
|  | case (EVENT_RING_OPCODE_FILTERS_RULES | | 
|  | BNX2X_STATE_DIAG): | 
|  | case (EVENT_RING_OPCODE_FILTERS_RULES | | 
|  | BNX2X_STATE_CLOSING_WAIT4_HALT): | 
|  | DP(BNX2X_MSG_SP, "got rx_mode ramrod\n"); | 
|  | bnx2x_handle_rx_mode_eqe(bp); | 
|  | break; | 
|  | default: | 
|  | /* unknown event log error and continue */ | 
|  | BNX2X_ERR("Unknown EQ event %d, bp->state 0x%x\n", | 
|  | elem->message.opcode, bp->state); | 
|  | } | 
|  | next_spqe: | 
|  | spqe_cnt++; | 
|  | } /* for */ | 
|  |  | 
|  | cmb(); | 
|  | atomic_add(&bp->eq_spq_left, spqe_cnt); | 
|  |  | 
|  | bp->eq_cons = sw_cons; | 
|  | bp->eq_prod = sw_prod; | 
|  | /* Make sure that above mem writes were issued towards the memory */ | 
|  | wmb(); | 
|  |  | 
|  | /* update producer */ | 
|  | bnx2x_update_eq_prod(bp, bp->eq_prod); | 
|  | } | 
|  |  | 
|  | static void bnx2x_sp_task(struct work_struct *work) | 
|  | { | 
|  | struct bnx2x *bp = container_of(work, struct bnx2x, sp_task.work); | 
|  |  | 
|  | DP(BNX2X_MSG_SP, "sp task invoked\n"); | 
|  |  | 
|  | /* make sure the atomic interrupt_occurred has been written */ | 
|  | rmb(); | 
|  | if (atomic_read(&bp->interrupt_occurred)) { | 
|  |  | 
|  | /* what work needs to be performed? */ | 
|  | uint16_t status = bnx2x_update_dsb_idx(bp); | 
|  |  | 
|  | DP(BNX2X_MSG_SP, "status %x\n", status); | 
|  | DP(BNX2X_MSG_SP, "setting interrupt_occurred to 0\n"); | 
|  | atomic_set(&bp->interrupt_occurred, 0); | 
|  |  | 
|  | /* HW attentions */ | 
|  | if (status & BNX2X_DEF_SB_ATT_IDX) { | 
|  | bnx2x_attn_int(bp); | 
|  | status &= ~BNX2X_DEF_SB_ATT_IDX; | 
|  | } | 
|  |  | 
|  | /* SP events: STAT_QUERY and others */ | 
|  | if (status & BNX2X_DEF_SB_IDX) { | 
|  | struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp); | 
|  |  | 
|  | if (FCOE_INIT(bp) && | 
|  | (bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) { | 
|  | /* Prevent local bottom-halves from running as | 
|  | * we are going to change the local NAPI list. | 
|  | */ | 
|  | local_bh_disable(); | 
|  | /* TODO XME: wake a ktask or o/w poll the device.  we're already | 
|  | * an RKM at this point */ | 
|  | napi_schedule(&bnx2x_fcoe(bp, napi)); | 
|  | local_bh_enable(); | 
|  | } | 
|  |  | 
|  | /* Handle EQ completions */ | 
|  | bnx2x_eq_int(bp); | 
|  | bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, | 
|  | le16_to_cpu(bp->def_idx), IGU_INT_NOP, 1); | 
|  |  | 
|  | status &= ~BNX2X_DEF_SB_IDX; | 
|  | } | 
|  |  | 
|  | /* if status is non zero then perhaps something went wrong */ | 
|  | if (unlikely(status)) | 
|  | DP(BNX2X_MSG_SP, | 
|  | "got an unknown interrupt! (status 0x%x)\n", status); | 
|  |  | 
|  | /* ack status block only if something was actually handled */ | 
|  | bnx2x_ack_sb(bp, bp->igu_dsb_id, ATTENTION_ID, | 
|  | le16_to_cpu(bp->def_att_idx), IGU_INT_ENABLE, 1); | 
|  | } | 
|  |  | 
|  | /* afex - poll to check if VIFSET_ACK should be sent to MFW */ | 
|  | if (test_and_clear_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK, | 
|  | &bp->sp_state)) { | 
|  | bnx2x_link_report(bp); | 
|  | bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | void bnx2x_msix_sp_int(struct hw_trapframe *hw_tf, void *dev_instance) | 
|  | { | 
|  | struct ether *dev = dev_instance; | 
|  | struct bnx2x *bp = netdev_priv(dev); | 
|  |  | 
|  | bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, | 
|  | IGU_INT_DISABLE, 0); | 
|  |  | 
|  | #ifdef BNX2X_STOP_ON_ERROR | 
|  | if (unlikely(bp->panic)) | 
|  | return; | 
|  | #endif | 
|  |  | 
|  | if (CNIC_LOADED(bp)) { | 
|  | struct cnic_ops *c_ops; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | c_ops = rcu_dereference(bp->cnic_ops); | 
|  | if (c_ops) | 
|  | c_ops->cnic_handler(bp->cnic_data, NULL); | 
|  | rcu_read_unlock(); | 
|  | } | 
|  |  | 
|  | /* schedule sp task to perform default status block work, ack | 
|  | * attentions and enable interrupts. | 
|  | */ | 
|  | bnx2x_schedule_sp_task(bp); | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* end of slow path */ | 
|  |  | 
|  | void bnx2x_drv_pulse(struct bnx2x *bp) | 
|  | { | 
|  | SHMEM_WR(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb, | 
|  | bp->fw_drv_pulse_wr_seq); | 
|  | } | 
|  |  | 
|  | static void bnx2x_timer(unsigned long data) | 
|  | { | 
|  | struct bnx2x *bp = (struct bnx2x *) data; | 
|  |  | 
|  | if (!netif_running(bp->dev)) | 
|  | return; | 
|  |  | 
|  | if (IS_PF(bp) && | 
|  | !BP_NOMCP(bp)) { | 
|  | int mb_idx = BP_FW_MB_IDX(bp); | 
|  | uint16_t drv_pulse; | 
|  | uint16_t mcp_pulse; | 
|  |  | 
|  | ++bp->fw_drv_pulse_wr_seq; | 
|  | bp->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK; | 
|  | drv_pulse = bp->fw_drv_pulse_wr_seq; | 
|  | bnx2x_drv_pulse(bp); | 
|  |  | 
|  | mcp_pulse = (SHMEM_RD(bp, func_mb[mb_idx].mcp_pulse_mb) & | 
|  | MCP_PULSE_SEQ_MASK); | 
|  | /* The delta between driver pulse and mcp response | 
|  | * should not get too big. If the MFW is more than 5 pulses | 
|  | * behind, we should worry about it enough to generate an error | 
|  | * log. | 
|  | */ | 
|  | if (((drv_pulse - mcp_pulse) & MCP_PULSE_SEQ_MASK) > 5) | 
|  | BNX2X_ERR("MFW seems hanged: drv_pulse (0x%x) != mcp_pulse (0x%x)\n", | 
|  | drv_pulse, mcp_pulse); | 
|  | } | 
|  |  | 
|  | if (bp->state == BNX2X_STATE_OPEN) | 
|  | bnx2x_stats_handle(bp, STATS_EVENT_UPDATE); | 
|  |  | 
|  | /* sample pf vf bulletin board for new posts from pf */ | 
|  | if (IS_VF(bp)) | 
|  | bnx2x_timer_sriov(bp); | 
|  |  | 
|  | } | 
|  |  | 
|  | /* RKM style, set_alarm directly */ | 
|  | static void bnx2x_timer_wrapper(struct alarm_waiter *waiter) | 
|  | { | 
|  | struct bnx2x *bp = container_of(waiter, struct bnx2x, timer); | 
|  | bnx2x_timer((unsigned long)bp); | 
|  | set_awaiter_rel(waiter, bp->current_interval * 1000); // fudge | 
|  | set_alarm(&per_cpu_info[0].tchain, waiter); | 
|  | } | 
|  |  | 
|  | /* end of Statistics */ | 
|  |  | 
|  | /* nic init */ | 
|  |  | 
|  | /* | 
|  | * nic init service functions | 
|  | */ | 
|  |  | 
|  | static void bnx2x_fill(struct bnx2x *bp, uint32_t addr, int fill, | 
|  | uint32_t len) | 
|  | { | 
|  | uint32_t i; | 
|  | if (!(len%4) && !(addr%4)) | 
|  | for (i = 0; i < len; i += 4) | 
|  | REG_WR(bp, addr + i, fill); | 
|  | else | 
|  | for (i = 0; i < len; i++) | 
|  | REG_WR8(bp, addr + i, fill); | 
|  | } | 
|  |  | 
|  | /* helper: writes FP SP data to FW - data_size in dwords */ | 
|  | static void bnx2x_wr_fp_sb_data(struct bnx2x *bp, | 
|  | int fw_sb_id, | 
|  | uint32_t *sb_data_p, | 
|  | uint32_t data_size) | 
|  | { | 
|  | int index; | 
|  | for (index = 0; index < data_size; index++) | 
|  | REG_WR(bp, BAR_CSTRORM_INTMEM + | 
|  | CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) + | 
|  | sizeof(uint32_t)*index, | 
|  | *(sb_data_p + index)); | 
|  | } | 
|  |  | 
|  | static void bnx2x_zero_fp_sb(struct bnx2x *bp, int fw_sb_id) | 
|  | { | 
|  | uint32_t *sb_data_p; | 
|  | uint32_t data_size = 0; | 
|  | struct hc_status_block_data_e2 sb_data_e2; | 
|  | struct hc_status_block_data_e1x sb_data_e1x; | 
|  |  | 
|  | /* disable the function first */ | 
|  | if (!CHIP_IS_E1x(bp)) { | 
|  | memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2)); | 
|  | sb_data_e2.common.state = SB_DISABLED; | 
|  | sb_data_e2.common.p_func.vf_valid = false; | 
|  | sb_data_p = (uint32_t *)&sb_data_e2; | 
|  | data_size = sizeof(struct hc_status_block_data_e2)/sizeof(uint32_t); | 
|  | } else { | 
|  | memset(&sb_data_e1x, 0, | 
|  | sizeof(struct hc_status_block_data_e1x)); | 
|  | sb_data_e1x.common.state = SB_DISABLED; | 
|  | sb_data_e1x.common.p_func.vf_valid = false; | 
|  | sb_data_p = (uint32_t *)&sb_data_e1x; | 
|  | data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(uint32_t); | 
|  | } | 
|  | bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size); | 
|  |  | 
|  | bnx2x_fill(bp, BAR_CSTRORM_INTMEM + | 
|  | CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id), 0, | 
|  | CSTORM_STATUS_BLOCK_SIZE); | 
|  | bnx2x_fill(bp, BAR_CSTRORM_INTMEM + | 
|  | CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id), 0, | 
|  | CSTORM_SYNC_BLOCK_SIZE); | 
|  | } | 
|  |  | 
|  | /* helper:  writes SP SB data to FW */ | 
|  | static void bnx2x_wr_sp_sb_data(struct bnx2x *bp, | 
|  | struct hc_sp_status_block_data *sp_sb_data) | 
|  | { | 
|  | int func = BP_FUNC(bp); | 
|  | int i; | 
|  | for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(uint32_t); i++) | 
|  | REG_WR(bp, BAR_CSTRORM_INTMEM + | 
|  | CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) + | 
|  | i*sizeof(uint32_t), | 
|  | *((uint32_t *)sp_sb_data + i)); | 
|  | } | 
|  |  | 
|  | static void bnx2x_zero_sp_sb(struct bnx2x *bp) | 
|  | { | 
|  | int func = BP_FUNC(bp); | 
|  | struct hc_sp_status_block_data sp_sb_data; | 
|  | memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data)); | 
|  |  | 
|  | sp_sb_data.state = SB_DISABLED; | 
|  | sp_sb_data.p_func.vf_valid = false; | 
|  |  | 
|  | bnx2x_wr_sp_sb_data(bp, &sp_sb_data); | 
|  |  | 
|  | bnx2x_fill(bp, BAR_CSTRORM_INTMEM + | 
|  | CSTORM_SP_STATUS_BLOCK_OFFSET(func), 0, | 
|  | CSTORM_SP_STATUS_BLOCK_SIZE); | 
|  | bnx2x_fill(bp, BAR_CSTRORM_INTMEM + | 
|  | CSTORM_SP_SYNC_BLOCK_OFFSET(func), 0, | 
|  | CSTORM_SP_SYNC_BLOCK_SIZE); | 
|  | } | 
|  |  | 
|  | static void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm, | 
|  | int igu_sb_id, int igu_seg_id) | 
|  | { | 
|  | hc_sm->igu_sb_id = igu_sb_id; | 
|  | hc_sm->igu_seg_id = igu_seg_id; | 
|  | hc_sm->timer_value = 0xFF; | 
|  | hc_sm->time_to_expire = 0xFFFFFFFF; | 
|  | } | 
|  |  | 
|  | /* allocates state machine ids. */ | 
|  | static void bnx2x_map_sb_state_machines(struct hc_index_data *index_data) | 
|  | { | 
|  | /* zero out state machine indices */ | 
|  | /* rx indices */ | 
|  | index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID; | 
|  |  | 
|  | /* tx indices */ | 
|  | index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID; | 
|  | index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID; | 
|  | index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID; | 
|  | index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID; | 
|  |  | 
|  | /* map indices */ | 
|  | /* rx indices */ | 
|  | index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |= | 
|  | SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT; | 
|  |  | 
|  | /* tx indices */ | 
|  | index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |= | 
|  | SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT; | 
|  | index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |= | 
|  | SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT; | 
|  | index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |= | 
|  | SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT; | 
|  | index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |= | 
|  | SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT; | 
|  | } | 
|  |  | 
|  | void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid, | 
|  | uint8_t vf_valid, int fw_sb_id, int igu_sb_id) | 
|  | { | 
|  | int igu_seg_id; | 
|  |  | 
|  | struct hc_status_block_data_e2 sb_data_e2; | 
|  | struct hc_status_block_data_e1x sb_data_e1x; | 
|  | struct hc_status_block_sm  *hc_sm_p; | 
|  | int data_size; | 
|  | uint32_t *sb_data_p; | 
|  |  | 
|  | if (CHIP_INT_MODE_IS_BC(bp)) | 
|  | igu_seg_id = HC_SEG_ACCESS_NORM; | 
|  | else | 
|  | igu_seg_id = IGU_SEG_ACCESS_NORM; | 
|  |  | 
|  | bnx2x_zero_fp_sb(bp, fw_sb_id); | 
|  |  | 
|  | if (!CHIP_IS_E1x(bp)) { | 
|  | memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2)); | 
|  | sb_data_e2.common.state = SB_ENABLED; | 
|  | sb_data_e2.common.p_func.pf_id = BP_FUNC(bp); | 
|  | sb_data_e2.common.p_func.vf_id = vfid; | 
|  | sb_data_e2.common.p_func.vf_valid = vf_valid; | 
|  | sb_data_e2.common.p_func.vnic_id = BP_VN(bp); | 
|  | sb_data_e2.common.same_igu_sb_1b = true; | 
|  | sb_data_e2.common.host_sb_addr.hi = U64_HI(mapping); | 
|  | sb_data_e2.common.host_sb_addr.lo = U64_LO(mapping); | 
|  | hc_sm_p = sb_data_e2.common.state_machine; | 
|  | sb_data_p = (uint32_t *)&sb_data_e2; | 
|  | data_size = sizeof(struct hc_status_block_data_e2)/sizeof(uint32_t); | 
|  | bnx2x_map_sb_state_machines(sb_data_e2.index_data); | 
|  | } else { | 
|  | memset(&sb_data_e1x, 0, | 
|  | sizeof(struct hc_status_block_data_e1x)); | 
|  | sb_data_e1x.common.state = SB_ENABLED; | 
|  | sb_data_e1x.common.p_func.pf_id = BP_FUNC(bp); | 
|  | sb_data_e1x.common.p_func.vf_id = 0xff; | 
|  | sb_data_e1x.common.p_func.vf_valid = false; | 
|  | sb_data_e1x.common.p_func.vnic_id = BP_VN(bp); | 
|  | sb_data_e1x.common.same_igu_sb_1b = true; | 
|  | sb_data_e1x.common.host_sb_addr.hi = U64_HI(mapping); | 
|  | sb_data_e1x.common.host_sb_addr.lo = U64_LO(mapping); | 
|  | hc_sm_p = sb_data_e1x.common.state_machine; | 
|  | sb_data_p = (uint32_t *)&sb_data_e1x; | 
|  | data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(uint32_t); | 
|  | bnx2x_map_sb_state_machines(sb_data_e1x.index_data); | 
|  | } | 
|  |  | 
|  | bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID], | 
|  | igu_sb_id, igu_seg_id); | 
|  | bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID], | 
|  | igu_sb_id, igu_seg_id); | 
|  |  | 
|  | DP(NETIF_MSG_IFUP, "Init FW SB %d\n", fw_sb_id); | 
|  |  | 
|  | /* write indices to HW - PCI guarantees endianity of regpairs */ | 
|  | bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size); | 
|  | } | 
|  |  | 
|  | static void bnx2x_update_coalesce_sb(struct bnx2x *bp, uint8_t fw_sb_id, | 
|  | uint16_t tx_usec, uint16_t rx_usec) | 
|  | { | 
|  | bnx2x_update_coalesce_sb_index(bp, fw_sb_id, HC_INDEX_ETH_RX_CQ_CONS, | 
|  | false, rx_usec); | 
|  | bnx2x_update_coalesce_sb_index(bp, fw_sb_id, | 
|  | HC_INDEX_ETH_TX_CQ_CONS_COS0, false, | 
|  | tx_usec); | 
|  | bnx2x_update_coalesce_sb_index(bp, fw_sb_id, | 
|  | HC_INDEX_ETH_TX_CQ_CONS_COS1, false, | 
|  | tx_usec); | 
|  | bnx2x_update_coalesce_sb_index(bp, fw_sb_id, | 
|  | HC_INDEX_ETH_TX_CQ_CONS_COS2, false, | 
|  | tx_usec); | 
|  | } | 
|  |  | 
|  | static void bnx2x_init_def_sb(struct bnx2x *bp) | 
|  | { | 
|  | struct host_sp_status_block *def_sb = bp->def_status_blk; | 
|  | dma_addr_t mapping = bp->def_status_blk_mapping; | 
|  | int igu_sp_sb_index; | 
|  | int igu_seg_id; | 
|  | int port = BP_PORT(bp); | 
|  | int func = BP_FUNC(bp); | 
|  | int reg_offset, reg_offset_en5; | 
|  | uint64_t section; | 
|  | int index; | 
|  | struct hc_sp_status_block_data sp_sb_data; | 
|  | memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data)); | 
|  |  | 
|  | if (CHIP_INT_MODE_IS_BC(bp)) { | 
|  | igu_sp_sb_index = DEF_SB_IGU_ID; | 
|  | igu_seg_id = HC_SEG_ACCESS_DEF; | 
|  | } else { | 
|  | igu_sp_sb_index = bp->igu_dsb_id; | 
|  | igu_seg_id = IGU_SEG_ACCESS_DEF; | 
|  | } | 
|  |  | 
|  | /* ATTN */ | 
|  | section = ((uint64_t)mapping) + offsetof(struct host_sp_status_block, | 
|  | atten_status_block); | 
|  | def_sb->atten_status_block.status_block_id = igu_sp_sb_index; | 
|  |  | 
|  | bp->attn_state = 0; | 
|  |  | 
|  | reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : | 
|  | MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0); | 
|  | reg_offset_en5 = (port ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 : | 
|  | MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0); | 
|  | for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) { | 
|  | int sindex; | 
|  | /* take care of sig[0]..sig[4] */ | 
|  | for (sindex = 0; sindex < 4; sindex++) | 
|  | bp->attn_group[index].sig[sindex] = | 
|  | REG_RD(bp, reg_offset + sindex*0x4 + 0x10*index); | 
|  |  | 
|  | if (!CHIP_IS_E1x(bp)) | 
|  | /* | 
|  | * enable5 is separate from the rest of the registers, | 
|  | * and therefore the address skip is 4 | 
|  | * and not 16 between the different groups | 
|  | */ | 
|  | bp->attn_group[index].sig[4] = REG_RD(bp, | 
|  | reg_offset_en5 + 0x4*index); | 
|  | else | 
|  | bp->attn_group[index].sig[4] = 0; | 
|  | } | 
|  |  | 
|  | if (bp->common.int_block == INT_BLOCK_HC) { | 
|  | reg_offset = (port ? HC_REG_ATTN_MSG1_ADDR_L : | 
|  | HC_REG_ATTN_MSG0_ADDR_L); | 
|  |  | 
|  | REG_WR(bp, reg_offset, U64_LO(section)); | 
|  | REG_WR(bp, reg_offset + 4, U64_HI(section)); | 
|  | } else if (!CHIP_IS_E1x(bp)) { | 
|  | REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section)); | 
|  | REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section)); | 
|  | } | 
|  |  | 
|  | section = ((uint64_t)mapping) + offsetof(struct host_sp_status_block, | 
|  | sp_sb); | 
|  |  | 
|  | bnx2x_zero_sp_sb(bp); | 
|  |  | 
|  | /* PCI guarantees endianity of regpairs */ | 
|  | sp_sb_data.state		= SB_ENABLED; | 
|  | sp_sb_data.host_sb_addr.lo	= U64_LO(section); | 
|  | sp_sb_data.host_sb_addr.hi	= U64_HI(section); | 
|  | sp_sb_data.igu_sb_id		= igu_sp_sb_index; | 
|  | sp_sb_data.igu_seg_id		= igu_seg_id; | 
|  | sp_sb_data.p_func.pf_id		= func; | 
|  | sp_sb_data.p_func.vnic_id	= BP_VN(bp); | 
|  | sp_sb_data.p_func.vf_id		= 0xff; | 
|  |  | 
|  | bnx2x_wr_sp_sb_data(bp, &sp_sb_data); | 
|  |  | 
|  | bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0); | 
|  | } | 
|  |  | 
|  | void bnx2x_update_coalesce(struct bnx2x *bp) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for_each_eth_queue(bp, i) | 
|  | bnx2x_update_coalesce_sb(bp, bp->fp[i].fw_sb_id, | 
|  | bp->tx_ticks, bp->rx_ticks); | 
|  | } | 
|  |  | 
|  | static void bnx2x_init_sp_ring(struct bnx2x *bp) | 
|  | { | 
|  | spinlock_init_irqsave(&bp->spq_lock); | 
|  | atomic_set(&bp->cq_spq_left, MAX_SPQ_PENDING); | 
|  |  | 
|  | bp->spq_prod_idx = 0; | 
|  | bp->dsb_sp_prod = BNX2X_SP_DSB_INDEX; | 
|  | bp->spq_prod_bd = bp->spq; | 
|  | bp->spq_last_bd = bp->spq_prod_bd + MAX_SP_DESC_CNT; | 
|  | } | 
|  |  | 
|  | static void bnx2x_init_eq_ring(struct bnx2x *bp) | 
|  | { | 
|  | int i; | 
|  | for (i = 1; i <= NUM_EQ_PAGES; i++) { | 
|  | union event_ring_elem *elem = | 
|  | &bp->eq_ring[EQ_DESC_CNT_PAGE * i - 1]; | 
|  |  | 
|  | elem->next_page.addr.hi = | 
|  | cpu_to_le32(U64_HI(bp->eq_mapping + | 
|  | BCM_PAGE_SIZE * (i % NUM_EQ_PAGES))); | 
|  | elem->next_page.addr.lo = | 
|  | cpu_to_le32(U64_LO(bp->eq_mapping + | 
|  | BCM_PAGE_SIZE*(i % NUM_EQ_PAGES))); | 
|  | } | 
|  | bp->eq_cons = 0; | 
|  | bp->eq_prod = NUM_EQ_DESC; | 
|  | bp->eq_cons_sb = BNX2X_EQ_INDEX; | 
|  | /* we want a warning message before it gets wrought... */ | 
|  | atomic_set(&bp->eq_spq_left, | 
|  | MIN_T(int, MAX_SP_DESC_CNT - MAX_SPQ_PENDING, NUM_EQ_DESC) - 1); | 
|  | } | 
|  |  | 
|  | /* called with netif_addr_lock_bh() */ | 
|  | static int bnx2x_set_q_rx_mode(struct bnx2x *bp, uint8_t cl_id, | 
|  | unsigned long rx_mode_flags, | 
|  | unsigned long rx_accept_flags, | 
|  | unsigned long tx_accept_flags, | 
|  | unsigned long ramrod_flags) | 
|  | { | 
|  | struct bnx2x_rx_mode_ramrod_params ramrod_param; | 
|  | int rc; | 
|  |  | 
|  | memset(&ramrod_param, 0, sizeof(ramrod_param)); | 
|  |  | 
|  | /* Prepare ramrod parameters */ | 
|  | ramrod_param.cid = 0; | 
|  | ramrod_param.cl_id = cl_id; | 
|  | ramrod_param.rx_mode_obj = &bp->rx_mode_obj; | 
|  | ramrod_param.func_id = BP_FUNC(bp); | 
|  |  | 
|  | ramrod_param.pstate = &bp->sp_state; | 
|  | ramrod_param.state = BNX2X_FILTER_RX_MODE_PENDING; | 
|  |  | 
|  | ramrod_param.rdata = bnx2x_sp(bp, rx_mode_rdata); | 
|  | ramrod_param.rdata_mapping = bnx2x_sp_mapping(bp, rx_mode_rdata); | 
|  |  | 
|  | set_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state); | 
|  |  | 
|  | ramrod_param.ramrod_flags = ramrod_flags; | 
|  | ramrod_param.rx_mode_flags = rx_mode_flags; | 
|  |  | 
|  | ramrod_param.rx_accept_flags = rx_accept_flags; | 
|  | ramrod_param.tx_accept_flags = tx_accept_flags; | 
|  |  | 
|  | rc = bnx2x_config_rx_mode(bp, &ramrod_param); | 
|  | if (rc < 0) { | 
|  | BNX2X_ERR("Set rx_mode %d failed\n", bp->rx_mode); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int bnx2x_fill_accept_flags(struct bnx2x *bp, uint32_t rx_mode, | 
|  | unsigned long *rx_accept_flags, | 
|  | unsigned long *tx_accept_flags) | 
|  | { | 
|  | /* Clear the flags first */ | 
|  | *rx_accept_flags = 0; | 
|  | *tx_accept_flags = 0; | 
|  |  | 
|  | switch (rx_mode) { | 
|  | case BNX2X_RX_MODE_NONE: | 
|  | /* | 
|  | * 'drop all' supersedes any accept flags that may have been | 
|  | * passed to the function. | 
|  | */ | 
|  | break; | 
|  | case BNX2X_RX_MODE_NORMAL: | 
|  | __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags); | 
|  | __set_bit(BNX2X_ACCEPT_MULTICAST, rx_accept_flags); | 
|  | __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags); | 
|  |  | 
|  | /* internal switching mode */ | 
|  | __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags); | 
|  | __set_bit(BNX2X_ACCEPT_MULTICAST, tx_accept_flags); | 
|  | __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags); | 
|  |  | 
|  | break; | 
|  | case BNX2X_RX_MODE_ALLMULTI: | 
|  | __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags); | 
|  | __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags); | 
|  | __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags); | 
|  |  | 
|  | /* internal switching mode */ | 
|  | __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags); | 
|  | __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags); | 
|  | __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags); | 
|  |  | 
|  | break; | 
|  | case BNX2X_RX_MODE_PROMISC: | 
|  | /* According to definition of SI mode, iface in promisc mode | 
|  | * should receive matched and unmatched (in resolution of port) | 
|  | * unicast packets. | 
|  | */ | 
|  | __set_bit(BNX2X_ACCEPT_UNMATCHED, rx_accept_flags); | 
|  | __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags); | 
|  | __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags); | 
|  | __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags); | 
|  |  | 
|  | /* internal switching mode */ | 
|  | __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags); | 
|  | __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags); | 
|  |  | 
|  | if (IS_MF_SI(bp)) | 
|  | __set_bit(BNX2X_ACCEPT_ALL_UNICAST, tx_accept_flags); | 
|  | else | 
|  | __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags); | 
|  |  | 
|  | break; | 
|  | default: | 
|  | BNX2X_ERR("Unknown rx_mode: %d\n", rx_mode); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* Set ACCEPT_ANY_VLAN as we do not enable filtering by VLAN */ | 
|  | if (rx_mode != BNX2X_RX_MODE_NONE) { | 
|  | __set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags); | 
|  | __set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* called with netif_addr_lock_bh() */ | 
|  | static int bnx2x_set_storm_rx_mode(struct bnx2x *bp) | 
|  | { | 
|  | unsigned long rx_mode_flags = 0, ramrod_flags = 0; | 
|  | unsigned long rx_accept_flags = 0, tx_accept_flags = 0; | 
|  | int rc; | 
|  |  | 
|  | if (!NO_FCOE(bp)) | 
|  | /* Configure rx_mode of FCoE Queue */ | 
|  | __set_bit(BNX2X_RX_MODE_FCOE_ETH, &rx_mode_flags); | 
|  |  | 
|  | rc = bnx2x_fill_accept_flags(bp, bp->rx_mode, &rx_accept_flags, | 
|  | &tx_accept_flags); | 
|  | if (rc) | 
|  | return rc; | 
|  |  | 
|  | __set_bit(RAMROD_RX, &ramrod_flags); | 
|  | __set_bit(RAMROD_TX, &ramrod_flags); | 
|  |  | 
|  | return bnx2x_set_q_rx_mode(bp, bp->fp->cl_id, rx_mode_flags, | 
|  | rx_accept_flags, tx_accept_flags, | 
|  | ramrod_flags); | 
|  | } | 
|  |  | 
|  | static void bnx2x_init_internal_common(struct bnx2x *bp) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | /* Zero this manually as its initialization is | 
|  | currently missing in the initTool */ | 
|  | for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++) | 
|  | REG_WR(bp, BAR_USTRORM_INTMEM + | 
|  | USTORM_AGG_DATA_OFFSET + i * 4, 0); | 
|  | if (!CHIP_IS_E1x(bp)) { | 
|  | REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET, | 
|  | CHIP_INT_MODE_IS_BC(bp) ? | 
|  | HC_IGU_BC_MODE : HC_IGU_NBC_MODE); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void bnx2x_init_internal(struct bnx2x *bp, uint32_t load_code) | 
|  | { | 
|  | switch (load_code) { | 
|  | case FW_MSG_CODE_DRV_LOAD_COMMON: | 
|  | case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP: | 
|  | bnx2x_init_internal_common(bp); | 
|  | /* no break */ | 
|  |  | 
|  | case FW_MSG_CODE_DRV_LOAD_PORT: | 
|  | /* nothing to do */ | 
|  | /* no break */ | 
|  |  | 
|  | case FW_MSG_CODE_DRV_LOAD_FUNCTION: | 
|  | /* internal memory per function is | 
|  | initialized inside bnx2x_pf_init */ | 
|  | break; | 
|  |  | 
|  | default: | 
|  | BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline uint8_t bnx2x_fp_igu_sb_id(struct bnx2x_fastpath *fp) | 
|  | { | 
|  | return fp->bp->igu_base_sb + fp->index + CNIC_SUPPORT(fp->bp); | 
|  | } | 
|  |  | 
|  | static inline uint8_t bnx2x_fp_fw_sb_id(struct bnx2x_fastpath *fp) | 
|  | { | 
|  | return fp->bp->base_fw_ndsb + fp->index + CNIC_SUPPORT(fp->bp); | 
|  | } | 
|  |  | 
|  | static uint8_t bnx2x_fp_cl_id(struct bnx2x_fastpath *fp) | 
|  | { | 
|  | if (CHIP_IS_E1x(fp->bp)) | 
|  | return BP_L_ID(fp->bp) + fp->index; | 
|  | else	/* We want Client ID to be the same as IGU SB ID for 57712 */ | 
|  | return bnx2x_fp_igu_sb_id(fp); | 
|  | } | 
|  |  | 
|  | static void bnx2x_init_eth_fp(struct bnx2x *bp, int fp_idx) | 
|  | { | 
|  | struct bnx2x_fastpath *fp = &bp->fp[fp_idx]; | 
|  | uint8_t cos; | 
|  | unsigned long q_type = 0; | 
|  | uint32_t cids[BNX2X_MULTI_TX_COS] = { 0 }; | 
|  | fp->rx_queue = fp_idx; | 
|  | fp->cid = fp_idx; | 
|  | fp->cl_id = bnx2x_fp_cl_id(fp); | 
|  | fp->fw_sb_id = bnx2x_fp_fw_sb_id(fp); | 
|  | fp->igu_sb_id = bnx2x_fp_igu_sb_id(fp); | 
|  | /* qZone id equals to FW (per path) client id */ | 
|  | fp->cl_qzone_id  = bnx2x_fp_qzone_id(fp); | 
|  |  | 
|  | /* init shortcut */ | 
|  | fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(fp); | 
|  |  | 
|  | /* Setup SB indices */ | 
|  | fp->rx_cons_sb = BNX2X_RX_SB_INDEX; | 
|  |  | 
|  | /* Configure Queue State object */ | 
|  | __set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type); | 
|  | __set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type); | 
|  |  | 
|  | assert(!(fp->max_cos > BNX2X_MULTI_TX_COS)); | 
|  |  | 
|  | /* init tx data */ | 
|  | for_each_cos_in_tx_queue(fp, cos) { | 
|  | bnx2x_init_txdata(bp, fp->txdata_ptr[cos], | 
|  | CID_COS_TO_TX_ONLY_CID(fp->cid, cos, bp), | 
|  | FP_COS_TO_TXQ(fp, cos, bp), | 
|  | BNX2X_TX_SB_INDEX_BASE + cos, fp); | 
|  | cids[cos] = fp->txdata_ptr[cos]->cid; | 
|  | } | 
|  |  | 
|  | /* nothing more for vf to do here */ | 
|  | if (IS_VF(bp)) | 
|  | return; | 
|  |  | 
|  | bnx2x_init_sb(bp, fp->status_blk_mapping, BNX2X_VF_ID_INVALID, false, | 
|  | fp->fw_sb_id, fp->igu_sb_id); | 
|  | bnx2x_update_fpsb_idx(fp); | 
|  | bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id, cids, | 
|  | fp->max_cos, BP_FUNC(bp), bnx2x_sp(bp, q_rdata), | 
|  | bnx2x_sp_mapping(bp, q_rdata), q_type); | 
|  |  | 
|  | /** | 
|  | * Configure classification DBs: Always enable Tx switching | 
|  | */ | 
|  | bnx2x_init_vlan_mac_fp_objs(fp, BNX2X_OBJ_TYPE_RX_TX); | 
|  |  | 
|  | DP(NETIF_MSG_IFUP, | 
|  | "queue[%d]:  bnx2x_init_sb(%p,%p)  cl_id %d  fw_sb %d  igu_sb %d\n", | 
|  | fp_idx, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id, | 
|  | fp->igu_sb_id); | 
|  | } | 
|  |  | 
|  | static void bnx2x_init_tx_ring_one(struct bnx2x_fp_txdata *txdata) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 1; i <= NUM_TX_RINGS; i++) { | 
|  | struct eth_tx_next_bd *tx_next_bd = | 
|  | &txdata->tx_desc_ring[TX_DESC_CNT * i - 1].next_bd; | 
|  |  | 
|  | tx_next_bd->addr_hi = | 
|  | cpu_to_le32(U64_HI(txdata->tx_desc_mapping + | 
|  | BCM_PAGE_SIZE*(i % NUM_TX_RINGS))); | 
|  | tx_next_bd->addr_lo = | 
|  | cpu_to_le32(U64_LO(txdata->tx_desc_mapping + | 
|  | BCM_PAGE_SIZE*(i % NUM_TX_RINGS))); | 
|  | } | 
|  |  | 
|  | *txdata->tx_cons_sb = cpu_to_le16(0); | 
|  |  | 
|  | SET_FLAG(txdata->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1); | 
|  | txdata->tx_db.data.zero_fill1 = 0; | 
|  | txdata->tx_db.data.prod = 0; | 
|  |  | 
|  | txdata->tx_pkt_prod = 0; | 
|  | txdata->tx_pkt_cons = 0; | 
|  | txdata->tx_bd_prod = 0; | 
|  | txdata->tx_bd_cons = 0; | 
|  | txdata->tx_pkt = 0; | 
|  | } | 
|  |  | 
|  | static void bnx2x_init_tx_rings_cnic(struct bnx2x *bp) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for_each_tx_queue_cnic(bp, i) | 
|  | bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[0]); | 
|  | } | 
|  |  | 
|  | static void bnx2x_init_tx_rings(struct bnx2x *bp) | 
|  | { | 
|  | int i; | 
|  | uint8_t cos; | 
|  |  | 
|  | for_each_eth_queue(bp, i) | 
|  | for_each_cos_in_tx_queue(&bp->fp[i], cos) | 
|  | bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[cos]); | 
|  | } | 
|  |  | 
|  | static void bnx2x_init_fcoe_fp(struct bnx2x *bp) | 
|  | { | 
|  | panic("Not implemented"); | 
|  | #if 0 // AKAROS_PORT | 
|  | struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp); | 
|  | unsigned long q_type = 0; | 
|  |  | 
|  | bnx2x_fcoe(bp, rx_queue) = BNX2X_NUM_ETH_QUEUES(bp); | 
|  | bnx2x_fcoe(bp, cl_id) = bnx2x_cnic_eth_cl_id(bp, | 
|  | BNX2X_FCOE_ETH_CL_ID_IDX); | 
|  | bnx2x_fcoe(bp, cid) = BNX2X_FCOE_ETH_CID(bp); | 
|  | bnx2x_fcoe(bp, fw_sb_id) = DEF_SB_ID; | 
|  | bnx2x_fcoe(bp, igu_sb_id) = bp->igu_dsb_id; | 
|  | bnx2x_fcoe(bp, rx_cons_sb) = BNX2X_FCOE_L2_RX_INDEX; | 
|  | bnx2x_init_txdata(bp, bnx2x_fcoe(bp, txdata_ptr[0]), | 
|  | fp->cid, FCOE_TXQ_IDX(bp), BNX2X_FCOE_L2_TX_INDEX, | 
|  | fp); | 
|  |  | 
|  | DP(NETIF_MSG_IFUP, "created fcoe tx data (fp index %d)\n", fp->index); | 
|  |  | 
|  | /* qZone id equals to FW (per path) client id */ | 
|  | bnx2x_fcoe(bp, cl_qzone_id) = bnx2x_fp_qzone_id(fp); | 
|  | /* init shortcut */ | 
|  | bnx2x_fcoe(bp, ustorm_rx_prods_offset) = | 
|  | bnx2x_rx_ustorm_prods_offset(fp); | 
|  |  | 
|  | /* Configure Queue State object */ | 
|  | __set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type); | 
|  | __set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type); | 
|  |  | 
|  | /* No multi-CoS for FCoE L2 client */ | 
|  | assert(!(fp->max_cos != 1)); | 
|  |  | 
|  | bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id, | 
|  | &fp->cid, 1, BP_FUNC(bp), bnx2x_sp(bp, q_rdata), | 
|  | bnx2x_sp_mapping(bp, q_rdata), q_type); | 
|  |  | 
|  | DP(NETIF_MSG_IFUP, | 
|  | "queue[%d]: bnx2x_init_sb(%p,%p) cl_id %d fw_sb %d igu_sb %d\n", | 
|  | fp->index, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id, | 
|  | fp->igu_sb_id); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | void bnx2x_nic_init_cnic(struct bnx2x *bp) | 
|  | { | 
|  | if (!NO_FCOE(bp)) | 
|  | bnx2x_init_fcoe_fp(bp); | 
|  |  | 
|  | bnx2x_init_sb(bp, bp->cnic_sb_mapping, | 
|  | BNX2X_VF_ID_INVALID, false, | 
|  | bnx2x_cnic_fw_sb_id(bp), bnx2x_cnic_igu_sb_id(bp)); | 
|  |  | 
|  | /* ensure status block indices were read */ | 
|  | rmb(); | 
|  | bnx2x_init_rx_rings_cnic(bp); | 
|  | bnx2x_init_tx_rings_cnic(bp); | 
|  |  | 
|  | /* flush all */ | 
|  | mb(); | 
|  | bus_wmb(); | 
|  | } | 
|  |  | 
|  | void bnx2x_pre_irq_nic_init(struct bnx2x *bp) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | /* Setup NIC internals and enable interrupts */ | 
|  | for_each_eth_queue(bp, i) | 
|  | bnx2x_init_eth_fp(bp, i); | 
|  |  | 
|  | /* ensure status block indices were read */ | 
|  | rmb(); | 
|  | bnx2x_init_rx_rings(bp); | 
|  | bnx2x_init_tx_rings(bp); | 
|  |  | 
|  | if (IS_PF(bp)) { | 
|  | /* Initialize MOD_ABS interrupts */ | 
|  | bnx2x_init_mod_abs_int(bp, &bp->link_vars, bp->common.chip_id, | 
|  | bp->common.shmem_base, | 
|  | bp->common.shmem2_base, BP_PORT(bp)); | 
|  |  | 
|  | /* initialize the default status block and sp ring */ | 
|  | bnx2x_init_def_sb(bp); | 
|  | bnx2x_update_dsb_idx(bp); | 
|  | bnx2x_init_sp_ring(bp); | 
|  | } else { | 
|  | bnx2x_memset_stats(bp); | 
|  | } | 
|  | } | 
|  |  | 
|  | void bnx2x_post_irq_nic_init(struct bnx2x *bp, uint32_t load_code) | 
|  | { | 
|  | bnx2x_init_eq_ring(bp); | 
|  | bnx2x_init_internal(bp, load_code); | 
|  | bnx2x_pf_init(bp); | 
|  | bnx2x_stats_init(bp); | 
|  |  | 
|  | /* flush all before enabling interrupts */ | 
|  | mb(); | 
|  | bus_wmb(); | 
|  |  | 
|  | bnx2x_int_enable(bp); | 
|  |  | 
|  | /* Check for SPIO5 */ | 
|  | bnx2x_attn_int_deasserted0(bp, | 
|  | REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + BP_PORT(bp)*4) & | 
|  | AEU_INPUTS_ATTN_BITS_SPIO5); | 
|  | } | 
|  |  | 
|  | /* gzip service functions */ | 
|  | static int bnx2x_gunzip_init(struct bnx2x *bp) | 
|  | { | 
|  | bp->gunzip_buf = dma_alloc_coherent(&bp->pdev->dev, FW_BUF_SIZE, | 
|  | &bp->gunzip_mapping, MEM_WAIT); | 
|  | if (bp->gunzip_buf  == NULL) | 
|  | goto gunzip_nomem1; | 
|  |  | 
|  | bp->strm = kmalloc(sizeof(*bp->strm), MEM_WAIT); | 
|  | if (bp->strm  == NULL) | 
|  | goto gunzip_nomem2; | 
|  |  | 
|  | bp->strm->workspace = vmalloc(zlib_inflate_workspacesize()); | 
|  | if (bp->strm->workspace == NULL) | 
|  | goto gunzip_nomem3; | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | gunzip_nomem3: | 
|  | kfree(bp->strm); | 
|  | bp->strm = NULL; | 
|  |  | 
|  | gunzip_nomem2: | 
|  | dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf, | 
|  | bp->gunzip_mapping); | 
|  | bp->gunzip_buf = NULL; | 
|  |  | 
|  | gunzip_nomem1: | 
|  | BNX2X_ERR("Cannot allocate firmware buffer for un-compression\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | static void bnx2x_gunzip_end(struct bnx2x *bp) | 
|  | { | 
|  | if (bp->strm) { | 
|  | vfree(bp->strm->workspace, zlib_inflate_workspacesize()); | 
|  | kfree(bp->strm); | 
|  | bp->strm = NULL; | 
|  | } | 
|  |  | 
|  | if (bp->gunzip_buf) { | 
|  | dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf, | 
|  | bp->gunzip_mapping); | 
|  | bp->gunzip_buf = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int bnx2x_gunzip(struct bnx2x *bp, const uint8_t *zbuf, int len) | 
|  | { | 
|  | int n, rc; | 
|  |  | 
|  | /* check gzip header */ | 
|  | if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) { | 
|  | BNX2X_ERR("Bad gzip header\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | n = 10; | 
|  |  | 
|  | #define FNAME				0x8 | 
|  |  | 
|  | if (zbuf[3] & FNAME) | 
|  | while ((zbuf[n++] != 0) && (n < len)); | 
|  |  | 
|  | bp->strm->next_in = (typeof(bp->strm->next_in))zbuf + n; | 
|  | bp->strm->avail_in = len - n; | 
|  | bp->strm->next_out = bp->gunzip_buf; | 
|  | bp->strm->avail_out = FW_BUF_SIZE; | 
|  |  | 
|  | rc = zlib_inflateInit2(bp->strm, -MAX_WBITS); | 
|  | if (rc != Z_OK) | 
|  | return rc; | 
|  |  | 
|  | rc = zlib_inflate(bp->strm, Z_FINISH); | 
|  | if ((rc != Z_OK) && (rc != Z_STREAM_END)) | 
|  | netdev_err(bp->dev, "Firmware decompression error: %s\n", | 
|  | bp->strm->msg); | 
|  |  | 
|  | bp->gunzip_outlen = (FW_BUF_SIZE - bp->strm->avail_out); | 
|  | if (bp->gunzip_outlen & 0x3) | 
|  | netdev_err(bp->dev, | 
|  | "Firmware decompression error: gunzip_outlen (%d) not aligned\n", | 
|  | bp->gunzip_outlen); | 
|  | bp->gunzip_outlen >>= 2; | 
|  |  | 
|  | zlib_inflateEnd(bp->strm); | 
|  |  | 
|  | if (rc == Z_STREAM_END) | 
|  | return 0; | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /* nic load/unload */ | 
|  |  | 
|  | /* | 
|  | * General service functions | 
|  | */ | 
|  |  | 
|  | /* send a NIG loopback debug packet */ | 
|  | static void bnx2x_lb_pckt(struct bnx2x *bp) | 
|  | { | 
|  | uint32_t wb_write[3]; | 
|  |  | 
|  | /* Ethernet source and destination addresses */ | 
|  | wb_write[0] = 0x55555555; | 
|  | wb_write[1] = 0x55555555; | 
|  | wb_write[2] = 0x20;		/* SOP */ | 
|  | REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3); | 
|  |  | 
|  | /* NON-IP protocol */ | 
|  | wb_write[0] = 0x09000000; | 
|  | wb_write[1] = 0x55555555; | 
|  | wb_write[2] = 0x10;		/* EOP, eop_bvalid = 0 */ | 
|  | REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3); | 
|  | } | 
|  |  | 
|  | /* some of the internal memories | 
|  | * are not directly readable from the driver | 
|  | * to test them we send debug packets | 
|  | */ | 
|  | static int bnx2x_int_mem_test(struct bnx2x *bp) | 
|  | { | 
|  | int factor; | 
|  | int count, i; | 
|  | uint32_t val = 0; | 
|  |  | 
|  | if (CHIP_REV_IS_FPGA(bp)) | 
|  | factor = 120; | 
|  | else if (CHIP_REV_IS_EMUL(bp)) | 
|  | factor = 200; | 
|  | else | 
|  | factor = 1; | 
|  |  | 
|  | /* Disable inputs of parser neighbor blocks */ | 
|  | REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0); | 
|  | REG_WR(bp, TCM_REG_PRS_IFEN, 0x0); | 
|  | REG_WR(bp, CFC_REG_DEBUG0, 0x1); | 
|  | REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0); | 
|  |  | 
|  | /*  Write 0 to parser credits for CFC search request */ | 
|  | REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0); | 
|  |  | 
|  | /* send Ethernet packet */ | 
|  | bnx2x_lb_pckt(bp); | 
|  |  | 
|  | /* TODO do i reset NIG statistic? */ | 
|  | /* Wait until NIG register shows 1 packet of size 0x10 */ | 
|  | count = 1000 * factor; | 
|  | while (count) { | 
|  |  | 
|  | bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2); | 
|  | val = *bnx2x_sp(bp, wb_data[0]); | 
|  | if (val == 0x10) | 
|  | break; | 
|  |  | 
|  | kthread_usleep(10000); | 
|  | count--; | 
|  | } | 
|  | if (val != 0x10) { | 
|  | BNX2X_ERR("NIG timeout  val = 0x%x\n", val); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* Wait until PRS register shows 1 packet */ | 
|  | count = 1000 * factor; | 
|  | while (count) { | 
|  | val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS); | 
|  | if (val == 1) | 
|  | break; | 
|  |  | 
|  | kthread_usleep(10000); | 
|  | count--; | 
|  | } | 
|  | if (val != 0x1) { | 
|  | BNX2X_ERR("PRS timeout val = 0x%x\n", val); | 
|  | return -2; | 
|  | } | 
|  |  | 
|  | /* Reset and init BRB, PRS */ | 
|  | REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03); | 
|  | kthread_usleep(1000 * 50); | 
|  | REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03); | 
|  | kthread_usleep(1000 * 50); | 
|  | bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON); | 
|  | bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON); | 
|  |  | 
|  | DP(NETIF_MSG_HW, "part2\n"); | 
|  |  | 
|  | /* Disable inputs of parser neighbor blocks */ | 
|  | REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0); | 
|  | REG_WR(bp, TCM_REG_PRS_IFEN, 0x0); | 
|  | REG_WR(bp, CFC_REG_DEBUG0, 0x1); | 
|  | REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0); | 
|  |  | 
|  | /* Write 0 to parser credits for CFC search request */ | 
|  | REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0); | 
|  |  | 
|  | /* send 10 Ethernet packets */ | 
|  | for (i = 0; i < 10; i++) | 
|  | bnx2x_lb_pckt(bp); | 
|  |  | 
|  | /* Wait until NIG register shows 10 + 1 | 
|  | packets of size 11*0x10 = 0xb0 */ | 
|  | count = 1000 * factor; | 
|  | while (count) { | 
|  |  | 
|  | bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2); | 
|  | val = *bnx2x_sp(bp, wb_data[0]); | 
|  | if (val == 0xb0) | 
|  | break; | 
|  |  | 
|  | kthread_usleep(10000); | 
|  | count--; | 
|  | } | 
|  | if (val != 0xb0) { | 
|  | BNX2X_ERR("NIG timeout  val = 0x%x\n", val); | 
|  | return -3; | 
|  | } | 
|  |  | 
|  | /* Wait until PRS register shows 2 packets */ | 
|  | val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS); | 
|  | if (val != 2) | 
|  | BNX2X_ERR("PRS timeout  val = 0x%x\n", val); | 
|  |  | 
|  | /* Write 1 to parser credits for CFC search request */ | 
|  | REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1); | 
|  |  | 
|  | /* Wait until PRS register shows 3 packets */ | 
|  | kthread_usleep(1000 * (10 * factor)); | 
|  | /* Wait until NIG register shows 1 packet of size 0x10 */ | 
|  | val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS); | 
|  | if (val != 3) | 
|  | BNX2X_ERR("PRS timeout  val = 0x%x\n", val); | 
|  |  | 
|  | /* clear NIG EOP FIFO */ | 
|  | for (i = 0; i < 11; i++) | 
|  | REG_RD(bp, NIG_REG_INGRESS_EOP_LB_FIFO); | 
|  | val = REG_RD(bp, NIG_REG_INGRESS_EOP_LB_EMPTY); | 
|  | if (val != 1) { | 
|  | BNX2X_ERR("clear of NIG failed\n"); | 
|  | return -4; | 
|  | } | 
|  |  | 
|  | /* Reset and init BRB, PRS, NIG */ | 
|  | REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03); | 
|  | kthread_usleep(1000 * 50); | 
|  | REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03); | 
|  | kthread_usleep(1000 * 50); | 
|  | bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON); | 
|  | bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON); | 
|  | if (!CNIC_SUPPORT(bp)) | 
|  | /* set NIC mode */ | 
|  | REG_WR(bp, PRS_REG_NIC_MODE, 1); | 
|  |  | 
|  | /* Enable inputs of parser neighbor blocks */ | 
|  | REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x7fffffff); | 
|  | REG_WR(bp, TCM_REG_PRS_IFEN, 0x1); | 
|  | REG_WR(bp, CFC_REG_DEBUG0, 0x0); | 
|  | REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x1); | 
|  |  | 
|  | DP(NETIF_MSG_HW, "done\n"); | 
|  |  | 
|  | return 0; /* OK */ | 
|  | } | 
|  |  | 
|  | static void bnx2x_enable_blocks_attention(struct bnx2x *bp) | 
|  | { | 
|  | uint32_t val; | 
|  |  | 
|  | REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0); | 
|  | if (!CHIP_IS_E1x(bp)) | 
|  | REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0x40); | 
|  | else | 
|  | REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0); | 
|  | REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0); | 
|  | REG_WR(bp, CFC_REG_CFC_INT_MASK, 0); | 
|  | /* | 
|  | * mask read length error interrupts in brb for parser | 
|  | * (parsing unit and 'checksum and crc' unit) | 
|  | * these errors are legal (PU reads fixed length and CAC can cause | 
|  | * read length error on truncated packets) | 
|  | */ | 
|  | REG_WR(bp, BRB1_REG_BRB1_INT_MASK, 0xFC00); | 
|  | REG_WR(bp, QM_REG_QM_INT_MASK, 0); | 
|  | REG_WR(bp, TM_REG_TM_INT_MASK, 0); | 
|  | REG_WR(bp, XSDM_REG_XSDM_INT_MASK_0, 0); | 
|  | REG_WR(bp, XSDM_REG_XSDM_INT_MASK_1, 0); | 
|  | REG_WR(bp, XCM_REG_XCM_INT_MASK, 0); | 
|  | /*	REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */ | 
|  | /*	REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */ | 
|  | REG_WR(bp, USDM_REG_USDM_INT_MASK_0, 0); | 
|  | REG_WR(bp, USDM_REG_USDM_INT_MASK_1, 0); | 
|  | REG_WR(bp, UCM_REG_UCM_INT_MASK, 0); | 
|  | /*	REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */ | 
|  | /*	REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */ | 
|  | REG_WR(bp, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0); | 
|  | REG_WR(bp, CSDM_REG_CSDM_INT_MASK_0, 0); | 
|  | REG_WR(bp, CSDM_REG_CSDM_INT_MASK_1, 0); | 
|  | REG_WR(bp, CCM_REG_CCM_INT_MASK, 0); | 
|  | /*	REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */ | 
|  | /*	REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */ | 
|  |  | 
|  | val = PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT  | | 
|  | PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF | | 
|  | PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN; | 
|  | if (!CHIP_IS_E1x(bp)) | 
|  | val |= PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED | | 
|  | PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED; | 
|  | REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, val); | 
|  |  | 
|  | REG_WR(bp, TSDM_REG_TSDM_INT_MASK_0, 0); | 
|  | REG_WR(bp, TSDM_REG_TSDM_INT_MASK_1, 0); | 
|  | REG_WR(bp, TCM_REG_TCM_INT_MASK, 0); | 
|  | /*	REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */ | 
|  |  | 
|  | if (!CHIP_IS_E1x(bp)) | 
|  | /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */ | 
|  | REG_WR(bp, TSEM_REG_TSEM_INT_MASK_1, 0x07ff); | 
|  |  | 
|  | REG_WR(bp, CDU_REG_CDU_INT_MASK, 0); | 
|  | REG_WR(bp, DMAE_REG_DMAE_INT_MASK, 0); | 
|  | /*	REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */ | 
|  | REG_WR(bp, PBF_REG_PBF_INT_MASK, 0x18);		/* bit 3,4 masked */ | 
|  | } | 
|  |  | 
|  | static void bnx2x_reset_common(struct bnx2x *bp) | 
|  | { | 
|  | uint32_t val = 0x1400; | 
|  |  | 
|  | /* reset_common */ | 
|  | REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, | 
|  | 0xd3ffff7f); | 
|  |  | 
|  | if (CHIP_IS_E3(bp)) { | 
|  | val |= MISC_REGISTERS_RESET_REG_2_MSTAT0; | 
|  | val |= MISC_REGISTERS_RESET_REG_2_MSTAT1; | 
|  | } | 
|  |  | 
|  | REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, val); | 
|  | } | 
|  |  | 
|  | static void bnx2x_setup_dmae(struct bnx2x *bp) | 
|  | { | 
|  | bp->dmae_ready = 0; | 
|  | spinlock_init_irqsave(&bp->dmae_lock); | 
|  | } | 
|  |  | 
|  | static void bnx2x_init_pxp(struct bnx2x *bp) | 
|  | { | 
|  | uint16_t devctl; | 
|  | int r_order, w_order; | 
|  |  | 
|  | pcie_capability_read_word(bp->pdev, PCI_EXP_DEVCTL, &devctl); | 
|  | DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl); | 
|  | w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5); | 
|  | if (bp->mrrs == -1) | 
|  | r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12); | 
|  | else { | 
|  | DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs); | 
|  | r_order = bp->mrrs; | 
|  | } | 
|  |  | 
|  | bnx2x_init_pxp_arb(bp, r_order, w_order); | 
|  | } | 
|  |  | 
|  | static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp) | 
|  | { | 
|  | int is_required; | 
|  | uint32_t val; | 
|  | int port; | 
|  |  | 
|  | if (BP_NOMCP(bp)) | 
|  | return; | 
|  |  | 
|  | is_required = 0; | 
|  | val = SHMEM_RD(bp, dev_info.shared_hw_config.config2) & | 
|  | SHARED_HW_CFG_FAN_FAILURE_MASK; | 
|  |  | 
|  | if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED) | 
|  | is_required = 1; | 
|  |  | 
|  | /* | 
|  | * The fan failure mechanism is usually related to the PHY type since | 
|  | * the power consumption of the board is affected by the PHY. Currently, | 
|  | * fan is required for most designs with SFX7101, BCM8727 and BCM8481. | 
|  | */ | 
|  | else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE) | 
|  | for (port = PORT_0; port < PORT_MAX; port++) { | 
|  | is_required |= | 
|  | bnx2x_fan_failure_det_req( | 
|  | bp, | 
|  | bp->common.shmem_base, | 
|  | bp->common.shmem2_base, | 
|  | port); | 
|  | } | 
|  |  | 
|  | DP(NETIF_MSG_HW, "fan detection setting: %d\n", is_required); | 
|  |  | 
|  | if (is_required == 0) | 
|  | return; | 
|  |  | 
|  | /* Fan failure is indicated by SPIO 5 */ | 
|  | bnx2x_set_spio(bp, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z); | 
|  |  | 
|  | /* set to active low mode */ | 
|  | val = REG_RD(bp, MISC_REG_SPIO_INT); | 
|  | val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS); | 
|  | REG_WR(bp, MISC_REG_SPIO_INT, val); | 
|  |  | 
|  | /* enable interrupt to signal the IGU */ | 
|  | val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN); | 
|  | val |= MISC_SPIO_SPIO5; | 
|  | REG_WR(bp, MISC_REG_SPIO_EVENT_EN, val); | 
|  | } | 
|  |  | 
|  | void bnx2x_pf_disable(struct bnx2x *bp) | 
|  | { | 
|  | uint32_t val = REG_RD(bp, IGU_REG_PF_CONFIGURATION); | 
|  | val &= ~IGU_PF_CONF_FUNC_EN; | 
|  |  | 
|  | REG_WR(bp, IGU_REG_PF_CONFIGURATION, val); | 
|  | REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0); | 
|  | REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 0); | 
|  | } | 
|  |  | 
|  | static void bnx2x__common_init_phy(struct bnx2x *bp) | 
|  | { | 
|  | uint32_t shmem_base[2], shmem2_base[2]; | 
|  | /* Avoid common init in case MFW supports LFA */ | 
|  | if (SHMEM2_RD(bp, size) > | 
|  | (uint32_t)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)])) | 
|  | return; | 
|  | shmem_base[0] =  bp->common.shmem_base; | 
|  | shmem2_base[0] = bp->common.shmem2_base; | 
|  | if (!CHIP_IS_E1x(bp)) { | 
|  | shmem_base[1] = | 
|  | SHMEM2_RD(bp, other_shmem_base_addr); | 
|  | shmem2_base[1] = | 
|  | SHMEM2_RD(bp, other_shmem2_base_addr); | 
|  | } | 
|  | bnx2x_acquire_phy_lock(bp); | 
|  | bnx2x_common_init_phy(bp, shmem_base, shmem2_base, | 
|  | bp->common.chip_id); | 
|  | bnx2x_release_phy_lock(bp); | 
|  | } | 
|  |  | 
|  | static void bnx2x_config_endianity(struct bnx2x *bp, uint32_t val) | 
|  | { | 
|  | REG_WR(bp, PXP2_REG_RQ_QM_ENDIAN_M, val); | 
|  | REG_WR(bp, PXP2_REG_RQ_TM_ENDIAN_M, val); | 
|  | REG_WR(bp, PXP2_REG_RQ_SRC_ENDIAN_M, val); | 
|  | REG_WR(bp, PXP2_REG_RQ_CDU_ENDIAN_M, val); | 
|  | REG_WR(bp, PXP2_REG_RQ_DBG_ENDIAN_M, val); | 
|  |  | 
|  | /* make sure this value is 0 */ | 
|  | REG_WR(bp, PXP2_REG_RQ_HC_ENDIAN_M, 0); | 
|  |  | 
|  | REG_WR(bp, PXP2_REG_RD_QM_SWAP_MODE, val); | 
|  | REG_WR(bp, PXP2_REG_RD_TM_SWAP_MODE, val); | 
|  | REG_WR(bp, PXP2_REG_RD_SRC_SWAP_MODE, val); | 
|  | REG_WR(bp, PXP2_REG_RD_CDURD_SWAP_MODE, val); | 
|  | } | 
|  |  | 
|  | static void bnx2x_set_endianity(struct bnx2x *bp) | 
|  | { | 
|  | #ifdef __BIG_ENDIAN | 
|  | bnx2x_config_endianity(bp, 1); | 
|  | #else | 
|  | bnx2x_config_endianity(bp, 0); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static void bnx2x_reset_endianity(struct bnx2x *bp) | 
|  | { | 
|  | bnx2x_config_endianity(bp, 0); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * bnx2x_init_hw_common - initialize the HW at the COMMON phase. | 
|  | * | 
|  | * @bp:		driver handle | 
|  | */ | 
|  | static int bnx2x_init_hw_common(struct bnx2x *bp) | 
|  | { | 
|  | uint32_t val; | 
|  |  | 
|  | DP(NETIF_MSG_HW, "starting common init  func %d\n", BP_ABS_FUNC(bp)); | 
|  |  | 
|  | /* | 
|  | * take the RESET lock to protect undi_unload flow from accessing | 
|  | * registers while we're resetting the chip | 
|  | */ | 
|  | bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET); | 
|  |  | 
|  | bnx2x_reset_common(bp); | 
|  | REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0xffffffff); | 
|  |  | 
|  | val = 0xfffc; | 
|  | if (CHIP_IS_E3(bp)) { | 
|  | val |= MISC_REGISTERS_RESET_REG_2_MSTAT0; | 
|  | val |= MISC_REGISTERS_RESET_REG_2_MSTAT1; | 
|  | } | 
|  | REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, val); | 
|  |  | 
|  | bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET); | 
|  |  | 
|  | bnx2x_init_block(bp, BLOCK_MISC, PHASE_COMMON); | 
|  |  | 
|  | if (!CHIP_IS_E1x(bp)) { | 
|  | uint8_t abs_func_id; | 
|  |  | 
|  | /** | 
|  | * 4-port mode or 2-port mode we need to turn of master-enable | 
|  | * for everyone, after that, turn it back on for self. | 
|  | * so, we disregard multi-function or not, and always disable | 
|  | * for all functions on the given path, this means 0,2,4,6 for | 
|  | * path 0 and 1,3,5,7 for path 1 | 
|  | */ | 
|  | for (abs_func_id = BP_PATH(bp); | 
|  | abs_func_id < E2_FUNC_MAX*2; abs_func_id += 2) { | 
|  | if (abs_func_id == BP_ABS_FUNC(bp)) { | 
|  | REG_WR(bp, | 
|  | PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, | 
|  | 1); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | bnx2x_pretend_func(bp, abs_func_id); | 
|  | /* clear pf enable */ | 
|  | bnx2x_pf_disable(bp); | 
|  | bnx2x_pretend_func(bp, BP_ABS_FUNC(bp)); | 
|  | } | 
|  | } | 
|  |  | 
|  | bnx2x_init_block(bp, BLOCK_PXP, PHASE_COMMON); | 
|  | if (CHIP_IS_E1(bp)) { | 
|  | /* enable HW interrupt from PXP on USDM overflow | 
|  | bit 16 on INT_MASK_0 */ | 
|  | REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0); | 
|  | } | 
|  |  | 
|  | bnx2x_init_block(bp, BLOCK_PXP2, PHASE_COMMON); | 
|  | bnx2x_init_pxp(bp); | 
|  | bnx2x_set_endianity(bp); | 
|  | bnx2x_ilt_init_page_size(bp, INITOP_SET); | 
|  |  | 
|  | if (CHIP_REV_IS_FPGA(bp) && CHIP_IS_E1H(bp)) | 
|  | REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x1); | 
|  |  | 
|  | /* let the HW do it's magic ... */ | 
|  | kthread_usleep(1000 * 100); | 
|  | /* finish PXP init */ | 
|  | val = REG_RD(bp, PXP2_REG_RQ_CFG_DONE); | 
|  | if (val != 1) { | 
|  | BNX2X_ERR("PXP2 CFG failed\n"); | 
|  | return -EBUSY; | 
|  | } | 
|  | val = REG_RD(bp, PXP2_REG_RD_INIT_DONE); | 
|  | if (val != 1) { | 
|  | BNX2X_ERR("PXP2 RD_INIT failed\n"); | 
|  | return -EBUSY; | 
|  | } | 
|  |  | 
|  | /* Timers bug workaround E2 only. We need to set the entire ILT to | 
|  | * have entries with value "0" and valid bit on. | 
|  | * This needs to be done by the first PF that is loaded in a path | 
|  | * (i.e. common phase) | 
|  | */ | 
|  | if (!CHIP_IS_E1x(bp)) { | 
|  | /* In E2 there is a bug in the timers block that can cause function 6 / 7 | 
|  | * (i.e. vnic3) to start even if it is marked as "scan-off". | 
|  | * This occurs when a different function (func2,3) is being marked | 
|  | * as "scan-off". Real-life scenario for example: if a driver is being | 
|  | * load-unloaded while func6,7 are down. This will cause the timer to access | 
|  | * the ilt, translate to a logical address and send a request to read/write. | 
|  | * Since the ilt for the function that is down is not valid, this will cause | 
|  | * a translation error which is unrecoverable. | 
|  | * The Workaround is intended to make sure that when this happens nothing fatal | 
|  | * will occur. The workaround: | 
|  | *	1.  First PF driver which loads on a path will: | 
|  | *		a.  After taking the chip out of reset, by using pretend, | 
|  | *		    it will write "0" to the following registers of | 
|  | *		    the other vnics. | 
|  | *		    REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0); | 
|  | *		    REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0); | 
|  | *		    REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0); | 
|  | *		    And for itself it will write '1' to | 
|  | *		    PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable | 
|  | *		    dmae-operations (writing to pram for example.) | 
|  | *		    note: can be done for only function 6,7 but cleaner this | 
|  | *			  way. | 
|  | *		b.  Write zero+valid to the entire ILT. | 
|  | *		c.  Init the first_timers_ilt_entry, last_timers_ilt_entry of | 
|  | *		    VNIC3 (of that port). The range allocated will be the | 
|  | *		    entire ILT. This is needed to prevent  ILT range error. | 
|  | *	2.  Any PF driver load flow: | 
|  | *		a.  ILT update with the physical addresses of the allocated | 
|  | *		    logical pages. | 
|  | *		b.  Wait 20msec. - note that this timeout is needed to make | 
|  | *		    sure there are no requests in one of the PXP internal | 
|  | *		    queues with "old" ILT addresses. | 
|  | *		c.  PF enable in the PGLC. | 
|  | *		d.  Clear the was_error of the PF in the PGLC. (could have | 
|  | *		    occurred while driver was down) | 
|  | *		e.  PF enable in the CFC (WEAK + STRONG) | 
|  | *		f.  Timers scan enable | 
|  | *	3.  PF driver unload flow: | 
|  | *		a.  Clear the Timers scan_en. | 
|  | *		b.  Polling for scan_on=0 for that PF. | 
|  | *		c.  Clear the PF enable bit in the PXP. | 
|  | *		d.  Clear the PF enable in the CFC (WEAK + STRONG) | 
|  | *		e.  Write zero+valid to all ILT entries (The valid bit must | 
|  | *		    stay set) | 
|  | *		f.  If this is VNIC 3 of a port then also init | 
|  | *		    first_timers_ilt_entry to zero and last_timers_ilt_entry | 
|  | *		    to the last entry in the ILT. | 
|  | * | 
|  | *	Notes: | 
|  | *	Currently the PF error in the PGLC is non recoverable. | 
|  | *	In the future the there will be a recovery routine for this error. | 
|  | *	Currently attention is masked. | 
|  | *	Having an MCP lock on the load/unload process does not guarantee that | 
|  | *	there is no Timer disable during Func6/7 enable. This is because the | 
|  | *	Timers scan is currently being cleared by the MCP on FLR. | 
|  | *	Step 2.d can be done only for PF6/7 and the driver can also check if | 
|  | *	there is error before clearing it. But the flow above is simpler and | 
|  | *	more general. | 
|  | *	All ILT entries are written by zero+valid and not just PF6/7 | 
|  | *	ILT entries since in the future the ILT entries allocation for | 
|  | *	PF-s might be dynamic. | 
|  | */ | 
|  | struct ilt_client_info ilt_cli; | 
|  | struct bnx2x_ilt ilt; | 
|  | memset(&ilt_cli, 0, sizeof(struct ilt_client_info)); | 
|  | memset(&ilt, 0, sizeof(struct bnx2x_ilt)); | 
|  |  | 
|  | /* initialize dummy TM client */ | 
|  | ilt_cli.start = 0; | 
|  | ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1; | 
|  | ilt_cli.client_num = ILT_CLIENT_TM; | 
|  |  | 
|  | /* Step 1: set zeroes to all ilt page entries with valid bit on | 
|  | * Step 2: set the timers first/last ilt entry to point | 
|  | * to the entire range to prevent ILT range error for 3rd/4th | 
|  | * vnic	(this code assumes existence of the vnic) | 
|  | * | 
|  | * both steps performed by call to bnx2x_ilt_client_init_op() | 
|  | * with dummy TM client | 
|  | * | 
|  | * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT | 
|  | * and his brother are split registers | 
|  | */ | 
|  | bnx2x_pretend_func(bp, (BP_PATH(bp) + 6)); | 
|  | bnx2x_ilt_client_init_op_ilt(bp, &ilt, &ilt_cli, INITOP_CLEAR); | 
|  | bnx2x_pretend_func(bp, BP_ABS_FUNC(bp)); | 
|  |  | 
|  | REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN); | 
|  | REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN); | 
|  | REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1); | 
|  | } | 
|  |  | 
|  | REG_WR(bp, PXP2_REG_RQ_DISABLE_INPUTS, 0); | 
|  | REG_WR(bp, PXP2_REG_RD_DISABLE_INPUTS, 0); | 
|  |  | 
|  | if (!CHIP_IS_E1x(bp)) { | 
|  | int factor = CHIP_REV_IS_EMUL(bp) ? 1000 : | 
|  | (CHIP_REV_IS_FPGA(bp) ? 400 : 0); | 
|  | bnx2x_init_block(bp, BLOCK_PGLUE_B, PHASE_COMMON); | 
|  |  | 
|  | bnx2x_init_block(bp, BLOCK_ATC, PHASE_COMMON); | 
|  |  | 
|  | /* let the HW do it's magic ... */ | 
|  | do { | 
|  | kthread_usleep(1000 * 200); | 
|  | val = REG_RD(bp, ATC_REG_ATC_INIT_DONE); | 
|  | } while (factor-- && (val != 1)); | 
|  |  | 
|  | if (val != 1) { | 
|  | BNX2X_ERR("ATC_INIT failed\n"); | 
|  | return -EBUSY; | 
|  | } | 
|  | } | 
|  |  | 
|  | bnx2x_init_block(bp, BLOCK_DMAE, PHASE_COMMON); | 
|  |  | 
|  | bnx2x_iov_init_dmae(bp); | 
|  |  | 
|  | /* clean the DMAE memory */ | 
|  | bp->dmae_ready = 1; | 
|  | bnx2x_init_fill(bp, TSEM_REG_PRAM, 0, 8, 1); | 
|  |  | 
|  | bnx2x_init_block(bp, BLOCK_TCM, PHASE_COMMON); | 
|  |  | 
|  | bnx2x_init_block(bp, BLOCK_UCM, PHASE_COMMON); | 
|  |  | 
|  | bnx2x_init_block(bp, BLOCK_CCM, PHASE_COMMON); | 
|  |  | 
|  | bnx2x_init_block(bp, BLOCK_XCM, PHASE_COMMON); | 
|  |  | 
|  | bnx2x_read_dmae(bp, XSEM_REG_PASSIVE_BUFFER, 3); | 
|  | bnx2x_read_dmae(bp, CSEM_REG_PASSIVE_BUFFER, 3); | 
|  | bnx2x_read_dmae(bp, TSEM_REG_PASSIVE_BUFFER, 3); | 
|  | bnx2x_read_dmae(bp, USEM_REG_PASSIVE_BUFFER, 3); | 
|  |  | 
|  | bnx2x_init_block(bp, BLOCK_QM, PHASE_COMMON); | 
|  |  | 
|  | /* QM queues pointers table */ | 
|  | bnx2x_qm_init_ptr_table(bp, bp->qm_cid_count, INITOP_SET); | 
|  |  | 
|  | /* soft reset pulse */ | 
|  | REG_WR(bp, QM_REG_SOFT_RESET, 1); | 
|  | REG_WR(bp, QM_REG_SOFT_RESET, 0); | 
|  |  | 
|  | if (CNIC_SUPPORT(bp)) | 
|  | bnx2x_init_block(bp, BLOCK_TM, PHASE_COMMON); | 
|  |  | 
|  | bnx2x_init_block(bp, BLOCK_DORQ, PHASE_COMMON); | 
|  |  | 
|  | if (!CHIP_REV_IS_SLOW(bp)) | 
|  | /* enable hw interrupt from doorbell Q */ | 
|  | REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0); | 
|  |  | 
|  | bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON); | 
|  |  | 
|  | bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON); | 
|  | REG_WR(bp, PRS_REG_A_PRSU_20, 0xf); | 
|  |  | 
|  | if (!CHIP_IS_E1(bp)) | 
|  | REG_WR(bp, PRS_REG_E1HOV_MODE, bp->path_has_ovlan); | 
|  |  | 
|  | if (!CHIP_IS_E1x(bp) && !CHIP_IS_E3B0(bp)) { | 
|  | if (IS_MF_AFEX(bp)) { | 
|  | /* configure that VNTag and VLAN headers must be | 
|  | * received in afex mode | 
|  | */ | 
|  | REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC, 0xE); | 
|  | REG_WR(bp, PRS_REG_MUST_HAVE_HDRS, 0xA); | 
|  | REG_WR(bp, PRS_REG_HDRS_AFTER_TAG_0, 0x6); | 
|  | REG_WR(bp, PRS_REG_TAG_ETHERTYPE_0, 0x8926); | 
|  | REG_WR(bp, PRS_REG_TAG_LEN_0, 0x4); | 
|  | } else { | 
|  | /* Bit-map indicating which L2 hdrs may appear | 
|  | * after the basic Ethernet header | 
|  | */ | 
|  | REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC, | 
|  | bp->path_has_ovlan ? 7 : 6); | 
|  | } | 
|  | } | 
|  |  | 
|  | bnx2x_init_block(bp, BLOCK_TSDM, PHASE_COMMON); | 
|  | bnx2x_init_block(bp, BLOCK_CSDM, PHASE_COMMON); | 
|  | bnx2x_init_block(bp, BLOCK_USDM, PHASE_COMMON); | 
|  | bnx2x_init_block(bp, BLOCK_XSDM, PHASE_COMMON); | 
|  |  | 
|  | if (!CHIP_IS_E1x(bp)) { | 
|  | /* reset VFC memories */ | 
|  | REG_WR(bp, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST, | 
|  | VFC_MEMORIES_RST_REG_CAM_RST | | 
|  | VFC_MEMORIES_RST_REG_RAM_RST); | 
|  | REG_WR(bp, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST, | 
|  | VFC_MEMORIES_RST_REG_CAM_RST | | 
|  | VFC_MEMORIES_RST_REG_RAM_RST); | 
|  |  | 
|  | kthread_usleep(1000 * 20); | 
|  | } | 
|  |  | 
|  | bnx2x_init_block(bp, BLOCK_TSEM, PHASE_COMMON); | 
|  | bnx2x_init_block(bp, BLOCK_USEM, PHASE_COMMON); | 
|  | bnx2x_init_block(bp, BLOCK_CSEM, PHASE_COMMON); | 
|  | bnx2x_init_block(bp, BLOCK_XSEM, PHASE_COMMON); | 
|  |  | 
|  | /* sync semi rtc */ | 
|  | REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, | 
|  | 0x80000000); | 
|  | REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, | 
|  | 0x80000000); | 
|  |  | 
|  | bnx2x_init_block(bp, BLOCK_UPB, PHASE_COMMON); | 
|  | bnx2x_init_block(bp, BLOCK_XPB, PHASE_COMMON); | 
|  | bnx2x_init_block(bp, BLOCK_PBF, PHASE_COMMON); | 
|  |  | 
|  | if (!CHIP_IS_E1x(bp)) { | 
|  | if (IS_MF_AFEX(bp)) { | 
|  | /* configure that VNTag and VLAN headers must be | 
|  | * sent in afex mode | 
|  | */ | 
|  | REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC, 0xE); | 
|  | REG_WR(bp, PBF_REG_MUST_HAVE_HDRS, 0xA); | 
|  | REG_WR(bp, PBF_REG_HDRS_AFTER_TAG_0, 0x6); | 
|  | REG_WR(bp, PBF_REG_TAG_ETHERTYPE_0, 0x8926); | 
|  | REG_WR(bp, PBF_REG_TAG_LEN_0, 0x4); | 
|  | } else { | 
|  | REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC, | 
|  | bp->path_has_ovlan ? 7 : 6); | 
|  | } | 
|  | } | 
|  |  | 
|  | REG_WR(bp, SRC_REG_SOFT_RST, 1); | 
|  |  | 
|  | bnx2x_init_block(bp, BLOCK_SRC, PHASE_COMMON); | 
|  |  | 
|  | if (CNIC_SUPPORT(bp)) { | 
|  | REG_WR(bp, SRC_REG_KEYSEARCH_0, 0x63285672); | 
|  | REG_WR(bp, SRC_REG_KEYSEARCH_1, 0x24b8f2cc); | 
|  | REG_WR(bp, SRC_REG_KEYSEARCH_2, 0x223aef9b); | 
|  | REG_WR(bp, SRC_REG_KEYSEARCH_3, 0x26001e3a); | 
|  | REG_WR(bp, SRC_REG_KEYSEARCH_4, 0x7ae91116); | 
|  | REG_WR(bp, SRC_REG_KEYSEARCH_5, 0x5ce5230b); | 
|  | REG_WR(bp, SRC_REG_KEYSEARCH_6, 0x298d8adf); | 
|  | REG_WR(bp, SRC_REG_KEYSEARCH_7, 0x6eb0ff09); | 
|  | REG_WR(bp, SRC_REG_KEYSEARCH_8, 0x1830f82f); | 
|  | REG_WR(bp, SRC_REG_KEYSEARCH_9, 0x01e46be7); | 
|  | } | 
|  | REG_WR(bp, SRC_REG_SOFT_RST, 0); | 
|  |  | 
|  | if (sizeof(union cdu_context) != 1024) | 
|  | /* we currently assume that a context is 1024 bytes */ | 
|  | dev_alert(&bp->pdev->dev, | 
|  | "please adjust the size of cdu_context(%ld)\n", | 
|  | (long)sizeof(union cdu_context)); | 
|  |  | 
|  | bnx2x_init_block(bp, BLOCK_CDU, PHASE_COMMON); | 
|  | val = (4 << 24) + (0 << 12) + 1024; | 
|  | REG_WR(bp, CDU_REG_CDU_GLOBAL_PARAMS, val); | 
|  |  | 
|  | bnx2x_init_block(bp, BLOCK_CFC, PHASE_COMMON); | 
|  | REG_WR(bp, CFC_REG_INIT_REG, 0x7FF); | 
|  | /* enable context validation interrupt from CFC */ | 
|  | REG_WR(bp, CFC_REG_CFC_INT_MASK, 0); | 
|  |  | 
|  | /* set the thresholds to prevent CFC/CDU race */ | 
|  | REG_WR(bp, CFC_REG_DEBUG0, 0x20020000); | 
|  |  | 
|  | bnx2x_init_block(bp, BLOCK_HC, PHASE_COMMON); | 
|  |  | 
|  | if (!CHIP_IS_E1x(bp) && BP_NOMCP(bp)) | 
|  | REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x36); | 
|  |  | 
|  | bnx2x_init_block(bp, BLOCK_IGU, PHASE_COMMON); | 
|  | bnx2x_init_block(bp, BLOCK_MISC_AEU, PHASE_COMMON); | 
|  |  | 
|  | /* Reset PCIE errors for debug */ | 
|  | REG_WR(bp, 0x2814, 0xffffffff); | 
|  | REG_WR(bp, 0x3820, 0xffffffff); | 
|  |  | 
|  | if (!CHIP_IS_E1x(bp)) { | 
|  | REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_CONTROL_5, | 
|  | (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 | | 
|  | PXPCS_TL_CONTROL_5_ERR_UNSPPORT)); | 
|  | REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT, | 
|  | (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 | | 
|  | PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 | | 
|  | PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2)); | 
|  | REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT, | 
|  | (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 | | 
|  | PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 | | 
|  | PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5)); | 
|  | } | 
|  |  | 
|  | bnx2x_init_block(bp, BLOCK_NIG, PHASE_COMMON); | 
|  | if (!CHIP_IS_E1(bp)) { | 
|  | /* in E3 this done in per-port section */ | 
|  | if (!CHIP_IS_E3(bp)) | 
|  | REG_WR(bp, NIG_REG_LLH_MF_MODE, IS_MF(bp)); | 
|  | } | 
|  | if (CHIP_IS_E1H(bp)) | 
|  | /* not applicable for E2 (and above ...) */ | 
|  | REG_WR(bp, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(bp)); | 
|  |  | 
|  | if (CHIP_REV_IS_SLOW(bp)) | 
|  | kthread_usleep(1000 * 200); | 
|  |  | 
|  | /* finish CFC init */ | 
|  | val = reg_poll(bp, CFC_REG_LL_INIT_DONE, 1, 100, 10); | 
|  | if (val != 1) { | 
|  | BNX2X_ERR("CFC LL_INIT failed\n"); | 
|  | return -EBUSY; | 
|  | } | 
|  | val = reg_poll(bp, CFC_REG_AC_INIT_DONE, 1, 100, 10); | 
|  | if (val != 1) { | 
|  | BNX2X_ERR("CFC AC_INIT failed\n"); | 
|  | return -EBUSY; | 
|  | } | 
|  | val = reg_poll(bp, CFC_REG_CAM_INIT_DONE, 1, 100, 10); | 
|  | if (val != 1) { | 
|  | BNX2X_ERR("CFC CAM_INIT failed\n"); | 
|  | return -EBUSY; | 
|  | } | 
|  | REG_WR(bp, CFC_REG_DEBUG0, 0); | 
|  |  | 
|  | if (CHIP_IS_E1(bp)) { | 
|  | /* read NIG statistic | 
|  | to see if this is our first up since powerup */ | 
|  | bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2); | 
|  | val = *bnx2x_sp(bp, wb_data[0]); | 
|  |  | 
|  | /* do internal memory self test */ | 
|  | if ((val == 0) && bnx2x_int_mem_test(bp)) { | 
|  | BNX2X_ERR("internal mem self test failed\n"); | 
|  | return -EBUSY; | 
|  | } | 
|  | } | 
|  |  | 
|  | bnx2x_setup_fan_failure_detection(bp); | 
|  |  | 
|  | /* clear PXP2 attentions */ | 
|  | REG_RD(bp, PXP2_REG_PXP2_INT_STS_CLR_0); | 
|  |  | 
|  | bnx2x_enable_blocks_attention(bp); | 
|  | bnx2x_enable_blocks_parity(bp); | 
|  |  | 
|  | if (!BP_NOMCP(bp)) { | 
|  | if (CHIP_IS_E1x(bp)) | 
|  | bnx2x__common_init_phy(bp); | 
|  | } else | 
|  | BNX2X_ERR("Bootcode is missing - can not initialize link\n"); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase. | 
|  | * | 
|  | * @bp:		driver handle | 
|  | */ | 
|  | static int bnx2x_init_hw_common_chip(struct bnx2x *bp) | 
|  | { | 
|  | int rc = bnx2x_init_hw_common(bp); | 
|  |  | 
|  | if (rc) | 
|  | return rc; | 
|  |  | 
|  | /* In E2 2-PORT mode, same ext phy is used for the two paths */ | 
|  | if (!BP_NOMCP(bp)) | 
|  | bnx2x__common_init_phy(bp); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int bnx2x_init_hw_port(struct bnx2x *bp) | 
|  | { | 
|  | int port = BP_PORT(bp); | 
|  | int init_phase = port ? PHASE_PORT1 : PHASE_PORT0; | 
|  | uint32_t low, high; | 
|  | uint32_t val, reg; | 
|  |  | 
|  | DP(NETIF_MSG_HW, "starting port init  port %d\n", port); | 
|  |  | 
|  | REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0); | 
|  |  | 
|  | bnx2x_init_block(bp, BLOCK_MISC, init_phase); | 
|  | bnx2x_init_block(bp, BLOCK_PXP, init_phase); | 
|  | bnx2x_init_block(bp, BLOCK_PXP2, init_phase); | 
|  |  | 
|  | /* Timers bug workaround: disables the pf_master bit in pglue at | 
|  | * common phase, we need to enable it here before any dmae access are | 
|  | * attempted. Therefore we manually added the enable-master to the | 
|  | * port phase (it also happens in the function phase) | 
|  | */ | 
|  | if (!CHIP_IS_E1x(bp)) | 
|  | REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); | 
|  |  | 
|  | bnx2x_init_block(bp, BLOCK_ATC, init_phase); | 
|  | bnx2x_init_block(bp, BLOCK_DMAE, init_phase); | 
|  | bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase); | 
|  | bnx2x_init_block(bp, BLOCK_QM, init_phase); | 
|  |  | 
|  | bnx2x_init_block(bp, BLOCK_TCM, init_phase); | 
|  | bnx2x_init_block(bp, BLOCK_UCM, init_phase); | 
|  | bnx2x_init_block(bp, BLOCK_CCM, init_phase); | 
|  | bnx2x_init_block(bp, BLOCK_XCM, init_phase); | 
|  |  | 
|  | /* QM cid (connection) count */ | 
|  | bnx2x_qm_init_cid_count(bp, bp->qm_cid_count, INITOP_SET); | 
|  |  | 
|  | if (CNIC_SUPPORT(bp)) { | 
|  | bnx2x_init_block(bp, BLOCK_TM, init_phase); | 
|  | REG_WR(bp, TM_REG_LIN0_SCAN_TIME + port*4, 20); | 
|  | REG_WR(bp, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31); | 
|  | } | 
|  |  | 
|  | bnx2x_init_block(bp, BLOCK_DORQ, init_phase); | 
|  |  | 
|  | bnx2x_init_block(bp, BLOCK_BRB1, init_phase); | 
|  |  | 
|  | if (CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) { | 
|  |  | 
|  | if (IS_MF(bp)) | 
|  | low = ((bp->flags & ONE_PORT_FLAG) ? 160 : 246); | 
|  | else if (bp->dev->mtu > 4096) { | 
|  | if (bp->flags & ONE_PORT_FLAG) | 
|  | low = 160; | 
|  | else { | 
|  | val = bp->dev->mtu; | 
|  | /* (24*1024 + val*4)/256 */ | 
|  | low = 96 + (val/64) + | 
|  | ((val % 64) ? 1 : 0); | 
|  | } | 
|  | } else | 
|  | low = ((bp->flags & ONE_PORT_FLAG) ? 80 : 160); | 
|  | high = low + 56;	/* 14*1024/256 */ | 
|  | REG_WR(bp, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low); | 
|  | REG_WR(bp, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high); | 
|  | } | 
|  |  | 
|  | if (CHIP_MODE_IS_4_PORT(bp)) | 
|  | REG_WR(bp, (BP_PORT(bp) ? | 
|  | BRB1_REG_MAC_GUARANTIED_1 : | 
|  | BRB1_REG_MAC_GUARANTIED_0), 40); | 
|  |  | 
|  | bnx2x_init_block(bp, BLOCK_PRS, init_phase); | 
|  | if (CHIP_IS_E3B0(bp)) { | 
|  | if (IS_MF_AFEX(bp)) { | 
|  | /* configure headers for AFEX mode */ | 
|  | REG_WR(bp, BP_PORT(bp) ? | 
|  | PRS_REG_HDRS_AFTER_BASIC_PORT_1 : | 
|  | PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE); | 
|  | REG_WR(bp, BP_PORT(bp) ? | 
|  | PRS_REG_HDRS_AFTER_TAG_0_PORT_1 : | 
|  | PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6); | 
|  | REG_WR(bp, BP_PORT(bp) ? | 
|  | PRS_REG_MUST_HAVE_HDRS_PORT_1 : | 
|  | PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA); | 
|  | } else { | 
|  | /* Ovlan exists only if we are in multi-function + | 
|  | * switch-dependent mode, in switch-independent there | 
|  | * is no ovlan headers | 
|  | */ | 
|  | REG_WR(bp, BP_PORT(bp) ? | 
|  | PRS_REG_HDRS_AFTER_BASIC_PORT_1 : | 
|  | PRS_REG_HDRS_AFTER_BASIC_PORT_0, | 
|  | (bp->path_has_ovlan ? 7 : 6)); | 
|  | } | 
|  | } | 
|  |  | 
|  | bnx2x_init_block(bp, BLOCK_TSDM, init_phase); | 
|  | bnx2x_init_block(bp, BLOCK_CSDM, init_phase); | 
|  | bnx2x_init_block(bp, BLOCK_USDM, init_phase); | 
|  | bnx2x_init_block(bp, BLOCK_XSDM, init_phase); | 
|  |  | 
|  | bnx2x_init_block(bp, BLOCK_TSEM, init_phase); | 
|  | bnx2x_init_block(bp, BLOCK_USEM, init_phase); | 
|  | bnx2x_init_block(bp, BLOCK_CSEM, init_phase); | 
|  | bnx2x_init_block(bp, BLOCK_XSEM, init_phase); | 
|  |  | 
|  | bnx2x_init_block(bp, BLOCK_UPB, init_phase); | 
|  | bnx2x_init_block(bp, BLOCK_XPB, init_phase); | 
|  |  | 
|  | bnx2x_init_block(bp, BLOCK_PBF, init_phase); | 
|  |  | 
|  | if (CHIP_IS_E1x(bp)) { | 
|  | /* configure PBF to work without PAUSE mtu 9000 */ | 
|  | REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 0); | 
|  |  | 
|  | /* update threshold */ | 
|  | REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, (9040/16)); | 
|  | /* update init credit */ | 
|  | REG_WR(bp, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22); | 
|  |  | 
|  | /* probe changes */ | 
|  | REG_WR(bp, PBF_REG_INIT_P0 + port*4, 1); | 
|  | udelay(50); | 
|  | REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0); | 
|  | } | 
|  |  | 
|  | if (CNIC_SUPPORT(bp)) | 
|  | bnx2x_init_block(bp, BLOCK_SRC, init_phase); | 
|  |  | 
|  | bnx2x_init_block(bp, BLOCK_CDU, init_phase); | 
|  | bnx2x_init_block(bp, BLOCK_CFC, init_phase); | 
|  |  | 
|  | if (CHIP_IS_E1(bp)) { | 
|  | REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0); | 
|  | REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0); | 
|  | } | 
|  | bnx2x_init_block(bp, BLOCK_HC, init_phase); | 
|  |  | 
|  | bnx2x_init_block(bp, BLOCK_IGU, init_phase); | 
|  |  | 
|  | bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase); | 
|  | /* init aeu_mask_attn_func_0/1: | 
|  | *  - SF mode: bits 3-7 are masked. Only bits 0-2 are in use | 
|  | *  - MF mode: bit 3 is masked. Bits 0-2 are in use as in SF | 
|  | *             bits 4-7 are used for "per vn group attention" */ | 
|  | val = IS_MF(bp) ? 0xF7 : 0x7; | 
|  | /* Enable DCBX attention for all but E1 */ | 
|  | val |= CHIP_IS_E1(bp) ? 0 : 0x10; | 
|  | REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val); | 
|  |  | 
|  | /* SCPAD_PARITY should NOT trigger close the gates */ | 
|  | reg = port ? MISC_REG_AEU_ENABLE4_NIG_1 : MISC_REG_AEU_ENABLE4_NIG_0; | 
|  | REG_WR(bp, reg, | 
|  | REG_RD(bp, reg) & | 
|  | ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY); | 
|  |  | 
|  | reg = port ? MISC_REG_AEU_ENABLE4_PXP_1 : MISC_REG_AEU_ENABLE4_PXP_0; | 
|  | REG_WR(bp, reg, | 
|  | REG_RD(bp, reg) & | 
|  | ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY); | 
|  |  | 
|  | bnx2x_init_block(bp, BLOCK_NIG, init_phase); | 
|  |  | 
|  | if (!CHIP_IS_E1x(bp)) { | 
|  | /* Bit-map indicating which L2 hdrs may appear after the | 
|  | * basic Ethernet header | 
|  | */ | 
|  | if (IS_MF_AFEX(bp)) | 
|  | REG_WR(bp, BP_PORT(bp) ? | 
|  | NIG_REG_P1_HDRS_AFTER_BASIC : | 
|  | NIG_REG_P0_HDRS_AFTER_BASIC, 0xE); | 
|  | else | 
|  | REG_WR(bp, BP_PORT(bp) ? | 
|  | NIG_REG_P1_HDRS_AFTER_BASIC : | 
|  | NIG_REG_P0_HDRS_AFTER_BASIC, | 
|  | IS_MF_SD(bp) ? 7 : 6); | 
|  |  | 
|  | if (CHIP_IS_E3(bp)) | 
|  | REG_WR(bp, BP_PORT(bp) ? | 
|  | NIG_REG_LLH1_MF_MODE : | 
|  | NIG_REG_LLH_MF_MODE, IS_MF(bp)); | 
|  | } | 
|  | if (!CHIP_IS_E3(bp)) | 
|  | REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1); | 
|  |  | 
|  | if (!CHIP_IS_E1(bp)) { | 
|  | /* 0x2 disable mf_ov, 0x1 enable */ | 
|  | REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4, | 
|  | (IS_MF_SD(bp) ? 0x1 : 0x2)); | 
|  |  | 
|  | if (!CHIP_IS_E1x(bp)) { | 
|  | val = 0; | 
|  | switch (bp->mf_mode) { | 
|  | case MULTI_FUNCTION_SD: | 
|  | val = 1; | 
|  | break; | 
|  | case MULTI_FUNCTION_SI: | 
|  | case MULTI_FUNCTION_AFEX: | 
|  | val = 2; | 
|  | break; | 
|  | } | 
|  |  | 
|  | REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_CLS_TYPE : | 
|  | NIG_REG_LLH0_CLS_TYPE), val); | 
|  | } | 
|  | { | 
|  | REG_WR(bp, NIG_REG_LLFC_ENABLE_0 + port*4, 0); | 
|  | REG_WR(bp, NIG_REG_LLFC_OUT_EN_0 + port*4, 0); | 
|  | REG_WR(bp, NIG_REG_PAUSE_ENABLE_0 + port*4, 1); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* If SPIO5 is set to generate interrupts, enable it for this port */ | 
|  | val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN); | 
|  | if (val & MISC_SPIO_SPIO5) { | 
|  | uint32_t reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : | 
|  | MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0); | 
|  | val = REG_RD(bp, reg_addr); | 
|  | val |= AEU_INPUTS_ATTN_BITS_SPIO5; | 
|  | REG_WR(bp, reg_addr, val); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void bnx2x_ilt_wr(struct bnx2x *bp, uint32_t index, dma_addr_t addr) | 
|  | { | 
|  | int reg; | 
|  | uint32_t wb_write[2]; | 
|  |  | 
|  | if (CHIP_IS_E1(bp)) | 
|  | reg = PXP2_REG_RQ_ONCHIP_AT + index*8; | 
|  | else | 
|  | reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8; | 
|  |  | 
|  | wb_write[0] = ONCHIP_ADDR1(addr); | 
|  | wb_write[1] = ONCHIP_ADDR2(addr); | 
|  | REG_WR_DMAE(bp, reg, wb_write, 2); | 
|  | } | 
|  |  | 
|  | void bnx2x_igu_clear_sb_gen(struct bnx2x *bp, uint8_t func, | 
|  | uint8_t idu_sb_id, bool is_pf) | 
|  | { | 
|  | uint32_t data, ctl, cnt = 100; | 
|  | uint32_t igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA; | 
|  | uint32_t igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL; | 
|  | uint32_t igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4; | 
|  | uint32_t sb_bit =  1 << (idu_sb_id%32); | 
|  | uint32_t func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT; | 
|  | uint32_t addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id; | 
|  |  | 
|  | /* Not supported in BC mode */ | 
|  | if (CHIP_INT_MODE_IS_BC(bp)) | 
|  | return; | 
|  |  | 
|  | data = (IGU_USE_REGISTER_cstorm_type_0_sb_cleanup | 
|  | << IGU_REGULAR_CLEANUP_TYPE_SHIFT)	| | 
|  | IGU_REGULAR_CLEANUP_SET				| | 
|  | IGU_REGULAR_BCLEANUP; | 
|  |  | 
|  | ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT		| | 
|  | func_encode << IGU_CTRL_REG_FID_SHIFT		| | 
|  | IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT; | 
|  |  | 
|  | DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n", | 
|  | data, igu_addr_data); | 
|  | REG_WR(bp, igu_addr_data, data); | 
|  | bus_wmb(); | 
|  | cmb(); | 
|  | DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n", | 
|  | ctl, igu_addr_ctl); | 
|  | REG_WR(bp, igu_addr_ctl, ctl); | 
|  | bus_wmb(); | 
|  | cmb(); | 
|  |  | 
|  | /* wait for clean up to finish */ | 
|  | while (!(REG_RD(bp, igu_addr_ack) & sb_bit) && --cnt) | 
|  | kthread_usleep(1000 * 20); | 
|  |  | 
|  | if (!(REG_RD(bp, igu_addr_ack) & sb_bit)) { | 
|  | DP(NETIF_MSG_HW, | 
|  | "Unable to finish IGU cleanup: idu_sb_id %d offset %d bit %d (cnt %d)\n", | 
|  | idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void bnx2x_igu_clear_sb(struct bnx2x *bp, uint8_t idu_sb_id) | 
|  | { | 
|  | bnx2x_igu_clear_sb_gen(bp, BP_FUNC(bp), idu_sb_id, true /*PF*/); | 
|  | } | 
|  |  | 
|  | static void bnx2x_clear_func_ilt(struct bnx2x *bp, uint32_t func) | 
|  | { | 
|  | uint32_t i, base = FUNC_ILT_BASE(func); | 
|  | for (i = base; i < base + ILT_PER_FUNC; i++) | 
|  | bnx2x_ilt_wr(bp, i, 0); | 
|  | } | 
|  |  | 
|  | static void bnx2x_init_searcher(struct bnx2x *bp) | 
|  | { | 
|  | int port = BP_PORT(bp); | 
|  | bnx2x_src_init_t2(bp, bp->t2, bp->t2_mapping, SRC_CONN_NUM); | 
|  | /* T1 hash bits value determines the T1 number of entries */ | 
|  | REG_WR(bp, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS); | 
|  | } | 
|  |  | 
|  | static inline int bnx2x_func_switch_update(struct bnx2x *bp, int suspend) | 
|  | { | 
|  | int rc; | 
|  | struct bnx2x_func_state_params func_params = {NULL}; | 
|  | struct bnx2x_func_switch_update_params *switch_update_params = | 
|  | &func_params.params.switch_update; | 
|  |  | 
|  | /* Prepare parameters for function state transitions */ | 
|  | __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); | 
|  | __set_bit(RAMROD_RETRY, &func_params.ramrod_flags); | 
|  |  | 
|  | func_params.f_obj = &bp->func_obj; | 
|  | func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE; | 
|  |  | 
|  | /* Function parameters */ | 
|  | __set_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND_CHNG, | 
|  | &switch_update_params->changes); | 
|  | if (suspend) | 
|  | __set_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND, | 
|  | &switch_update_params->changes); | 
|  |  | 
|  | rc = bnx2x_func_state_change(bp, &func_params); | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static int bnx2x_reset_nic_mode(struct bnx2x *bp) | 
|  | { | 
|  | int rc, i, port = BP_PORT(bp); | 
|  | int vlan_en = 0, mac_en[NUM_MACS]; | 
|  |  | 
|  | /* Close input from network */ | 
|  | if (bp->mf_mode == SINGLE_FUNCTION) { | 
|  | bnx2x_set_rx_filter(&bp->link_params, 0); | 
|  | } else { | 
|  | vlan_en = REG_RD(bp, port ? NIG_REG_LLH1_FUNC_EN : | 
|  | NIG_REG_LLH0_FUNC_EN); | 
|  | REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN : | 
|  | NIG_REG_LLH0_FUNC_EN, 0); | 
|  | for (i = 0; i < NUM_MACS; i++) { | 
|  | mac_en[i] = REG_RD(bp, port ? | 
|  | (NIG_REG_LLH1_FUNC_MEM_ENABLE + | 
|  | 4 * i) : | 
|  | (NIG_REG_LLH0_FUNC_MEM_ENABLE + | 
|  | 4 * i)); | 
|  | REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE + | 
|  | 4 * i) : | 
|  | (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i), 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Close BMC to host */ | 
|  | REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE : | 
|  | NIG_REG_P1_TX_MNG_HOST_ENABLE, 0); | 
|  |  | 
|  | /* Suspend Tx switching to the PF. Completion of this ramrod | 
|  | * further guarantees that all the packets of that PF / child | 
|  | * VFs in BRB were processed by the Parser, so it is safe to | 
|  | * change the NIC_MODE register. | 
|  | */ | 
|  | rc = bnx2x_func_switch_update(bp, 1); | 
|  | if (rc) { | 
|  | BNX2X_ERR("Can't suspend tx-switching!\n"); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /* Change NIC_MODE register */ | 
|  | REG_WR(bp, PRS_REG_NIC_MODE, 0); | 
|  |  | 
|  | /* Open input from network */ | 
|  | if (bp->mf_mode == SINGLE_FUNCTION) { | 
|  | bnx2x_set_rx_filter(&bp->link_params, 1); | 
|  | } else { | 
|  | REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN : | 
|  | NIG_REG_LLH0_FUNC_EN, vlan_en); | 
|  | for (i = 0; i < NUM_MACS; i++) { | 
|  | REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE + | 
|  | 4 * i) : | 
|  | (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i), | 
|  | mac_en[i]); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Enable BMC to host */ | 
|  | REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE : | 
|  | NIG_REG_P1_TX_MNG_HOST_ENABLE, 1); | 
|  |  | 
|  | /* Resume Tx switching to the PF */ | 
|  | rc = bnx2x_func_switch_update(bp, 0); | 
|  | if (rc) { | 
|  | BNX2X_ERR("Can't resume tx-switching!\n"); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | DP(NETIF_MSG_IFUP, "NIC MODE disabled\n"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int bnx2x_init_hw_func_cnic(struct bnx2x *bp) | 
|  | { | 
|  | int rc; | 
|  |  | 
|  | bnx2x_ilt_init_op_cnic(bp, INITOP_SET); | 
|  |  | 
|  | if (CONFIGURE_NIC_MODE(bp)) { | 
|  | /* Configure searcher as part of function hw init */ | 
|  | bnx2x_init_searcher(bp); | 
|  |  | 
|  | /* Reset NIC mode */ | 
|  | rc = bnx2x_reset_nic_mode(bp); | 
|  | if (rc) | 
|  | BNX2X_ERR("Can't change NIC mode!\n"); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int bnx2x_init_hw_func(struct bnx2x *bp) | 
|  | { | 
|  | int port = BP_PORT(bp); | 
|  | int func = BP_FUNC(bp); | 
|  | int init_phase = PHASE_PF0 + func; | 
|  | struct bnx2x_ilt *ilt = BP_ILT(bp); | 
|  | uint16_t cdu_ilt_start; | 
|  | uint32_t addr, val; | 
|  | uint32_t main_mem_base, main_mem_size, main_mem_prty_clr; | 
|  | int i, main_mem_width, rc; | 
|  |  | 
|  | DP(NETIF_MSG_HW, "starting func init  func %d\n", func); | 
|  |  | 
|  | /* FLR cleanup - hmmm */ | 
|  | if (!CHIP_IS_E1x(bp)) { | 
|  | rc = bnx2x_pf_flr_clnup(bp); | 
|  | if (rc) { | 
|  | bnx2x_fw_dump(bp); | 
|  | return rc; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* set MSI reconfigure capability */ | 
|  | if (bp->common.int_block == INT_BLOCK_HC) { | 
|  | addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0); | 
|  | val = REG_RD(bp, addr); | 
|  | val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0; | 
|  | REG_WR(bp, addr, val); | 
|  | } | 
|  |  | 
|  | bnx2x_init_block(bp, BLOCK_PXP, init_phase); | 
|  | bnx2x_init_block(bp, BLOCK_PXP2, init_phase); | 
|  |  | 
|  | ilt = BP_ILT(bp); | 
|  | cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start; | 
|  |  | 
|  | if (IS_SRIOV(bp)) | 
|  | cdu_ilt_start += BNX2X_FIRST_VF_CID/ILT_PAGE_CIDS; | 
|  | cdu_ilt_start = bnx2x_iov_init_ilt(bp, cdu_ilt_start); | 
|  |  | 
|  | /* since BNX2X_FIRST_VF_CID > 0 the PF L2 cids precedes | 
|  | * those of the VFs, so start line should be reset | 
|  | */ | 
|  | cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start; | 
|  | for (i = 0; i < L2_ILT_LINES(bp); i++) { | 
|  | ilt->lines[cdu_ilt_start + i].page = bp->context[i].vcxt; | 
|  | ilt->lines[cdu_ilt_start + i].page_mapping = | 
|  | bp->context[i].cxt_mapping; | 
|  | ilt->lines[cdu_ilt_start + i].size = bp->context[i].size; | 
|  | } | 
|  |  | 
|  | bnx2x_ilt_init_op(bp, INITOP_SET); | 
|  |  | 
|  | if (!CONFIGURE_NIC_MODE(bp)) { | 
|  | bnx2x_init_searcher(bp); | 
|  | REG_WR(bp, PRS_REG_NIC_MODE, 0); | 
|  | DP(NETIF_MSG_IFUP, "NIC MODE disabled\n"); | 
|  | } else { | 
|  | /* Set NIC mode */ | 
|  | REG_WR(bp, PRS_REG_NIC_MODE, 1); | 
|  | DP(NETIF_MSG_IFUP, "NIC MODE configured\n"); | 
|  | } | 
|  |  | 
|  | if (!CHIP_IS_E1x(bp)) { | 
|  | uint32_t pf_conf = IGU_PF_CONF_FUNC_EN; | 
|  |  | 
|  | /* Turn on a single ISR mode in IGU if driver is going to use | 
|  | * INT#x or MSI | 
|  | */ | 
|  | if (!(bp->flags & USING_MSIX_FLAG)) | 
|  | pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN; | 
|  | /* | 
|  | * Timers workaround bug: function init part. | 
|  | * Need to wait 20msec after initializing ILT, | 
|  | * needed to make sure there are no requests in | 
|  | * one of the PXP internal queues with "old" ILT addresses | 
|  | */ | 
|  | kthread_usleep(1000 * 20); | 
|  | /* | 
|  | * Master enable - Due to WB DMAE writes performed before this | 
|  | * register is re-initialized as part of the regular function | 
|  | * init | 
|  | */ | 
|  | REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); | 
|  | /* Enable the function in IGU */ | 
|  | REG_WR(bp, IGU_REG_PF_CONFIGURATION, pf_conf); | 
|  | } | 
|  |  | 
|  | bp->dmae_ready = 1; | 
|  |  | 
|  | bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase); | 
|  |  | 
|  | if (!CHIP_IS_E1x(bp)) | 
|  | REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func); | 
|  |  | 
|  | bnx2x_init_block(bp, BLOCK_ATC, init_phase); | 
|  | bnx2x_init_block(bp, BLOCK_DMAE, init_phase); | 
|  | bnx2x_init_block(bp, BLOCK_NIG, init_phase); | 
|  | bnx2x_init_block(bp, BLOCK_SRC, init_phase); | 
|  | bnx2x_init_block(bp, BLOCK_MISC, init_phase); | 
|  | bnx2x_init_block(bp, BLOCK_TCM, init_phase); | 
|  | bnx2x_init_block(bp, BLOCK_UCM, init_phase); | 
|  | bnx2x_init_block(bp, BLOCK_CCM, init_phase); | 
|  | bnx2x_init_block(bp, BLOCK_XCM, init_phase); | 
|  | bnx2x_init_block(bp, BLOCK_TSEM, init_phase); | 
|  | bnx2x_init_block(bp, BLOCK_USEM, init_phase); | 
|  | bnx2x_init_block(bp, BLOCK_CSEM, init_phase); | 
|  | bnx2x_init_block(bp, BLOCK_XSEM, init_phase); | 
|  |  | 
|  | if (!CHIP_IS_E1x(bp)) | 
|  | REG_WR(bp, QM_REG_PF_EN, 1); | 
|  |  | 
|  | if (!CHIP_IS_E1x(bp)) { | 
|  | REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func); | 
|  | REG_WR(bp, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func); | 
|  | REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func); | 
|  | REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func); | 
|  | } | 
|  | bnx2x_init_block(bp, BLOCK_QM, init_phase); | 
|  |  | 
|  | bnx2x_init_block(bp, BLOCK_TM, init_phase); | 
|  | bnx2x_init_block(bp, BLOCK_DORQ, init_phase); | 
|  | REG_WR(bp, DORQ_REG_MODE_ACT, 1); /* no dpm */ | 
|  |  | 
|  | bnx2x_iov_init_dq(bp); | 
|  |  | 
|  | bnx2x_init_block(bp, BLOCK_BRB1, init_phase); | 
|  | bnx2x_init_block(bp, BLOCK_PRS, init_phase); | 
|  | bnx2x_init_block(bp, BLOCK_TSDM, init_phase); | 
|  | bnx2x_init_block(bp, BLOCK_CSDM, init_phase); | 
|  | bnx2x_init_block(bp, BLOCK_USDM, init_phase); | 
|  | bnx2x_init_block(bp, BLOCK_XSDM, init_phase); | 
|  | bnx2x_init_block(bp, BLOCK_UPB, init_phase); | 
|  | bnx2x_init_block(bp, BLOCK_XPB, init_phase); | 
|  | bnx2x_init_block(bp, BLOCK_PBF, init_phase); | 
|  | if (!CHIP_IS_E1x(bp)) | 
|  | REG_WR(bp, PBF_REG_DISABLE_PF, 0); | 
|  |  | 
|  | bnx2x_init_block(bp, BLOCK_CDU, init_phase); | 
|  |  | 
|  | bnx2x_init_block(bp, BLOCK_CFC, init_phase); | 
|  |  | 
|  | if (!CHIP_IS_E1x(bp)) | 
|  | REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 1); | 
|  |  | 
|  | if (IS_MF(bp)) { | 
|  | if (!(IS_MF_UFP(bp) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp))) { | 
|  | REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port * 8, 1); | 
|  | REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port * 8, | 
|  | bp->mf_ov); | 
|  | } | 
|  | } | 
|  |  | 
|  | bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase); | 
|  |  | 
|  | /* HC init per function */ | 
|  | if (bp->common.int_block == INT_BLOCK_HC) { | 
|  | if (CHIP_IS_E1H(bp)) { | 
|  | REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0); | 
|  |  | 
|  | REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0); | 
|  | REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0); | 
|  | } | 
|  | bnx2x_init_block(bp, BLOCK_HC, init_phase); | 
|  |  | 
|  | } else { | 
|  | int num_segs, sb_idx, prod_offset; | 
|  |  | 
|  | REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0); | 
|  |  | 
|  | if (!CHIP_IS_E1x(bp)) { | 
|  | REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0); | 
|  | REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0); | 
|  | } | 
|  |  | 
|  | bnx2x_init_block(bp, BLOCK_IGU, init_phase); | 
|  |  | 
|  | if (!CHIP_IS_E1x(bp)) { | 
|  | int dsb_idx = 0; | 
|  | /** | 
|  | * Producer memory: | 
|  | * E2 mode: address 0-135 match to the mapping memory; | 
|  | * 136 - PF0 default prod; 137 - PF1 default prod; | 
|  | * 138 - PF2 default prod; 139 - PF3 default prod; | 
|  | * 140 - PF0 attn prod;    141 - PF1 attn prod; | 
|  | * 142 - PF2 attn prod;    143 - PF3 attn prod; | 
|  | * 144-147 reserved. | 
|  | * | 
|  | * E1.5 mode - In backward compatible mode; | 
|  | * for non default SB; each even line in the memory | 
|  | * holds the U producer and each odd line hold | 
|  | * the C producer. The first 128 producers are for | 
|  | * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20 | 
|  | * producers are for the DSB for each PF. | 
|  | * Each PF has five segments: (the order inside each | 
|  | * segment is PF0; PF1; PF2; PF3) - 128-131 U prods; | 
|  | * 132-135 C prods; 136-139 X prods; 140-143 T prods; | 
|  | * 144-147 attn prods; | 
|  | */ | 
|  | /* non-default-status-blocks */ | 
|  | num_segs = CHIP_INT_MODE_IS_BC(bp) ? | 
|  | IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS; | 
|  | for (sb_idx = 0; sb_idx < bp->igu_sb_cnt; sb_idx++) { | 
|  | prod_offset = (bp->igu_base_sb + sb_idx) * | 
|  | num_segs; | 
|  |  | 
|  | for (i = 0; i < num_segs; i++) { | 
|  | addr = IGU_REG_PROD_CONS_MEMORY + | 
|  | (prod_offset + i) * 4; | 
|  | REG_WR(bp, addr, 0); | 
|  | } | 
|  | /* send consumer update with value 0 */ | 
|  | bnx2x_ack_sb(bp, bp->igu_base_sb + sb_idx, | 
|  | USTORM_ID, 0, IGU_INT_NOP, 1); | 
|  | bnx2x_igu_clear_sb(bp, | 
|  | bp->igu_base_sb + sb_idx); | 
|  | } | 
|  |  | 
|  | /* default-status-blocks */ | 
|  | num_segs = CHIP_INT_MODE_IS_BC(bp) ? | 
|  | IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS; | 
|  |  | 
|  | if (CHIP_MODE_IS_4_PORT(bp)) | 
|  | dsb_idx = BP_FUNC(bp); | 
|  | else | 
|  | dsb_idx = BP_VN(bp); | 
|  |  | 
|  | prod_offset = (CHIP_INT_MODE_IS_BC(bp) ? | 
|  | IGU_BC_BASE_DSB_PROD + dsb_idx : | 
|  | IGU_NORM_BASE_DSB_PROD + dsb_idx); | 
|  |  | 
|  | /* | 
|  | * igu prods come in chunks of E1HVN_MAX (4) - | 
|  | * does not matters what is the current chip mode | 
|  | */ | 
|  | for (i = 0; i < (num_segs * E1HVN_MAX); | 
|  | i += E1HVN_MAX) { | 
|  | addr = IGU_REG_PROD_CONS_MEMORY + | 
|  | (prod_offset + i)*4; | 
|  | REG_WR(bp, addr, 0); | 
|  | } | 
|  | /* send consumer update with 0 */ | 
|  | if (CHIP_INT_MODE_IS_BC(bp)) { | 
|  | bnx2x_ack_sb(bp, bp->igu_dsb_id, | 
|  | USTORM_ID, 0, IGU_INT_NOP, 1); | 
|  | bnx2x_ack_sb(bp, bp->igu_dsb_id, | 
|  | CSTORM_ID, 0, IGU_INT_NOP, 1); | 
|  | bnx2x_ack_sb(bp, bp->igu_dsb_id, | 
|  | XSTORM_ID, 0, IGU_INT_NOP, 1); | 
|  | bnx2x_ack_sb(bp, bp->igu_dsb_id, | 
|  | TSTORM_ID, 0, IGU_INT_NOP, 1); | 
|  | bnx2x_ack_sb(bp, bp->igu_dsb_id, | 
|  | ATTENTION_ID, 0, IGU_INT_NOP, 1); | 
|  | } else { | 
|  | bnx2x_ack_sb(bp, bp->igu_dsb_id, | 
|  | USTORM_ID, 0, IGU_INT_NOP, 1); | 
|  | bnx2x_ack_sb(bp, bp->igu_dsb_id, | 
|  | ATTENTION_ID, 0, IGU_INT_NOP, 1); | 
|  | } | 
|  | bnx2x_igu_clear_sb(bp, bp->igu_dsb_id); | 
|  |  | 
|  | /* !!! These should become driver const once | 
|  | rf-tool supports split-68 const */ | 
|  | REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0); | 
|  | REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0); | 
|  | REG_WR(bp, IGU_REG_SB_MASK_LSB, 0); | 
|  | REG_WR(bp, IGU_REG_SB_MASK_MSB, 0); | 
|  | REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0); | 
|  | REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Reset PCIE errors for debug */ | 
|  | REG_WR(bp, 0x2114, 0xffffffff); | 
|  | REG_WR(bp, 0x2120, 0xffffffff); | 
|  |  | 
|  | if (CHIP_IS_E1x(bp)) { | 
|  | main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/ | 
|  | main_mem_base = HC_REG_MAIN_MEMORY + | 
|  | BP_PORT(bp) * (main_mem_size * 4); | 
|  | main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR; | 
|  | main_mem_width = 8; | 
|  |  | 
|  | val = REG_RD(bp, main_mem_prty_clr); | 
|  | if (val) | 
|  | DP(NETIF_MSG_HW, | 
|  | "Hmmm... Parity errors in HC block during function init (0x%x)!\n", | 
|  | val); | 
|  |  | 
|  | /* Clear "false" parity errors in MSI-X table */ | 
|  | for (i = main_mem_base; | 
|  | i < main_mem_base + main_mem_size * 4; | 
|  | i += main_mem_width) { | 
|  | bnx2x_read_dmae(bp, i, main_mem_width / 4); | 
|  | bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data), | 
|  | i, main_mem_width / 4); | 
|  | } | 
|  | /* Clear HC parity attention */ | 
|  | REG_RD(bp, main_mem_prty_clr); | 
|  | } | 
|  |  | 
|  | #ifdef BNX2X_STOP_ON_ERROR | 
|  | /* Enable STORMs SP logging */ | 
|  | REG_WR8(bp, BAR_USTRORM_INTMEM + | 
|  | USTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1); | 
|  | REG_WR8(bp, BAR_TSTRORM_INTMEM + | 
|  | TSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1); | 
|  | REG_WR8(bp, BAR_CSTRORM_INTMEM + | 
|  | CSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1); | 
|  | REG_WR8(bp, BAR_XSTRORM_INTMEM + | 
|  | XSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1); | 
|  | #endif | 
|  |  | 
|  | bnx2x_phy_probe(&bp->link_params); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void bnx2x_free_mem_cnic(struct bnx2x *bp) | 
|  | { | 
|  | bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_FREE); | 
|  |  | 
|  | if (!CHIP_IS_E1x(bp)) | 
|  | BNX2X_PCI_FREE(bp->cnic_sb.e2_sb, bp->cnic_sb_mapping, | 
|  | sizeof(struct host_hc_status_block_e2)); | 
|  | else | 
|  | BNX2X_PCI_FREE(bp->cnic_sb.e1x_sb, bp->cnic_sb_mapping, | 
|  | sizeof(struct host_hc_status_block_e1x)); | 
|  |  | 
|  | BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ); | 
|  | } | 
|  |  | 
|  | void bnx2x_free_mem(struct bnx2x *bp) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping, | 
|  | bp->fw_stats_data_sz + bp->fw_stats_req_sz); | 
|  |  | 
|  | if (IS_VF(bp)) | 
|  | return; | 
|  |  | 
|  | BNX2X_PCI_FREE(bp->def_status_blk, bp->def_status_blk_mapping, | 
|  | sizeof(struct host_sp_status_block)); | 
|  |  | 
|  | BNX2X_PCI_FREE(bp->slowpath, bp->slowpath_mapping, | 
|  | sizeof(struct bnx2x_slowpath)); | 
|  |  | 
|  | for (i = 0; i < L2_ILT_LINES(bp); i++) | 
|  | BNX2X_PCI_FREE(bp->context[i].vcxt, bp->context[i].cxt_mapping, | 
|  | bp->context[i].size); | 
|  | bnx2x_ilt_mem_op(bp, ILT_MEMOP_FREE); | 
|  |  | 
|  | BNX2X_FREE(bp->ilt->lines); | 
|  |  | 
|  | BNX2X_PCI_FREE(bp->spq, bp->spq_mapping, BCM_PAGE_SIZE); | 
|  |  | 
|  | BNX2X_PCI_FREE(bp->eq_ring, bp->eq_mapping, | 
|  | BCM_PAGE_SIZE * NUM_EQ_PAGES); | 
|  |  | 
|  | BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ); | 
|  |  | 
|  | bnx2x_iov_free_mem(bp); | 
|  | } | 
|  |  | 
|  | int bnx2x_alloc_mem_cnic(struct bnx2x *bp) | 
|  | { | 
|  | if (!CHIP_IS_E1x(bp)) { | 
|  | /* size = the status block + ramrod buffers */ | 
|  | bp->cnic_sb.e2_sb = BNX2X_PCI_ALLOC(&bp->cnic_sb_mapping, | 
|  | sizeof(struct host_hc_status_block_e2)); | 
|  | if (!bp->cnic_sb.e2_sb) | 
|  | goto alloc_mem_err; | 
|  | } else { | 
|  | bp->cnic_sb.e1x_sb = BNX2X_PCI_ALLOC(&bp->cnic_sb_mapping, | 
|  | sizeof(struct host_hc_status_block_e1x)); | 
|  | if (!bp->cnic_sb.e1x_sb) | 
|  | goto alloc_mem_err; | 
|  | } | 
|  |  | 
|  | if (CONFIGURE_NIC_MODE(bp) && !bp->t2) { | 
|  | /* allocate searcher T2 table, as it wasn't allocated before */ | 
|  | bp->t2 = BNX2X_PCI_ALLOC(&bp->t2_mapping, SRC_T2_SZ); | 
|  | if (!bp->t2) | 
|  | goto alloc_mem_err; | 
|  | } | 
|  |  | 
|  | /* write address to which L5 should insert its values */ | 
|  | bp->cnic_eth_dev.addr_drv_info_to_mcp = | 
|  | &bp->slowpath->drv_info_to_mcp; | 
|  |  | 
|  | if (bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_ALLOC)) | 
|  | goto alloc_mem_err; | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | alloc_mem_err: | 
|  | bnx2x_free_mem_cnic(bp); | 
|  | BNX2X_ERR("Can't allocate memory\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | int bnx2x_alloc_mem(struct bnx2x *bp) | 
|  | { | 
|  | int i, allocated, context_size; | 
|  |  | 
|  | if (!CONFIGURE_NIC_MODE(bp) && !bp->t2) { | 
|  | /* allocate searcher T2 table */ | 
|  | bp->t2 = BNX2X_PCI_ALLOC(&bp->t2_mapping, SRC_T2_SZ); | 
|  | if (!bp->t2) | 
|  | goto alloc_mem_err; | 
|  | } | 
|  |  | 
|  | bp->def_status_blk = BNX2X_PCI_ALLOC(&bp->def_status_blk_mapping, | 
|  | sizeof(struct host_sp_status_block)); | 
|  | if (!bp->def_status_blk) | 
|  | goto alloc_mem_err; | 
|  |  | 
|  | bp->slowpath = BNX2X_PCI_ALLOC(&bp->slowpath_mapping, | 
|  | sizeof(struct bnx2x_slowpath)); | 
|  | if (!bp->slowpath) | 
|  | goto alloc_mem_err; | 
|  |  | 
|  | /* Allocate memory for CDU context: | 
|  | * This memory is allocated separately and not in the generic ILT | 
|  | * functions because CDU differs in few aspects: | 
|  | * 1. There are multiple entities allocating memory for context - | 
|  | * 'regular' driver, CNIC and SRIOV driver. Each separately controls | 
|  | * its own ILT lines. | 
|  | * 2. Since CDU page-size is not a single 4KB page (which is the case | 
|  | * for the other ILT clients), to be efficient we want to support | 
|  | * allocation of sub-page-size in the last entry. | 
|  | * 3. Context pointers are used by the driver to pass to FW / update | 
|  | * the context (for the other ILT clients the pointers are used just to | 
|  | * free the memory during unload). | 
|  | */ | 
|  | context_size = sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(bp); | 
|  |  | 
|  | for (i = 0, allocated = 0; allocated < context_size; i++) { | 
|  | bp->context[i].size = MIN(CDU_ILT_PAGE_SZ, | 
|  | (context_size - allocated)); | 
|  | bp->context[i].vcxt = BNX2X_PCI_ALLOC(&bp->context[i].cxt_mapping, | 
|  | bp->context[i].size); | 
|  | if (!bp->context[i].vcxt) | 
|  | goto alloc_mem_err; | 
|  | allocated += bp->context[i].size; | 
|  | } | 
|  | bp->ilt->lines = kzmalloc((ILT_MAX_LINES) * (sizeof(struct ilt_line)), | 
|  | MEM_WAIT); | 
|  | if (!bp->ilt->lines) | 
|  | goto alloc_mem_err; | 
|  |  | 
|  | if (bnx2x_ilt_mem_op(bp, ILT_MEMOP_ALLOC)) | 
|  | goto alloc_mem_err; | 
|  |  | 
|  | if (bnx2x_iov_alloc_mem(bp)) | 
|  | goto alloc_mem_err; | 
|  |  | 
|  | /* Slow path ring */ | 
|  | bp->spq = BNX2X_PCI_ALLOC(&bp->spq_mapping, BCM_PAGE_SIZE); | 
|  | if (!bp->spq) | 
|  | goto alloc_mem_err; | 
|  |  | 
|  | /* EQ */ | 
|  | bp->eq_ring = BNX2X_PCI_ALLOC(&bp->eq_mapping, | 
|  | BCM_PAGE_SIZE * NUM_EQ_PAGES); | 
|  | if (!bp->eq_ring) | 
|  | goto alloc_mem_err; | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | alloc_mem_err: | 
|  | bnx2x_free_mem(bp); | 
|  | BNX2X_ERR("Can't allocate memory\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Init service functions | 
|  | */ | 
|  |  | 
|  | int bnx2x_set_mac_one(struct bnx2x *bp, uint8_t *mac, | 
|  | struct bnx2x_vlan_mac_obj *obj, bool set, | 
|  | int mac_type, unsigned long *ramrod_flags) | 
|  | { | 
|  | int rc; | 
|  | struct bnx2x_vlan_mac_ramrod_params ramrod_param; | 
|  |  | 
|  | memset(&ramrod_param, 0, sizeof(ramrod_param)); | 
|  |  | 
|  | /* Fill general parameters */ | 
|  | ramrod_param.vlan_mac_obj = obj; | 
|  | ramrod_param.ramrod_flags = *ramrod_flags; | 
|  |  | 
|  | /* Fill a user request section if needed */ | 
|  | if (!test_bit(RAMROD_CONT, ramrod_flags)) { | 
|  | memcpy(ramrod_param.user_req.u.mac.mac, mac, Eaddrlen); | 
|  |  | 
|  | __set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags); | 
|  |  | 
|  | /* Set the command: ADD or DEL */ | 
|  | if (set) | 
|  | ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD; | 
|  | else | 
|  | ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL; | 
|  | } | 
|  |  | 
|  | rc = bnx2x_config_vlan_mac(bp, &ramrod_param); | 
|  |  | 
|  | if (rc == -EEXIST) { | 
|  | DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc); | 
|  | /* do not treat adding same MAC as error */ | 
|  | rc = 0; | 
|  | } else if (rc < 0) | 
|  | BNX2X_ERR("%s MAC failed\n", (set ? "Set" : "Del")); | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | int bnx2x_del_all_macs(struct bnx2x *bp, | 
|  | struct bnx2x_vlan_mac_obj *mac_obj, | 
|  | int mac_type, bool wait_for_comp) | 
|  | { | 
|  | int rc; | 
|  | unsigned long ramrod_flags = 0, vlan_mac_flags = 0; | 
|  |  | 
|  | /* Wait for completion of requested */ | 
|  | if (wait_for_comp) | 
|  | __set_bit(RAMROD_COMP_WAIT, &ramrod_flags); | 
|  |  | 
|  | /* Set the mac type of addresses we want to clear */ | 
|  | __set_bit(mac_type, &vlan_mac_flags); | 
|  |  | 
|  | rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, &ramrod_flags); | 
|  | if (rc < 0) | 
|  | BNX2X_ERR("Failed to delete MACs: %d\n", rc); | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | int bnx2x_set_eth_mac(struct bnx2x *bp, bool set) | 
|  | { | 
|  | if (IS_PF(bp)) { | 
|  | unsigned long ramrod_flags = 0; | 
|  |  | 
|  | DP(NETIF_MSG_IFUP, "Adding Eth MAC\n"); | 
|  | __set_bit(RAMROD_COMP_WAIT, &ramrod_flags); | 
|  | return bnx2x_set_mac_one(bp, bp->dev->ea, | 
|  | &bp->sp_objs->mac_obj, set, | 
|  | BNX2X_ETH_MAC, &ramrod_flags); | 
|  | } else { /* vf */ | 
|  | return bnx2x_vfpf_config_mac(bp, bp->dev->ea, | 
|  | bp->fp->index, true); | 
|  | } | 
|  | } | 
|  |  | 
|  | int bnx2x_setup_leading(struct bnx2x *bp) | 
|  | { | 
|  | if (IS_PF(bp)) | 
|  | return bnx2x_setup_queue(bp, &bp->fp[0], true); | 
|  | else /* VF */ | 
|  | return bnx2x_vfpf_setup_q(bp, &bp->fp[0], true); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * bnx2x_set_int_mode - configure interrupt mode | 
|  | * | 
|  | * @bp:		driver handle | 
|  | * | 
|  | * In case of MSI-X it will also try to enable MSI-X. | 
|  | */ | 
|  | int bnx2x_set_int_mode(struct bnx2x *bp) | 
|  | { | 
|  | int ret; | 
|  | /* This tries to set up MSIX in advance, registering vectors and whatnot. | 
|  | * The bulk is in bnx2x_enable_msix. | 
|  | * | 
|  | * Since we're in devreset now, we're still part of the bootup process and | 
|  | * can init msix, and later at attach time we can register the irqs. | 
|  | * | 
|  | * We can check later if getting apic vectors worked after register_irq(). | 
|  | * | 
|  | * We're going to try and use MSIX, so let's set it now.  Code in a few | 
|  | * places checks the flag. */ | 
|  | if ((ret = pci_msix_init(bp->pdev))) | 
|  | return ret; | 
|  | bp->flags |= USING_MSIX_FLAG; | 
|  | return 0; | 
|  | #if 0 // AKAROS_PORT | 
|  | int rc = 0; | 
|  |  | 
|  | if (IS_VF(bp) && int_mode != BNX2X_INT_MODE_MSIX) { | 
|  | BNX2X_ERR("VF not loaded since interrupt mode not msix\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | switch (int_mode) { | 
|  | case BNX2X_INT_MODE_MSIX: | 
|  | /* attempt to enable msix */ | 
|  | rc = bnx2x_enable_msix(bp); | 
|  |  | 
|  | /* msix attained */ | 
|  | if (!rc) | 
|  | return 0; | 
|  |  | 
|  | /* vfs use only msix */ | 
|  | if (rc && IS_VF(bp)) | 
|  | return rc; | 
|  |  | 
|  | /* failed to enable multiple MSI-X */ | 
|  | BNX2X_DEV_INFO("Failed to enable multiple MSI-X (%d), set number of queues to %d\n", | 
|  | bp->num_queues, | 
|  | 1 + bp->num_cnic_queues); | 
|  |  | 
|  | /* falling through... */ | 
|  | case BNX2X_INT_MODE_MSI: | 
|  | bnx2x_enable_msi(bp); | 
|  |  | 
|  | /* falling through... */ | 
|  | case BNX2X_INT_MODE_INTX: | 
|  | bp->num_ethernet_queues = 1; | 
|  | bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues; | 
|  | BNX2X_DEV_INFO("set number of queues to 1\n"); | 
|  | break; | 
|  | default: | 
|  | BNX2X_DEV_INFO("unknown value in int_mode module parameter\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | return 0; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* must be called prior to any HW initializations */ | 
|  | static inline uint16_t bnx2x_cid_ilt_lines(struct bnx2x *bp) | 
|  | { | 
|  | if (IS_SRIOV(bp)) | 
|  | return (BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)/ILT_PAGE_CIDS; | 
|  | return L2_ILT_LINES(bp); | 
|  | } | 
|  |  | 
|  | void bnx2x_ilt_set_info(struct bnx2x *bp) | 
|  | { | 
|  | struct ilt_client_info *ilt_client; | 
|  | struct bnx2x_ilt *ilt = BP_ILT(bp); | 
|  | uint16_t line = 0; | 
|  |  | 
|  | ilt->start_line = FUNC_ILT_BASE(BP_FUNC(bp)); | 
|  | DP(BNX2X_MSG_SP, "ilt starts at line %d\n", ilt->start_line); | 
|  |  | 
|  | /* CDU */ | 
|  | ilt_client = &ilt->clients[ILT_CLIENT_CDU]; | 
|  | ilt_client->client_num = ILT_CLIENT_CDU; | 
|  | ilt_client->page_size = CDU_ILT_PAGE_SZ; | 
|  | ilt_client->flags = ILT_CLIENT_SKIP_MEM; | 
|  | ilt_client->start = line; | 
|  | line += bnx2x_cid_ilt_lines(bp); | 
|  |  | 
|  | if (CNIC_SUPPORT(bp)) | 
|  | line += CNIC_ILT_LINES; | 
|  | ilt_client->end = line - 1; | 
|  |  | 
|  | DP(NETIF_MSG_IFUP, "ilt client[CDU]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n", | 
|  | ilt_client->start, | 
|  | ilt_client->end, | 
|  | ilt_client->page_size, | 
|  | ilt_client->flags, | 
|  | LOG2_UP(ilt_client->page_size >> 12)); | 
|  |  | 
|  | /* QM */ | 
|  | if (QM_INIT(bp->qm_cid_count)) { | 
|  | ilt_client = &ilt->clients[ILT_CLIENT_QM]; | 
|  | ilt_client->client_num = ILT_CLIENT_QM; | 
|  | ilt_client->page_size = QM_ILT_PAGE_SZ; | 
|  | ilt_client->flags = 0; | 
|  | ilt_client->start = line; | 
|  |  | 
|  | /* 4 bytes for each cid */ | 
|  | line += DIV_ROUND_UP(bp->qm_cid_count * QM_QUEUES_PER_FUNC * 4, | 
|  | QM_ILT_PAGE_SZ); | 
|  |  | 
|  | ilt_client->end = line - 1; | 
|  |  | 
|  | DP(NETIF_MSG_IFUP, | 
|  | "ilt client[QM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n", | 
|  | ilt_client->start, | 
|  | ilt_client->end, | 
|  | ilt_client->page_size, | 
|  | ilt_client->flags, | 
|  | LOG2_UP(ilt_client->page_size >> 12)); | 
|  | } | 
|  |  | 
|  | if (CNIC_SUPPORT(bp)) { | 
|  | /* SRC */ | 
|  | ilt_client = &ilt->clients[ILT_CLIENT_SRC]; | 
|  | ilt_client->client_num = ILT_CLIENT_SRC; | 
|  | ilt_client->page_size = SRC_ILT_PAGE_SZ; | 
|  | ilt_client->flags = 0; | 
|  | ilt_client->start = line; | 
|  | line += SRC_ILT_LINES; | 
|  | ilt_client->end = line - 1; | 
|  |  | 
|  | DP(NETIF_MSG_IFUP, | 
|  | "ilt client[SRC]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n", | 
|  | ilt_client->start, | 
|  | ilt_client->end, | 
|  | ilt_client->page_size, | 
|  | ilt_client->flags, | 
|  | LOG2_UP(ilt_client->page_size >> 12)); | 
|  |  | 
|  | /* TM */ | 
|  | ilt_client = &ilt->clients[ILT_CLIENT_TM]; | 
|  | ilt_client->client_num = ILT_CLIENT_TM; | 
|  | ilt_client->page_size = TM_ILT_PAGE_SZ; | 
|  | ilt_client->flags = 0; | 
|  | ilt_client->start = line; | 
|  | line += TM_ILT_LINES; | 
|  | ilt_client->end = line - 1; | 
|  |  | 
|  | DP(NETIF_MSG_IFUP, | 
|  | "ilt client[TM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n", | 
|  | ilt_client->start, | 
|  | ilt_client->end, | 
|  | ilt_client->page_size, | 
|  | ilt_client->flags, | 
|  | LOG2_UP(ilt_client->page_size >> 12)); | 
|  | } | 
|  |  | 
|  | assert(!(line > ILT_MAX_LINES)); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * bnx2x_pf_q_prep_init - prepare INIT transition parameters | 
|  | * | 
|  | * @bp:			driver handle | 
|  | * @fp:			pointer to fastpath | 
|  | * @init_params:	pointer to parameters structure | 
|  | * | 
|  | * parameters configured: | 
|  | *      - HC configuration | 
|  | *      - Queue's CDU context | 
|  | */ | 
|  | static void bnx2x_pf_q_prep_init(struct bnx2x *bp, | 
|  | struct bnx2x_fastpath *fp, struct bnx2x_queue_init_params *init_params) | 
|  | { | 
|  | uint8_t cos; | 
|  | int cxt_index, cxt_offset; | 
|  |  | 
|  | /* FCoE Queue uses Default SB, thus has no HC capabilities */ | 
|  | if (!IS_FCOE_FP(fp)) { | 
|  | __set_bit(BNX2X_Q_FLG_HC, &init_params->rx.flags); | 
|  | __set_bit(BNX2X_Q_FLG_HC, &init_params->tx.flags); | 
|  |  | 
|  | /* If HC is supported, enable host coalescing in the transition | 
|  | * to INIT state. | 
|  | */ | 
|  | __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->rx.flags); | 
|  | __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->tx.flags); | 
|  |  | 
|  | /* HC rate */ | 
|  | init_params->rx.hc_rate = bp->rx_ticks ? | 
|  | (1000000 / bp->rx_ticks) : 0; | 
|  | init_params->tx.hc_rate = bp->tx_ticks ? | 
|  | (1000000 / bp->tx_ticks) : 0; | 
|  |  | 
|  | /* FW SB ID */ | 
|  | init_params->rx.fw_sb_id = init_params->tx.fw_sb_id = | 
|  | fp->fw_sb_id; | 
|  |  | 
|  | /* | 
|  | * CQ index among the SB indices: FCoE clients uses the default | 
|  | * SB, therefore it's different. | 
|  | */ | 
|  | init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS; | 
|  | init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS; | 
|  | } | 
|  |  | 
|  | /* set maximum number of COSs supported by this queue */ | 
|  | init_params->max_cos = fp->max_cos; | 
|  |  | 
|  | DP(NETIF_MSG_IFUP, "fp: %d setting queue params max cos to: %d\n", | 
|  | fp->index, init_params->max_cos); | 
|  |  | 
|  | /* set the context pointers queue object */ | 
|  | for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) { | 
|  | cxt_index = fp->txdata_ptr[cos]->cid / ILT_PAGE_CIDS; | 
|  | cxt_offset = fp->txdata_ptr[cos]->cid - (cxt_index * | 
|  | ILT_PAGE_CIDS); | 
|  | init_params->cxts[cos] = | 
|  | &bp->context[cxt_index].vcxt[cxt_offset].eth; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int bnx2x_setup_tx_only(struct bnx2x *bp, struct bnx2x_fastpath *fp, | 
|  | struct bnx2x_queue_state_params *q_params, | 
|  | struct bnx2x_queue_setup_tx_only_params *tx_only_params, | 
|  | int tx_index, bool leading) | 
|  | { | 
|  | memset(tx_only_params, 0, sizeof(*tx_only_params)); | 
|  |  | 
|  | /* Set the command */ | 
|  | q_params->cmd = BNX2X_Q_CMD_SETUP_TX_ONLY; | 
|  |  | 
|  | /* Set tx-only QUEUE flags: don't zero statistics */ | 
|  | tx_only_params->flags = bnx2x_get_common_flags(bp, fp, false); | 
|  |  | 
|  | /* choose the index of the cid to send the slow path on */ | 
|  | tx_only_params->cid_index = tx_index; | 
|  |  | 
|  | /* Set general TX_ONLY_SETUP parameters */ | 
|  | bnx2x_pf_q_prep_general(bp, fp, &tx_only_params->gen_params, tx_index); | 
|  |  | 
|  | /* Set Tx TX_ONLY_SETUP parameters */ | 
|  | bnx2x_pf_tx_q_prep(bp, fp, &tx_only_params->txq_params, tx_index); | 
|  |  | 
|  | DP(NETIF_MSG_IFUP, | 
|  | "preparing to send tx-only ramrod for connection: cos %d, primary cid %d, cid %d, client id %d, sp-client id %d, flags %lx\n", | 
|  | tx_index, q_params->q_obj->cids[FIRST_TX_COS_INDEX], | 
|  | q_params->q_obj->cids[tx_index], q_params->q_obj->cl_id, | 
|  | tx_only_params->gen_params.spcl_id, tx_only_params->flags); | 
|  |  | 
|  | /* send the ramrod */ | 
|  | return bnx2x_queue_state_change(bp, q_params); | 
|  | } | 
|  |  | 
|  | static void bnx2x_dump_q_state_params(struct bnx2x_queue_state_params *q_params) | 
|  | { | 
|  | pr_info("qsp obj %p\n", | 
|  | q_params->q_obj); | 
|  | pr_info("qsp cmd %d\n", | 
|  | q_params->cmd); | 
|  | pr_info("qsp rrfl %p\n", | 
|  | q_params->ramrod_flags); | 
|  | pr_info("qsp setup.gen.stat_id %p\n", | 
|  | q_params->params.setup.gen_params.stat_id); | 
|  | pr_info("qsp setup.gen.spcl_id %p\n", | 
|  | q_params->params.setup.gen_params.spcl_id); | 
|  | pr_info("qsp setup.gen.mtu     %p\n", | 
|  | q_params->params.setup.gen_params.mtu    ); | 
|  | pr_info("qsp setup.gen.cos     %p\n", | 
|  | q_params->params.setup.gen_params.cos    ); | 
|  | pr_info("qsp setup.gen.fp_hsi  %p\n", | 
|  | q_params->params.setup.gen_params.fp_hsi ); | 
|  |  | 
|  | pr_info("qsp setup.rxq.dscr_map             %p\n", | 
|  | q_params->params.setup.rxq_params.dscr_map             ); | 
|  | pr_info("qsp setup.rxq.sge_map              %p\n", | 
|  | q_params->params.setup.rxq_params.sge_map              ); | 
|  | pr_info("qsp setup.rxq.rcq_map              %p\n", | 
|  | q_params->params.setup.rxq_params.rcq_map              ); | 
|  | pr_info("qsp setup.rxq.rcq_np_map           %p\n", | 
|  | q_params->params.setup.rxq_params.rcq_np_map           ); | 
|  | pr_info("qsp setup.rxq.drop_flags           %p\n", | 
|  | q_params->params.setup.rxq_params.drop_flags           ); | 
|  | pr_info("qsp setup.rxq.buf_sz               %p\n", | 
|  | q_params->params.setup.rxq_params.buf_sz               ); | 
|  | pr_info("qsp setup.rxq.fw_sb_id             %p\n", | 
|  | q_params->params.setup.rxq_params.fw_sb_id             ); | 
|  | pr_info("qsp setup.rxq.cl_qzone_id          %p\n", | 
|  | q_params->params.setup.rxq_params.cl_qzone_id          ); | 
|  | pr_info("qsp setup.rxq.tpa_agg_sz           %p\n", | 
|  | q_params->params.setup.rxq_params.tpa_agg_sz           ); | 
|  | pr_info("qsp setup.rxq.sge_buf_sz           %p\n", | 
|  | q_params->params.setup.rxq_params.sge_buf_sz           ); | 
|  | pr_info("qsp setup.rxq.max_sges_pkt         %p\n", | 
|  | q_params->params.setup.rxq_params.max_sges_pkt         ); | 
|  | pr_info("qsp setup.rxq.max_tpa_queues       %p\n", | 
|  | q_params->params.setup.rxq_params.max_tpa_queues       ); | 
|  | pr_info("qsp setup.rxq.rss_engine_id        %p\n", | 
|  | q_params->params.setup.rxq_params.rss_engine_id        ); | 
|  | pr_info("qsp setup.rxq.mcast_engine_id      %p\n", | 
|  | q_params->params.setup.rxq_params.mcast_engine_id      ); | 
|  | pr_info("qsp setup.rxq.cache_line_log       %p\n", | 
|  | q_params->params.setup.rxq_params.cache_line_log       ); | 
|  | pr_info("qsp setup.rxq.sb_cq_index          %p\n", | 
|  | q_params->params.setup.rxq_params.sb_cq_index          ); | 
|  | pr_info("qsp setup.rxq.silent_removal_value %p\n", | 
|  | q_params->params.setup.rxq_params.silent_removal_value ); | 
|  | pr_info("qsp setup.rxq.silent_removal_mask  %p\n", | 
|  | q_params->params.setup.rxq_params.silent_removal_mask  ); | 
|  |  | 
|  | pr_info("qsp setup.txq.dscr_map          %p\n", | 
|  | q_params->params.setup.txq_params.dscr_map          ); | 
|  | pr_info("qsp setup.txq.fw_sb_id          %p\n", | 
|  | q_params->params.setup.txq_params.fw_sb_id          ); | 
|  | pr_info("qsp setup.txq.sb_cq_index       %p\n", | 
|  | q_params->params.setup.txq_params.sb_cq_index       ); | 
|  | pr_info("qsp setup.txq.cos               %p\n", | 
|  | q_params->params.setup.txq_params.cos               ); | 
|  | pr_info("qsp setup.txq.traffic_type      %p\n", | 
|  | q_params->params.setup.txq_params.traffic_type      ); | 
|  | pr_info("qsp setup.txq.tss_leading_cl_id %p\n", | 
|  | q_params->params.setup.txq_params.tss_leading_cl_id ); | 
|  | pr_info("qsp setup.txq.default_vlan      %p\n", | 
|  | q_params->params.setup.txq_params.default_vlan      ); | 
|  |  | 
|  | pr_info("qsp setup.pau.bd_th_lo  %p\n", | 
|  | q_params->params.setup.pause_params.bd_th_lo  ); | 
|  | pr_info("qsp setup.pau.bd_th_hi  %p\n", | 
|  | q_params->params.setup.pause_params.bd_th_hi  ); | 
|  | pr_info("qsp setup.pau.rcq_th_lo %p\n", | 
|  | q_params->params.setup.pause_params.rcq_th_lo ); | 
|  | pr_info("qsp setup.pau.rcq_th_hi %p\n", | 
|  | q_params->params.setup.pause_params.rcq_th_hi ); | 
|  | pr_info("qsp setup.pau.sge_th_lo %p\n", | 
|  | q_params->params.setup.pause_params.sge_th_lo ); | 
|  | pr_info("qsp setup.pau.sge_th_hi %p\n", | 
|  | q_params->params.setup.pause_params.sge_th_hi ); | 
|  | pr_info("qsp setup.pau.pri_map   %p\n", | 
|  | q_params->params.setup.pause_params.pri_map   ); | 
|  | pr_info("qsp setup.fl %p\n", | 
|  | q_params->params.setup.flags); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * bnx2x_setup_queue - setup queue | 
|  | * | 
|  | * @bp:		driver handle | 
|  | * @fp:		pointer to fastpath | 
|  | * @leading:	is leading | 
|  | * | 
|  | * This function performs 2 steps in a Queue state machine | 
|  | *      actually: 1) RESET->INIT 2) INIT->SETUP | 
|  | */ | 
|  | int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp, | 
|  | bool leading) | 
|  | { | 
|  | struct bnx2x_queue_state_params q_params = {NULL}; | 
|  | struct bnx2x_queue_setup_params *setup_params = | 
|  | &q_params.params.setup; | 
|  | struct bnx2x_queue_setup_tx_only_params *tx_only_params = | 
|  | &q_params.params.tx_only; | 
|  | int rc; | 
|  | uint8_t tx_index; | 
|  |  | 
|  | DP(NETIF_MSG_IFUP, "setting up queue %d\n", fp->index); | 
|  |  | 
|  | /* reset IGU state skip FCoE L2 queue */ | 
|  | if (!IS_FCOE_FP(fp)) | 
|  | bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0, | 
|  | IGU_INT_ENABLE, 0); | 
|  |  | 
|  | q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj; | 
|  | /* We want to wait for completion in this context */ | 
|  | __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags); | 
|  |  | 
|  | /* Prepare the INIT parameters */ | 
|  | bnx2x_pf_q_prep_init(bp, fp, &q_params.params.init); | 
|  |  | 
|  | /* Set the command */ | 
|  | q_params.cmd = BNX2X_Q_CMD_INIT; | 
|  |  | 
|  | /* Change the state to INIT */ | 
|  | rc = bnx2x_queue_state_change(bp, &q_params); | 
|  | if (rc) { | 
|  | BNX2X_ERR("Queue(%d) INIT failed\n", fp->index); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | DP(NETIF_MSG_IFUP, "init complete\n"); | 
|  |  | 
|  | /* Now move the Queue to the SETUP state... */ | 
|  | memset(setup_params, 0, sizeof(*setup_params)); | 
|  |  | 
|  | /* Set QUEUE flags */ | 
|  | setup_params->flags = bnx2x_get_q_flags(bp, fp, leading); | 
|  |  | 
|  | /* Set general SETUP parameters */ | 
|  | bnx2x_pf_q_prep_general(bp, fp, &setup_params->gen_params, | 
|  | FIRST_TX_COS_INDEX); | 
|  |  | 
|  | bnx2x_pf_rx_q_prep(bp, fp, &setup_params->pause_params, | 
|  | &setup_params->rxq_params); | 
|  |  | 
|  | bnx2x_pf_tx_q_prep(bp, fp, &setup_params->txq_params, | 
|  | FIRST_TX_COS_INDEX); | 
|  |  | 
|  | /* Set the command */ | 
|  | q_params.cmd = BNX2X_Q_CMD_SETUP; | 
|  |  | 
|  | if (IS_FCOE_FP(fp)) | 
|  | bp->fcoe_init = true; | 
|  |  | 
|  | /* Change the state to SETUP */ | 
|  | rc = bnx2x_queue_state_change(bp, &q_params); | 
|  | if (rc) { | 
|  | BNX2X_ERR("Queue(%d) SETUP failed\n", fp->index); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /* loop through the relevant tx-only indices */ | 
|  | for (tx_index = FIRST_TX_ONLY_COS_INDEX; | 
|  | tx_index < fp->max_cos; | 
|  | tx_index++) { | 
|  |  | 
|  | /* prepare and send tx-only ramrod*/ | 
|  | rc = bnx2x_setup_tx_only(bp, fp, &q_params, | 
|  | tx_only_params, tx_index, leading); | 
|  | if (rc) { | 
|  | BNX2X_ERR("Queue(%d.%d) TX_ONLY_SETUP failed\n", | 
|  | fp->index, tx_index); | 
|  | return rc; | 
|  | } | 
|  | } | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static int bnx2x_stop_queue(struct bnx2x *bp, int index) | 
|  | { | 
|  | struct bnx2x_fastpath *fp = &bp->fp[index]; | 
|  | struct bnx2x_fp_txdata *txdata; | 
|  | struct bnx2x_queue_state_params q_params = {NULL}; | 
|  | int rc, tx_index; | 
|  |  | 
|  | DP(NETIF_MSG_IFDOWN, "stopping queue %d cid %d\n", index, fp->cid); | 
|  |  | 
|  | q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj; | 
|  | /* We want to wait for completion in this context */ | 
|  | __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags); | 
|  |  | 
|  | /* close tx-only connections */ | 
|  | for (tx_index = FIRST_TX_ONLY_COS_INDEX; | 
|  | tx_index < fp->max_cos; | 
|  | tx_index++){ | 
|  |  | 
|  | /* ascertain this is a normal queue*/ | 
|  | txdata = fp->txdata_ptr[tx_index]; | 
|  |  | 
|  | DP(NETIF_MSG_IFDOWN, "stopping tx-only queue %d\n", | 
|  | txdata->txq_index); | 
|  |  | 
|  | /* send halt terminate on tx-only connection */ | 
|  | q_params.cmd = BNX2X_Q_CMD_TERMINATE; | 
|  | memset(&q_params.params.terminate, 0, | 
|  | sizeof(q_params.params.terminate)); | 
|  | q_params.params.terminate.cid_index = tx_index; | 
|  |  | 
|  | rc = bnx2x_queue_state_change(bp, &q_params); | 
|  | if (rc) | 
|  | return rc; | 
|  |  | 
|  | /* send halt terminate on tx-only connection */ | 
|  | q_params.cmd = BNX2X_Q_CMD_CFC_DEL; | 
|  | memset(&q_params.params.cfc_del, 0, | 
|  | sizeof(q_params.params.cfc_del)); | 
|  | q_params.params.cfc_del.cid_index = tx_index; | 
|  | rc = bnx2x_queue_state_change(bp, &q_params); | 
|  | if (rc) | 
|  | return rc; | 
|  | } | 
|  | /* Stop the primary connection: */ | 
|  | /* ...halt the connection */ | 
|  | q_params.cmd = BNX2X_Q_CMD_HALT; | 
|  | rc = bnx2x_queue_state_change(bp, &q_params); | 
|  | if (rc) | 
|  | return rc; | 
|  |  | 
|  | /* ...terminate the connection */ | 
|  | q_params.cmd = BNX2X_Q_CMD_TERMINATE; | 
|  | memset(&q_params.params.terminate, 0, | 
|  | sizeof(q_params.params.terminate)); | 
|  | q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX; | 
|  | rc = bnx2x_queue_state_change(bp, &q_params); | 
|  | if (rc) | 
|  | return rc; | 
|  | /* ...delete cfc entry */ | 
|  | q_params.cmd = BNX2X_Q_CMD_CFC_DEL; | 
|  | memset(&q_params.params.cfc_del, 0, | 
|  | sizeof(q_params.params.cfc_del)); | 
|  | q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX; | 
|  | return bnx2x_queue_state_change(bp, &q_params); | 
|  | } | 
|  |  | 
|  | static void bnx2x_reset_func(struct bnx2x *bp) | 
|  | { | 
|  | int port = BP_PORT(bp); | 
|  | int func = BP_FUNC(bp); | 
|  | int i; | 
|  |  | 
|  | /* Disable the function in the FW */ | 
|  | REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0); | 
|  | REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0); | 
|  | REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0); | 
|  | REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0); | 
|  |  | 
|  | /* FP SBs */ | 
|  | for_each_eth_queue(bp, i) { | 
|  | struct bnx2x_fastpath *fp = &bp->fp[i]; | 
|  | REG_WR8(bp, BAR_CSTRORM_INTMEM + | 
|  | CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id), | 
|  | SB_DISABLED); | 
|  | } | 
|  |  | 
|  | if (CNIC_LOADED(bp)) | 
|  | /* CNIC SB */ | 
|  | REG_WR8(bp, BAR_CSTRORM_INTMEM + | 
|  | CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET | 
|  | (bnx2x_cnic_fw_sb_id(bp)), SB_DISABLED); | 
|  |  | 
|  | /* SP SB */ | 
|  | REG_WR8(bp, BAR_CSTRORM_INTMEM + | 
|  | CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func), | 
|  | SB_DISABLED); | 
|  |  | 
|  | for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++) | 
|  | REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func), | 
|  | 0); | 
|  |  | 
|  | /* Configure IGU */ | 
|  | if (bp->common.int_block == INT_BLOCK_HC) { | 
|  | REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0); | 
|  | REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0); | 
|  | } else { | 
|  | REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0); | 
|  | REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0); | 
|  | } | 
|  |  | 
|  | if (CNIC_LOADED(bp)) { | 
|  | /* Disable Timer scan */ | 
|  | REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0); | 
|  | /* | 
|  | * Wait for at least 10ms and up to 2 second for the timers | 
|  | * scan to complete | 
|  | */ | 
|  | for (i = 0; i < 200; i++) { | 
|  | kthread_usleep(10000); | 
|  | if (!REG_RD(bp, TM_REG_LIN0_SCAN_ON + port*4)) | 
|  | break; | 
|  | } | 
|  | } | 
|  | /* Clear ILT */ | 
|  | bnx2x_clear_func_ilt(bp, func); | 
|  |  | 
|  | /* Timers workaround bug for E2: if this is vnic-3, | 
|  | * we need to set the entire ilt range for this timers. | 
|  | */ | 
|  | if (!CHIP_IS_E1x(bp) && BP_VN(bp) == 3) { | 
|  | struct ilt_client_info ilt_cli; | 
|  | /* use dummy TM client */ | 
|  | memset(&ilt_cli, 0, sizeof(struct ilt_client_info)); | 
|  | ilt_cli.start = 0; | 
|  | ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1; | 
|  | ilt_cli.client_num = ILT_CLIENT_TM; | 
|  |  | 
|  | bnx2x_ilt_boundry_init_op(bp, &ilt_cli, 0, INITOP_CLEAR); | 
|  | } | 
|  |  | 
|  | /* this assumes that reset_port() called before reset_func()*/ | 
|  | if (!CHIP_IS_E1x(bp)) | 
|  | bnx2x_pf_disable(bp); | 
|  |  | 
|  | bp->dmae_ready = 0; | 
|  | } | 
|  |  | 
|  | static void bnx2x_reset_port(struct bnx2x *bp) | 
|  | { | 
|  | int port = BP_PORT(bp); | 
|  | uint32_t val; | 
|  |  | 
|  | /* Reset physical Link */ | 
|  | bnx2x__link_reset(bp); | 
|  |  | 
|  | REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0); | 
|  |  | 
|  | /* Do not rcv packets to BRB */ | 
|  | REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0); | 
|  | /* Do not direct rcv packets that are not for MCP to the BRB */ | 
|  | REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP : | 
|  | NIG_REG_LLH0_BRB1_NOT_MCP), 0x0); | 
|  |  | 
|  | /* Configure AEU */ | 
|  | REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0); | 
|  |  | 
|  | kthread_usleep(1000 * 100); | 
|  | /* Check for BRB port occupancy */ | 
|  | val = REG_RD(bp, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4); | 
|  | if (val) | 
|  | DP(NETIF_MSG_IFDOWN, | 
|  | "BRB1 is not empty  %d blocks are occupied\n", val); | 
|  |  | 
|  | /* TODO: Close Doorbell port? */ | 
|  | } | 
|  |  | 
|  | static int bnx2x_reset_hw(struct bnx2x *bp, uint32_t load_code) | 
|  | { | 
|  | struct bnx2x_func_state_params func_params = {NULL}; | 
|  |  | 
|  | /* Prepare parameters for function state transitions */ | 
|  | __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); | 
|  |  | 
|  | func_params.f_obj = &bp->func_obj; | 
|  | func_params.cmd = BNX2X_F_CMD_HW_RESET; | 
|  |  | 
|  | func_params.params.hw_init.load_phase = load_code; | 
|  |  | 
|  | return bnx2x_func_state_change(bp, &func_params); | 
|  | } | 
|  |  | 
|  | static int bnx2x_func_stop(struct bnx2x *bp) | 
|  | { | 
|  | struct bnx2x_func_state_params func_params = {NULL}; | 
|  | int rc; | 
|  |  | 
|  | /* Prepare parameters for function state transitions */ | 
|  | __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); | 
|  | func_params.f_obj = &bp->func_obj; | 
|  | func_params.cmd = BNX2X_F_CMD_STOP; | 
|  |  | 
|  | /* | 
|  | * Try to stop the function the 'good way'. If fails (in case | 
|  | * of a parity error during bnx2x_chip_cleanup()) and we are | 
|  | * not in a debug mode, perform a state transaction in order to | 
|  | * enable further HW_RESET transaction. | 
|  | */ | 
|  | rc = bnx2x_func_state_change(bp, &func_params); | 
|  | if (rc) { | 
|  | #ifdef BNX2X_STOP_ON_ERROR | 
|  | return rc; | 
|  | #else | 
|  | BNX2X_ERR("FUNC_STOP ramrod failed. Running a dry transaction\n"); | 
|  | __set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags); | 
|  | return bnx2x_func_state_change(bp, &func_params); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * bnx2x_send_unload_req - request unload mode from the MCP. | 
|  | * | 
|  | * @bp:			driver handle | 
|  | * @unload_mode:	requested function's unload mode | 
|  | * | 
|  | * Return unload mode returned by the MCP: COMMON, PORT or FUNC. | 
|  | */ | 
|  | uint32_t bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode) | 
|  | { | 
|  | panic("Not implemented"); | 
|  | #if 0 // AKAROS_PORT | 
|  | uint32_t reset_code = 0; | 
|  | int port = BP_PORT(bp); | 
|  |  | 
|  | /* Select the UNLOAD request mode */ | 
|  | if (unload_mode == UNLOAD_NORMAL) | 
|  | reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS; | 
|  |  | 
|  | else if (bp->flags & NO_WOL_FLAG) | 
|  | reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP; | 
|  |  | 
|  | else if (bp->wol) { | 
|  | uint32_t emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0; | 
|  | uint8_t *mac_addr = bp->dev->ea; | 
|  | struct pci_device *pdev = bp->pdev; | 
|  | uint32_t val; | 
|  | uint16_t pmc; | 
|  |  | 
|  | /* The mac address is written to entries 1-4 to | 
|  | * preserve entry 0 which is used by the PMF | 
|  | */ | 
|  | uint8_t entry = (BP_VN(bp) + 1)*8; | 
|  |  | 
|  | val = (mac_addr[0] << 8) | mac_addr[1]; | 
|  | EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry, val); | 
|  |  | 
|  | val = (mac_addr[2] << 24) | (mac_addr[3] << 16) | | 
|  | (mac_addr[4] << 8) | mac_addr[5]; | 
|  | EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val); | 
|  |  | 
|  | /* Enable the PME and clear the status */ | 
|  | pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &pmc); | 
|  | pmc |= PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS; | 
|  | pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, pmc); | 
|  |  | 
|  | reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN; | 
|  |  | 
|  | } else | 
|  | reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS; | 
|  |  | 
|  | /* Send the request to the MCP */ | 
|  | if (!BP_NOMCP(bp)) | 
|  | reset_code = bnx2x_fw_command(bp, reset_code, 0); | 
|  | else { | 
|  | int path = BP_PATH(bp); | 
|  |  | 
|  | DP(NETIF_MSG_IFDOWN, "NO MCP - load counts[%d]      %d, %d, %d\n", | 
|  | path, bnx2x_load_count[path][0], bnx2x_load_count[path][1], | 
|  | bnx2x_load_count[path][2]); | 
|  | bnx2x_load_count[path][0]--; | 
|  | bnx2x_load_count[path][1 + port]--; | 
|  | DP(NETIF_MSG_IFDOWN, "NO MCP - new load counts[%d]  %d, %d, %d\n", | 
|  | path, bnx2x_load_count[path][0], bnx2x_load_count[path][1], | 
|  | bnx2x_load_count[path][2]); | 
|  | if (bnx2x_load_count[path][0] == 0) | 
|  | reset_code = FW_MSG_CODE_DRV_UNLOAD_COMMON; | 
|  | else if (bnx2x_load_count[path][1 + port] == 0) | 
|  | reset_code = FW_MSG_CODE_DRV_UNLOAD_PORT; | 
|  | else | 
|  | reset_code = FW_MSG_CODE_DRV_UNLOAD_FUNCTION; | 
|  | } | 
|  |  | 
|  | return reset_code; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /** | 
|  | * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP. | 
|  | * | 
|  | * @bp:		driver handle | 
|  | * @keep_link:		true iff link should be kept up | 
|  | */ | 
|  | void bnx2x_send_unload_done(struct bnx2x *bp, bool keep_link) | 
|  | { | 
|  | uint32_t reset_param = keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0; | 
|  |  | 
|  | /* Report UNLOAD_DONE to MCP */ | 
|  | if (!BP_NOMCP(bp)) | 
|  | bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, reset_param); | 
|  | } | 
|  |  | 
|  | static int bnx2x_func_wait_started(struct bnx2x *bp) | 
|  | { | 
|  | panic("Not implemented"); | 
|  | #if 0 // AKAROS_PORT | 
|  | int tout = 50; | 
|  | int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0; | 
|  |  | 
|  | if (!bp->port.pmf) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * (assumption: No Attention from MCP at this stage) | 
|  | * PMF probably in the middle of TX disable/enable transaction | 
|  | * 1. Sync IRS for default SB | 
|  | * 2. Sync SP queue - this guarantees us that attention handling started | 
|  | * 3. Wait, that TX disable/enable transaction completes | 
|  | * | 
|  | * 1+2 guarantee that if DCBx attention was scheduled it already changed | 
|  | * pending bit of transaction from STARTED-->TX_STOPPED, if we already | 
|  | * received completion for the transaction the state is TX_STOPPED. | 
|  | * State will return to STARTED after completion of TX_STOPPED-->STARTED | 
|  | * transaction. | 
|  | */ | 
|  |  | 
|  | /* make sure default SB ISR is done */ | 
|  | if (msix) | 
|  | synchronize_irq(bp->msix_table[0].vector); | 
|  | else | 
|  | synchronize_irq(bp->pdev->irqline); | 
|  |  | 
|  | flush_workqueue(bnx2x_wq); | 
|  | flush_workqueue(bnx2x_iov_wq); | 
|  |  | 
|  | while (bnx2x_func_get_state(bp, &bp->func_obj) != | 
|  | BNX2X_F_STATE_STARTED && tout--) | 
|  | kthread_usleep(1000 * 20); | 
|  |  | 
|  | if (bnx2x_func_get_state(bp, &bp->func_obj) != | 
|  | BNX2X_F_STATE_STARTED) { | 
|  | #ifdef BNX2X_STOP_ON_ERROR | 
|  | BNX2X_ERR("Wrong function state\n"); | 
|  | return -EBUSY; | 
|  | #else | 
|  | /* | 
|  | * Failed to complete the transaction in a "good way" | 
|  | * Force both transactions with CLR bit | 
|  | */ | 
|  | struct bnx2x_func_state_params func_params = {NULL}; | 
|  |  | 
|  | DP(NETIF_MSG_IFDOWN, | 
|  | "Hmmm... Unexpected function state! Forcing STARTED-->TX_STOPPED-->STARTED\n"); | 
|  |  | 
|  | func_params.f_obj = &bp->func_obj; | 
|  | __set_bit(RAMROD_DRV_CLR_ONLY, | 
|  | &func_params.ramrod_flags); | 
|  |  | 
|  | /* STARTED-->TX_ST0PPED */ | 
|  | func_params.cmd = BNX2X_F_CMD_TX_STOP; | 
|  | bnx2x_func_state_change(bp, &func_params); | 
|  |  | 
|  | /* TX_ST0PPED-->STARTED */ | 
|  | func_params.cmd = BNX2X_F_CMD_TX_START; | 
|  | return bnx2x_func_state_change(bp, &func_params); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode, bool keep_link) | 
|  | { | 
|  | int port = BP_PORT(bp); | 
|  | int i, rc = 0; | 
|  | uint8_t cos; | 
|  | struct bnx2x_mcast_ramrod_params rparam = {NULL}; | 
|  | uint32_t reset_code; | 
|  |  | 
|  | /* Wait until tx fastpath tasks complete */ | 
|  | for_each_tx_queue(bp, i) { | 
|  | struct bnx2x_fastpath *fp = &bp->fp[i]; | 
|  |  | 
|  | for_each_cos_in_tx_queue(fp, cos) | 
|  | rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]); | 
|  | #ifdef BNX2X_STOP_ON_ERROR | 
|  | if (rc) | 
|  | return; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* Give HW time to discard old tx messages */ | 
|  | kthread_usleep(1000); | 
|  |  | 
|  | /* Clean all ETH MACs */ | 
|  | rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_ETH_MAC, | 
|  | false); | 
|  | if (rc < 0) | 
|  | BNX2X_ERR("Failed to delete all ETH macs: %d\n", rc); | 
|  |  | 
|  | /* Clean up UC list  */ | 
|  | rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_UC_LIST_MAC, | 
|  | true); | 
|  | if (rc < 0) | 
|  | BNX2X_ERR("Failed to schedule DEL commands for UC MACs list: %d\n", | 
|  | rc); | 
|  |  | 
|  | /* Disable LLH */ | 
|  | if (!CHIP_IS_E1(bp)) | 
|  | REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0); | 
|  |  | 
|  | /* Set "drop all" (stop Rx). | 
|  | * We need to take a netif_addr_lock() here in order to prevent | 
|  | * a race between the completion code and this code. | 
|  | */ | 
|  | qlock(&bp->dev->qlock); | 
|  | /* Schedule the rx_mode command */ | 
|  | if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) | 
|  | set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state); | 
|  | else | 
|  | bnx2x_set_storm_rx_mode(bp); | 
|  |  | 
|  | /* Cleanup multicast configuration */ | 
|  | rparam.mcast_obj = &bp->mcast_obj; | 
|  | rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL); | 
|  | if (rc < 0) | 
|  | BNX2X_ERR("Failed to send DEL multicast command: %d\n", rc); | 
|  |  | 
|  | qunlock(&bp->dev->qlock); | 
|  |  | 
|  | bnx2x_iov_chip_cleanup(bp); | 
|  |  | 
|  | /* | 
|  | * Send the UNLOAD_REQUEST to the MCP. This will return if | 
|  | * this function should perform FUNC, PORT or COMMON HW | 
|  | * reset. | 
|  | */ | 
|  | reset_code = bnx2x_send_unload_req(bp, unload_mode); | 
|  |  | 
|  | /* | 
|  | * (assumption: No Attention from MCP at this stage) | 
|  | * PMF probably in the middle of TX disable/enable transaction | 
|  | */ | 
|  | rc = bnx2x_func_wait_started(bp); | 
|  | if (rc) { | 
|  | BNX2X_ERR("bnx2x_func_wait_started failed\n"); | 
|  | #ifdef BNX2X_STOP_ON_ERROR | 
|  | return; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* Close multi and leading connections | 
|  | * Completions for ramrods are collected in a synchronous way | 
|  | */ | 
|  | for_each_eth_queue(bp, i) | 
|  | if (bnx2x_stop_queue(bp, i)) | 
|  | #ifdef BNX2X_STOP_ON_ERROR | 
|  | return; | 
|  | #else | 
|  | goto unload_error; | 
|  | #endif | 
|  |  | 
|  | if (CNIC_LOADED(bp)) { | 
|  | for_each_cnic_queue(bp, i) | 
|  | if (bnx2x_stop_queue(bp, i)) | 
|  | #ifdef BNX2X_STOP_ON_ERROR | 
|  | return; | 
|  | #else | 
|  | goto unload_error; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* If SP settings didn't get completed so far - something | 
|  | * very wrong has happen. | 
|  | */ | 
|  | if (!bnx2x_wait_sp_comp(bp, ~0x0UL)) | 
|  | BNX2X_ERR("Hmmm... Common slow path ramrods got stuck!\n"); | 
|  |  | 
|  | #ifndef BNX2X_STOP_ON_ERROR | 
|  | unload_error: | 
|  | #endif | 
|  | rc = bnx2x_func_stop(bp); | 
|  | if (rc) { | 
|  | BNX2X_ERR("Function stop failed!\n"); | 
|  | #ifdef BNX2X_STOP_ON_ERROR | 
|  | return; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* Disable HW interrupts, NAPI */ | 
|  | bnx2x_netif_stop(bp, 1); | 
|  | /* Delete all NAPI objects */ | 
|  | bnx2x_del_all_napi(bp); | 
|  | if (CNIC_LOADED(bp)) | 
|  | bnx2x_del_all_napi_cnic(bp); | 
|  |  | 
|  | /* Release IRQs */ | 
|  | bnx2x_free_irq(bp); | 
|  |  | 
|  | /* Reset the chip */ | 
|  | rc = bnx2x_reset_hw(bp, reset_code); | 
|  | if (rc) | 
|  | BNX2X_ERR("HW_RESET failed\n"); | 
|  |  | 
|  | /* Report UNLOAD_DONE to MCP */ | 
|  | bnx2x_send_unload_done(bp, keep_link); | 
|  | } | 
|  |  | 
|  | void bnx2x_disable_close_the_gate(struct bnx2x *bp) | 
|  | { | 
|  | uint32_t val; | 
|  |  | 
|  | DP(NETIF_MSG_IFDOWN, "Disabling \"close the gates\"\n"); | 
|  |  | 
|  | if (CHIP_IS_E1(bp)) { | 
|  | int port = BP_PORT(bp); | 
|  | uint32_t addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 : | 
|  | MISC_REG_AEU_MASK_ATTN_FUNC_0; | 
|  |  | 
|  | val = REG_RD(bp, addr); | 
|  | val &= ~(0x300); | 
|  | REG_WR(bp, addr, val); | 
|  | } else { | 
|  | val = REG_RD(bp, MISC_REG_AEU_GENERAL_MASK); | 
|  | val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK | | 
|  | MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK); | 
|  | REG_WR(bp, MISC_REG_AEU_GENERAL_MASK, val); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Close gates #2, #3 and #4: */ | 
|  | static void bnx2x_set_234_gates(struct bnx2x *bp, bool close) | 
|  | { | 
|  | uint32_t val; | 
|  |  | 
|  | /* Gates #2 and #4a are closed/opened for "not E1" only */ | 
|  | if (!CHIP_IS_E1(bp)) { | 
|  | /* #4 */ | 
|  | REG_WR(bp, PXP_REG_HST_DISCARD_DOORBELLS, !!close); | 
|  | /* #2 */ | 
|  | REG_WR(bp, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close); | 
|  | } | 
|  |  | 
|  | /* #3 */ | 
|  | if (CHIP_IS_E1x(bp)) { | 
|  | /* Prevent interrupts from HC on both ports */ | 
|  | val = REG_RD(bp, HC_REG_CONFIG_1); | 
|  | REG_WR(bp, HC_REG_CONFIG_1, | 
|  | (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) : | 
|  | (val & ~(uint32_t)HC_CONFIG_1_REG_BLOCK_DISABLE_1)); | 
|  |  | 
|  | val = REG_RD(bp, HC_REG_CONFIG_0); | 
|  | REG_WR(bp, HC_REG_CONFIG_0, | 
|  | (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) : | 
|  | (val & ~(uint32_t)HC_CONFIG_0_REG_BLOCK_DISABLE_0)); | 
|  | } else { | 
|  | /* Prevent incoming interrupts in IGU */ | 
|  | val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION); | 
|  |  | 
|  | REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, | 
|  | (!close) ? | 
|  | (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) : | 
|  | (val & ~(uint32_t)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE)); | 
|  | } | 
|  |  | 
|  | DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "%s gates #2, #3 and #4\n", | 
|  | close ? "closing" : "opening"); | 
|  | bus_wmb(); | 
|  | } | 
|  |  | 
|  | #define SHARED_MF_CLP_MAGIC  0x80000000 /* `magic' bit */ | 
|  |  | 
|  | static void bnx2x_clp_reset_prep(struct bnx2x *bp, uint32_t *magic_val) | 
|  | { | 
|  | /* Do some magic... */ | 
|  | uint32_t val = MF_CFG_RD(bp, shared_mf_config.clp_mb); | 
|  | *magic_val = val & SHARED_MF_CLP_MAGIC; | 
|  | MF_CFG_WR(bp, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * bnx2x_clp_reset_done - restore the value of the `magic' bit. | 
|  | * | 
|  | * @bp:		driver handle | 
|  | * @magic_val:	old value of the `magic' bit. | 
|  | */ | 
|  | static void bnx2x_clp_reset_done(struct bnx2x *bp, uint32_t magic_val) | 
|  | { | 
|  | /* Restore the `magic' bit value... */ | 
|  | uint32_t val = MF_CFG_RD(bp, shared_mf_config.clp_mb); | 
|  | MF_CFG_WR(bp, shared_mf_config.clp_mb, | 
|  | (val & (~SHARED_MF_CLP_MAGIC)) | magic_val); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * bnx2x_reset_mcp_prep - prepare for MCP reset. | 
|  | * | 
|  | * @bp:		driver handle | 
|  | * @magic_val:	old value of 'magic' bit. | 
|  | * | 
|  | * Takes care of CLP configurations. | 
|  | */ | 
|  | static void bnx2x_reset_mcp_prep(struct bnx2x *bp, uint32_t *magic_val) | 
|  | { | 
|  | uint32_t shmem; | 
|  | uint32_t validity_offset; | 
|  |  | 
|  | DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "Starting\n"); | 
|  |  | 
|  | /* Set `magic' bit in order to save MF config */ | 
|  | if (!CHIP_IS_E1(bp)) | 
|  | bnx2x_clp_reset_prep(bp, magic_val); | 
|  |  | 
|  | /* Get shmem offset */ | 
|  | shmem = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR); | 
|  | validity_offset = | 
|  | offsetof(struct shmem_region, validity_map[BP_PORT(bp)]); | 
|  |  | 
|  | /* Clear validity map flags */ | 
|  | if (shmem > 0) | 
|  | REG_WR(bp, shmem + validity_offset, 0); | 
|  | } | 
|  |  | 
|  | #define MCP_TIMEOUT      5000   /* 5 seconds (in ms) */ | 
|  | #define MCP_ONE_TIMEOUT  100    /* 100 ms */ | 
|  |  | 
|  | /** | 
|  | * bnx2x_mcp_wait_one - wait for MCP_ONE_TIMEOUT | 
|  | * | 
|  | * @bp:	driver handle | 
|  | */ | 
|  | static void bnx2x_mcp_wait_one(struct bnx2x *bp) | 
|  | { | 
|  | /* special handling for emulation and FPGA, | 
|  | wait 10 times longer */ | 
|  | if (CHIP_REV_IS_SLOW(bp)) | 
|  | kthread_usleep(1000 * (MCP_ONE_TIMEOUT * 10)); | 
|  | else | 
|  | kthread_usleep(1000 * MCP_ONE_TIMEOUT); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * initializes bp->common.shmem_base and waits for validity signature to appear | 
|  | */ | 
|  | static int bnx2x_init_shmem(struct bnx2x *bp) | 
|  | { | 
|  | int cnt = 0; | 
|  | uint32_t val = 0; | 
|  |  | 
|  | do { | 
|  | bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR); | 
|  | if (bp->common.shmem_base) { | 
|  | val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]); | 
|  | if (val & SHR_MEM_VALIDITY_MB) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | bnx2x_mcp_wait_one(bp); | 
|  |  | 
|  | } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT)); | 
|  |  | 
|  | BNX2X_ERR("BAD MCP validity signature\n"); | 
|  |  | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | static int bnx2x_reset_mcp_comp(struct bnx2x *bp, uint32_t magic_val) | 
|  | { | 
|  | int rc = bnx2x_init_shmem(bp); | 
|  |  | 
|  | /* Restore the `magic' bit value */ | 
|  | if (!CHIP_IS_E1(bp)) | 
|  | bnx2x_clp_reset_done(bp, magic_val); | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static void bnx2x_pxp_prep(struct bnx2x *bp) | 
|  | { | 
|  | if (!CHIP_IS_E1(bp)) { | 
|  | REG_WR(bp, PXP2_REG_RD_START_INIT, 0); | 
|  | REG_WR(bp, PXP2_REG_RQ_RBC_DONE, 0); | 
|  | bus_wmb(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Reset the whole chip except for: | 
|  | *      - PCIE core | 
|  | *      - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by | 
|  | *              one reset bit) | 
|  | *      - IGU | 
|  | *      - MISC (including AEU) | 
|  | *      - GRC | 
|  | *      - RBCN, RBCP | 
|  | */ | 
|  | static void bnx2x_process_kill_chip_reset(struct bnx2x *bp, bool global) | 
|  | { | 
|  | uint32_t not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2; | 
|  | uint32_t global_bits2, stay_reset2; | 
|  |  | 
|  | /* | 
|  | * Bits that have to be set in reset_mask2 if we want to reset 'global' | 
|  | * (per chip) blocks. | 
|  | */ | 
|  | global_bits2 = | 
|  | MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU | | 
|  | MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE; | 
|  |  | 
|  | /* Don't reset the following blocks. | 
|  | * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be | 
|  | *            reset, as in 4 port device they might still be owned | 
|  | *            by the MCP (there is only one leader per path). | 
|  | */ | 
|  | not_reset_mask1 = | 
|  | MISC_REGISTERS_RESET_REG_1_RST_HC | | 
|  | MISC_REGISTERS_RESET_REG_1_RST_PXPV | | 
|  | MISC_REGISTERS_RESET_REG_1_RST_PXP; | 
|  |  | 
|  | not_reset_mask2 = | 
|  | MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO | | 
|  | MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE | | 
|  | MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE | | 
|  | MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE | | 
|  | MISC_REGISTERS_RESET_REG_2_RST_RBCN | | 
|  | MISC_REGISTERS_RESET_REG_2_RST_GRC  | | 
|  | MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE | | 
|  | MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B | | 
|  | MISC_REGISTERS_RESET_REG_2_RST_ATC | | 
|  | MISC_REGISTERS_RESET_REG_2_PGLC | | 
|  | MISC_REGISTERS_RESET_REG_2_RST_BMAC0 | | 
|  | MISC_REGISTERS_RESET_REG_2_RST_BMAC1 | | 
|  | MISC_REGISTERS_RESET_REG_2_RST_EMAC0 | | 
|  | MISC_REGISTERS_RESET_REG_2_RST_EMAC1 | | 
|  | MISC_REGISTERS_RESET_REG_2_UMAC0 | | 
|  | MISC_REGISTERS_RESET_REG_2_UMAC1; | 
|  |  | 
|  | /* | 
|  | * Keep the following blocks in reset: | 
|  | *  - all xxMACs are handled by the bnx2x_link code. | 
|  | */ | 
|  | stay_reset2 = | 
|  | MISC_REGISTERS_RESET_REG_2_XMAC | | 
|  | MISC_REGISTERS_RESET_REG_2_XMAC_SOFT; | 
|  |  | 
|  | /* Full reset masks according to the chip */ | 
|  | reset_mask1 = 0xffffffff; | 
|  |  | 
|  | if (CHIP_IS_E1(bp)) | 
|  | reset_mask2 = 0xffff; | 
|  | else if (CHIP_IS_E1H(bp)) | 
|  | reset_mask2 = 0x1ffff; | 
|  | else if (CHIP_IS_E2(bp)) | 
|  | reset_mask2 = 0xfffff; | 
|  | else /* CHIP_IS_E3 */ | 
|  | reset_mask2 = 0x3ffffff; | 
|  |  | 
|  | /* Don't reset global blocks unless we need to */ | 
|  | if (!global) | 
|  | reset_mask2 &= ~global_bits2; | 
|  |  | 
|  | /* | 
|  | * In case of attention in the QM, we need to reset PXP | 
|  | * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM | 
|  | * because otherwise QM reset would release 'close the gates' shortly | 
|  | * before resetting the PXP, then the PSWRQ would send a write | 
|  | * request to PGLUE. Then when PXP is reset, PGLUE would try to | 
|  | * read the payload data from PSWWR, but PSWWR would not | 
|  | * respond. The write queue in PGLUE would stuck, dmae commands | 
|  | * would not return. Therefore it's important to reset the second | 
|  | * reset register (containing the | 
|  | * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the | 
|  | * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM | 
|  | * bit). | 
|  | */ | 
|  | REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, | 
|  | reset_mask2 & (~not_reset_mask2)); | 
|  |  | 
|  | REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, | 
|  | reset_mask1 & (~not_reset_mask1)); | 
|  |  | 
|  | cmb(); | 
|  | bus_wmb(); | 
|  |  | 
|  | REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, | 
|  | reset_mask2 & (~stay_reset2)); | 
|  |  | 
|  | cmb(); | 
|  | bus_wmb(); | 
|  |  | 
|  | REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1); | 
|  | bus_wmb(); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * bnx2x_er_poll_igu_vq - poll for pending writes bit. | 
|  | * It should get cleared in no more than 1s. | 
|  | * | 
|  | * @bp:	driver handle | 
|  | * | 
|  | * It should get cleared in no more than 1s. Returns 0 if | 
|  | * pending writes bit gets cleared. | 
|  | */ | 
|  | static int bnx2x_er_poll_igu_vq(struct bnx2x *bp) | 
|  | { | 
|  | uint32_t cnt = 1000; | 
|  | uint32_t pend_bits = 0; | 
|  |  | 
|  | do { | 
|  | pend_bits  = REG_RD(bp, IGU_REG_PENDING_BITS_STATUS); | 
|  |  | 
|  | if (pend_bits == 0) | 
|  | break; | 
|  |  | 
|  | kthread_usleep(1000); | 
|  | } while (cnt-- > 0); | 
|  |  | 
|  | if (cnt <= 0) { | 
|  | BNX2X_ERR("Still pending IGU requests pend_bits=%x!\n", | 
|  | pend_bits); | 
|  | return -EBUSY; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int bnx2x_process_kill(struct bnx2x *bp, bool global) | 
|  | { | 
|  | int cnt = 1000; | 
|  | uint32_t val = 0; | 
|  | uint32_t sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2; | 
|  | uint32_t tags_63_32 = 0; | 
|  |  | 
|  | /* Empty the Tetris buffer, wait for 1s */ | 
|  | do { | 
|  | sr_cnt  = REG_RD(bp, PXP2_REG_RD_SR_CNT); | 
|  | blk_cnt = REG_RD(bp, PXP2_REG_RD_BLK_CNT); | 
|  | port_is_idle_0 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_0); | 
|  | port_is_idle_1 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_1); | 
|  | pgl_exp_rom2 = REG_RD(bp, PXP2_REG_PGL_EXP_ROM2); | 
|  | if (CHIP_IS_E3(bp)) | 
|  | tags_63_32 = REG_RD(bp, PGLUE_B_REG_TAGS_63_32); | 
|  |  | 
|  | if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) && | 
|  | ((port_is_idle_0 & 0x1) == 0x1) && | 
|  | ((port_is_idle_1 & 0x1) == 0x1) && | 
|  | (pgl_exp_rom2 == 0xffffffff) && | 
|  | (!CHIP_IS_E3(bp) || (tags_63_32 == 0xffffffff))) | 
|  | break; | 
|  | kthread_usleep(1000); | 
|  | } while (cnt-- > 0); | 
|  |  | 
|  | if (cnt <= 0) { | 
|  | BNX2X_ERR("Tetris buffer didn't get empty or there are still outstanding read requests after 1s!\n"); | 
|  | BNX2X_ERR("sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n", | 
|  | sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, | 
|  | pgl_exp_rom2); | 
|  | return -EAGAIN; | 
|  | } | 
|  |  | 
|  | cmb(); | 
|  |  | 
|  | /* Close gates #2, #3 and #4 */ | 
|  | bnx2x_set_234_gates(bp, true); | 
|  |  | 
|  | /* Poll for IGU VQs for 57712 and newer chips */ | 
|  | if (!CHIP_IS_E1x(bp) && bnx2x_er_poll_igu_vq(bp)) | 
|  | return -EAGAIN; | 
|  |  | 
|  | /* TBD: Indicate that "process kill" is in progress to MCP */ | 
|  |  | 
|  | /* Clear "unprepared" bit */ | 
|  | REG_WR(bp, MISC_REG_UNPREPARED, 0); | 
|  | cmb(); | 
|  |  | 
|  | /* Make sure all is written to the chip before the reset */ | 
|  | bus_wmb(); | 
|  |  | 
|  | /* Wait for 1ms to empty GLUE and PCI-E core queues, | 
|  | * PSWHST, GRC and PSWRD Tetris buffer. | 
|  | */ | 
|  | kthread_usleep(1000); | 
|  |  | 
|  | /* Prepare to chip reset: */ | 
|  | /* MCP */ | 
|  | if (global) | 
|  | bnx2x_reset_mcp_prep(bp, &val); | 
|  |  | 
|  | /* PXP */ | 
|  | bnx2x_pxp_prep(bp); | 
|  | cmb(); | 
|  |  | 
|  | /* reset the chip */ | 
|  | bnx2x_process_kill_chip_reset(bp, global); | 
|  | cmb(); | 
|  |  | 
|  | /* clear errors in PGB */ | 
|  | if (!CHIP_IS_E1x(bp)) | 
|  | REG_WR(bp, PGLUE_B_REG_LATCHED_ERRORS_CLR, 0x7f); | 
|  |  | 
|  | /* Recover after reset: */ | 
|  | /* MCP */ | 
|  | if (global && bnx2x_reset_mcp_comp(bp, val)) | 
|  | return -EAGAIN; | 
|  |  | 
|  | /* TBD: Add resetting the NO_MCP mode DB here */ | 
|  |  | 
|  | /* Open the gates #2, #3 and #4 */ | 
|  | bnx2x_set_234_gates(bp, false); | 
|  |  | 
|  | /* TBD: IGU/AEU preparation bring back the AEU/IGU to a | 
|  | * reset state, re-enable attentions. */ | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int bnx2x_leader_reset(struct bnx2x *bp) | 
|  | { | 
|  | int rc = 0; | 
|  | bool global = bnx2x_reset_is_global(bp); | 
|  | uint32_t load_code; | 
|  |  | 
|  | /* if not going to reset MCP - load "fake" driver to reset HW while | 
|  | * driver is owner of the HW | 
|  | */ | 
|  | if (!global && !BP_NOMCP(bp)) { | 
|  | load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ, | 
|  | DRV_MSG_CODE_LOAD_REQ_WITH_LFA); | 
|  | if (!load_code) { | 
|  | BNX2X_ERR("MCP response failure, aborting\n"); | 
|  | rc = -EAGAIN; | 
|  | goto exit_leader_reset; | 
|  | } | 
|  | if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) && | 
|  | (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) { | 
|  | BNX2X_ERR("MCP unexpected resp, aborting\n"); | 
|  | rc = -EAGAIN; | 
|  | goto exit_leader_reset2; | 
|  | } | 
|  | load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0); | 
|  | if (!load_code) { | 
|  | BNX2X_ERR("MCP response failure, aborting\n"); | 
|  | rc = -EAGAIN; | 
|  | goto exit_leader_reset2; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Try to recover after the failure */ | 
|  | if (bnx2x_process_kill(bp, global)) { | 
|  | BNX2X_ERR("Something bad had happen on engine %d! Aii!\n", | 
|  | BP_PATH(bp)); | 
|  | rc = -EAGAIN; | 
|  | goto exit_leader_reset2; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Clear RESET_IN_PROGRES and RESET_GLOBAL bits and update the driver | 
|  | * state. | 
|  | */ | 
|  | bnx2x_set_reset_done(bp); | 
|  | if (global) | 
|  | bnx2x_clear_reset_global(bp); | 
|  |  | 
|  | exit_leader_reset2: | 
|  | /* unload "fake driver" if it was loaded */ | 
|  | if (!global && !BP_NOMCP(bp)) { | 
|  | bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0); | 
|  | bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0); | 
|  | } | 
|  | exit_leader_reset: | 
|  | bp->is_leader = 0; | 
|  | bnx2x_release_leader_lock(bp); | 
|  | mb(); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static void bnx2x_recovery_failed(struct bnx2x *bp) | 
|  | { | 
|  | panic("Not implemented"); | 
|  | #if 0 // AKAROS_PORT | 
|  | netdev_err(bp->dev, "Recovery has failed. Power cycle is needed.\n"); | 
|  |  | 
|  | /* Disconnect this device */ | 
|  | netif_device_detach(bp->dev); | 
|  |  | 
|  | /* | 
|  | * Block ifup for all function on this engine until "process kill" | 
|  | * or power cycle. | 
|  | */ | 
|  | bnx2x_set_reset_in_progress(bp); | 
|  |  | 
|  | /* Shut down the power */ | 
|  | bnx2x_set_power_state(bp, PCI_D3hot); | 
|  |  | 
|  | bp->recovery_state = BNX2X_RECOVERY_FAILED; | 
|  |  | 
|  | mb(); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Assumption: runs under rtnl lock. This together with the fact | 
|  | * that it's called only from bnx2x_sp_rtnl() ensure that it | 
|  | * will never be called when netif_running(bp->dev) is false. | 
|  | */ | 
|  | static void bnx2x_parity_recover(struct bnx2x *bp) | 
|  | { | 
|  | panic("Not implemented"); | 
|  | #if 0 // AKAROS_PORT | 
|  | bool global = false; | 
|  | uint32_t error_recovered, error_unrecovered; | 
|  | bool is_parity; | 
|  |  | 
|  | DP(NETIF_MSG_HW, "Handling parity\n"); | 
|  | while (1) { | 
|  | switch (bp->recovery_state) { | 
|  | case BNX2X_RECOVERY_INIT: | 
|  | DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_INIT\n"); | 
|  | is_parity = bnx2x_chk_parity_attn(bp, &global, false); | 
|  | warn_on(!is_parity); | 
|  |  | 
|  | /* Try to get a LEADER_LOCK HW lock */ | 
|  | if (bnx2x_trylock_leader_lock(bp)) { | 
|  | bnx2x_set_reset_in_progress(bp); | 
|  | /* | 
|  | * Check if there is a global attention and if | 
|  | * there was a global attention, set the global | 
|  | * reset bit. | 
|  | */ | 
|  |  | 
|  | if (global) | 
|  | bnx2x_set_reset_global(bp); | 
|  |  | 
|  | bp->is_leader = 1; | 
|  | } | 
|  |  | 
|  | /* Stop the driver */ | 
|  | /* If interface has been removed - break */ | 
|  | if (bnx2x_nic_unload(bp, UNLOAD_RECOVERY, false)) | 
|  | return; | 
|  |  | 
|  | bp->recovery_state = BNX2X_RECOVERY_WAIT; | 
|  |  | 
|  | /* Ensure "is_leader", MCP command sequence and | 
|  | * "recovery_state" update values are seen on other | 
|  | * CPUs. | 
|  | */ | 
|  | mb(); | 
|  | break; | 
|  |  | 
|  | case BNX2X_RECOVERY_WAIT: | 
|  | DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_WAIT\n"); | 
|  | if (bp->is_leader) { | 
|  | int other_engine = BP_PATH(bp) ? 0 : 1; | 
|  | bool other_load_status = | 
|  | bnx2x_get_load_status(bp, other_engine); | 
|  | bool load_status = | 
|  | bnx2x_get_load_status(bp, BP_PATH(bp)); | 
|  | global = bnx2x_reset_is_global(bp); | 
|  |  | 
|  | /* | 
|  | * In case of a parity in a global block, let | 
|  | * the first leader that performs a | 
|  | * leader_reset() reset the global blocks in | 
|  | * order to clear global attentions. Otherwise | 
|  | * the gates will remain closed for that | 
|  | * engine. | 
|  | */ | 
|  | if (load_status || | 
|  | (global && other_load_status)) { | 
|  | /* Wait until all other functions get | 
|  | * down. | 
|  | */ | 
|  | schedule_delayed_work(&bp->sp_rtnl_task, | 
|  | HZ/10); | 
|  | return; | 
|  | } else { | 
|  | /* If all other functions got down - | 
|  | * try to bring the chip back to | 
|  | * normal. In any case it's an exit | 
|  | * point for a leader. | 
|  | */ | 
|  | if (bnx2x_leader_reset(bp)) { | 
|  | bnx2x_recovery_failed(bp); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* If we are here, means that the | 
|  | * leader has succeeded and doesn't | 
|  | * want to be a leader any more. Try | 
|  | * to continue as a none-leader. | 
|  | */ | 
|  | break; | 
|  | } | 
|  | } else { /* non-leader */ | 
|  | if (!bnx2x_reset_is_done(bp, BP_PATH(bp))) { | 
|  | /* Try to get a LEADER_LOCK HW lock as | 
|  | * long as a former leader may have | 
|  | * been unloaded by the user or | 
|  | * released a leadership by another | 
|  | * reason. | 
|  | */ | 
|  | if (bnx2x_trylock_leader_lock(bp)) { | 
|  | /* I'm a leader now! Restart a | 
|  | * switch case. | 
|  | */ | 
|  | bp->is_leader = 1; | 
|  | break; | 
|  | } | 
|  |  | 
|  | schedule_delayed_work(&bp->sp_rtnl_task, | 
|  | HZ/10); | 
|  | return; | 
|  |  | 
|  | } else { | 
|  | /* | 
|  | * If there was a global attention, wait | 
|  | * for it to be cleared. | 
|  | */ | 
|  | if (bnx2x_reset_is_global(bp)) { | 
|  | schedule_delayed_work( | 
|  | &bp->sp_rtnl_task, | 
|  | HZ/10); | 
|  | return; | 
|  | } | 
|  |  | 
|  | error_recovered = | 
|  | bp->eth_stats.recoverable_error; | 
|  | error_unrecovered = | 
|  | bp->eth_stats.unrecoverable_error; | 
|  | bp->recovery_state = | 
|  | BNX2X_RECOVERY_NIC_LOADING; | 
|  | if (bnx2x_nic_load(bp, LOAD_NORMAL)) { | 
|  | error_unrecovered++; | 
|  | netdev_err(bp->dev, | 
|  | "Recovery failed. Power cycle needed\n"); | 
|  | /* Disconnect this device */ | 
|  | netif_device_detach(bp->dev); | 
|  | /* Shut down the power */ | 
|  | bnx2x_set_power_state( | 
|  | bp, PCI_D3hot); | 
|  | mb(); | 
|  | } else { | 
|  | bp->recovery_state = | 
|  | BNX2X_RECOVERY_DONE; | 
|  | error_recovered++; | 
|  | mb(); | 
|  | } | 
|  | bp->eth_stats.recoverable_error = | 
|  | error_recovered; | 
|  | bp->eth_stats.unrecoverable_error = | 
|  | error_unrecovered; | 
|  |  | 
|  | return; | 
|  | } | 
|  | } | 
|  | default: | 
|  | return; | 
|  | } | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static int bnx2x_close(struct ether *dev); | 
|  |  | 
|  | /* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is | 
|  | * scheduled on a general queue in order to prevent a dead lock. | 
|  | */ | 
|  | static void bnx2x_sp_rtnl_task(struct work_struct *work) | 
|  | { | 
|  | struct bnx2x *bp = container_of(work, struct bnx2x, sp_rtnl_task.work); | 
|  |  | 
|  | rtnl_lock(); | 
|  |  | 
|  | if (!netif_running(bp->dev)) { | 
|  | rtnl_unlock(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (unlikely(bp->recovery_state != BNX2X_RECOVERY_DONE)) { | 
|  | #ifdef BNX2X_STOP_ON_ERROR | 
|  | BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n" | 
|  | "you will need to reboot when done\n"); | 
|  | goto sp_rtnl_not_reset; | 
|  | #endif | 
|  | /* | 
|  | * Clear all pending SP commands as we are going to reset the | 
|  | * function anyway. | 
|  | */ | 
|  | bp->sp_rtnl_state = 0; | 
|  | mb(); | 
|  |  | 
|  | bnx2x_parity_recover(bp); | 
|  |  | 
|  | rtnl_unlock(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (test_and_clear_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state)) { | 
|  | #ifdef BNX2X_STOP_ON_ERROR | 
|  | BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n" | 
|  | "you will need to reboot when done\n"); | 
|  | goto sp_rtnl_not_reset; | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Clear all pending SP commands as we are going to reset the | 
|  | * function anyway. | 
|  | */ | 
|  | bp->sp_rtnl_state = 0; | 
|  | mb(); | 
|  |  | 
|  | bnx2x_nic_unload(bp, UNLOAD_NORMAL, true); | 
|  | bnx2x_nic_load(bp, LOAD_NORMAL); | 
|  |  | 
|  | rtnl_unlock(); | 
|  | return; | 
|  | } | 
|  | #ifdef BNX2X_STOP_ON_ERROR | 
|  | sp_rtnl_not_reset: | 
|  | #endif | 
|  | if (test_and_clear_bit(BNX2X_SP_RTNL_SETUP_TC, &bp->sp_rtnl_state)) | 
|  | bnx2x_setup_tc(bp->dev, bp->dcbx_port_params.ets.num_of_cos); | 
|  | if (test_and_clear_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE, &bp->sp_rtnl_state)) | 
|  | bnx2x_after_function_update(bp); | 
|  | /* | 
|  | * in case of fan failure we need to reset id if the "stop on error" | 
|  | * debug flag is set, since we trying to prevent permanent overheating | 
|  | * damage | 
|  | */ | 
|  | if (test_and_clear_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state)) { | 
|  | DP(NETIF_MSG_HW, "fan failure detected. Unloading driver\n"); | 
|  | #if 0 // AKAROS_PORT | 
|  | netif_device_detach(bp->dev); | 
|  | #endif | 
|  | bnx2x_close(bp->dev); | 
|  | rtnl_unlock(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_MCAST, &bp->sp_rtnl_state)) { | 
|  | DP(BNX2X_MSG_SP, | 
|  | "sending set mcast vf pf channel message from rtnl sp-task\n"); | 
|  | bnx2x_vfpf_set_mcast(bp->dev); | 
|  | } | 
|  | if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN, | 
|  | &bp->sp_rtnl_state)){ | 
|  | panic("Not implemented"); | 
|  | #if 0 // AKAROS_PORT | 
|  | if (!test_bit(__LINK_STATE_NOCARRIER, &bp->dev->state)) { | 
|  | bnx2x_tx_disable(bp); | 
|  | BNX2X_ERR("PF indicated channel is not servicable anymore. This means this VF device is no longer operational\n"); | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | if (test_and_clear_bit(BNX2X_SP_RTNL_RX_MODE, &bp->sp_rtnl_state)) { | 
|  | DP(BNX2X_MSG_SP, "Handling Rx Mode setting\n"); | 
|  | bnx2x_set_rx_mode_inner(bp); | 
|  | } | 
|  |  | 
|  | if (test_and_clear_bit(BNX2X_SP_RTNL_HYPERVISOR_VLAN, | 
|  | &bp->sp_rtnl_state)) | 
|  | bnx2x_pf_set_vfs_vlan(bp); | 
|  |  | 
|  | if (test_and_clear_bit(BNX2X_SP_RTNL_TX_STOP, &bp->sp_rtnl_state)) { | 
|  | bnx2x_dcbx_stop_hw_tx(bp); | 
|  | bnx2x_dcbx_resume_hw_tx(bp); | 
|  | } | 
|  |  | 
|  | if (test_and_clear_bit(BNX2X_SP_RTNL_GET_DRV_VERSION, | 
|  | &bp->sp_rtnl_state)) | 
|  | bnx2x_update_mng_version(bp); | 
|  |  | 
|  | /* work which needs rtnl lock not-taken (as it takes the lock itself and | 
|  | * can be called from other contexts as well) | 
|  | */ | 
|  | rtnl_unlock(); | 
|  |  | 
|  | /* enable SR-IOV if applicable */ | 
|  | if (IS_SRIOV(bp) && test_and_clear_bit(BNX2X_SP_RTNL_ENABLE_SRIOV, | 
|  | &bp->sp_rtnl_state)) { | 
|  | bnx2x_disable_sriov(bp); | 
|  | bnx2x_enable_sriov(bp); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void bnx2x_period_task(struct work_struct *work) | 
|  | { | 
|  | struct bnx2x *bp = container_of(work, struct bnx2x, period_task.work); | 
|  |  | 
|  | if (!netif_running(bp->dev)) | 
|  | goto period_task_exit; | 
|  |  | 
|  | if (CHIP_REV_IS_SLOW(bp)) { | 
|  | BNX2X_ERR("period task called on emulation, ignoring\n"); | 
|  | goto period_task_exit; | 
|  | } | 
|  |  | 
|  | bnx2x_acquire_phy_lock(bp); | 
|  | /* | 
|  | * The barrier is needed to ensure the ordering between the writing to | 
|  | * the bp->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and | 
|  | * the reading here. | 
|  | */ | 
|  | mb(); | 
|  | if (bp->port.pmf) { | 
|  | bnx2x_period_func(&bp->link_params, &bp->link_vars); | 
|  |  | 
|  | /* Re-queue task in 1 sec */ | 
|  | queue_delayed_work(bnx2x_wq, &bp->period_task, 1*HZ); | 
|  | } | 
|  |  | 
|  | bnx2x_release_phy_lock(bp); | 
|  | period_task_exit: | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Init service functions | 
|  | */ | 
|  |  | 
|  | static uint32_t bnx2x_get_pretend_reg(struct bnx2x *bp) | 
|  | { | 
|  | panic("Not implemented"); | 
|  | #if 0 // AKAROS_PORT | 
|  | uint32_t base = PXP2_REG_PGL_PRETEND_FUNC_F0; | 
|  | uint32_t stride = PXP2_REG_PGL_PRETEND_FUNC_F1 - base; | 
|  | return base + (BP_ABS_FUNC(bp)) * stride; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static void bnx2x_prev_unload_close_mac(struct bnx2x *bp, | 
|  | struct bnx2x_mac_vals *vals) | 
|  | { | 
|  | uint32_t val, base_addr, offset, mask, reset_reg; | 
|  | bool mac_stopped = false; | 
|  | uint8_t port = BP_PORT(bp); | 
|  |  | 
|  | /* reset addresses as they also mark which values were changed */ | 
|  | vals->bmac_addr = 0; | 
|  | vals->umac_addr = 0; | 
|  | vals->xmac_addr = 0; | 
|  | vals->emac_addr = 0; | 
|  |  | 
|  | reset_reg = REG_RD(bp, MISC_REG_RESET_REG_2); | 
|  |  | 
|  | if (!CHIP_IS_E3(bp)) { | 
|  | val = REG_RD(bp, NIG_REG_BMAC0_REGS_OUT_EN + port * 4); | 
|  | mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port; | 
|  | if ((mask & reset_reg) && val) { | 
|  | uint32_t wb_data[2]; | 
|  | BNX2X_DEV_INFO("Disable bmac Rx\n"); | 
|  | base_addr = BP_PORT(bp) ? NIG_REG_INGRESS_BMAC1_MEM | 
|  | : NIG_REG_INGRESS_BMAC0_MEM; | 
|  | offset = CHIP_IS_E2(bp) ? BIGMAC2_REGISTER_BMAC_CONTROL | 
|  | : BIGMAC_REGISTER_BMAC_CONTROL; | 
|  |  | 
|  | /* | 
|  | * use rd/wr since we cannot use dmae. This is safe | 
|  | * since MCP won't access the bus due to the request | 
|  | * to unload, and no function on the path can be | 
|  | * loaded at this time. | 
|  | */ | 
|  | wb_data[0] = REG_RD(bp, base_addr + offset); | 
|  | wb_data[1] = REG_RD(bp, base_addr + offset + 0x4); | 
|  | vals->bmac_addr = base_addr + offset; | 
|  | vals->bmac_val[0] = wb_data[0]; | 
|  | vals->bmac_val[1] = wb_data[1]; | 
|  | wb_data[0] &= ~BMAC_CONTROL_RX_ENABLE; | 
|  | REG_WR(bp, vals->bmac_addr, wb_data[0]); | 
|  | REG_WR(bp, vals->bmac_addr + 0x4, wb_data[1]); | 
|  | } | 
|  | BNX2X_DEV_INFO("Disable emac Rx\n"); | 
|  | vals->emac_addr = NIG_REG_NIG_EMAC0_EN + BP_PORT(bp)*4; | 
|  | vals->emac_val = REG_RD(bp, vals->emac_addr); | 
|  | REG_WR(bp, vals->emac_addr, 0); | 
|  | mac_stopped = true; | 
|  | } else { | 
|  | if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) { | 
|  | BNX2X_DEV_INFO("Disable xmac Rx\n"); | 
|  | base_addr = BP_PORT(bp) ? GRCBASE_XMAC1 : GRCBASE_XMAC0; | 
|  | val = REG_RD(bp, base_addr + XMAC_REG_PFC_CTRL_HI); | 
|  | REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI, | 
|  | val & ~(1 << 1)); | 
|  | REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI, | 
|  | val | (1 << 1)); | 
|  | vals->xmac_addr = base_addr + XMAC_REG_CTRL; | 
|  | vals->xmac_val = REG_RD(bp, vals->xmac_addr); | 
|  | REG_WR(bp, vals->xmac_addr, 0); | 
|  | mac_stopped = true; | 
|  | } | 
|  | mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port; | 
|  | if (mask & reset_reg) { | 
|  | BNX2X_DEV_INFO("Disable umac Rx\n"); | 
|  | base_addr = BP_PORT(bp) ? GRCBASE_UMAC1 : GRCBASE_UMAC0; | 
|  | vals->umac_addr = base_addr + UMAC_REG_COMMAND_CONFIG; | 
|  | vals->umac_val = REG_RD(bp, vals->umac_addr); | 
|  | REG_WR(bp, vals->umac_addr, 0); | 
|  | mac_stopped = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (mac_stopped) | 
|  | kthread_usleep(1000 * 20); | 
|  | } | 
|  |  | 
|  | #define BNX2X_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4)) | 
|  | #define BNX2X_PREV_UNDI_PROD_ADDR_H(f) (BAR_TSTRORM_INTMEM + \ | 
|  | 0x1848 + ((f) << 4)) | 
|  | #define BNX2X_PREV_UNDI_RCQ(val)	((val) & 0xffff) | 
|  | #define BNX2X_PREV_UNDI_BD(val)		((val) >> 16 & 0xffff) | 
|  | #define BNX2X_PREV_UNDI_PROD(rcq, bd)	((bd) << 16 | (rcq)) | 
|  |  | 
|  | #define BCM_5710_UNDI_FW_MF_MAJOR	(0x07) | 
|  | #define BCM_5710_UNDI_FW_MF_MINOR	(0x08) | 
|  | #define BCM_5710_UNDI_FW_MF_VERS	(0x05) | 
|  |  | 
|  | static bool bnx2x_prev_is_after_undi(struct bnx2x *bp) | 
|  | { | 
|  | /* UNDI marks its presence in DORQ - | 
|  | * it initializes CID offset for normal bell to 0x7 | 
|  | */ | 
|  | if (!(REG_RD(bp, MISC_REG_RESET_REG_1) & | 
|  | MISC_REGISTERS_RESET_REG_1_RST_DORQ)) | 
|  | return false; | 
|  |  | 
|  | if (REG_RD(bp, DORQ_REG_NORM_CID_OFST) == 0x7) { | 
|  | BNX2X_DEV_INFO("UNDI previously loaded\n"); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static void bnx2x_prev_unload_undi_inc(struct bnx2x *bp, uint8_t inc) | 
|  | { | 
|  | uint16_t rcq, bd; | 
|  | uint32_t addr, tmp_reg; | 
|  |  | 
|  | if (BP_FUNC(bp) < 2) | 
|  | addr = BNX2X_PREV_UNDI_PROD_ADDR(BP_PORT(bp)); | 
|  | else | 
|  | addr = BNX2X_PREV_UNDI_PROD_ADDR_H(BP_FUNC(bp) - 2); | 
|  |  | 
|  | tmp_reg = REG_RD(bp, addr); | 
|  | rcq = BNX2X_PREV_UNDI_RCQ(tmp_reg) + inc; | 
|  | bd = BNX2X_PREV_UNDI_BD(tmp_reg) + inc; | 
|  |  | 
|  | tmp_reg = BNX2X_PREV_UNDI_PROD(rcq, bd); | 
|  | REG_WR(bp, addr, tmp_reg); | 
|  |  | 
|  | BNX2X_DEV_INFO("UNDI producer [%d/%d][%08x] rings bd -> 0x%04x, rcq -> 0x%04x\n", | 
|  | BP_PORT(bp), BP_FUNC(bp), addr, bd, rcq); | 
|  | } | 
|  |  | 
|  | static int bnx2x_prev_mcp_done(struct bnx2x *bp) | 
|  | { | 
|  | uint32_t rc = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, | 
|  | DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET); | 
|  | if (!rc) { | 
|  | BNX2X_ERR("MCP response failure, aborting\n"); | 
|  | return -EBUSY; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct bnx2x_prev_path_list * | 
|  | bnx2x_prev_path_get_entry(struct bnx2x *bp) | 
|  | { | 
|  | struct bnx2x_prev_path_list *tmp_list; | 
|  | list_for_each_entry(tmp_list, &bnx2x_prev_list, list) | 
|  | if (bp->pdev->dev== tmp_list->slot && | 
|  | bp->pdev->bus == tmp_list->bus && | 
|  | BP_PATH(bp) == tmp_list->path) | 
|  | return tmp_list; | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static int bnx2x_prev_path_mark_eeh(struct bnx2x *bp) | 
|  | { | 
|  | struct bnx2x_prev_path_list *tmp_list; | 
|  | int rc; | 
|  |  | 
|  | rc = down_interruptible(&bnx2x_prev_sem); | 
|  | if (rc) { | 
|  | BNX2X_ERR("Received %d when tried to take lock\n", rc); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | tmp_list = bnx2x_prev_path_get_entry(bp); | 
|  | if (tmp_list) { | 
|  | tmp_list->aer = 1; | 
|  | rc = 0; | 
|  | } else { | 
|  | BNX2X_ERR("path %d: Entry does not exist for eeh; Flow occurs before initial insmod is over ?\n", | 
|  | BP_PATH(bp)); | 
|  | } | 
|  |  | 
|  | up(&bnx2x_prev_sem); | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static bool bnx2x_prev_is_path_marked(struct bnx2x *bp) | 
|  | { | 
|  | struct bnx2x_prev_path_list *tmp_list; | 
|  | bool rc = false; | 
|  |  | 
|  | if (down_trylock(&bnx2x_prev_sem)) | 
|  | return false; | 
|  |  | 
|  | tmp_list = bnx2x_prev_path_get_entry(bp); | 
|  | if (tmp_list) { | 
|  | if (tmp_list->aer) { | 
|  | DP(NETIF_MSG_HW, "Path %d was marked by AER\n", | 
|  | BP_PATH(bp)); | 
|  | } else { | 
|  | rc = true; | 
|  | BNX2X_DEV_INFO("Path %d was already cleaned from previous drivers\n", | 
|  | BP_PATH(bp)); | 
|  | } | 
|  | } | 
|  |  | 
|  | up(&bnx2x_prev_sem); | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | bool bnx2x_port_after_undi(struct bnx2x *bp) | 
|  | { | 
|  | struct bnx2x_prev_path_list *entry; | 
|  | bool val; | 
|  |  | 
|  | down(&bnx2x_prev_sem); | 
|  |  | 
|  | entry = bnx2x_prev_path_get_entry(bp); | 
|  | val = !!(entry && (entry->undi & (1 << BP_PORT(bp)))); | 
|  |  | 
|  | up(&bnx2x_prev_sem); | 
|  |  | 
|  | return val; | 
|  | } | 
|  |  | 
|  | static int bnx2x_prev_mark_path(struct bnx2x *bp, bool after_undi) | 
|  | { | 
|  | struct bnx2x_prev_path_list *tmp_list; | 
|  | int rc; | 
|  |  | 
|  | rc = down_interruptible(&bnx2x_prev_sem); | 
|  | if (rc) { | 
|  | BNX2X_ERR("Received %d when tried to take lock\n", rc); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /* Check whether the entry for this path already exists */ | 
|  | tmp_list = bnx2x_prev_path_get_entry(bp); | 
|  | if (tmp_list) { | 
|  | if (!tmp_list->aer) { | 
|  | BNX2X_ERR("Re-Marking the path.\n"); | 
|  | } else { | 
|  | DP(NETIF_MSG_HW, "Removing AER indication from path %d\n", | 
|  | BP_PATH(bp)); | 
|  | tmp_list->aer = 0; | 
|  | } | 
|  | up(&bnx2x_prev_sem); | 
|  | return 0; | 
|  | } | 
|  | up(&bnx2x_prev_sem); | 
|  |  | 
|  | /* Create an entry for this path and add it */ | 
|  | tmp_list = kmalloc(sizeof(struct bnx2x_prev_path_list), MEM_WAIT); | 
|  | if (!tmp_list) { | 
|  | BNX2X_ERR("Failed to allocate 'bnx2x_prev_path_list'\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | tmp_list->bus = bp->pdev->bus; | 
|  | tmp_list->slot = bp->pdev->dev; | 
|  | tmp_list->path = BP_PATH(bp); | 
|  | tmp_list->aer = 0; | 
|  | tmp_list->undi = after_undi ? (1 << BP_PORT(bp)) : 0; | 
|  |  | 
|  | rc = down_interruptible(&bnx2x_prev_sem); | 
|  | if (rc) { | 
|  | BNX2X_ERR("Received %d when tried to take lock\n", rc); | 
|  | kfree(tmp_list); | 
|  | } else { | 
|  | DP(NETIF_MSG_HW, "Marked path [%d] - finished previous unload\n", | 
|  | BP_PATH(bp)); | 
|  | list_add(&tmp_list->list, &bnx2x_prev_list); | 
|  | up(&bnx2x_prev_sem); | 
|  | } | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static int bnx2x_do_flr(struct bnx2x *bp) | 
|  | { | 
|  | panic("Not implemented"); | 
|  | #if 0 // AKAROS_PORT | 
|  | struct pci_device *dev = bp->pdev; | 
|  |  | 
|  | if (CHIP_IS_E1x(bp)) { | 
|  | BNX2X_DEV_INFO("FLR not supported in E1/E1H\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */ | 
|  | if (bp->common.bc_ver < REQ_BC_VER_4_INITIATE_FLR) { | 
|  | BNX2X_ERR("FLR not supported by BC_VER: 0x%x\n", | 
|  | bp->common.bc_ver); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (!pci_wait_for_pending_transaction(dev)) | 
|  | dev_err(&dev->dev, "transaction is not cleared; proceeding with reset anyway\n"); | 
|  |  | 
|  | BNX2X_DEV_INFO("Initiating FLR\n"); | 
|  | bnx2x_fw_command(bp, DRV_MSG_CODE_INITIATE_FLR, 0); | 
|  |  | 
|  | return 0; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static int bnx2x_prev_unload_uncommon(struct bnx2x *bp) | 
|  | { | 
|  | int rc; | 
|  |  | 
|  | BNX2X_DEV_INFO("Uncommon unload Flow\n"); | 
|  |  | 
|  | /* Test if previous unload process was already finished for this path */ | 
|  | if (bnx2x_prev_is_path_marked(bp)) | 
|  | return bnx2x_prev_mcp_done(bp); | 
|  |  | 
|  | BNX2X_DEV_INFO("Path is unmarked\n"); | 
|  |  | 
|  | /* Cannot proceed with FLR if UNDI is loaded, since FW does not match */ | 
|  | if (bnx2x_prev_is_after_undi(bp)) | 
|  | goto out; | 
|  |  | 
|  | /* If function has FLR capabilities, and existing FW version matches | 
|  | * the one required, then FLR will be sufficient to clean any residue | 
|  | * left by previous driver | 
|  | */ | 
|  | rc = bnx2x_compare_fw_ver(bp, FW_MSG_CODE_DRV_LOAD_FUNCTION, false); | 
|  |  | 
|  | if (!rc) { | 
|  | /* fw version is good */ | 
|  | BNX2X_DEV_INFO("FW version matches our own. Attempting FLR\n"); | 
|  | rc = bnx2x_do_flr(bp); | 
|  | } | 
|  |  | 
|  | if (!rc) { | 
|  | /* FLR was performed */ | 
|  | BNX2X_DEV_INFO("FLR successful\n"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | BNX2X_DEV_INFO("Could not FLR\n"); | 
|  |  | 
|  | out: | 
|  | /* Close the MCP request, return failure*/ | 
|  | rc = bnx2x_prev_mcp_done(bp); | 
|  | if (!rc) | 
|  | rc = BNX2X_PREV_WAIT_NEEDED; | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static int bnx2x_prev_unload_common(struct bnx2x *bp) | 
|  | { | 
|  | uint32_t reset_reg, tmp_reg = 0, rc; | 
|  | bool prev_undi = false; | 
|  | struct bnx2x_mac_vals mac_vals; | 
|  |  | 
|  | /* It is possible a previous function received 'common' answer, | 
|  | * but hasn't loaded yet, therefore creating a scenario of | 
|  | * multiple functions receiving 'common' on the same path. | 
|  | */ | 
|  | BNX2X_DEV_INFO("Common unload Flow\n"); | 
|  |  | 
|  | memset(&mac_vals, 0, sizeof(mac_vals)); | 
|  |  | 
|  | if (bnx2x_prev_is_path_marked(bp)) | 
|  | return bnx2x_prev_mcp_done(bp); | 
|  |  | 
|  | reset_reg = REG_RD(bp, MISC_REG_RESET_REG_1); | 
|  |  | 
|  | /* Reset should be performed after BRB is emptied */ | 
|  | if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) { | 
|  | uint32_t timer_count = 1000; | 
|  |  | 
|  | /* Close the MAC Rx to prevent BRB from filling up */ | 
|  | bnx2x_prev_unload_close_mac(bp, &mac_vals); | 
|  |  | 
|  | /* close LLH filters towards the BRB */ | 
|  | bnx2x_set_rx_filter(&bp->link_params, 0); | 
|  |  | 
|  | /* Check if the UNDI driver was previously loaded */ | 
|  | if (bnx2x_prev_is_after_undi(bp)) { | 
|  | prev_undi = true; | 
|  | /* clear the UNDI indication */ | 
|  | REG_WR(bp, DORQ_REG_NORM_CID_OFST, 0); | 
|  | /* clear possible idle check errors */ | 
|  | REG_RD(bp, NIG_REG_NIG_INT_STS_CLR_0); | 
|  | } | 
|  | if (!CHIP_IS_E1x(bp)) | 
|  | /* block FW from writing to host */ | 
|  | REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0); | 
|  |  | 
|  | /* wait until BRB is empty */ | 
|  | tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS); | 
|  | while (timer_count) { | 
|  | uint32_t prev_brb = tmp_reg; | 
|  |  | 
|  | tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS); | 
|  | if (!tmp_reg) | 
|  | break; | 
|  |  | 
|  | BNX2X_DEV_INFO("BRB still has 0x%08x\n", tmp_reg); | 
|  |  | 
|  | /* reset timer as long as BRB actually gets emptied */ | 
|  | if (prev_brb > tmp_reg) | 
|  | timer_count = 1000; | 
|  | else | 
|  | timer_count--; | 
|  |  | 
|  | /* If UNDI resides in memory, manually increment it */ | 
|  | if (prev_undi) | 
|  | bnx2x_prev_unload_undi_inc(bp, 1); | 
|  |  | 
|  | udelay(10); | 
|  | } | 
|  |  | 
|  | if (!timer_count) | 
|  | BNX2X_ERR("Failed to empty BRB, hope for the best\n"); | 
|  | } | 
|  |  | 
|  | /* No packets are in the pipeline, path is ready for reset */ | 
|  | bnx2x_reset_common(bp); | 
|  |  | 
|  | if (mac_vals.xmac_addr) | 
|  | REG_WR(bp, mac_vals.xmac_addr, mac_vals.xmac_val); | 
|  | if (mac_vals.umac_addr) | 
|  | REG_WR(bp, mac_vals.umac_addr, mac_vals.umac_val); | 
|  | if (mac_vals.emac_addr) | 
|  | REG_WR(bp, mac_vals.emac_addr, mac_vals.emac_val); | 
|  | if (mac_vals.bmac_addr) { | 
|  | REG_WR(bp, mac_vals.bmac_addr, mac_vals.bmac_val[0]); | 
|  | REG_WR(bp, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]); | 
|  | } | 
|  |  | 
|  | rc = bnx2x_prev_mark_path(bp, prev_undi); | 
|  | if (rc) { | 
|  | bnx2x_prev_mcp_done(bp); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | return bnx2x_prev_mcp_done(bp); | 
|  | } | 
|  |  | 
|  | /* previous driver DMAE transaction may have occurred when pre-boot stage ended | 
|  | * and boot began, or when kdump kernel was loaded. Either case would invalidate | 
|  | * the addresses of the transaction, resulting in was-error bit set in the pci | 
|  | * causing all hw-to-host pcie transactions to timeout. If this happened we want | 
|  | * to clear the interrupt which detected this from the pglueb and the was done | 
|  | * bit | 
|  | */ | 
|  | static void bnx2x_prev_interrupted_dmae(struct bnx2x *bp) | 
|  | { | 
|  | if (!CHIP_IS_E1x(bp)) { | 
|  | uint32_t val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS); | 
|  | if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) { | 
|  | DP(BNX2X_MSG_SP, | 
|  | "'was error' bit was found to be set in pglueb upon startup. Clearing\n"); | 
|  | REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, | 
|  | 1 << BP_FUNC(bp)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static int bnx2x_prev_unload(struct bnx2x *bp) | 
|  | { | 
|  | int time_counter = 10; | 
|  | uint32_t rc, fw, hw_lock_reg, hw_lock_val; | 
|  | BNX2X_DEV_INFO("Entering Previous Unload Flow\n"); | 
|  |  | 
|  | /* clear hw from errors which may have resulted from an interrupted | 
|  | * dmae transaction. | 
|  | */ | 
|  | bnx2x_prev_interrupted_dmae(bp); | 
|  |  | 
|  | /* Release previously held locks */ | 
|  | hw_lock_reg = (BP_FUNC(bp) <= 5) ? | 
|  | (MISC_REG_DRIVER_CONTROL_1 + BP_FUNC(bp) * 8) : | 
|  | (MISC_REG_DRIVER_CONTROL_7 + (BP_FUNC(bp) - 6) * 8); | 
|  |  | 
|  | hw_lock_val = REG_RD(bp, hw_lock_reg); | 
|  | if (hw_lock_val) { | 
|  | if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) { | 
|  | BNX2X_DEV_INFO("Release Previously held NVRAM lock\n"); | 
|  | REG_WR(bp, MCP_REG_MCPR_NVM_SW_ARB, | 
|  | (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << BP_PORT(bp))); | 
|  | } | 
|  |  | 
|  | BNX2X_DEV_INFO("Release Previously held hw lock\n"); | 
|  | REG_WR(bp, hw_lock_reg, 0xffffffff); | 
|  | } else | 
|  | BNX2X_DEV_INFO("No need to release hw/nvram locks\n"); | 
|  |  | 
|  | if (MCPR_ACCESS_LOCK_LOCK & REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK)) { | 
|  | BNX2X_DEV_INFO("Release previously held alr\n"); | 
|  | bnx2x_release_alr(bp); | 
|  | } | 
|  |  | 
|  | do { | 
|  | int aer = 0; | 
|  | /* Lock MCP using an unload request */ | 
|  | fw = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0); | 
|  | if (!fw) { | 
|  | BNX2X_ERR("MCP response failure, aborting\n"); | 
|  | rc = -EBUSY; | 
|  | break; | 
|  | } | 
|  |  | 
|  | rc = down_interruptible(&bnx2x_prev_sem); | 
|  | if (rc) { | 
|  | BNX2X_ERR("Cannot check for AER; Received %d when tried to take lock\n", | 
|  | rc); | 
|  | } else { | 
|  | /* If Path is marked by EEH, ignore unload status */ | 
|  | aer = !!(bnx2x_prev_path_get_entry(bp) && | 
|  | bnx2x_prev_path_get_entry(bp)->aer); | 
|  | up(&bnx2x_prev_sem); | 
|  | } | 
|  |  | 
|  | if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON || aer) { | 
|  | rc = bnx2x_prev_unload_common(bp); | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* non-common reply from MCP might require looping */ | 
|  | rc = bnx2x_prev_unload_uncommon(bp); | 
|  | if (rc != BNX2X_PREV_WAIT_NEEDED) | 
|  | break; | 
|  |  | 
|  | kthread_usleep(1000 * 20); | 
|  | } while (--time_counter); | 
|  |  | 
|  | if (!time_counter || rc) { | 
|  | BNX2X_DEV_INFO("Unloading previous driver did not occur, Possibly due to MF UNDI\n"); | 
|  | rc = -EPROBE_DEFER; | 
|  | } | 
|  |  | 
|  | /* Mark function if its port was used to boot from SAN */ | 
|  | if (bnx2x_port_after_undi(bp)) | 
|  | bp->link_params.feature_config_flags |= | 
|  | FEATURE_CONFIG_BOOT_FROM_SAN; | 
|  |  | 
|  | BNX2X_DEV_INFO("Finished Previous Unload Flow [%d]\n", rc); | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static void bnx2x_get_common_hwinfo(struct bnx2x *bp) | 
|  | { | 
|  | uint32_t val, val2, val3, val4, id, boot_mode; | 
|  | uint16_t pmc; | 
|  |  | 
|  | /* Get the chip revision id and number. */ | 
|  | /* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */ | 
|  | val = REG_RD(bp, MISC_REG_CHIP_NUM); | 
|  | id = ((val & 0xffff) << 16); | 
|  | val = REG_RD(bp, MISC_REG_CHIP_REV); | 
|  | id |= ((val & 0xf) << 12); | 
|  |  | 
|  | /* Metal is read from PCI regs, but we can't access >=0x400 from | 
|  | * the configuration space (so we need to reg_rd) | 
|  | */ | 
|  | val = REG_RD(bp, PCICFG_OFFSET + PCI_ID_VAL3); | 
|  | id |= (((val >> 24) & 0xf) << 4); | 
|  | val = REG_RD(bp, MISC_REG_BOND_ID); | 
|  | id |= (val & 0xf); | 
|  | bp->common.chip_id = id; | 
|  |  | 
|  | /* force 57811 according to MISC register */ | 
|  | if (REG_RD(bp, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) { | 
|  | if (CHIP_IS_57810(bp)) | 
|  | bp->common.chip_id = (CHIP_NUM_57811 << 16) | | 
|  | (bp->common.chip_id & 0x0000FFFF); | 
|  | else if (CHIP_IS_57810_MF(bp)) | 
|  | bp->common.chip_id = (CHIP_NUM_57811_MF << 16) | | 
|  | (bp->common.chip_id & 0x0000FFFF); | 
|  | bp->common.chip_id |= 0x1; | 
|  | } | 
|  |  | 
|  | /* Set doorbell size */ | 
|  | bp->db_size = (1 << BNX2X_DB_SHIFT); | 
|  |  | 
|  | if (!CHIP_IS_E1x(bp)) { | 
|  | val = REG_RD(bp, MISC_REG_PORT4MODE_EN_OVWR); | 
|  | if ((val & 1) == 0) | 
|  | val = REG_RD(bp, MISC_REG_PORT4MODE_EN); | 
|  | else | 
|  | val = (val >> 1) & 1; | 
|  | BNX2X_DEV_INFO("chip is in %s\n", val ? "4_PORT_MODE" : | 
|  | "2_PORT_MODE"); | 
|  | bp->common.chip_port_mode = val ? CHIP_4_PORT_MODE : | 
|  | CHIP_2_PORT_MODE; | 
|  |  | 
|  | if (CHIP_MODE_IS_4_PORT(bp)) | 
|  | bp->pfid = (bp->pf_num >> 1);	/* 0..3 */ | 
|  | else | 
|  | bp->pfid = (bp->pf_num & 0x6);	/* 0, 2, 4, 6 */ | 
|  | } else { | 
|  | bp->common.chip_port_mode = CHIP_PORT_MODE_NONE; /* N/A */ | 
|  | bp->pfid = bp->pf_num;			/* 0..7 */ | 
|  | } | 
|  |  | 
|  | BNX2X_DEV_INFO("pf_id: %x", bp->pfid); | 
|  |  | 
|  | bp->link_params.chip_id = bp->common.chip_id; | 
|  | BNX2X_DEV_INFO("chip ID is 0x%x\n", id); | 
|  |  | 
|  | val = (REG_RD(bp, 0x2874) & 0x55); | 
|  | if ((bp->common.chip_id & 0x1) || | 
|  | (CHIP_IS_E1(bp) && val) || (CHIP_IS_E1H(bp) && (val == 0x55))) { | 
|  | bp->flags |= ONE_PORT_FLAG; | 
|  | BNX2X_DEV_INFO("single port device\n"); | 
|  | } | 
|  |  | 
|  | val = REG_RD(bp, MCP_REG_MCPR_NVM_CFG4); | 
|  | bp->common.flash_size = (BNX2X_NVRAM_1MB_SIZE << | 
|  | (val & MCPR_NVM_CFG4_FLASH_SIZE)); | 
|  | BNX2X_DEV_INFO("flash_size 0x%x (%d)\n", | 
|  | bp->common.flash_size, bp->common.flash_size); | 
|  |  | 
|  | bnx2x_init_shmem(bp); | 
|  |  | 
|  | bp->common.shmem2_base = REG_RD(bp, (BP_PATH(bp) ? | 
|  | MISC_REG_GENERIC_CR_1 : | 
|  | MISC_REG_GENERIC_CR_0)); | 
|  |  | 
|  | bp->link_params.shmem_base = bp->common.shmem_base; | 
|  | bp->link_params.shmem2_base = bp->common.shmem2_base; | 
|  | if (SHMEM2_RD(bp, size) > | 
|  | (uint32_t)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)])) | 
|  | bp->link_params.lfa_base = | 
|  | REG_RD(bp, bp->common.shmem2_base + | 
|  | (uint32_t)offsetof(struct shmem2_region, | 
|  | lfa_host_addr[BP_PORT(bp)])); | 
|  | else | 
|  | bp->link_params.lfa_base = 0; | 
|  | BNX2X_DEV_INFO("shmem offset 0x%x  shmem2 offset 0x%x\n", | 
|  | bp->common.shmem_base, bp->common.shmem2_base); | 
|  |  | 
|  | if (!bp->common.shmem_base) { | 
|  | BNX2X_DEV_INFO("MCP not active\n"); | 
|  | bp->flags |= NO_MCP_FLAG; | 
|  | return; | 
|  | } | 
|  |  | 
|  | bp->common.hw_config = SHMEM_RD(bp, dev_info.shared_hw_config.config); | 
|  | BNX2X_DEV_INFO("hw_config 0x%08x\n", bp->common.hw_config); | 
|  |  | 
|  | bp->link_params.hw_led_mode = ((bp->common.hw_config & | 
|  | SHARED_HW_CFG_LED_MODE_MASK) >> | 
|  | SHARED_HW_CFG_LED_MODE_SHIFT); | 
|  |  | 
|  | bp->link_params.feature_config_flags = 0; | 
|  | val = SHMEM_RD(bp, dev_info.shared_feature_config.config); | 
|  | if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED) | 
|  | bp->link_params.feature_config_flags |= | 
|  | FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED; | 
|  | else | 
|  | bp->link_params.feature_config_flags &= | 
|  | ~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED; | 
|  |  | 
|  | val = SHMEM_RD(bp, dev_info.bc_rev) >> 8; | 
|  | bp->common.bc_ver = val; | 
|  | BNX2X_DEV_INFO("bc_ver %X\n", val); | 
|  | if (val < BNX2X_BC_VER) { | 
|  | /* for now only warn | 
|  | * later we might need to enforce this */ | 
|  | BNX2X_ERR("This driver needs bc_ver %X but found %X, please upgrade BC\n", | 
|  | BNX2X_BC_VER, val); | 
|  | } | 
|  | bp->link_params.feature_config_flags |= | 
|  | (val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ? | 
|  | FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY : 0; | 
|  |  | 
|  | bp->link_params.feature_config_flags |= | 
|  | (val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ? | 
|  | FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0; | 
|  | bp->link_params.feature_config_flags |= | 
|  | (val >= REQ_BC_VER_4_VRFY_AFEX_SUPPORTED) ? | 
|  | FEATURE_CONFIG_BC_SUPPORTS_AFEX : 0; | 
|  | bp->link_params.feature_config_flags |= | 
|  | (val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ? | 
|  | FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0; | 
|  |  | 
|  | bp->link_params.feature_config_flags |= | 
|  | (val >= REQ_BC_VER_4_MT_SUPPORTED) ? | 
|  | FEATURE_CONFIG_MT_SUPPORT : 0; | 
|  |  | 
|  | bp->flags |= (val >= REQ_BC_VER_4_PFC_STATS_SUPPORTED) ? | 
|  | BC_SUPPORTS_PFC_STATS : 0; | 
|  |  | 
|  | bp->flags |= (val >= REQ_BC_VER_4_FCOE_FEATURES) ? | 
|  | BC_SUPPORTS_FCOE_FEATURES : 0; | 
|  |  | 
|  | bp->flags |= (val >= REQ_BC_VER_4_DCBX_ADMIN_MSG_NON_PMF) ? | 
|  | BC_SUPPORTS_DCBX_MSG_NON_PMF : 0; | 
|  |  | 
|  | bp->flags |= (val >= REQ_BC_VER_4_RMMOD_CMD) ? | 
|  | BC_SUPPORTS_RMMOD_CMD : 0; | 
|  |  | 
|  | boot_mode = SHMEM_RD(bp, | 
|  | dev_info.port_feature_config[BP_PORT(bp)].mba_config) & | 
|  | PORT_FEATURE_MBA_BOOT_AGENT_TYPE_MASK; | 
|  | switch (boot_mode) { | 
|  | case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_PXE: | 
|  | bp->common.boot_mode = FEATURE_ETH_BOOTMODE_PXE; | 
|  | break; | 
|  | case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_ISCSIB: | 
|  | bp->common.boot_mode = FEATURE_ETH_BOOTMODE_ISCSI; | 
|  | break; | 
|  | case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_FCOE_BOOT: | 
|  | bp->common.boot_mode = FEATURE_ETH_BOOTMODE_FCOE; | 
|  | break; | 
|  | case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_NONE: | 
|  | bp->common.boot_mode = FEATURE_ETH_BOOTMODE_NONE; | 
|  | break; | 
|  | } | 
|  |  | 
|  | #if 0 // AKAROS_PORT no power mgmt cap | 
|  | pci_read_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_PMC, &pmc); | 
|  | bp->flags |= (pmc & PCI_PM_CAP_PME_D3cold) ? 0 : NO_WOL_FLAG; | 
|  | #else | 
|  | bp->flags |= NO_WOL_FLAG; | 
|  | #endif | 
|  |  | 
|  | BNX2X_DEV_INFO("%sWoL capable\n", | 
|  | (bp->flags & NO_WOL_FLAG) ? "not " : ""); | 
|  |  | 
|  | val = SHMEM_RD(bp, dev_info.shared_hw_config.part_num); | 
|  | val2 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[4]); | 
|  | val3 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[8]); | 
|  | val4 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[12]); | 
|  |  | 
|  | BNX2X_DEV_INFO("part number %x-%x-%x-%x\n", val, val2, val3, val4); | 
|  | } | 
|  |  | 
|  | #define IGU_FID(val)	GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID) | 
|  | #define IGU_VEC(val)	GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR) | 
|  |  | 
|  | static int bnx2x_get_igu_cam_info(struct bnx2x *bp) | 
|  | { | 
|  | int pfid = BP_FUNC(bp); | 
|  | int igu_sb_id; | 
|  | uint32_t val; | 
|  | uint8_t fid, igu_sb_cnt = 0; | 
|  |  | 
|  | bp->igu_base_sb = 0xff; | 
|  | if (CHIP_INT_MODE_IS_BC(bp)) { | 
|  | int vn = BP_VN(bp); | 
|  | igu_sb_cnt = bp->igu_sb_cnt; | 
|  | bp->igu_base_sb = (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn) * | 
|  | FP_SB_MAX_E1x; | 
|  |  | 
|  | bp->igu_dsb_id =  E1HVN_MAX * FP_SB_MAX_E1x + | 
|  | (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* IGU in normal mode - read CAM */ | 
|  | for (igu_sb_id = 0; igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE; | 
|  | igu_sb_id++) { | 
|  | val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4); | 
|  | if (!(val & IGU_REG_MAPPING_MEMORY_VALID)) | 
|  | continue; | 
|  | fid = IGU_FID(val); | 
|  | if ((fid & IGU_FID_ENCODE_IS_PF)) { | 
|  | if ((fid & IGU_FID_PF_NUM_MASK) != pfid) | 
|  | continue; | 
|  | if (IGU_VEC(val) == 0) | 
|  | /* default status block */ | 
|  | bp->igu_dsb_id = igu_sb_id; | 
|  | else { | 
|  | if (bp->igu_base_sb == 0xff) | 
|  | bp->igu_base_sb = igu_sb_id; | 
|  | igu_sb_cnt++; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_PCI_MSI | 
|  | /* Due to new PF resource allocation by MFW T7.4 and above, it's | 
|  | * optional that number of CAM entries will not be equal to the value | 
|  | * advertised in PCI. | 
|  | * Driver should use the minimal value of both as the actual status | 
|  | * block count | 
|  | */ | 
|  | bp->igu_sb_cnt = MIN_T(int, bp->igu_sb_cnt, igu_sb_cnt); | 
|  | #endif | 
|  |  | 
|  | if (igu_sb_cnt == 0) { | 
|  | BNX2X_ERR("CAM configuration error\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void bnx2x_link_settings_supported(struct bnx2x *bp, | 
|  | uint32_t switch_cfg) | 
|  | { | 
|  | int cfg_size = 0, idx, port = BP_PORT(bp); | 
|  |  | 
|  | /* Aggregation of supported attributes of all external phys */ | 
|  | bp->port.supported[0] = 0; | 
|  | bp->port.supported[1] = 0; | 
|  | switch (bp->link_params.num_phys) { | 
|  | case 1: | 
|  | bp->port.supported[0] = bp->link_params.phy[INT_PHY].supported; | 
|  | cfg_size = 1; | 
|  | break; | 
|  | case 2: | 
|  | bp->port.supported[0] = bp->link_params.phy[EXT_PHY1].supported; | 
|  | cfg_size = 1; | 
|  | break; | 
|  | case 3: | 
|  | if (bp->link_params.multi_phy_config & | 
|  | PORT_HW_CFG_PHY_SWAPPED_ENABLED) { | 
|  | bp->port.supported[1] = | 
|  | bp->link_params.phy[EXT_PHY1].supported; | 
|  | bp->port.supported[0] = | 
|  | bp->link_params.phy[EXT_PHY2].supported; | 
|  | } else { | 
|  | bp->port.supported[0] = | 
|  | bp->link_params.phy[EXT_PHY1].supported; | 
|  | bp->port.supported[1] = | 
|  | bp->link_params.phy[EXT_PHY2].supported; | 
|  | } | 
|  | cfg_size = 2; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (!(bp->port.supported[0] || bp->port.supported[1])) { | 
|  | BNX2X_ERR("NVRAM config error. BAD phy config. PHY1 config 0x%x, PHY2 config 0x%x\n", | 
|  | SHMEM_RD(bp, | 
|  | dev_info.port_hw_config[port].external_phy_config), | 
|  | SHMEM_RD(bp, | 
|  | dev_info.port_hw_config[port].external_phy_config2)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (CHIP_IS_E3(bp)) | 
|  | bp->port.phy_addr = REG_RD(bp, MISC_REG_WC0_CTRL_PHY_ADDR); | 
|  | else { | 
|  | switch (switch_cfg) { | 
|  | case SWITCH_CFG_1G: | 
|  | bp->port.phy_addr = REG_RD( | 
|  | bp, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10); | 
|  | break; | 
|  | case SWITCH_CFG_10G: | 
|  | bp->port.phy_addr = REG_RD( | 
|  | bp, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18); | 
|  | break; | 
|  | default: | 
|  | BNX2X_ERR("BAD switch_cfg link_config 0x%x\n", | 
|  | bp->port.link_config[0]); | 
|  | return; | 
|  | } | 
|  | } | 
|  | BNX2X_DEV_INFO("phy_addr 0x%x\n", bp->port.phy_addr); | 
|  | /* mask what we support according to speed_cap_mask per configuration */ | 
|  | for (idx = 0; idx < cfg_size; idx++) { | 
|  | if (!(bp->link_params.speed_cap_mask[idx] & | 
|  | PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF)) | 
|  | bp->port.supported[idx] &= ~SUPPORTED_10baseT_Half; | 
|  |  | 
|  | if (!(bp->link_params.speed_cap_mask[idx] & | 
|  | PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL)) | 
|  | bp->port.supported[idx] &= ~SUPPORTED_10baseT_Full; | 
|  |  | 
|  | if (!(bp->link_params.speed_cap_mask[idx] & | 
|  | PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF)) | 
|  | bp->port.supported[idx] &= ~SUPPORTED_100baseT_Half; | 
|  |  | 
|  | if (!(bp->link_params.speed_cap_mask[idx] & | 
|  | PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL)) | 
|  | bp->port.supported[idx] &= ~SUPPORTED_100baseT_Full; | 
|  |  | 
|  | if (!(bp->link_params.speed_cap_mask[idx] & | 
|  | PORT_HW_CFG_SPEED_CAPABILITY_D0_1G)) | 
|  | bp->port.supported[idx] &= ~(SUPPORTED_1000baseT_Half | | 
|  | SUPPORTED_1000baseT_Full); | 
|  |  | 
|  | if (!(bp->link_params.speed_cap_mask[idx] & | 
|  | PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G)) | 
|  | bp->port.supported[idx] &= ~SUPPORTED_2500baseX_Full; | 
|  |  | 
|  | if (!(bp->link_params.speed_cap_mask[idx] & | 
|  | PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)) | 
|  | bp->port.supported[idx] &= ~SUPPORTED_10000baseT_Full; | 
|  |  | 
|  | if (!(bp->link_params.speed_cap_mask[idx] & | 
|  | PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)) | 
|  | bp->port.supported[idx] &= ~SUPPORTED_20000baseKR2_Full; | 
|  | } | 
|  |  | 
|  | BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp->port.supported[0], | 
|  | bp->port.supported[1]); | 
|  | } | 
|  |  | 
|  | static void bnx2x_link_settings_requested(struct bnx2x *bp) | 
|  | { | 
|  | uint32_t link_config, idx, cfg_size = 0; | 
|  | bp->port.advertising[0] = 0; | 
|  | bp->port.advertising[1] = 0; | 
|  | switch (bp->link_params.num_phys) { | 
|  | case 1: | 
|  | case 2: | 
|  | cfg_size = 1; | 
|  | break; | 
|  | case 3: | 
|  | cfg_size = 2; | 
|  | break; | 
|  | } | 
|  | for (idx = 0; idx < cfg_size; idx++) { | 
|  | bp->link_params.req_duplex[idx] = DUPLEX_FULL; | 
|  | link_config = bp->port.link_config[idx]; | 
|  | switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) { | 
|  | case PORT_FEATURE_LINK_SPEED_AUTO: | 
|  | if (bp->port.supported[idx] & SUPPORTED_Autoneg) { | 
|  | bp->link_params.req_line_speed[idx] = | 
|  | SPEED_AUTO_NEG; | 
|  | bp->port.advertising[idx] |= | 
|  | bp->port.supported[idx]; | 
|  | if (bp->link_params.phy[EXT_PHY1].type == | 
|  | PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833) | 
|  | bp->port.advertising[idx] |= | 
|  | (SUPPORTED_100baseT_Half | | 
|  | SUPPORTED_100baseT_Full); | 
|  | } else { | 
|  | /* force 10G, no AN */ | 
|  | bp->link_params.req_line_speed[idx] = | 
|  | SPEED_10000; | 
|  | bp->port.advertising[idx] |= | 
|  | (ADVERTISED_10000baseT_Full | | 
|  | ADVERTISED_FIBRE); | 
|  | continue; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case PORT_FEATURE_LINK_SPEED_10M_FULL: | 
|  | if (bp->port.supported[idx] & SUPPORTED_10baseT_Full) { | 
|  | bp->link_params.req_line_speed[idx] = | 
|  | SPEED_10; | 
|  | bp->port.advertising[idx] |= | 
|  | (ADVERTISED_10baseT_Full | | 
|  | ADVERTISED_TP); | 
|  | } else { | 
|  | BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n", | 
|  | link_config, | 
|  | bp->link_params.speed_cap_mask[idx]); | 
|  | return; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case PORT_FEATURE_LINK_SPEED_10M_HALF: | 
|  | if (bp->port.supported[idx] & SUPPORTED_10baseT_Half) { | 
|  | bp->link_params.req_line_speed[idx] = | 
|  | SPEED_10; | 
|  | bp->link_params.req_duplex[idx] = | 
|  | DUPLEX_HALF; | 
|  | bp->port.advertising[idx] |= | 
|  | (ADVERTISED_10baseT_Half | | 
|  | ADVERTISED_TP); | 
|  | } else { | 
|  | BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n", | 
|  | link_config, | 
|  | bp->link_params.speed_cap_mask[idx]); | 
|  | return; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case PORT_FEATURE_LINK_SPEED_100M_FULL: | 
|  | if (bp->port.supported[idx] & | 
|  | SUPPORTED_100baseT_Full) { | 
|  | bp->link_params.req_line_speed[idx] = | 
|  | SPEED_100; | 
|  | bp->port.advertising[idx] |= | 
|  | (ADVERTISED_100baseT_Full | | 
|  | ADVERTISED_TP); | 
|  | } else { | 
|  | BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n", | 
|  | link_config, | 
|  | bp->link_params.speed_cap_mask[idx]); | 
|  | return; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case PORT_FEATURE_LINK_SPEED_100M_HALF: | 
|  | if (bp->port.supported[idx] & | 
|  | SUPPORTED_100baseT_Half) { | 
|  | bp->link_params.req_line_speed[idx] = | 
|  | SPEED_100; | 
|  | bp->link_params.req_duplex[idx] = | 
|  | DUPLEX_HALF; | 
|  | bp->port.advertising[idx] |= | 
|  | (ADVERTISED_100baseT_Half | | 
|  | ADVERTISED_TP); | 
|  | } else { | 
|  | BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n", | 
|  | link_config, | 
|  | bp->link_params.speed_cap_mask[idx]); | 
|  | return; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case PORT_FEATURE_LINK_SPEED_1G: | 
|  | if (bp->port.supported[idx] & | 
|  | SUPPORTED_1000baseT_Full) { | 
|  | bp->link_params.req_line_speed[idx] = | 
|  | SPEED_1000; | 
|  | bp->port.advertising[idx] |= | 
|  | (ADVERTISED_1000baseT_Full | | 
|  | ADVERTISED_TP); | 
|  | } else { | 
|  | BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n", | 
|  | link_config, | 
|  | bp->link_params.speed_cap_mask[idx]); | 
|  | return; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case PORT_FEATURE_LINK_SPEED_2_5G: | 
|  | if (bp->port.supported[idx] & | 
|  | SUPPORTED_2500baseX_Full) { | 
|  | bp->link_params.req_line_speed[idx] = | 
|  | SPEED_2500; | 
|  | bp->port.advertising[idx] |= | 
|  | (ADVERTISED_2500baseX_Full | | 
|  | ADVERTISED_TP); | 
|  | } else { | 
|  | BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n", | 
|  | link_config, | 
|  | bp->link_params.speed_cap_mask[idx]); | 
|  | return; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case PORT_FEATURE_LINK_SPEED_10G_CX4: | 
|  | if (bp->port.supported[idx] & | 
|  | SUPPORTED_10000baseT_Full) { | 
|  | bp->link_params.req_line_speed[idx] = | 
|  | SPEED_10000; | 
|  | bp->port.advertising[idx] |= | 
|  | (ADVERTISED_10000baseT_Full | | 
|  | ADVERTISED_FIBRE); | 
|  | } else { | 
|  | BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n", | 
|  | link_config, | 
|  | bp->link_params.speed_cap_mask[idx]); | 
|  | return; | 
|  | } | 
|  | break; | 
|  | case PORT_FEATURE_LINK_SPEED_20G: | 
|  | bp->link_params.req_line_speed[idx] = SPEED_20000; | 
|  |  | 
|  | break; | 
|  | default: | 
|  | BNX2X_ERR("NVRAM config error. BAD link speed link_config 0x%x\n", | 
|  | link_config); | 
|  | bp->link_params.req_line_speed[idx] = | 
|  | SPEED_AUTO_NEG; | 
|  | bp->port.advertising[idx] = | 
|  | bp->port.supported[idx]; | 
|  | break; | 
|  | } | 
|  |  | 
|  | bp->link_params.req_flow_ctrl[idx] = (link_config & | 
|  | PORT_FEATURE_FLOW_CONTROL_MASK); | 
|  | if (bp->link_params.req_flow_ctrl[idx] == | 
|  | BNX2X_FLOW_CTRL_AUTO) { | 
|  | if (!(bp->port.supported[idx] & SUPPORTED_Autoneg)) | 
|  | bp->link_params.req_flow_ctrl[idx] = | 
|  | BNX2X_FLOW_CTRL_NONE; | 
|  | else | 
|  | bnx2x_set_requested_fc(bp); | 
|  | } | 
|  |  | 
|  | BNX2X_DEV_INFO("req_line_speed %d  req_duplex %d req_flow_ctrl 0x%x advertising 0x%x\n", | 
|  | bp->link_params.req_line_speed[idx], | 
|  | bp->link_params.req_duplex[idx], | 
|  | bp->link_params.req_flow_ctrl[idx], | 
|  | bp->port.advertising[idx]); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void bnx2x_set_mac_buf(uint8_t *mac_buf, uint32_t mac_lo, | 
|  | uint16_t mac_hi) | 
|  | { | 
|  | __be16 mac_hi_be = cpu_to_be16(mac_hi); | 
|  | __be32 mac_lo_be = cpu_to_be32(mac_lo); | 
|  | memcpy(mac_buf, &mac_hi_be, sizeof(mac_hi_be)); | 
|  | memcpy(mac_buf + sizeof(mac_hi_be), &mac_lo_be, sizeof(mac_lo_be)); | 
|  | } | 
|  |  | 
|  | static void bnx2x_get_port_hwinfo(struct bnx2x *bp) | 
|  | { | 
|  | int port = BP_PORT(bp); | 
|  | uint32_t config; | 
|  | uint32_t ext_phy_type, ext_phy_config, eee_mode; | 
|  |  | 
|  | bp->link_params.bp = bp; | 
|  | bp->link_params.port = port; | 
|  |  | 
|  | bp->link_params.lane_config = | 
|  | SHMEM_RD(bp, dev_info.port_hw_config[port].lane_config); | 
|  |  | 
|  | bp->link_params.speed_cap_mask[0] = | 
|  | SHMEM_RD(bp, | 
|  | dev_info.port_hw_config[port].speed_capability_mask) & | 
|  | PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK; | 
|  | bp->link_params.speed_cap_mask[1] = | 
|  | SHMEM_RD(bp, | 
|  | dev_info.port_hw_config[port].speed_capability_mask2) & | 
|  | PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK; | 
|  | bp->port.link_config[0] = | 
|  | SHMEM_RD(bp, dev_info.port_feature_config[port].link_config); | 
|  |  | 
|  | bp->port.link_config[1] = | 
|  | SHMEM_RD(bp, dev_info.port_feature_config[port].link_config2); | 
|  |  | 
|  | bp->link_params.multi_phy_config = | 
|  | SHMEM_RD(bp, dev_info.port_hw_config[port].multi_phy_config); | 
|  | /* If the device is capable of WoL, set the default state according | 
|  | * to the HW | 
|  | */ | 
|  | config = SHMEM_RD(bp, dev_info.port_feature_config[port].config); | 
|  | bp->wol = (!(bp->flags & NO_WOL_FLAG) && | 
|  | (config & PORT_FEATURE_WOL_ENABLED)); | 
|  |  | 
|  | if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) == | 
|  | PORT_FEAT_CFG_STORAGE_PERSONALITY_FCOE && !IS_MF(bp)) | 
|  | bp->flags |= NO_ISCSI_FLAG; | 
|  | if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) == | 
|  | PORT_FEAT_CFG_STORAGE_PERSONALITY_ISCSI && !(IS_MF(bp))) | 
|  | bp->flags |= NO_FCOE_FLAG; | 
|  |  | 
|  | BNX2X_DEV_INFO("lane_config 0x%08x  speed_cap_mask0 0x%08x  link_config0 0x%08x\n", | 
|  | bp->link_params.lane_config, | 
|  | bp->link_params.speed_cap_mask[0], | 
|  | bp->port.link_config[0]); | 
|  |  | 
|  | bp->link_params.switch_cfg = (bp->port.link_config[0] & | 
|  | PORT_FEATURE_CONNECTED_SWITCH_MASK); | 
|  | bnx2x_phy_probe(&bp->link_params); | 
|  | bnx2x_link_settings_supported(bp, bp->link_params.switch_cfg); | 
|  |  | 
|  | bnx2x_link_settings_requested(bp); | 
|  |  | 
|  | /* | 
|  | * If connected directly, work with the internal PHY, otherwise, work | 
|  | * with the external PHY | 
|  | */ | 
|  | ext_phy_config = | 
|  | SHMEM_RD(bp, | 
|  | dev_info.port_hw_config[port].external_phy_config); | 
|  | ext_phy_type = XGXS_EXT_PHY_TYPE(ext_phy_config); | 
|  | #if 0 // AKAROS_PORT MII MDIO XME | 
|  | if (ext_phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT) | 
|  | bp->mdio.prtad = bp->port.phy_addr; | 
|  |  | 
|  | else if ((ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) && | 
|  | (ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN)) | 
|  | bp->mdio.prtad = | 
|  | XGXS_EXT_PHY_ADDR(ext_phy_config); | 
|  | #endif | 
|  |  | 
|  | /* Configure link feature according to nvram value */ | 
|  | eee_mode = (((SHMEM_RD(bp, dev_info. | 
|  | port_feature_config[port].eee_power_mode)) & | 
|  | PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >> | 
|  | PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT); | 
|  | if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) { | 
|  | bp->link_params.eee_mode = EEE_MODE_ADV_LPI | | 
|  | EEE_MODE_ENABLE_LPI | | 
|  | EEE_MODE_OUTPUT_TIME; | 
|  | } else { | 
|  | bp->link_params.eee_mode = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | void bnx2x_get_iscsi_info(struct bnx2x *bp) | 
|  | { | 
|  | uint32_t no_flags = NO_ISCSI_FLAG; | 
|  | int port = BP_PORT(bp); | 
|  | uint32_t max_iscsi_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp, | 
|  | drv_lic_key[port].max_iscsi_conn); | 
|  |  | 
|  | if (!CNIC_SUPPORT(bp)) { | 
|  | bp->flags |= no_flags; | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Get the number of maximum allowed iSCSI connections */ | 
|  | bp->cnic_eth_dev.max_iscsi_conn = | 
|  | (max_iscsi_conn & BNX2X_MAX_ISCSI_INIT_CONN_MASK) >> | 
|  | BNX2X_MAX_ISCSI_INIT_CONN_SHIFT; | 
|  |  | 
|  | BNX2X_DEV_INFO("max_iscsi_conn 0x%x\n", | 
|  | bp->cnic_eth_dev.max_iscsi_conn); | 
|  |  | 
|  | /* | 
|  | * If maximum allowed number of connections is zero - | 
|  | * disable the feature. | 
|  | */ | 
|  | if (!bp->cnic_eth_dev.max_iscsi_conn) | 
|  | bp->flags |= no_flags; | 
|  | } | 
|  |  | 
|  | static void bnx2x_get_ext_wwn_info(struct bnx2x *bp, int func) | 
|  | { | 
|  | /* Port info */ | 
|  | bp->cnic_eth_dev.fcoe_wwn_port_name_hi = | 
|  | MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_upper); | 
|  | bp->cnic_eth_dev.fcoe_wwn_port_name_lo = | 
|  | MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_lower); | 
|  |  | 
|  | /* Node info */ | 
|  | bp->cnic_eth_dev.fcoe_wwn_node_name_hi = | 
|  | MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_upper); | 
|  | bp->cnic_eth_dev.fcoe_wwn_node_name_lo = | 
|  | MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_lower); | 
|  | } | 
|  |  | 
|  | static int bnx2x_shared_fcoe_funcs(struct bnx2x *bp) | 
|  | { | 
|  | uint8_t count = 0; | 
|  |  | 
|  | if (IS_MF(bp)) { | 
|  | uint8_t fid; | 
|  |  | 
|  | /* iterate over absolute function ids for this path: */ | 
|  | for (fid = BP_PATH(bp); fid < E2_FUNC_MAX * 2; fid += 2) { | 
|  | if (IS_MF_SD(bp)) { | 
|  | uint32_t cfg = MF_CFG_RD(bp, | 
|  | func_mf_config[fid].config); | 
|  |  | 
|  | if (!(cfg & FUNC_MF_CFG_FUNC_HIDE) && | 
|  | ((cfg & FUNC_MF_CFG_PROTOCOL_MASK) == | 
|  | FUNC_MF_CFG_PROTOCOL_FCOE)) | 
|  | count++; | 
|  | } else { | 
|  | uint32_t cfg = MF_CFG_RD(bp, | 
|  | func_ext_config[fid]. | 
|  | func_cfg); | 
|  |  | 
|  | if ((cfg & MACP_FUNC_CFG_FLAGS_ENABLED) && | 
|  | (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD)) | 
|  | count++; | 
|  | } | 
|  | } | 
|  | } else { /* SF */ | 
|  | int port, port_cnt = CHIP_MODE_IS_4_PORT(bp) ? 2 : 1; | 
|  |  | 
|  | for (port = 0; port < port_cnt; port++) { | 
|  | uint32_t lic = SHMEM_RD(bp, | 
|  | drv_lic_key[port].max_fcoe_conn) ^ | 
|  | FW_ENCODE_32BIT_PATTERN; | 
|  | if (lic) | 
|  | count++; | 
|  | } | 
|  | } | 
|  |  | 
|  | return count; | 
|  | } | 
|  |  | 
|  | static void bnx2x_get_fcoe_info(struct bnx2x *bp) | 
|  | { | 
|  | int port = BP_PORT(bp); | 
|  | int func = BP_ABS_FUNC(bp); | 
|  | uint32_t max_fcoe_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp, | 
|  | drv_lic_key[port].max_fcoe_conn); | 
|  | uint8_t num_fcoe_func = bnx2x_shared_fcoe_funcs(bp); | 
|  |  | 
|  | if (!CNIC_SUPPORT(bp)) { | 
|  | bp->flags |= NO_FCOE_FLAG; | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Get the number of maximum allowed FCoE connections */ | 
|  | bp->cnic_eth_dev.max_fcoe_conn = | 
|  | (max_fcoe_conn & BNX2X_MAX_FCOE_INIT_CONN_MASK) >> | 
|  | BNX2X_MAX_FCOE_INIT_CONN_SHIFT; | 
|  |  | 
|  | /* Calculate the number of maximum allowed FCoE tasks */ | 
|  | bp->cnic_eth_dev.max_fcoe_exchanges = MAX_NUM_FCOE_TASKS_PER_ENGINE; | 
|  |  | 
|  | /* check if FCoE resources must be shared between different functions */ | 
|  | if (num_fcoe_func) | 
|  | bp->cnic_eth_dev.max_fcoe_exchanges /= num_fcoe_func; | 
|  |  | 
|  | /* Read the WWN: */ | 
|  | if (!IS_MF(bp)) { | 
|  | /* Port info */ | 
|  | bp->cnic_eth_dev.fcoe_wwn_port_name_hi = | 
|  | SHMEM_RD(bp, | 
|  | dev_info.port_hw_config[port]. | 
|  | fcoe_wwn_port_name_upper); | 
|  | bp->cnic_eth_dev.fcoe_wwn_port_name_lo = | 
|  | SHMEM_RD(bp, | 
|  | dev_info.port_hw_config[port]. | 
|  | fcoe_wwn_port_name_lower); | 
|  |  | 
|  | /* Node info */ | 
|  | bp->cnic_eth_dev.fcoe_wwn_node_name_hi = | 
|  | SHMEM_RD(bp, | 
|  | dev_info.port_hw_config[port]. | 
|  | fcoe_wwn_node_name_upper); | 
|  | bp->cnic_eth_dev.fcoe_wwn_node_name_lo = | 
|  | SHMEM_RD(bp, | 
|  | dev_info.port_hw_config[port]. | 
|  | fcoe_wwn_node_name_lower); | 
|  | } else if (!IS_MF_SD(bp)) { | 
|  | /* Read the WWN info only if the FCoE feature is enabled for | 
|  | * this function. | 
|  | */ | 
|  | if (BNX2X_HAS_MF_EXT_PROTOCOL_FCOE(bp)) | 
|  | bnx2x_get_ext_wwn_info(bp, func); | 
|  | } else { | 
|  | if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp) && !CHIP_IS_E1x(bp)) | 
|  | bnx2x_get_ext_wwn_info(bp, func); | 
|  | } | 
|  |  | 
|  | BNX2X_DEV_INFO("max_fcoe_conn 0x%x\n", bp->cnic_eth_dev.max_fcoe_conn); | 
|  |  | 
|  | /* | 
|  | * If maximum allowed number of connections is zero - | 
|  | * disable the feature. | 
|  | */ | 
|  | if (!bp->cnic_eth_dev.max_fcoe_conn) | 
|  | bp->flags |= NO_FCOE_FLAG; | 
|  | } | 
|  |  | 
|  | static void bnx2x_get_cnic_info(struct bnx2x *bp) | 
|  | { | 
|  | /* | 
|  | * iSCSI may be dynamically disabled but reading | 
|  | * info here we will decrease memory usage by driver | 
|  | * if the feature is disabled for good | 
|  | */ | 
|  | bnx2x_get_iscsi_info(bp); | 
|  | bnx2x_get_fcoe_info(bp); | 
|  | } | 
|  |  | 
|  | static void bnx2x_get_cnic_mac_hwinfo(struct bnx2x *bp) | 
|  | { | 
|  | uint32_t val, val2; | 
|  | int func = BP_ABS_FUNC(bp); | 
|  | int port = BP_PORT(bp); | 
|  | uint8_t *iscsi_mac = bp->cnic_eth_dev.iscsi_mac; | 
|  | uint8_t *fip_mac = bp->fip_mac; | 
|  |  | 
|  | if (IS_MF(bp)) { | 
|  | /* iSCSI and FCoE NPAR MACs: if there is no either iSCSI or | 
|  | * FCoE MAC then the appropriate feature should be disabled. | 
|  | * In non SD mode features configuration comes from struct | 
|  | * func_ext_config. | 
|  | */ | 
|  | if (!IS_MF_SD(bp)) { | 
|  | uint32_t cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg); | 
|  | if (cfg & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) { | 
|  | val2 = MF_CFG_RD(bp, func_ext_config[func]. | 
|  | iscsi_mac_addr_upper); | 
|  | val = MF_CFG_RD(bp, func_ext_config[func]. | 
|  | iscsi_mac_addr_lower); | 
|  | bnx2x_set_mac_buf(iscsi_mac, val, val2); | 
|  | BNX2X_DEV_INFO | 
|  | ("Read iSCSI MAC: %pM\n", iscsi_mac); | 
|  | } else { | 
|  | bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG; | 
|  | } | 
|  |  | 
|  | if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) { | 
|  | val2 = MF_CFG_RD(bp, func_ext_config[func]. | 
|  | fcoe_mac_addr_upper); | 
|  | val = MF_CFG_RD(bp, func_ext_config[func]. | 
|  | fcoe_mac_addr_lower); | 
|  | bnx2x_set_mac_buf(fip_mac, val, val2); | 
|  | BNX2X_DEV_INFO | 
|  | ("Read FCoE L2 MAC: %pM\n", fip_mac); | 
|  | } else { | 
|  | bp->flags |= NO_FCOE_FLAG; | 
|  | } | 
|  |  | 
|  | bp->mf_ext_config = cfg; | 
|  |  | 
|  | } else { /* SD MODE */ | 
|  | if (BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp)) { | 
|  | /* use primary mac as iscsi mac */ | 
|  | memcpy(iscsi_mac, bp->dev->ea, Eaddrlen); | 
|  |  | 
|  | BNX2X_DEV_INFO("SD ISCSI MODE\n"); | 
|  | BNX2X_DEV_INFO | 
|  | ("Read iSCSI MAC: %pM\n", iscsi_mac); | 
|  | } else if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)) { | 
|  | /* use primary mac as fip mac */ | 
|  | memcpy(fip_mac, bp->dev->ea, Eaddrlen); | 
|  | BNX2X_DEV_INFO("SD FCoE MODE\n"); | 
|  | BNX2X_DEV_INFO | 
|  | ("Read FIP MAC: %pM\n", fip_mac); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* If this is a storage-only interface, use SAN mac as | 
|  | * primary MAC. Notice that for SD this is already the case, | 
|  | * as the SAN mac was copied from the primary MAC. | 
|  | */ | 
|  | if (IS_MF_FCOE_AFEX(bp)) | 
|  | memcpy(bp->dev->ea, fip_mac, Eaddrlen); | 
|  | } else { | 
|  | val2 = SHMEM_RD(bp, dev_info.port_hw_config[port]. | 
|  | iscsi_mac_upper); | 
|  | val = SHMEM_RD(bp, dev_info.port_hw_config[port]. | 
|  | iscsi_mac_lower); | 
|  | bnx2x_set_mac_buf(iscsi_mac, val, val2); | 
|  |  | 
|  | val2 = SHMEM_RD(bp, dev_info.port_hw_config[port]. | 
|  | fcoe_fip_mac_upper); | 
|  | val = SHMEM_RD(bp, dev_info.port_hw_config[port]. | 
|  | fcoe_fip_mac_lower); | 
|  | bnx2x_set_mac_buf(fip_mac, val, val2); | 
|  | } | 
|  |  | 
|  | /* Disable iSCSI OOO if MAC configuration is invalid. */ | 
|  | if (!is_valid_ether_addr(iscsi_mac)) { | 
|  | bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG; | 
|  | memset(iscsi_mac, 0, Eaddrlen); | 
|  | } | 
|  |  | 
|  | /* Disable FCoE if MAC configuration is invalid. */ | 
|  | if (!is_valid_ether_addr(fip_mac)) { | 
|  | bp->flags |= NO_FCOE_FLAG; | 
|  | memset(bp->fip_mac, 0, Eaddrlen); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void bnx2x_get_mac_hwinfo(struct bnx2x *bp) | 
|  | { | 
|  | uint32_t val, val2; | 
|  | int func = BP_ABS_FUNC(bp); | 
|  | int port = BP_PORT(bp); | 
|  |  | 
|  | /* Zero primary MAC configuration */ | 
|  | memset(bp->dev->ea, 0, Eaddrlen); | 
|  |  | 
|  | if (BP_NOMCP(bp)) { | 
|  | BNX2X_ERROR("warning: random MAC workaround active\n"); | 
|  | eth_hw_addr_random(bp->dev); | 
|  | } else if (IS_MF(bp)) { | 
|  | val2 = MF_CFG_RD(bp, func_mf_config[func].mac_upper); | 
|  | val = MF_CFG_RD(bp, func_mf_config[func].mac_lower); | 
|  | if ((val2 != FUNC_MF_CFG_UPPERMAC_DEFAULT) && | 
|  | (val != FUNC_MF_CFG_LOWERMAC_DEFAULT)) | 
|  | bnx2x_set_mac_buf(bp->dev->ea, val, val2); | 
|  |  | 
|  | if (CNIC_SUPPORT(bp)) | 
|  | bnx2x_get_cnic_mac_hwinfo(bp); | 
|  | } else { | 
|  | /* in SF read MACs from port configuration */ | 
|  | val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper); | 
|  | val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower); | 
|  | bnx2x_set_mac_buf(bp->dev->ea, val, val2); | 
|  |  | 
|  | if (CNIC_SUPPORT(bp)) | 
|  | bnx2x_get_cnic_mac_hwinfo(bp); | 
|  | } | 
|  |  | 
|  | if (!BP_NOMCP(bp)) { | 
|  | /* Read physical port identifier from shmem */ | 
|  | val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper); | 
|  | val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower); | 
|  | bnx2x_set_mac_buf(bp->phys_port_id, val, val2); | 
|  | bp->flags |= HAS_PHYS_PORT_ID; | 
|  | } | 
|  |  | 
|  | memcpy(bp->link_params.mac_addr, bp->dev->ea, Eaddrlen); | 
|  |  | 
|  | if (!is_valid_ether_addr(bp->dev->ea)) | 
|  | dev_err(&bp->pdev->dev, | 
|  | "bad Ethernet MAC address configuration: %pM\n" | 
|  | "change it manually before bringing up the appropriate network interface\n", | 
|  | bp->dev->ea); | 
|  | } | 
|  |  | 
|  | static bool bnx2x_get_dropless_info(struct bnx2x *bp) | 
|  | { | 
|  | int tmp; | 
|  | uint32_t cfg; | 
|  |  | 
|  | if (IS_VF(bp)) | 
|  | return 0; | 
|  |  | 
|  | if (IS_MF(bp) && !CHIP_IS_E1x(bp)) { | 
|  | /* Take function: tmp = func */ | 
|  | tmp = BP_ABS_FUNC(bp); | 
|  | cfg = MF_CFG_RD(bp, func_ext_config[tmp].func_cfg); | 
|  | cfg = !!(cfg & MACP_FUNC_CFG_PAUSE_ON_HOST_RING); | 
|  | } else { | 
|  | /* Take port: tmp = port */ | 
|  | tmp = BP_PORT(bp); | 
|  | cfg = SHMEM_RD(bp, | 
|  | dev_info.port_hw_config[tmp].generic_features); | 
|  | cfg = !!(cfg & PORT_HW_CFG_PAUSE_ON_HOST_RING_ENABLED); | 
|  | } | 
|  | return cfg; | 
|  | } | 
|  |  | 
|  | static void validate_set_si_mode(struct bnx2x *bp) | 
|  | { | 
|  | uint8_t func = BP_ABS_FUNC(bp); | 
|  | uint32_t val; | 
|  |  | 
|  | val = MF_CFG_RD(bp, func_mf_config[func].mac_upper); | 
|  |  | 
|  | /* check for legal mac (upper bytes) */ | 
|  | if (val != 0xffff) { | 
|  | bp->mf_mode = MULTI_FUNCTION_SI; | 
|  | bp->mf_config[BP_VN(bp)] = | 
|  | MF_CFG_RD(bp, func_mf_config[func].config); | 
|  | } else | 
|  | BNX2X_DEV_INFO("illegal MAC address for SI\n"); | 
|  | } | 
|  |  | 
|  | static int bnx2x_get_hwinfo(struct bnx2x *bp) | 
|  | { | 
|  | int /*abs*/func = BP_ABS_FUNC(bp); | 
|  | int vn; | 
|  | uint32_t val = 0, val2 = 0; | 
|  | int rc = 0; | 
|  |  | 
|  | bnx2x_get_common_hwinfo(bp); | 
|  |  | 
|  | /* | 
|  | * initialize IGU parameters | 
|  | */ | 
|  | if (CHIP_IS_E1x(bp)) { | 
|  | bp->common.int_block = INT_BLOCK_HC; | 
|  |  | 
|  | bp->igu_dsb_id = DEF_SB_IGU_ID; | 
|  | bp->igu_base_sb = 0; | 
|  | } else { | 
|  | bp->common.int_block = INT_BLOCK_IGU; | 
|  |  | 
|  | /* do not allow device reset during IGU info processing */ | 
|  | bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET); | 
|  |  | 
|  | val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION); | 
|  |  | 
|  | if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) { | 
|  | int tout = 5000; | 
|  |  | 
|  | BNX2X_DEV_INFO("FORCING Normal Mode\n"); | 
|  |  | 
|  | val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN); | 
|  | REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, val); | 
|  | REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x7f); | 
|  |  | 
|  | while (tout && REG_RD(bp, IGU_REG_RESET_MEMORIES)) { | 
|  | tout--; | 
|  | kthread_usleep(1000); | 
|  | } | 
|  |  | 
|  | if (REG_RD(bp, IGU_REG_RESET_MEMORIES)) { | 
|  | dev_err(&bp->pdev->dev, | 
|  | "FORCING Normal Mode failed!!!\n"); | 
|  | bnx2x_release_hw_lock(bp, | 
|  | HW_LOCK_RESOURCE_RESET); | 
|  | return -EPERM; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) { | 
|  | BNX2X_DEV_INFO("IGU Backward Compatible Mode\n"); | 
|  | bp->common.int_block |= INT_BLOCK_MODE_BW_COMP; | 
|  | } else | 
|  | BNX2X_DEV_INFO("IGU Normal Mode\n"); | 
|  |  | 
|  | rc = bnx2x_get_igu_cam_info(bp); | 
|  | bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET); | 
|  | if (rc) | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * set base FW non-default (fast path) status block id, this value is | 
|  | * used to initialize the fw_sb_id saved on the fp/queue structure to | 
|  | * determine the id used by the FW. | 
|  | */ | 
|  | if (CHIP_IS_E1x(bp)) | 
|  | bp->base_fw_ndsb = BP_PORT(bp) * FP_SB_MAX_E1x + BP_L_ID(bp); | 
|  | else /* | 
|  | * 57712 - we currently use one FW SB per IGU SB (Rx and Tx of | 
|  | * the same queue are indicated on the same IGU SB). So we prefer | 
|  | * FW and IGU SBs to be the same value. | 
|  | */ | 
|  | bp->base_fw_ndsb = bp->igu_base_sb; | 
|  |  | 
|  | BNX2X_DEV_INFO("igu_dsb_id %d  igu_base_sb %d  igu_sb_cnt %d\n" | 
|  | "base_fw_ndsb %d\n", bp->igu_dsb_id, bp->igu_base_sb, | 
|  | bp->igu_sb_cnt, bp->base_fw_ndsb); | 
|  |  | 
|  | /* | 
|  | * Initialize MF configuration | 
|  | */ | 
|  |  | 
|  | bp->mf_ov = 0; | 
|  | bp->mf_mode = 0; | 
|  | bp->mf_sub_mode = 0; | 
|  | vn = BP_VN(bp); | 
|  |  | 
|  | if (!CHIP_IS_E1(bp) && !BP_NOMCP(bp)) { | 
|  | BNX2X_DEV_INFO("shmem2base 0x%x, size %d, mfcfg offset %d\n", | 
|  | bp->common.shmem2_base, SHMEM2_RD(bp, size), | 
|  | (uint32_t)offsetof(struct shmem2_region, mf_cfg_addr)); | 
|  |  | 
|  | if (SHMEM2_HAS(bp, mf_cfg_addr)) | 
|  | bp->common.mf_cfg_base = SHMEM2_RD(bp, mf_cfg_addr); | 
|  | else | 
|  | bp->common.mf_cfg_base = bp->common.shmem_base + | 
|  | offsetof(struct shmem_region, func_mb) + | 
|  | E1H_FUNC_MAX * sizeof(struct drv_func_mb); | 
|  | /* | 
|  | * get mf configuration: | 
|  | * 1. Existence of MF configuration | 
|  | * 2. MAC address must be legal (check only upper bytes) | 
|  | *    for  Switch-Independent mode; | 
|  | *    OVLAN must be legal for Switch-Dependent mode | 
|  | * 3. SF_MODE configures specific MF mode | 
|  | */ | 
|  | if (bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) { | 
|  | /* get mf configuration */ | 
|  | val = SHMEM_RD(bp, | 
|  | dev_info.shared_feature_config.config); | 
|  | val &= SHARED_FEAT_CFG_FORCE_SF_MODE_MASK; | 
|  |  | 
|  | switch (val) { | 
|  | case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT: | 
|  | validate_set_si_mode(bp); | 
|  | break; | 
|  | case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE: | 
|  | if ((!CHIP_IS_E1x(bp)) && | 
|  | (MF_CFG_RD(bp, func_mf_config[func]. | 
|  | mac_upper) != 0xffff) && | 
|  | (SHMEM2_HAS(bp, | 
|  | afex_driver_support))) { | 
|  | bp->mf_mode = MULTI_FUNCTION_AFEX; | 
|  | bp->mf_config[vn] = MF_CFG_RD(bp, | 
|  | func_mf_config[func].config); | 
|  | } else { | 
|  | BNX2X_DEV_INFO("can not configure afex mode\n"); | 
|  | } | 
|  | break; | 
|  | case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED: | 
|  | /* get OV configuration */ | 
|  | val = MF_CFG_RD(bp, | 
|  | func_mf_config[FUNC_0].e1hov_tag); | 
|  | val &= FUNC_MF_CFG_E1HOV_TAG_MASK; | 
|  |  | 
|  | if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) { | 
|  | bp->mf_mode = MULTI_FUNCTION_SD; | 
|  | bp->mf_config[vn] = MF_CFG_RD(bp, | 
|  | func_mf_config[func].config); | 
|  | } else | 
|  | BNX2X_DEV_INFO("illegal OV for SD\n"); | 
|  | break; | 
|  | case SHARED_FEAT_CFG_FORCE_SF_MODE_UFP_MODE: | 
|  | bp->mf_mode = MULTI_FUNCTION_SD; | 
|  | bp->mf_sub_mode = SUB_MF_MODE_UFP; | 
|  | bp->mf_config[vn] = | 
|  | MF_CFG_RD(bp, | 
|  | func_mf_config[func].config); | 
|  | break; | 
|  | case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF: | 
|  | bp->mf_config[vn] = 0; | 
|  | break; | 
|  | case SHARED_FEAT_CFG_FORCE_SF_MODE_EXTENDED_MODE: | 
|  | val2 = SHMEM_RD(bp, | 
|  | dev_info.shared_hw_config.config_3); | 
|  | val2 &= SHARED_HW_CFG_EXTENDED_MF_MODE_MASK; | 
|  | switch (val2) { | 
|  | case SHARED_HW_CFG_EXTENDED_MF_MODE_NPAR1_DOT_5: | 
|  | validate_set_si_mode(bp); | 
|  | bp->mf_sub_mode = | 
|  | SUB_MF_MODE_NPAR1_DOT_5; | 
|  | break; | 
|  | default: | 
|  | /* Unknown configuration */ | 
|  | bp->mf_config[vn] = 0; | 
|  | BNX2X_DEV_INFO("unknown extended MF mode 0x%x\n", | 
|  | val); | 
|  | } | 
|  | break; | 
|  | default: | 
|  | /* Unknown configuration: reset mf_config */ | 
|  | bp->mf_config[vn] = 0; | 
|  | BNX2X_DEV_INFO("unknown MF mode 0x%x\n", val); | 
|  | } | 
|  | } | 
|  |  | 
|  | BNX2X_DEV_INFO("%s function mode\n", | 
|  | IS_MF(bp) ? "multi" : "single"); | 
|  |  | 
|  | switch (bp->mf_mode) { | 
|  | case MULTI_FUNCTION_SD: | 
|  | val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) & | 
|  | FUNC_MF_CFG_E1HOV_TAG_MASK; | 
|  | if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) { | 
|  | bp->mf_ov = val; | 
|  | bp->path_has_ovlan = true; | 
|  |  | 
|  | BNX2X_DEV_INFO("MF OV for func %d is %d (0x%04x)\n", | 
|  | func, bp->mf_ov, bp->mf_ov); | 
|  | } else if (bp->mf_sub_mode == SUB_MF_MODE_UFP) { | 
|  | dev_err(&bp->pdev->dev, | 
|  | "Unexpected - no valid MF OV for func %d in UFP mode\n", | 
|  | func); | 
|  | bp->path_has_ovlan = true; | 
|  | } else { | 
|  | dev_err(&bp->pdev->dev, | 
|  | "No valid MF OV for func %d, aborting\n", | 
|  | func); | 
|  | return -EPERM; | 
|  | } | 
|  | break; | 
|  | case MULTI_FUNCTION_AFEX: | 
|  | BNX2X_DEV_INFO("func %d is in MF afex mode\n", func); | 
|  | break; | 
|  | case MULTI_FUNCTION_SI: | 
|  | BNX2X_DEV_INFO("func %d is in MF switch-independent mode\n", | 
|  | func); | 
|  | break; | 
|  | default: | 
|  | if (vn) { | 
|  | dev_err(&bp->pdev->dev, | 
|  | "VN %d is in a single function mode, aborting\n", | 
|  | vn); | 
|  | return -EPERM; | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* check if other port on the path needs ovlan: | 
|  | * Since MF configuration is shared between ports | 
|  | * Possible mixed modes are only | 
|  | * {SF, SI} {SF, SD} {SD, SF} {SI, SF} | 
|  | */ | 
|  | if (CHIP_MODE_IS_4_PORT(bp) && | 
|  | !bp->path_has_ovlan && | 
|  | !IS_MF(bp) && | 
|  | bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) { | 
|  | uint8_t other_port = !BP_PORT(bp); | 
|  | uint8_t other_func = BP_PATH(bp) + 2*other_port; | 
|  | val = MF_CFG_RD(bp, | 
|  | func_mf_config[other_func].e1hov_tag); | 
|  | if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) | 
|  | bp->path_has_ovlan = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* adjust igu_sb_cnt to MF for E1H */ | 
|  | if (CHIP_IS_E1H(bp) && IS_MF(bp)) | 
|  | bp->igu_sb_cnt = MIN_T(uint8_t, bp->igu_sb_cnt, | 
|  | E1H_MAX_MF_SB_COUNT); | 
|  |  | 
|  | /* port info */ | 
|  | bnx2x_get_port_hwinfo(bp); | 
|  |  | 
|  | /* Get MAC addresses */ | 
|  | bnx2x_get_mac_hwinfo(bp); | 
|  |  | 
|  | bnx2x_get_cnic_info(bp); | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static void bnx2x_read_fwinfo(struct bnx2x *bp) | 
|  | { | 
|  | /* our hardware doesn't have any VPD when booted under linux */ | 
|  | return; | 
|  | #if 0 // AKAROS_PORT | 
|  | int cnt, i, block_end, rodi; | 
|  | char vpd_start[BNX2X_VPD_LEN+1]; | 
|  | char str_id_reg[VENDOR_ID_LEN+1]; | 
|  | char str_id_cap[VENDOR_ID_LEN+1]; | 
|  | char *vpd_data; | 
|  | char *vpd_extended_data = NULL; | 
|  | uint8_t len; | 
|  |  | 
|  | cnt = pci_read_vpd(bp->pdev, 0, BNX2X_VPD_LEN, vpd_start); | 
|  | memset(bp->fw_ver, 0, sizeof(bp->fw_ver)); | 
|  |  | 
|  | if (cnt < BNX2X_VPD_LEN) | 
|  | goto out_not_found; | 
|  |  | 
|  | /* VPD RO tag should be first tag after identifier string, hence | 
|  | * we should be able to find it in first BNX2X_VPD_LEN chars | 
|  | */ | 
|  | i = pci_vpd_find_tag(vpd_start, 0, BNX2X_VPD_LEN, | 
|  | PCI_VPD_LRDT_RO_DATA); | 
|  | if (i < 0) | 
|  | goto out_not_found; | 
|  |  | 
|  | block_end = i + PCI_VPD_LRDT_TAG_SIZE + | 
|  | pci_vpd_lrdt_size(&vpd_start[i]); | 
|  |  | 
|  | i += PCI_VPD_LRDT_TAG_SIZE; | 
|  |  | 
|  | if (block_end > BNX2X_VPD_LEN) { | 
|  | vpd_extended_data = kmalloc(block_end, MEM_WAIT); | 
|  | if (vpd_extended_data  == NULL) | 
|  | goto out_not_found; | 
|  |  | 
|  | /* read rest of vpd image into vpd_extended_data */ | 
|  | memcpy(vpd_extended_data, vpd_start, BNX2X_VPD_LEN); | 
|  | cnt = pci_read_vpd(bp->pdev, BNX2X_VPD_LEN, | 
|  | block_end - BNX2X_VPD_LEN, | 
|  | vpd_extended_data + BNX2X_VPD_LEN); | 
|  | if (cnt < (block_end - BNX2X_VPD_LEN)) | 
|  | goto out_not_found; | 
|  | vpd_data = vpd_extended_data; | 
|  | } else | 
|  | vpd_data = vpd_start; | 
|  |  | 
|  | /* now vpd_data holds full vpd content in both cases */ | 
|  |  | 
|  | rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end, | 
|  | PCI_VPD_RO_KEYWORD_MFR_ID); | 
|  | if (rodi < 0) | 
|  | goto out_not_found; | 
|  |  | 
|  | len = pci_vpd_info_field_size(&vpd_data[rodi]); | 
|  |  | 
|  | if (len != VENDOR_ID_LEN) | 
|  | goto out_not_found; | 
|  |  | 
|  | rodi += PCI_VPD_INFO_FLD_HDR_SIZE; | 
|  |  | 
|  | /* vendor specific info */ | 
|  | snprintf(str_id_reg, VENDOR_ID_LEN + 1, "%04x", PCI_VENDOR_ID_DELL); | 
|  | snprintf(str_id_cap, VENDOR_ID_LEN + 1, "%04X", PCI_VENDOR_ID_DELL); | 
|  | if (!strncmp(str_id_reg, &vpd_data[rodi], VENDOR_ID_LEN) || | 
|  | !strncmp(str_id_cap, &vpd_data[rodi], VENDOR_ID_LEN)) { | 
|  |  | 
|  | rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end, | 
|  | PCI_VPD_RO_KEYWORD_VENDOR0); | 
|  | if (rodi >= 0) { | 
|  | len = pci_vpd_info_field_size(&vpd_data[rodi]); | 
|  |  | 
|  | rodi += PCI_VPD_INFO_FLD_HDR_SIZE; | 
|  |  | 
|  | if (len < 32 && (len + rodi) <= BNX2X_VPD_LEN) { | 
|  | memcpy(bp->fw_ver, &vpd_data[rodi], len); | 
|  | bp->fw_ver[len] = ' '; | 
|  | } | 
|  | } | 
|  | kfree(vpd_extended_data); | 
|  | return; | 
|  | } | 
|  | out_not_found: | 
|  | kfree(vpd_extended_data); | 
|  | return; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static void bnx2x_set_modes_bitmap(struct bnx2x *bp) | 
|  | { | 
|  | uint32_t flags = 0; | 
|  |  | 
|  | if (CHIP_REV_IS_FPGA(bp)) | 
|  | SET_FLAGS(flags, MODE_FPGA); | 
|  | else if (CHIP_REV_IS_EMUL(bp)) | 
|  | SET_FLAGS(flags, MODE_EMUL); | 
|  | else | 
|  | SET_FLAGS(flags, MODE_ASIC); | 
|  |  | 
|  | if (CHIP_MODE_IS_4_PORT(bp)) | 
|  | SET_FLAGS(flags, MODE_PORT4); | 
|  | else | 
|  | SET_FLAGS(flags, MODE_PORT2); | 
|  |  | 
|  | if (CHIP_IS_E2(bp)) | 
|  | SET_FLAGS(flags, MODE_E2); | 
|  | else if (CHIP_IS_E3(bp)) { | 
|  | SET_FLAGS(flags, MODE_E3); | 
|  | if (CHIP_REV(bp) == CHIP_REV_Ax) | 
|  | SET_FLAGS(flags, MODE_E3_A0); | 
|  | else /*if (CHIP_REV(bp) == CHIP_REV_Bx)*/ | 
|  | SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3); | 
|  | } | 
|  |  | 
|  | if (IS_MF(bp)) { | 
|  | SET_FLAGS(flags, MODE_MF); | 
|  | switch (bp->mf_mode) { | 
|  | case MULTI_FUNCTION_SD: | 
|  | SET_FLAGS(flags, MODE_MF_SD); | 
|  | break; | 
|  | case MULTI_FUNCTION_SI: | 
|  | SET_FLAGS(flags, MODE_MF_SI); | 
|  | break; | 
|  | case MULTI_FUNCTION_AFEX: | 
|  | SET_FLAGS(flags, MODE_MF_AFEX); | 
|  | break; | 
|  | } | 
|  | } else | 
|  | SET_FLAGS(flags, MODE_SF); | 
|  |  | 
|  | #if defined(__LITTLE_ENDIAN) | 
|  | SET_FLAGS(flags, MODE_LITTLE_ENDIAN); | 
|  | #else /*(__BIG_ENDIAN)*/ | 
|  | SET_FLAGS(flags, MODE_BIG_ENDIAN); | 
|  | #endif | 
|  | INIT_MODE_FLAGS(bp) = flags; | 
|  | } | 
|  |  | 
|  | static int bnx2x_init_bp(struct bnx2x *bp) | 
|  | { | 
|  | int func; | 
|  | int rc; | 
|  |  | 
|  | qlock_init(&bp->port.phy_mutex); | 
|  | qlock_init(&bp->fw_mb_mutex); | 
|  | qlock_init(&bp->drv_info_mutex); | 
|  | bp->drv_info_mng_owner = false; | 
|  | spinlock_init(&bp->stats_lock); | 
|  | sem_init(&bp->stats_sema, 1); | 
|  |  | 
|  | INIT_DELAYED_WORK(&bp->sp_task, bnx2x_sp_task); | 
|  | INIT_DELAYED_WORK(&bp->sp_rtnl_task, bnx2x_sp_rtnl_task); | 
|  | INIT_DELAYED_WORK(&bp->period_task, bnx2x_period_task); | 
|  | INIT_DELAYED_WORK(&bp->iov_task, bnx2x_iov_task); | 
|  | if (IS_PF(bp)) { | 
|  | rc = bnx2x_get_hwinfo(bp); | 
|  | if (rc) | 
|  | return rc; | 
|  | } else { | 
|  | memset(bp->dev->ea, 0, Eaddrlen); | 
|  | } | 
|  |  | 
|  | bnx2x_set_modes_bitmap(bp); | 
|  |  | 
|  | rc = bnx2x_alloc_mem_bp(bp); | 
|  | if (rc) | 
|  | return rc; | 
|  |  | 
|  | bnx2x_read_fwinfo(bp); | 
|  |  | 
|  | func = BP_FUNC(bp); | 
|  |  | 
|  | /* need to reset chip if undi was active */ | 
|  | if (IS_PF(bp) && !BP_NOMCP(bp)) { | 
|  | /* init fw_seq */ | 
|  | bp->fw_seq = | 
|  | SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) & | 
|  | DRV_MSG_SEQ_NUMBER_MASK; | 
|  | BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq); | 
|  |  | 
|  | rc = bnx2x_prev_unload(bp); | 
|  | if (rc) { | 
|  | bnx2x_free_mem_bp(bp); | 
|  | return rc; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (CHIP_REV_IS_FPGA(bp)) | 
|  | dev_err(&bp->pdev->dev, "FPGA detected\n"); | 
|  |  | 
|  | if (BP_NOMCP(bp) && (func == 0)) | 
|  | dev_err(&bp->pdev->dev, "MCP disabled, must load devices in order!\n"); | 
|  |  | 
|  | bp->disable_tpa = disable_tpa; | 
|  | bp->disable_tpa |= !!IS_MF_STORAGE_ONLY(bp); | 
|  | /* Reduce memory usage in kdump environment by disabling TPA */ | 
|  | bp->disable_tpa |= is_kdump_kernel(); | 
|  |  | 
|  | // AKAROS_PORT disable TPA (TODO extra data) | 
|  | bp->disable_tpa |= TRUE; | 
|  |  | 
|  | /* Set TPA flags */ | 
|  | if (bp->disable_tpa) { | 
|  | bp->flags &= ~(TPA_ENABLE_FLAG | GRO_ENABLE_FLAG); | 
|  | bp->dev->feat &= ~NETIF_F_LRO; | 
|  | } else { | 
|  | bp->flags |= (TPA_ENABLE_FLAG | GRO_ENABLE_FLAG); | 
|  | bp->dev->feat |= NETIF_F_LRO; | 
|  | } | 
|  |  | 
|  | if (CHIP_IS_E1(bp)) | 
|  | bp->dropless_fc = 0; | 
|  | else | 
|  | bp->dropless_fc = dropless_fc | bnx2x_get_dropless_info(bp); | 
|  |  | 
|  | bp->mrrs = mrrs; | 
|  |  | 
|  | bp->tx_ring_size = IS_MF_STORAGE_ONLY(bp) ? 0 : MAX_TX_AVAIL; | 
|  | if (IS_VF(bp)) | 
|  | bp->rx_ring_size = MAX_RX_AVAIL; | 
|  |  | 
|  | /* make sure that the numbers are in the right granularity */ | 
|  | bp->tx_ticks = (50 / BNX2X_BTR) * BNX2X_BTR; | 
|  | bp->rx_ticks = (25 / BNX2X_BTR) * BNX2X_BTR; | 
|  |  | 
|  | bp->current_interval = CHIP_REV_IS_SLOW(bp) ? 5*HZ : HZ; | 
|  |  | 
|  | init_awaiter(&bp->timer, bnx2x_timer_wrapper); | 
|  |  | 
|  | if (SHMEM2_HAS(bp, dcbx_lldp_params_offset) && | 
|  | SHMEM2_HAS(bp, dcbx_lldp_dcbx_stat_offset) && | 
|  | SHMEM2_RD(bp, dcbx_lldp_params_offset) && | 
|  | SHMEM2_RD(bp, dcbx_lldp_dcbx_stat_offset)) { | 
|  | bnx2x_dcbx_set_state(bp, true, BNX2X_DCBX_ENABLED_ON_NEG_ON); | 
|  | bnx2x_dcbx_init_params(bp); | 
|  | } else { | 
|  | bnx2x_dcbx_set_state(bp, false, BNX2X_DCBX_ENABLED_OFF); | 
|  | } | 
|  |  | 
|  | if (CHIP_IS_E1x(bp)) | 
|  | bp->cnic_base_cl_id = FP_SB_MAX_E1x; | 
|  | else | 
|  | bp->cnic_base_cl_id = FP_SB_MAX_E2; | 
|  |  | 
|  | /* multiple tx priority */ | 
|  | if (IS_VF(bp)) | 
|  | bp->max_cos = 1; | 
|  | else if (CHIP_IS_E1x(bp)) | 
|  | bp->max_cos = BNX2X_MULTI_TX_COS_E1X; | 
|  | else if (CHIP_IS_E2(bp) || CHIP_IS_E3A0(bp)) | 
|  | bp->max_cos = BNX2X_MULTI_TX_COS_E2_E3A0; | 
|  | else if (CHIP_IS_E3B0(bp)) | 
|  | bp->max_cos = BNX2X_MULTI_TX_COS_E3B0; | 
|  | else | 
|  | BNX2X_ERR("unknown chip %x revision %x\n", | 
|  | CHIP_NUM(bp), CHIP_REV(bp)); | 
|  | BNX2X_DEV_INFO("set bp->max_cos to %d\n", bp->max_cos); | 
|  |  | 
|  | /* We need at least one default status block for slow-path events, | 
|  | * second status block for the L2 queue, and a third status block for | 
|  | * CNIC if supported. | 
|  | */ | 
|  | if (IS_VF(bp)) | 
|  | bp->min_msix_vec_cnt = 1; | 
|  | else if (CNIC_SUPPORT(bp)) | 
|  | bp->min_msix_vec_cnt = 3; | 
|  | else /* PF w/o cnic */ | 
|  | bp->min_msix_vec_cnt = 2; | 
|  | BNX2X_DEV_INFO("bp->min_msix_vec_cnt %d", bp->min_msix_vec_cnt); | 
|  |  | 
|  | bp->dump_preset_idx = 1; | 
|  |  | 
|  | if (CHIP_IS_E3B0(bp)) | 
|  | bp->flags |= PTP_SUPPORTED; | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /**************************************************************************** | 
|  | * General service functions | 
|  | ****************************************************************************/ | 
|  |  | 
|  | /* | 
|  | * net_device service functions | 
|  | */ | 
|  |  | 
|  | /* called with rtnl_lock */ | 
|  | int bnx2x_open(struct ether *dev) | 
|  | { | 
|  | struct bnx2x *bp = netdev_priv(dev); | 
|  | int rc; | 
|  |  | 
|  | bp->stats_init = true; | 
|  |  | 
|  | netif_carrier_off(dev); | 
|  |  | 
|  | bnx2x_set_power_state(bp, PCI_D0); | 
|  |  | 
|  | /* If parity had happen during the unload, then attentions | 
|  | * and/or RECOVERY_IN_PROGRES may still be set. In this case we | 
|  | * want the first function loaded on the current engine to | 
|  | * complete the recovery. | 
|  | * Parity recovery is only relevant for PF driver. | 
|  | */ | 
|  | if (IS_PF(bp)) { | 
|  | int other_engine = BP_PATH(bp) ? 0 : 1; | 
|  | bool other_load_status, load_status; | 
|  | bool global = false; | 
|  |  | 
|  | other_load_status = bnx2x_get_load_status(bp, other_engine); | 
|  | load_status = bnx2x_get_load_status(bp, BP_PATH(bp)); | 
|  | if (!bnx2x_reset_is_done(bp, BP_PATH(bp)) || | 
|  | bnx2x_chk_parity_attn(bp, &global, true)) { | 
|  | do { | 
|  | /* If there are attentions and they are in a | 
|  | * global blocks, set the GLOBAL_RESET bit | 
|  | * regardless whether it will be this function | 
|  | * that will complete the recovery or not. | 
|  | */ | 
|  | if (global) | 
|  | bnx2x_set_reset_global(bp); | 
|  |  | 
|  | /* Only the first function on the current | 
|  | * engine should try to recover in open. In case | 
|  | * of attentions in global blocks only the first | 
|  | * in the chip should try to recover. | 
|  | */ | 
|  | if ((!load_status && | 
|  | (!global || !other_load_status)) && | 
|  | bnx2x_trylock_leader_lock(bp) && | 
|  | !bnx2x_leader_reset(bp)) { | 
|  | netdev_info(bp->dev, | 
|  | "Recovered in open\n"); | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* recovery has failed... */ | 
|  | bnx2x_set_power_state(bp, PCI_D3hot); | 
|  | bp->recovery_state = BNX2X_RECOVERY_FAILED; | 
|  |  | 
|  | BNX2X_ERR("Recovery flow hasn't been properly completed yet. Try again later.\n" | 
|  | "If you still see this message after a few retries then power cycle is required.\n"); | 
|  |  | 
|  | return -EAGAIN; | 
|  | } while (0); | 
|  | } | 
|  | } | 
|  |  | 
|  | bp->recovery_state = BNX2X_RECOVERY_DONE; | 
|  | rc = bnx2x_nic_load(bp, LOAD_OPEN); | 
|  | if (rc) | 
|  | return rc; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* called with rtnl_lock */ | 
|  | static int bnx2x_close(struct ether *dev) | 
|  | { | 
|  | struct bnx2x *bp = netdev_priv(dev); | 
|  |  | 
|  | /* Unload the driver, release IRQs */ | 
|  | bnx2x_nic_unload(bp, UNLOAD_CLOSE, false); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int bnx2x_init_mcast_macs_list(struct bnx2x *bp, | 
|  | struct bnx2x_mcast_ramrod_params *p) | 
|  | { | 
|  | panic("Not implemented"); | 
|  | #if 0 // AKAROS_PORT | 
|  | int mc_count = netdev_mc_count(bp->dev); | 
|  | struct bnx2x_mcast_list_elem *mc_mac = | 
|  | kzmalloc((mc_count) * (sizeof(*mc_mac)), 0); | 
|  | struct netdev_hw_addr *ha; | 
|  |  | 
|  | if (!mc_mac) | 
|  | return -ENOMEM; | 
|  |  | 
|  | INIT_LIST_HEAD(&p->mcast_list); | 
|  |  | 
|  | netdev_for_each_mc_addr(ha, bp->dev) { | 
|  | mc_mac->mac = bnx2x_mc_addr(ha); | 
|  | list_add_tail(&mc_mac->link, &p->mcast_list); | 
|  | mc_mac++; | 
|  | } | 
|  |  | 
|  | p->mcast_list_len = mc_count; | 
|  |  | 
|  | return 0; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static void bnx2x_free_mcast_macs_list( | 
|  | struct bnx2x_mcast_ramrod_params *p) | 
|  | { | 
|  | struct bnx2x_mcast_list_elem *mc_mac = | 
|  | list_first_entry(&p->mcast_list, struct bnx2x_mcast_list_elem, | 
|  | link); | 
|  |  | 
|  | warn_on(!mc_mac); | 
|  | kfree(mc_mac); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * bnx2x_set_uc_list - configure a new unicast MACs list. | 
|  | * | 
|  | * @bp: driver handle | 
|  | * | 
|  | * We will use zero (0) as a MAC type for these MACs. | 
|  | */ | 
|  | static int bnx2x_set_uc_list(struct bnx2x *bp) | 
|  | { | 
|  | panic("Not implemented"); | 
|  | #if 0 // AKAROS_PORT | 
|  | int rc; | 
|  | struct ether *dev = bp->dev; | 
|  | struct netdev_hw_addr *ha; | 
|  | struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj; | 
|  | unsigned long ramrod_flags = 0; | 
|  |  | 
|  | /* First schedule a cleanup up of old configuration */ | 
|  | rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, false); | 
|  | if (rc < 0) { | 
|  | BNX2X_ERR("Failed to schedule DELETE operations: %d\n", rc); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | netdev_for_each_uc_addr(ha, dev) { | 
|  | rc = bnx2x_set_mac_one(bp, bnx2x_uc_addr(ha), mac_obj, true, | 
|  | BNX2X_UC_LIST_MAC, &ramrod_flags); | 
|  | if (rc == -EEXIST) { | 
|  | DP(BNX2X_MSG_SP, | 
|  | "Failed to schedule ADD operations: %d\n", rc); | 
|  | /* do not treat adding same MAC as error */ | 
|  | rc = 0; | 
|  |  | 
|  | } else if (rc < 0) { | 
|  |  | 
|  | BNX2X_ERR("Failed to schedule ADD operations: %d\n", | 
|  | rc); | 
|  | return rc; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Execute the pending commands */ | 
|  | __set_bit(RAMROD_CONT, &ramrod_flags); | 
|  | return bnx2x_set_mac_one(bp, NULL, mac_obj, false /* don't care */, | 
|  | BNX2X_UC_LIST_MAC, &ramrod_flags); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static int bnx2x_set_mc_list(struct bnx2x *bp) | 
|  | { | 
|  | panic("Not implemented"); | 
|  | #if 0 // AKAROS_PORT | 
|  | struct ether *dev = bp->dev; | 
|  | struct bnx2x_mcast_ramrod_params rparam = {NULL}; | 
|  | int rc = 0; | 
|  |  | 
|  | rparam.mcast_obj = &bp->mcast_obj; | 
|  |  | 
|  | /* first, clear all configured multicast MACs */ | 
|  | rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL); | 
|  | if (rc < 0) { | 
|  | BNX2X_ERR("Failed to clear multicast configuration: %d\n", rc); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /* then, configure a new MACs list */ | 
|  | if (netdev_mc_count(dev)) { | 
|  | rc = bnx2x_init_mcast_macs_list(bp, &rparam); | 
|  | if (rc) { | 
|  | BNX2X_ERR("Failed to create multicast MACs list: %d\n", | 
|  | rc); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /* Now add the new MACs */ | 
|  | rc = bnx2x_config_mcast(bp, &rparam, | 
|  | BNX2X_MCAST_CMD_ADD); | 
|  | if (rc < 0) | 
|  | BNX2X_ERR("Failed to set a new multicast configuration: %d\n", | 
|  | rc); | 
|  |  | 
|  | bnx2x_free_mcast_macs_list(&rparam); | 
|  | } | 
|  |  | 
|  | return rc; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* If bp->state is OPEN, should be called with netif_addr_lock_bh() */ | 
|  | void bnx2x_set_rx_mode(struct ether *dev) | 
|  | { | 
|  | struct bnx2x *bp = netdev_priv(dev); | 
|  |  | 
|  | if (bp->state != BNX2X_STATE_OPEN) { | 
|  | DP(NETIF_MSG_IFUP, "state is %x, returning\n", bp->state); | 
|  | return; | 
|  | } else { | 
|  | /* Schedule an SP task to handle rest of change */ | 
|  | bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_RX_MODE, | 
|  | NETIF_MSG_IFUP); | 
|  | } | 
|  | } | 
|  |  | 
|  | void bnx2x_set_rx_mode_inner(struct bnx2x *bp) | 
|  | { | 
|  | uint32_t rx_mode = BNX2X_RX_MODE_NORMAL; | 
|  |  | 
|  | //DP(NETIF_MSG_IFUP, "dev->flags = %x\n", bp->dev->flags); | 
|  |  | 
|  | qlock(&bp->dev->qlock); | 
|  |  | 
|  | #if 0 // AKAROS_PORT skip promisc, multicast, unicast XME | 
|  | if (bp->dev->flags & IFF_PROMISC) { | 
|  | rx_mode = BNX2X_RX_MODE_PROMISC; | 
|  | } else if ((bp->dev->flags & IFF_ALLMULTI) || | 
|  | ((netdev_mc_count(bp->dev) > BNX2X_MAX_MULTICAST) && | 
|  | CHIP_IS_E1(bp))) { | 
|  | rx_mode = BNX2X_RX_MODE_ALLMULTI; | 
|  | } else { | 
|  | if (IS_PF(bp)) { | 
|  | /* some multicasts */ | 
|  | if (bnx2x_set_mc_list(bp) < 0) | 
|  | rx_mode = BNX2X_RX_MODE_ALLMULTI; | 
|  |  | 
|  | /* release bh lock, as bnx2x_set_uc_list might sleep */ | 
|  | qunlock(&bp->dev->qlock); | 
|  | if (bnx2x_set_uc_list(bp) < 0) | 
|  | rx_mode = BNX2X_RX_MODE_PROMISC; | 
|  | qlock(&bp->dev->qlock); | 
|  | } else { | 
|  | /* configuring mcast to a vf involves sleeping (when we | 
|  | * wait for the pf's response). | 
|  | */ | 
|  | bnx2x_schedule_sp_rtnl(bp, | 
|  | BNX2X_SP_RTNL_VFPF_MCAST, 0); | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | bp->rx_mode = rx_mode; | 
|  | /* handle ISCSI SD mode */ | 
|  | if (IS_MF_ISCSI_ONLY(bp)) | 
|  | bp->rx_mode = BNX2X_RX_MODE_NONE; | 
|  |  | 
|  | /* Schedule the rx_mode command */ | 
|  | if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) { | 
|  | set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state); | 
|  | qunlock(&bp->dev->qlock); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (IS_PF(bp)) { | 
|  | bnx2x_set_storm_rx_mode(bp); | 
|  | qunlock(&bp->dev->qlock); | 
|  | } else { | 
|  | /* VF will need to request the PF to make this change, and so | 
|  | * the VF needs to release the bottom-half lock prior to the | 
|  | * request (as it will likely require sleep on the VF side) | 
|  | */ | 
|  | qunlock(&bp->dev->qlock); | 
|  | bnx2x_vfpf_storm_rx_mode(bp); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* called with rtnl_lock */ | 
|  | static int bnx2x_mdio_read(struct ether *netdev, int prtad, | 
|  | int devad, uint16_t addr) | 
|  | { | 
|  | panic("Not implemented"); | 
|  | #if 0 // AKAROS_PORT | 
|  | struct bnx2x *bp = netdev_priv(netdev); | 
|  | uint16_t value; | 
|  | int rc; | 
|  |  | 
|  | DP(NETIF_MSG_LINK, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n", | 
|  | prtad, devad, addr); | 
|  |  | 
|  | /* The HW expects different devad if CL22 is used */ | 
|  | devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad; | 
|  |  | 
|  | bnx2x_acquire_phy_lock(bp); | 
|  | rc = bnx2x_phy_read(&bp->link_params, prtad, devad, addr, &value); | 
|  | bnx2x_release_phy_lock(bp); | 
|  | DP(NETIF_MSG_LINK, "mdio_read_val 0x%x rc = 0x%x\n", value, rc); | 
|  |  | 
|  | if (!rc) | 
|  | rc = value; | 
|  | return rc; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* called with rtnl_lock */ | 
|  | static int bnx2x_mdio_write(struct ether *netdev, int prtad, int devad, | 
|  | uint16_t addr, uint16_t value) | 
|  | { | 
|  | panic("Not implemented"); | 
|  | #if 0 // AKAROS_PORT | 
|  | struct bnx2x *bp = netdev_priv(netdev); | 
|  | int rc; | 
|  |  | 
|  | DP(NETIF_MSG_LINK, | 
|  | "mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x, value 0x%x\n", | 
|  | prtad, devad, addr, value); | 
|  |  | 
|  | /* The HW expects different devad if CL22 is used */ | 
|  | devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad; | 
|  |  | 
|  | bnx2x_acquire_phy_lock(bp); | 
|  | rc = bnx2x_phy_write(&bp->link_params, prtad, devad, addr, value); | 
|  | bnx2x_release_phy_lock(bp); | 
|  | return rc; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* called with rtnl_lock */ | 
|  | static int bnx2x_ioctl(struct ether *dev, struct ifreq *ifr, int cmd) | 
|  | { | 
|  | panic("Not implemented"); | 
|  | #if 0 // AKAROS_PORT | 
|  | struct bnx2x *bp = netdev_priv(dev); | 
|  | struct mii_ioctl_data *mdio = if_mii(ifr); | 
|  |  | 
|  | if (!netif_running(dev)) | 
|  | return -EAGAIN; | 
|  |  | 
|  | switch (cmd) { | 
|  | case SIOCSHWTSTAMP: | 
|  | return bnx2x_hwtstamp_ioctl(bp, ifr); | 
|  | default: | 
|  | DP(NETIF_MSG_LINK, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n", | 
|  | mdio->phy_id, mdio->reg_num, mdio->val_in); | 
|  | return mdio_mii_ioctl(&bp->mdio, mdio, cmd); | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_NET_POLL_CONTROLLER | 
|  | static void poll_bnx2x(struct ether *dev) | 
|  | { | 
|  | panic("Not implemented"); | 
|  | #if 0 // AKAROS_PORT | 
|  | struct bnx2x *bp = netdev_priv(dev); | 
|  | int i; | 
|  |  | 
|  | for_each_eth_queue(bp, i) { | 
|  | struct bnx2x_fastpath *fp = &bp->fp[i]; | 
|  | napi_schedule(&bnx2x_fp(bp, fp->index, napi)); | 
|  | } | 
|  | #endif | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static int bnx2x_validate_addr(struct ether *dev) | 
|  | { | 
|  | panic("Not implemented"); | 
|  | #if 0 // AKAROS_PORT | 
|  | struct bnx2x *bp = netdev_priv(dev); | 
|  |  | 
|  | /* query the bulletin board for mac address configured by the PF */ | 
|  | if (IS_VF(bp)) | 
|  | bnx2x_sample_bulletin(bp); | 
|  |  | 
|  | if (!is_valid_ether_addr(dev->ea)) { | 
|  | BNX2X_ERR("Non-valid Ethernet address\n"); | 
|  | return -EADDRNOTAVAIL; | 
|  | } | 
|  | return 0; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static int bnx2x_get_phys_port_id(struct ether *netdev, | 
|  | struct netdev_phys_item_id *ppid) | 
|  | { | 
|  | panic("Not implemented"); | 
|  | #if 0 // AKAROS_PORT | 
|  | struct bnx2x *bp = netdev_priv(netdev); | 
|  |  | 
|  | if (!(bp->flags & HAS_PHYS_PORT_ID)) | 
|  | return -EOPNOTSUPP; | 
|  |  | 
|  | ppid->id_len = sizeof(bp->phys_port_id); | 
|  | memcpy(ppid->id, bp->phys_port_id, ppid->id_len); | 
|  |  | 
|  | return 0; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static netdev_features_t bnx2x_features_check(struct sk_buff *skb, | 
|  | struct ether *dev, | 
|  | netdev_features_t features) | 
|  | { | 
|  | panic("Not implemented"); | 
|  | #if 0 // AKAROS_PORT | 
|  | return vxlan_features_check(skb, features); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | #if 0 // AKAROS_PORT | 
|  | static const struct net_device_ops bnx2x_netdev_ops = { | 
|  | .ndo_open		= bnx2x_open, | 
|  | .ndo_stop		= bnx2x_close, | 
|  | .ndo_start_xmit		= bnx2x_start_xmit, | 
|  | .ndo_select_queue	= bnx2x_select_queue, | 
|  | .ndo_set_rx_mode	= bnx2x_set_rx_mode, | 
|  | .ndo_set_mac_address	= bnx2x_change_mac_addr, | 
|  | .ndo_validate_addr	= bnx2x_validate_addr, | 
|  | .ndo_do_ioctl		= bnx2x_ioctl, | 
|  | .ndo_change_mtu		= bnx2x_change_mtu, | 
|  | .ndo_fix_features	= bnx2x_fix_features, | 
|  | .ndo_set_features	= bnx2x_set_features, | 
|  | .ndo_tx_timeout		= bnx2x_tx_timeout, | 
|  | #ifdef CONFIG_NET_POLL_CONTROLLER | 
|  | .ndo_poll_controller	= poll_bnx2x, | 
|  | #endif | 
|  | .ndo_setup_tc		= bnx2x_setup_tc, | 
|  | #ifdef CONFIG_BNX2X_SRIOV | 
|  | .ndo_set_vf_mac		= bnx2x_set_vf_mac, | 
|  | .ndo_set_vf_vlan	= bnx2x_set_vf_vlan, | 
|  | .ndo_get_vf_config	= bnx2x_get_vf_config, | 
|  | #endif | 
|  | #ifdef NETDEV_FCOE_WWNN | 
|  | .ndo_fcoe_get_wwn	= bnx2x_fcoe_get_wwn, | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_NET_RX_BUSY_POLL | 
|  | .ndo_busy_poll		= bnx2x_low_latency_recv, | 
|  | #endif | 
|  | .ndo_get_phys_port_id	= bnx2x_get_phys_port_id, | 
|  | .ndo_set_vf_link_state	= bnx2x_set_vf_link_state, | 
|  | .ndo_features_check	= bnx2x_features_check, | 
|  | }; | 
|  | #endif | 
|  |  | 
|  | static int bnx2x_set_coherency_mask(struct bnx2x *bp) | 
|  | { | 
|  | return 0; | 
|  | #if 0 // AKAROS_PORT | 
|  | struct device *dev = &bp->pdev->dev; | 
|  |  | 
|  | if (dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)) != 0 && | 
|  | dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32)) != 0) { | 
|  | dev_err(dev, "System does not support DMA, aborting\n"); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static void bnx2x_disable_pcie_error_reporting(struct bnx2x *bp) | 
|  | { | 
|  | panic("Not implemented"); | 
|  | #if 0 // AKAROS_PORT | 
|  | if (bp->flags & AER_ENABLED) { | 
|  | pci_disable_pcie_error_reporting(bp->pdev); | 
|  | bp->flags &= ~AER_ENABLED; | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static int bnx2x_init_dev(struct bnx2x *bp, struct pci_device *pdev, | 
|  | struct ether *dev, unsigned long board_type) | 
|  | { | 
|  | int rc; | 
|  | uint32_t pci_cfg_dword; | 
|  | bool chip_is_e1x = (board_type == BCM57710 || | 
|  | board_type == BCM57711 || | 
|  | board_type == BCM57711E); | 
|  |  | 
|  | SET_NETDEV_DEV(dev, &pdev->dev); | 
|  |  | 
|  | bp->dev = dev; | 
|  | bp->pdev = pdev; | 
|  |  | 
|  | rc = pci_enable_device(pdev); | 
|  | if (rc) { | 
|  | dev_err(&bp->pdev->dev, | 
|  | "Cannot enable PCI device, aborting\n"); | 
|  | goto err_out; | 
|  | } | 
|  |  | 
|  | if (!pci_get_membar(pdev, 0)) { | 
|  | dev_err(&bp->pdev->dev, | 
|  | "Cannot find PCI device base address, aborting\n"); | 
|  | rc = -ENODEV; | 
|  | goto err_out_disable; | 
|  | } | 
|  |  | 
|  | if (IS_PF(bp) && !pci_get_membar(pdev, 2)) { | 
|  | dev_err(&bp->pdev->dev, "Cannot find second PCI device base address, aborting\n"); | 
|  | rc = -ENODEV; | 
|  | goto err_out_disable; | 
|  | } | 
|  |  | 
|  | pci_read_config_dword(pdev, PCICFG_REVISION_ID_OFFSET, &pci_cfg_dword); | 
|  | if ((pci_cfg_dword & PCICFG_REVESION_ID_MASK) == | 
|  | PCICFG_REVESION_ID_ERROR_VAL) { | 
|  | pr_err("PCI device error, probably due to fan failure, aborting\n"); | 
|  | rc = -ENODEV; | 
|  | goto err_out_disable; | 
|  | } | 
|  |  | 
|  | #if 0 // AKAROS_PORT | 
|  | if (atomic_read(&pdev->enable_cnt) == 1) { | 
|  | rc = pci_request_regions(pdev, DRV_MODULE_NAME); | 
|  | if (rc) { | 
|  | dev_err(&bp->pdev->dev, | 
|  | "Cannot obtain PCI resources, aborting\n"); | 
|  | goto err_out_disable; | 
|  | } | 
|  |  | 
|  | pci_set_bus_master(pdev); | 
|  | pci_save_state(pdev); | 
|  | } | 
|  | #else | 
|  | pci_set_bus_master(pdev); | 
|  | #endif | 
|  |  | 
|  | #if 0 // AKAROS_PORT  We can probably do these | 
|  | if (IS_PF(bp)) { | 
|  | if (!pdev->pm_cap) { | 
|  | dev_err(&bp->pdev->dev, | 
|  | "Cannot find power management capability, aborting\n"); | 
|  | rc = -EIO; | 
|  | goto err_out_release; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!pci_is_pcie(pdev)) { | 
|  | dev_err(&bp->pdev->dev, "Not PCI Express, aborting\n"); | 
|  | rc = -EIO; | 
|  | goto err_out_release; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | rc = bnx2x_set_coherency_mask(bp); | 
|  | if (rc) | 
|  | goto err_out_release; | 
|  |  | 
|  | bp->mem_start = pci_resource_start(pdev, 0); | 
|  | bp->base_addr = bp->mem_start; | 
|  | bp->mem_end = pci_resource_end(pdev, 0); | 
|  |  | 
|  | dev->irq = pdev->irqline; | 
|  |  | 
|  | bp->regview = pci_ioremap_bar(pdev, 0); | 
|  | if (!bp->regview) { | 
|  | dev_err(&bp->pdev->dev, | 
|  | "Cannot map register space, aborting\n"); | 
|  | rc = -ENOMEM; | 
|  | goto err_out_release; | 
|  | } | 
|  |  | 
|  | /* In E1/E1H use pci device function given by kernel. | 
|  | * In E2/E3 read physical function from ME register since these chips | 
|  | * support Physical Device Assignment where kernel BDF maybe arbitrary | 
|  | * (depending on hypervisor). | 
|  | */ | 
|  | if (chip_is_e1x) { | 
|  | bp->pf_num = pdev->func; | 
|  | } else { | 
|  | /* chip is E2/3*/ | 
|  | pci_read_config_dword(bp->pdev, | 
|  | PCICFG_ME_REGISTER, &pci_cfg_dword); | 
|  | bp->pf_num = (uint8_t)((pci_cfg_dword & ME_REG_ABS_PF_NUM) >> | 
|  | ME_REG_ABS_PF_NUM_SHIFT); | 
|  | } | 
|  | BNX2X_DEV_INFO("me reg PF num: %d\n", bp->pf_num); | 
|  |  | 
|  | /* clean indirect addresses */ | 
|  | pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, | 
|  | PCICFG_VENDOR_ID_OFFSET); | 
|  |  | 
|  | #if 0 // AKAROS_PORT Linux fails this too. | 
|  | /* AER (Advanced Error reporting) configuration */ | 
|  | rc = pci_enable_pcie_error_reporting(pdev); | 
|  | if (!rc) | 
|  | bp->flags |= AER_ENABLED; | 
|  | else | 
|  | BNX2X_DEV_INFO("Failed To configure PCIe AER [%d]\n", rc); | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Clean the following indirect addresses for all functions since it | 
|  | * is not used by the driver. | 
|  | */ | 
|  | if (IS_PF(bp)) { | 
|  | REG_WR(bp, PXP2_REG_PGL_ADDR_88_F0, 0); | 
|  | REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F0, 0); | 
|  | REG_WR(bp, PXP2_REG_PGL_ADDR_90_F0, 0); | 
|  | REG_WR(bp, PXP2_REG_PGL_ADDR_94_F0, 0); | 
|  |  | 
|  | if (chip_is_e1x) { | 
|  | REG_WR(bp, PXP2_REG_PGL_ADDR_88_F1, 0); | 
|  | REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F1, 0); | 
|  | REG_WR(bp, PXP2_REG_PGL_ADDR_90_F1, 0); | 
|  | REG_WR(bp, PXP2_REG_PGL_ADDR_94_F1, 0); | 
|  | } | 
|  |  | 
|  | /* Enable internal target-read (in case we are probed after PF | 
|  | * FLR). Must be done prior to any BAR read access. Only for | 
|  | * 57712 and up | 
|  | */ | 
|  | if (!chip_is_e1x) | 
|  | REG_WR(bp, | 
|  | PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1); | 
|  | } | 
|  |  | 
|  | #if 0 // AKAROS_PORT | 
|  | dev->watchdog_timeo = TX_TIMEOUT; | 
|  |  | 
|  | dev->netdev_ops = &bnx2x_netdev_ops; | 
|  | bnx2x_set_ethtool_ops(bp, dev); | 
|  |  | 
|  | dev->priv_flags |= IFF_UNICAST_FLT; | 
|  | #endif | 
|  |  | 
|  | dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | | 
|  | NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | | 
|  | NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_GRO | | 
|  | NETIF_F_RXHASH | NETIF_F_HW_VLAN_CTAG_TX; | 
|  | if (!CHIP_IS_E1x(bp)) { | 
|  | dev->hw_features |= NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL | | 
|  | NETIF_F_GSO_IPIP | NETIF_F_GSO_SIT; | 
|  | } | 
|  |  | 
|  | dev->feat |= dev->hw_features | NETIF_F_HW_VLAN_CTAG_RX; | 
|  | dev->feat |= NETIF_F_HIGHDMA; | 
|  |  | 
|  | /* AKAROS_PORT XME turn off all unsupported features */ | 
|  | dev->feat &= ~(NETF_LRO | NETF_TSO | NETF_SG | NETF_IPCK | NETF_UDPCK | | 
|  | NETF_TCPCK); | 
|  |  | 
|  | /* Add Loopback capability to the device */ | 
|  | dev->hw_features |= NETIF_F_LOOPBACK; | 
|  |  | 
|  | #ifdef BCM_DCBNL | 
|  | dev->dcbnl_ops = &bnx2x_dcbnl_ops; | 
|  | #endif | 
|  |  | 
|  | #if 0 // AKAROS_PORT MII XME | 
|  | /* get_port_hwinfo() will set prtad and mmds properly */ | 
|  | bp->mdio.prtad = MDIO_PRTAD_NONE; | 
|  | bp->mdio.mmds = 0; | 
|  | bp->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22; | 
|  | bp->mdio.dev = dev; | 
|  | bp->mdio.mdio_read = bnx2x_mdio_read; | 
|  | bp->mdio.mdio_write = bnx2x_mdio_write; | 
|  | #endif | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | err_out_release: | 
|  | #if 0 // AKAROS_PORT | 
|  | if (atomic_read(&pdev->enable_cnt) == 1) | 
|  | pci_release_regions(pdev); | 
|  | #endif | 
|  |  | 
|  | err_out_disable: | 
|  | pci_disable_device(pdev); | 
|  |  | 
|  | err_out: | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static int bnx2x_check_firmware(struct bnx2x *bp) | 
|  | { | 
|  | const struct firmware *firmware = bp->firmware; | 
|  | struct bnx2x_fw_file_hdr *fw_hdr; | 
|  | struct bnx2x_fw_file_section *sections; | 
|  | uint32_t offset, len, num_ops; | 
|  | __be16 *ops_offsets; | 
|  | int i; | 
|  | const uint8_t *fw_ver; | 
|  |  | 
|  | if (firmware->size < sizeof(struct bnx2x_fw_file_hdr)) { | 
|  | BNX2X_ERR("Wrong FW size\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | fw_hdr = (struct bnx2x_fw_file_hdr *)firmware->data; | 
|  | sections = (struct bnx2x_fw_file_section *)fw_hdr; | 
|  |  | 
|  | /* Make sure none of the offsets and sizes make us read beyond | 
|  | * the end of the firmware data */ | 
|  | for (i = 0; i < sizeof(*fw_hdr) / sizeof(*sections); i++) { | 
|  | offset = be32_to_cpu(sections[i].offset); | 
|  | len = be32_to_cpu(sections[i].len); | 
|  | if (offset + len > firmware->size) { | 
|  | BNX2X_ERR("Section %d length is out of bounds\n", i); | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Likewise for the init_ops offsets */ | 
|  | offset = be32_to_cpu(fw_hdr->init_ops_offsets.offset); | 
|  | ops_offsets = (__force __be16 *)(firmware->data + offset); | 
|  | num_ops = be32_to_cpu(fw_hdr->init_ops.len) / sizeof(struct raw_op); | 
|  |  | 
|  | for (i = 0; i < be32_to_cpu(fw_hdr->init_ops_offsets.len) / 2; i++) { | 
|  | if (be16_to_cpu(ops_offsets[i]) > num_ops) { | 
|  | BNX2X_ERR("Section offset %d is out of bounds\n", i); | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Check FW version */ | 
|  | offset = be32_to_cpu(fw_hdr->fw_version.offset); | 
|  | fw_ver = firmware->data + offset; | 
|  | if ((fw_ver[0] != BCM_5710_FW_MAJOR_VERSION) || | 
|  | (fw_ver[1] != BCM_5710_FW_MINOR_VERSION) || | 
|  | (fw_ver[2] != BCM_5710_FW_REVISION_VERSION) || | 
|  | (fw_ver[3] != BCM_5710_FW_ENGINEERING_VERSION)) { | 
|  | BNX2X_ERR("Bad FW version:%d.%d.%d.%d. Should be %d.%d.%d.%d\n", | 
|  | fw_ver[0], fw_ver[1], fw_ver[2], fw_ver[3], | 
|  | BCM_5710_FW_MAJOR_VERSION, | 
|  | BCM_5710_FW_MINOR_VERSION, | 
|  | BCM_5710_FW_REVISION_VERSION, | 
|  | BCM_5710_FW_ENGINEERING_VERSION); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void be32_to_cpu_n(const uint8_t *_source, uint8_t *_target, | 
|  | uint32_t n) | 
|  | { | 
|  | const __be32 *source = (const __be32 *)_source; | 
|  | uint32_t *target = (uint32_t *)_target; | 
|  | uint32_t i; | 
|  |  | 
|  | for (i = 0; i < n/4; i++) | 
|  | target[i] = be32_to_cpu(source[i]); | 
|  | } | 
|  |  | 
|  | /* | 
|  | Ops array is stored in the following format: | 
|  | {op(8bit), offset(24bit, big endian), data(32bit, big endian)} | 
|  | */ | 
|  | static void bnx2x_prep_ops(const uint8_t *_source, uint8_t *_target, | 
|  | uint32_t n) | 
|  | { | 
|  | const __be32 *source = (const __be32 *)_source; | 
|  | struct raw_op *target = (struct raw_op *)_target; | 
|  | uint32_t i, j, tmp; | 
|  |  | 
|  | for (i = 0, j = 0; i < n/8; i++, j += 2) { | 
|  | tmp = be32_to_cpu(source[j]); | 
|  | target[i].op = (tmp >> 24) & 0xff; | 
|  | target[i].offset = tmp & 0xffffff; | 
|  | target[i].raw_data = be32_to_cpu(source[j + 1]); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* IRO array is stored in the following format: | 
|  | * {base(24bit), m1(16bit), m2(16bit), m3(16bit), size(16bit) } | 
|  | */ | 
|  | static void bnx2x_prep_iro(const uint8_t *_source, uint8_t *_target, | 
|  | uint32_t n) | 
|  | { | 
|  | const __be32 *source = (const __be32 *)_source; | 
|  | struct iro *target = (struct iro *)_target; | 
|  | uint32_t i, j, tmp; | 
|  |  | 
|  | for (i = 0, j = 0; i < n/sizeof(struct iro); i++) { | 
|  | target[i].base = be32_to_cpu(source[j]); | 
|  | j++; | 
|  | tmp = be32_to_cpu(source[j]); | 
|  | target[i].m1 = (tmp >> 16) & 0xffff; | 
|  | target[i].m2 = tmp & 0xffff; | 
|  | j++; | 
|  | tmp = be32_to_cpu(source[j]); | 
|  | target[i].m3 = (tmp >> 16) & 0xffff; | 
|  | target[i].size = tmp & 0xffff; | 
|  | j++; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void be16_to_cpu_n(const uint8_t *_source, uint8_t *_target, | 
|  | uint32_t n) | 
|  | { | 
|  | const __be16 *source = (const __be16 *)_source; | 
|  | uint16_t *target = (uint16_t *)_target; | 
|  | uint32_t i; | 
|  |  | 
|  | for (i = 0; i < n/2; i++) | 
|  | target[i] = be16_to_cpu(source[i]); | 
|  | } | 
|  |  | 
|  | #define BNX2X_ALLOC_AND_SET(arr, lbl, func)				\ | 
|  | do {									\ | 
|  | uint32_t len = be32_to_cpu(fw_hdr->arr.len);				\ | 
|  | bp->arr = kmalloc(len, MEM_WAIT);				\ | 
|  | if (!bp->arr)							\ | 
|  | goto lbl;						\ | 
|  | func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset),	\ | 
|  | (uint8_t *)bp->arr, len);					\ | 
|  | } while (0) | 
|  |  | 
|  | static int bnx2x_init_firmware(struct bnx2x *bp) | 
|  | { | 
|  | const char *fw_file_name; | 
|  | struct bnx2x_fw_file_hdr *fw_hdr; | 
|  | int rc; | 
|  |  | 
|  | if (bp->firmware) | 
|  | return 0; | 
|  |  | 
|  | if (CHIP_IS_E1(bp)) | 
|  | fw_file_name = FW_FILE_NAME_E1; | 
|  | else if (CHIP_IS_E1H(bp)) | 
|  | fw_file_name = FW_FILE_NAME_E1H; | 
|  | else if (!CHIP_IS_E1x(bp)) | 
|  | fw_file_name = FW_FILE_NAME_E2; | 
|  | else { | 
|  | BNX2X_ERR("Unsupported chip revision\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | BNX2X_DEV_INFO("Loading %s\n", fw_file_name); | 
|  |  | 
|  | rc = request_firmware(&bp->firmware, fw_file_name, &bp->pdev->device); | 
|  | if (rc) { | 
|  | BNX2X_ERR("Can't load firmware file %s\n", | 
|  | fw_file_name); | 
|  | goto request_firmware_exit; | 
|  | } | 
|  |  | 
|  | rc = bnx2x_check_firmware(bp); | 
|  | if (rc) { | 
|  | BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name); | 
|  | goto request_firmware_exit; | 
|  | } | 
|  |  | 
|  | fw_hdr = (struct bnx2x_fw_file_hdr *)bp->firmware->data; | 
|  |  | 
|  | /* Initialize the pointers to the init arrays */ | 
|  | /* Blob */ | 
|  | BNX2X_ALLOC_AND_SET(init_data, request_firmware_exit, be32_to_cpu_n); | 
|  |  | 
|  | /* Opcodes */ | 
|  | BNX2X_ALLOC_AND_SET(init_ops, init_ops_alloc_err, bnx2x_prep_ops); | 
|  |  | 
|  | /* Offsets */ | 
|  | BNX2X_ALLOC_AND_SET(init_ops_offsets, init_offsets_alloc_err, | 
|  | be16_to_cpu_n); | 
|  |  | 
|  | /* STORMs firmware */ | 
|  | INIT_TSEM_INT_TABLE_DATA(bp) = bp->firmware->data + | 
|  | be32_to_cpu(fw_hdr->tsem_int_table_data.offset); | 
|  | INIT_TSEM_PRAM_DATA(bp)      = bp->firmware->data + | 
|  | be32_to_cpu(fw_hdr->tsem_pram_data.offset); | 
|  | INIT_USEM_INT_TABLE_DATA(bp) = bp->firmware->data + | 
|  | be32_to_cpu(fw_hdr->usem_int_table_data.offset); | 
|  | INIT_USEM_PRAM_DATA(bp)      = bp->firmware->data + | 
|  | be32_to_cpu(fw_hdr->usem_pram_data.offset); | 
|  | INIT_XSEM_INT_TABLE_DATA(bp) = bp->firmware->data + | 
|  | be32_to_cpu(fw_hdr->xsem_int_table_data.offset); | 
|  | INIT_XSEM_PRAM_DATA(bp)      = bp->firmware->data + | 
|  | be32_to_cpu(fw_hdr->xsem_pram_data.offset); | 
|  | INIT_CSEM_INT_TABLE_DATA(bp) = bp->firmware->data + | 
|  | be32_to_cpu(fw_hdr->csem_int_table_data.offset); | 
|  | INIT_CSEM_PRAM_DATA(bp)      = bp->firmware->data + | 
|  | be32_to_cpu(fw_hdr->csem_pram_data.offset); | 
|  | /* IRO */ | 
|  | BNX2X_ALLOC_AND_SET(iro_arr, iro_alloc_err, bnx2x_prep_iro); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | iro_alloc_err: | 
|  | kfree(bp->init_ops_offsets); | 
|  | init_offsets_alloc_err: | 
|  | kfree(bp->init_ops); | 
|  | init_ops_alloc_err: | 
|  | kfree(bp->init_data); | 
|  | request_firmware_exit: | 
|  | release_firmware(bp->firmware); | 
|  | bp->firmware = NULL; | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static void bnx2x_release_firmware(struct bnx2x *bp) | 
|  | { | 
|  | kfree(bp->init_ops_offsets); | 
|  | kfree(bp->init_ops); | 
|  | kfree(bp->init_data); | 
|  | release_firmware(bp->firmware); | 
|  | bp->firmware = NULL; | 
|  | } | 
|  |  | 
|  | static struct bnx2x_func_sp_drv_ops bnx2x_func_sp_drv = { | 
|  | .init_hw_cmn_chip = bnx2x_init_hw_common_chip, | 
|  | .init_hw_cmn      = bnx2x_init_hw_common, | 
|  | .init_hw_port     = bnx2x_init_hw_port, | 
|  | .init_hw_func     = bnx2x_init_hw_func, | 
|  |  | 
|  | .reset_hw_cmn     = bnx2x_reset_common, | 
|  | .reset_hw_port    = bnx2x_reset_port, | 
|  | .reset_hw_func    = bnx2x_reset_func, | 
|  |  | 
|  | .gunzip_init      = bnx2x_gunzip_init, | 
|  | .gunzip_end       = bnx2x_gunzip_end, | 
|  |  | 
|  | .init_fw          = bnx2x_init_firmware, | 
|  | .release_fw       = bnx2x_release_firmware, | 
|  | }; | 
|  |  | 
|  | void bnx2x__init_func_obj(struct bnx2x *bp) | 
|  | { | 
|  | /* Prepare DMAE related driver resources */ | 
|  | bnx2x_setup_dmae(bp); | 
|  |  | 
|  | bnx2x_init_func_obj(bp, &bp->func_obj, | 
|  | bnx2x_sp(bp, func_rdata), | 
|  | bnx2x_sp_mapping(bp, func_rdata), | 
|  | bnx2x_sp(bp, func_afex_rdata), | 
|  | bnx2x_sp_mapping(bp, func_afex_rdata), | 
|  | &bnx2x_func_sp_drv); | 
|  | } | 
|  |  | 
|  | /* must be called after sriov-enable */ | 
|  | static int bnx2x_set_qm_cid_count(struct bnx2x *bp) | 
|  | { | 
|  | int cid_count = BNX2X_L2_MAX_CID(bp); | 
|  |  | 
|  | if (IS_SRIOV(bp)) | 
|  | cid_count += BNX2X_VF_CIDS; | 
|  |  | 
|  | if (CNIC_SUPPORT(bp)) | 
|  | cid_count += CNIC_CID_MAX; | 
|  |  | 
|  | return ROUNDUP(cid_count, QM_CID_ROUND); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * bnx2x_get_num_none_def_sbs - return the number of none default SBs | 
|  | * | 
|  | * @dev:	pci device | 
|  | * | 
|  | * AKAROS PORT: suspect function. | 
|  | */ | 
|  | static int bnx2x_get_num_non_def_sbs(struct pci_device *pdev, int cnic_cnt) | 
|  | { | 
|  | int index; | 
|  | uint16_t control = 0; | 
|  | uint32_t msix_cap; | 
|  |  | 
|  | /* | 
|  | * If MSI-X is not supported - return number of SBs needed to support | 
|  | * one fast path queue: one FP queue + SB for CNIC | 
|  | */ | 
|  | if (pci_find_cap(pdev, PCI_CAP_ID_MSIX, &msix_cap)) { | 
|  | dev_info(&pdev->dev, "no msix capability found\n"); | 
|  | return 1 + cnic_cnt; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The value in the PCI configuration space is the index of the last | 
|  | * entry, namely one less than the actual size of the table, which is | 
|  | * exactly what we want to return from this function: number of all SBs | 
|  | * without the default SB. | 
|  | * For VFs there is no default SB, then we return (index+1). | 
|  | */ | 
|  | pci_read_config_word(pdev, msix_cap + PCI_MSIX_FLAGS, &control); | 
|  |  | 
|  | index = control & PCI_MSIX_FLAGS_QSIZE; | 
|  |  | 
|  | return index; | 
|  | } | 
|  |  | 
|  | static int set_max_cos_est(int chip_id) | 
|  | { | 
|  | switch (chip_id) { | 
|  | case BCM57710: | 
|  | case BCM57711: | 
|  | case BCM57711E: | 
|  | return BNX2X_MULTI_TX_COS_E1X; | 
|  | case BCM57712: | 
|  | case BCM57712_MF: | 
|  | return BNX2X_MULTI_TX_COS_E2_E3A0; | 
|  | case BCM57800: | 
|  | case BCM57800_MF: | 
|  | case BCM57810: | 
|  | case BCM57810_MF: | 
|  | case BCM57840_4_10: | 
|  | case BCM57840_2_20: | 
|  | case BCM57840_O: | 
|  | case BCM57840_MFO: | 
|  | case BCM57840_MF: | 
|  | case BCM57811: | 
|  | case BCM57811_MF: | 
|  | return BNX2X_MULTI_TX_COS_E3B0; | 
|  | case BCM57712_VF: | 
|  | case BCM57800_VF: | 
|  | case BCM57810_VF: | 
|  | case BCM57840_VF: | 
|  | case BCM57811_VF: | 
|  | return 1; | 
|  | default: | 
|  | pr_err("Unknown board_type (%d), aborting\n", chip_id); | 
|  | return -ENODEV; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int set_is_vf(int chip_id) | 
|  | { | 
|  | switch (chip_id) { | 
|  | case BCM57712_VF: | 
|  | case BCM57800_VF: | 
|  | case BCM57810_VF: | 
|  | case BCM57840_VF: | 
|  | case BCM57811_VF: | 
|  | return true; | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* nig_tsgen registers relative address */ | 
|  | #define tsgen_ctrl 0x0 | 
|  | #define tsgen_freecount 0x10 | 
|  | #define tsgen_synctime_t0 0x20 | 
|  | #define tsgen_offset_t0 0x28 | 
|  | #define tsgen_drift_t0 0x30 | 
|  | #define tsgen_synctime_t1 0x58 | 
|  | #define tsgen_offset_t1 0x60 | 
|  | #define tsgen_drift_t1 0x68 | 
|  |  | 
|  | /* FW workaround for setting drift */ | 
|  | static int bnx2x_send_update_drift_ramrod(struct bnx2x *bp, int drift_dir, | 
|  | int best_val, int best_period) | 
|  | { | 
|  | struct bnx2x_func_state_params func_params = {NULL}; | 
|  | struct bnx2x_func_set_timesync_params *set_timesync_params = | 
|  | &func_params.params.set_timesync; | 
|  |  | 
|  | /* Prepare parameters for function state transitions */ | 
|  | __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); | 
|  | __set_bit(RAMROD_RETRY, &func_params.ramrod_flags); | 
|  |  | 
|  | func_params.f_obj = &bp->func_obj; | 
|  | func_params.cmd = BNX2X_F_CMD_SET_TIMESYNC; | 
|  |  | 
|  | /* Function parameters */ | 
|  | set_timesync_params->drift_adjust_cmd = TS_DRIFT_ADJUST_SET; | 
|  | set_timesync_params->offset_cmd = TS_OFFSET_KEEP; | 
|  | set_timesync_params->add_sub_drift_adjust_value = | 
|  | drift_dir ? TS_ADD_VALUE : TS_SUB_VALUE; | 
|  | set_timesync_params->drift_adjust_value = best_val; | 
|  | set_timesync_params->drift_adjust_period = best_period; | 
|  |  | 
|  | return bnx2x_func_state_change(bp, &func_params); | 
|  | } | 
|  |  | 
|  | int bnx2x_init_one(struct ether *dev, struct bnx2x *bp, | 
|  | struct pci_device *pdev, const struct pci_device_id *ent) | 
|  | { | 
|  | //	enum pcie_link_width pcie_width; | 
|  | //	enum pci_bus_speed pcie_speed; | 
|  | int rc, max_non_def_sbs; | 
|  | int rx_count, tx_count, rss_count, doorbell_size; | 
|  | int max_cos_est; | 
|  | bool is_vf; | 
|  | int cnic_cnt; | 
|  |  | 
|  | /* An estimated maximum supported CoS number according to the chip | 
|  | * version. | 
|  | * We will try to roughly estimate the maximum number of CoSes this chip | 
|  | * may support in order to minimize the memory allocated for Tx | 
|  | * netdev_queue's. This number will be accurately calculated during the | 
|  | * initialization of bp->max_cos based on the chip versions AND chip | 
|  | * revision in the bnx2x_init_bp(). | 
|  | */ | 
|  | max_cos_est = set_max_cos_est(ent->driver_data); | 
|  | if (max_cos_est < 0) | 
|  | return max_cos_est; | 
|  | is_vf = set_is_vf(ent->driver_data); | 
|  | cnic_cnt = is_vf ? 0 : 1; | 
|  |  | 
|  | max_non_def_sbs = bnx2x_get_num_non_def_sbs(pdev, cnic_cnt); | 
|  |  | 
|  | /* add another SB for VF as it has no default SB */ | 
|  | max_non_def_sbs += is_vf ? 1 : 0; | 
|  |  | 
|  | /* Maximum number of RSS queues: one IGU SB goes to CNIC */ | 
|  | rss_count = max_non_def_sbs - cnic_cnt; | 
|  |  | 
|  | if (rss_count < 1) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* Maximum number of netdev Rx queues: RSS + FCoE L2 */ | 
|  | rx_count = rss_count + cnic_cnt; | 
|  |  | 
|  | /* Maximum number of netdev Tx queues: | 
|  | * Maximum TSS queues * Maximum supported number of CoS  + FCoE L2 | 
|  | */ | 
|  | tx_count = rss_count * max_cos_est + cnic_cnt; | 
|  |  | 
|  | #if 0 // AKAROS_PORT alloced in pnp.  XME Queues aren't alloced yet! | 
|  | /* dev zeroed in init_etherdev */ | 
|  | dev = alloc_etherdev_mqs(sizeof(*bp), tx_count, rx_count); | 
|  | if (!dev) | 
|  | return -ENOMEM; | 
|  | #endif | 
|  |  | 
|  | /* double check Akaros's stitching of edev <-> bp */ | 
|  | assert(bp == netdev_priv(dev)); | 
|  |  | 
|  | bp->flags = 0; | 
|  | if (is_vf) | 
|  | bp->flags |= IS_VF_FLAG; | 
|  |  | 
|  | bp->igu_sb_cnt = max_non_def_sbs; | 
|  | bp->igu_base_addr = IS_VF(bp) ? PXP_VF_ADDR_IGU_START : BAR_IGU_INTMEM; | 
|  | bp->msg_enable = debug; | 
|  | bp->cnic_support = cnic_cnt; | 
|  | bp->cnic_probe = bnx2x_cnic_probe; | 
|  |  | 
|  | pci_set_drvdata(pdev, dev); | 
|  |  | 
|  | rc = bnx2x_init_dev(bp, pdev, dev, ent->driver_data); | 
|  |  | 
|  | if (rc < 0) { | 
|  | //free_netdev(dev); // AKAROS alloc'd already | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | BNX2X_DEV_INFO("This is a %s function\n", | 
|  | IS_PF(bp) ? "physical" : "virtual"); | 
|  | BNX2X_DEV_INFO("Cnic support is %s\n", CNIC_SUPPORT(bp) ? "on" : "off"); | 
|  | BNX2X_DEV_INFO("Max num of status blocks %d\n", max_non_def_sbs); | 
|  | BNX2X_DEV_INFO("Allocated netdev with %d tx and %d rx queues\n", | 
|  | tx_count, rx_count); | 
|  |  | 
|  | rc = bnx2x_init_bp(bp); | 
|  | if (rc) | 
|  | goto init_one_exit; | 
|  |  | 
|  | /* Map doorbells here as we need the real value of bp->max_cos which | 
|  | * is initialized in bnx2x_init_bp() to determine the number of | 
|  | * l2 connections. | 
|  | */ | 
|  | if (IS_VF(bp)) { | 
|  | bp->doorbells = bnx2x_vf_doorbells(bp); | 
|  | rc = bnx2x_vf_pci_alloc(bp); | 
|  | if (rc) | 
|  | goto init_one_exit; | 
|  | } else { | 
|  | doorbell_size = BNX2X_L2_MAX_CID(bp) * (1 << BNX2X_DB_SHIFT); | 
|  | if (doorbell_size > pci_resource_len(pdev, 2)) { | 
|  | dev_err(&bp->pdev->dev, | 
|  | "Cannot map doorbells, bar size too small, aborting\n"); | 
|  | rc = -ENOMEM; | 
|  | goto init_one_exit; | 
|  | } | 
|  | bp->doorbells = ioremap_nocache(pci_resource_start(pdev, 2), | 
|  | doorbell_size); | 
|  | } | 
|  | if (!bp->doorbells) { | 
|  | dev_err(&bp->pdev->dev, | 
|  | "Cannot map doorbell space, aborting\n"); | 
|  | rc = -ENOMEM; | 
|  | goto init_one_exit; | 
|  | } | 
|  |  | 
|  | if (IS_VF(bp)) { | 
|  | rc = bnx2x_vfpf_acquire(bp, tx_count, rx_count); | 
|  | if (rc) | 
|  | goto init_one_exit; | 
|  | } | 
|  |  | 
|  | /* Enable SRIOV if capability found in configuration space */ | 
|  | rc = bnx2x_iov_init_one(bp, int_mode, BNX2X_MAX_NUM_OF_VFS); | 
|  | if (rc) | 
|  | goto init_one_exit; | 
|  |  | 
|  | /* calc qm_cid_count */ | 
|  | bp->qm_cid_count = bnx2x_set_qm_cid_count(bp); | 
|  | BNX2X_DEV_INFO("qm_cid_count %d\n", bp->qm_cid_count); | 
|  |  | 
|  | /* disable FCOE L2 queue for E1x*/ | 
|  | if (CHIP_IS_E1x(bp)) | 
|  | bp->flags |= NO_FCOE_FLAG; | 
|  |  | 
|  | /* Set bp->num_queues for MSI-X mode*/ | 
|  | bnx2x_set_num_queues(bp); | 
|  |  | 
|  | /* Configure interrupt mode: try to enable MSI-X/MSI if | 
|  | * needed. | 
|  | */ | 
|  | rc = bnx2x_set_int_mode(bp); | 
|  | if (rc) { | 
|  | dev_err(&pdev->dev, "Cannot set interrupts\n"); | 
|  | goto init_one_exit; | 
|  | } | 
|  | BNX2X_DEV_INFO("set interrupts successfully\n"); | 
|  |  | 
|  | #if 0 // AKAROS PORT | 
|  | /* register the net device */ | 
|  | rc = register_netdev(dev); | 
|  | if (rc) { | 
|  | dev_err(&pdev->dev, "Cannot register net device\n"); | 
|  | goto init_one_exit; | 
|  | } | 
|  | #endif | 
|  | BNX2X_DEV_INFO("device name after netdev register %s\n", dev->name); | 
|  |  | 
|  | if (!NO_FCOE(bp)) { | 
|  | /* Add storage MAC address */ | 
|  | rtnl_lock(); | 
|  | dev_addr_add(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN); | 
|  | rtnl_unlock(); | 
|  | } | 
|  | #if 0 // AKAROS PORT | 
|  | if (pcie_get_minimum_link(bp->pdev, &pcie_speed, &pcie_width) || | 
|  | pcie_speed == PCI_SPEED_UNKNOWN || | 
|  | pcie_width == PCIE_LNK_WIDTH_UNKNOWN) | 
|  | BNX2X_DEV_INFO("Failed to determine PCI Express Bandwidth\n"); | 
|  | else | 
|  | BNX2X_DEV_INFO( | 
|  | "%s (%c%d) PCI-E x%d %s found at mem %lx, IRQ %d, node addr %pM\n", | 
|  | board_info[ent->driver_data].name, | 
|  | (CHIP_REV(bp) >> 12) + 'A', (CHIP_METAL(bp) >> 4), | 
|  | pcie_width, | 
|  | pcie_speed == PCIE_SPEED_2_5GT ? "2.5GHz" : | 
|  | pcie_speed == PCIE_SPEED_5_0GT ? "5.0GHz" : | 
|  | pcie_speed == PCIE_SPEED_8_0GT ? "8.0GHz" : | 
|  | "Unknown", | 
|  | dev->base_addr, bp->pdev->irqline, dev->ea); | 
|  | #else | 
|  | BNX2X_DEV_INFO( | 
|  | "%s (%c%d) PCI-E found at mem %lx, IRQ %d, node addr %pM\n", | 
|  | board_info[ent->driver_data].name, | 
|  | (CHIP_REV(bp) >> 12) + 'A', (CHIP_METAL(bp) >> 4), | 
|  | bp->base_addr, bp->pdev->irqline, dev->ea); | 
|  | #endif | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | init_one_exit: | 
|  | BNX2X_ERROR("bnx2x init one failed"); | 
|  | #if 0 // AKAROS_PORT | 
|  | bnx2x_disable_pcie_error_reporting(bp); | 
|  |  | 
|  | if (bp->regview) | 
|  | iounmap(bp->regview); | 
|  |  | 
|  | if (IS_PF(bp) && bp->doorbells) | 
|  | iounmap(bp->doorbells); | 
|  |  | 
|  | free_netdev(dev); | 
|  |  | 
|  | if (atomic_read(&pdev->enable_cnt) == 1) | 
|  | pci_release_regions(pdev); | 
|  |  | 
|  | pci_disable_device(pdev); | 
|  | #endif | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static void __bnx2x_remove(struct pci_device *pdev, | 
|  | struct ether *dev, | 
|  | struct bnx2x *bp, | 
|  | bool remove_netdev) | 
|  | { | 
|  | panic("Not implemented"); | 
|  | #if 0 // AKAROS_PORT | 
|  | /* Delete storage MAC address */ | 
|  | if (!NO_FCOE(bp)) { | 
|  | rtnl_lock(); | 
|  | dev_addr_del(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN); | 
|  | rtnl_unlock(); | 
|  | } | 
|  |  | 
|  | #ifdef BCM_DCBNL | 
|  | /* Delete app tlvs from dcbnl */ | 
|  | bnx2x_dcbnl_update_applist(bp, true); | 
|  | #endif | 
|  |  | 
|  | if (IS_PF(bp) && | 
|  | !BP_NOMCP(bp) && | 
|  | (bp->flags & BC_SUPPORTS_RMMOD_CMD)) | 
|  | bnx2x_fw_command(bp, DRV_MSG_CODE_RMMOD, 0); | 
|  |  | 
|  | /* Close the interface - either directly or implicitly */ | 
|  | if (remove_netdev) { | 
|  | unregister_netdev(dev); | 
|  | } else { | 
|  | rtnl_lock(); | 
|  | dev_close(dev); | 
|  | rtnl_unlock(); | 
|  | } | 
|  |  | 
|  | bnx2x_iov_remove_one(bp); | 
|  |  | 
|  | /* Power on: we can't let PCI layer write to us while we are in D3 */ | 
|  | if (IS_PF(bp)) { | 
|  | bnx2x_set_power_state(bp, PCI_D0); | 
|  |  | 
|  | /* Set endianity registers to reset values in case next driver | 
|  | * boots in different endianty environment. | 
|  | */ | 
|  | bnx2x_reset_endianity(bp); | 
|  | } | 
|  |  | 
|  | /* Disable MSI/MSI-X */ | 
|  | bnx2x_disable_msi(bp); | 
|  |  | 
|  | /* Power off */ | 
|  | if (IS_PF(bp)) | 
|  | bnx2x_set_power_state(bp, PCI_D3hot); | 
|  |  | 
|  | /* Make sure RESET task is not scheduled before continuing */ | 
|  | cancel_delayed_work_sync(&bp->sp_rtnl_task); | 
|  |  | 
|  | /* send message via vfpf channel to release the resources of this vf */ | 
|  | if (IS_VF(bp)) | 
|  | bnx2x_vfpf_release(bp); | 
|  |  | 
|  | /* Assumes no further PCIe PM changes will occur */ | 
|  | if (system_state == SYSTEM_POWER_OFF) { | 
|  | pci_wake_from_d3(pdev, bp->wol); | 
|  | pci_set_power_state(pdev, PCI_D3hot); | 
|  | } | 
|  |  | 
|  | bnx2x_disable_pcie_error_reporting(bp); | 
|  | if (remove_netdev) { | 
|  | if (bp->regview) | 
|  | iounmap(bp->regview); | 
|  |  | 
|  | /* For vfs, doorbells are part of the regview and were unmapped | 
|  | * along with it. FW is only loaded by PF. | 
|  | */ | 
|  | if (IS_PF(bp)) { | 
|  | if (bp->doorbells) | 
|  | iounmap(bp->doorbells); | 
|  |  | 
|  | bnx2x_release_firmware(bp); | 
|  | } else { | 
|  | bnx2x_vf_pci_dealloc(bp); | 
|  | } | 
|  | bnx2x_free_mem_bp(bp); | 
|  |  | 
|  | free_netdev(dev); | 
|  |  | 
|  | if (atomic_read(&pdev->enable_cnt) == 1) | 
|  | pci_release_regions(pdev); | 
|  |  | 
|  | pci_disable_device(pdev); | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static void bnx2x_remove_one(struct pci_device *pdev) | 
|  | { | 
|  | panic("Not implemented"); | 
|  | #if 0 // AKAROS_PORT | 
|  | struct ether *dev = pci_get_drvdata(pdev); | 
|  | struct bnx2x *bp; | 
|  |  | 
|  | if (!dev) { | 
|  | dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n"); | 
|  | return; | 
|  | } | 
|  | bp = netdev_priv(dev); | 
|  |  | 
|  | __bnx2x_remove(pdev, dev, bp, true); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static int bnx2x_eeh_nic_unload(struct bnx2x *bp) | 
|  | { | 
|  | panic("Not implemented"); | 
|  | #if 0 // AKAROS_PORT | 
|  | bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT; | 
|  |  | 
|  | bp->rx_mode = BNX2X_RX_MODE_NONE; | 
|  |  | 
|  | if (CNIC_LOADED(bp)) | 
|  | bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD); | 
|  |  | 
|  | /* Stop Tx */ | 
|  | bnx2x_tx_disable(bp); | 
|  | /* Delete all NAPI objects */ | 
|  | bnx2x_del_all_napi(bp); | 
|  | if (CNIC_LOADED(bp)) | 
|  | bnx2x_del_all_napi_cnic(bp); | 
|  | netdev_reset_tc(bp->dev); | 
|  |  | 
|  | del_timer_sync(&bp->timer); | 
|  | cancel_delayed_work_sync(&bp->sp_task); | 
|  | cancel_delayed_work_sync(&bp->period_task); | 
|  |  | 
|  | spin_lock(&bp->stats_lock); | 
|  | bp->stats_state = STATS_STATE_DISABLED; | 
|  | spin_unlock(&bp->stats_lock); | 
|  |  | 
|  | bnx2x_save_statistics(bp); | 
|  |  | 
|  | netif_carrier_off(bp->dev); | 
|  |  | 
|  | return 0; | 
|  | #endif | 
|  | } | 
|  | #if 0 // AKAROS_PORT | 
|  | /** | 
|  | * bnx2x_io_error_detected - called when PCI error is detected | 
|  | * @pdev: Pointer to PCI device | 
|  | * @state: The current pci connection state | 
|  | * | 
|  | * This function is called after a PCI bus error affecting | 
|  | * this device has been detected. | 
|  | */ | 
|  | static pci_ers_result_t bnx2x_io_error_detected(struct pci_device *pdev, | 
|  | pci_channel_state_t state) | 
|  | { | 
|  | struct ether *dev = pci_get_drvdata(pdev); | 
|  | struct bnx2x *bp = netdev_priv(dev); | 
|  |  | 
|  | rtnl_lock(); | 
|  |  | 
|  | BNX2X_ERR("IO error detected\n"); | 
|  |  | 
|  | netif_device_detach(dev); | 
|  |  | 
|  | if (state == pci_channel_io_perm_failure) { | 
|  | rtnl_unlock(); | 
|  | return PCI_ERS_RESULT_DISCONNECT; | 
|  | } | 
|  |  | 
|  | if (netif_running(dev)) | 
|  | bnx2x_eeh_nic_unload(bp); | 
|  |  | 
|  | bnx2x_prev_path_mark_eeh(bp); | 
|  |  | 
|  | pci_disable_device(pdev); | 
|  |  | 
|  | rtnl_unlock(); | 
|  |  | 
|  | /* Request a slot reset */ | 
|  | return PCI_ERS_RESULT_NEED_RESET; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * bnx2x_io_slot_reset - called after the PCI bus has been reset | 
|  | * @pdev: Pointer to PCI device | 
|  | * | 
|  | * Restart the card from scratch, as if from a cold-boot. | 
|  | */ | 
|  | static pci_ers_result_t bnx2x_io_slot_reset(struct pci_device *pdev) | 
|  | { | 
|  | struct ether *dev = pci_get_drvdata(pdev); | 
|  | struct bnx2x *bp = netdev_priv(dev); | 
|  | int i; | 
|  |  | 
|  | rtnl_lock(); | 
|  | BNX2X_ERR("IO slot reset initializing...\n"); | 
|  | if (pci_enable_device(pdev)) { | 
|  | dev_err(&pdev->dev, | 
|  | "Cannot re-enable PCI device after reset\n"); | 
|  | rtnl_unlock(); | 
|  | return PCI_ERS_RESULT_DISCONNECT; | 
|  | } | 
|  |  | 
|  | pci_set_bus_master(pdev); | 
|  | pci_restore_state(pdev); | 
|  | pci_save_state(pdev); | 
|  |  | 
|  | if (netif_running(dev)) | 
|  | bnx2x_set_power_state(bp, PCI_D0); | 
|  |  | 
|  | if (netif_running(dev)) { | 
|  | BNX2X_ERR("IO slot reset --> driver unload\n"); | 
|  |  | 
|  | /* MCP should have been reset; Need to wait for validity */ | 
|  | bnx2x_init_shmem(bp); | 
|  |  | 
|  | if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) { | 
|  | uint32_t v; | 
|  |  | 
|  | v = SHMEM2_RD(bp, | 
|  | drv_capabilities_flag[BP_FW_MB_IDX(bp)]); | 
|  | SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)], | 
|  | v & ~DRV_FLAGS_CAPABILITIES_LOADED_L2); | 
|  | } | 
|  | bnx2x_drain_tx_queues(bp); | 
|  | bnx2x_send_unload_req(bp, UNLOAD_RECOVERY); | 
|  | bnx2x_netif_stop(bp, 1); | 
|  | bnx2x_free_irq(bp); | 
|  |  | 
|  | /* Report UNLOAD_DONE to MCP */ | 
|  | bnx2x_send_unload_done(bp, true); | 
|  |  | 
|  | bp->sp_state = 0; | 
|  | bp->port.pmf = 0; | 
|  |  | 
|  | bnx2x_prev_unload(bp); | 
|  |  | 
|  | /* We should have reseted the engine, so It's fair to | 
|  | * assume the FW will no longer write to the bnx2x driver. | 
|  | */ | 
|  | bnx2x_squeeze_objects(bp); | 
|  | bnx2x_free_skbs(bp); | 
|  | for_each_rx_queue(bp, i) | 
|  | bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE); | 
|  | bnx2x_free_fp_mem(bp); | 
|  | bnx2x_free_mem(bp); | 
|  |  | 
|  | bp->state = BNX2X_STATE_CLOSED; | 
|  | } | 
|  |  | 
|  | rtnl_unlock(); | 
|  |  | 
|  | /* If AER, perform cleanup of the PCIe registers */ | 
|  | if (bp->flags & AER_ENABLED) { | 
|  | if (pci_cleanup_aer_uncorrect_error_status(pdev)) | 
|  | BNX2X_ERR("pci_cleanup_aer_uncorrect_error_status failed\n"); | 
|  | else | 
|  | DP(NETIF_MSG_HW, "pci_cleanup_aer_uncorrect_error_status succeeded\n"); | 
|  | } | 
|  |  | 
|  | return PCI_ERS_RESULT_RECOVERED; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /** | 
|  | * bnx2x_io_resume - called when traffic can start flowing again | 
|  | * @pdev: Pointer to PCI device | 
|  | * | 
|  | * This callback is called when the error recovery driver tells us that | 
|  | * its OK to resume normal operation. | 
|  | */ | 
|  | static void bnx2x_io_resume(struct pci_device *pdev) | 
|  | { | 
|  | panic("Not implemented"); | 
|  | #if 0 // AKAROS_PORT | 
|  | struct ether *dev = pci_get_drvdata(pdev); | 
|  | struct bnx2x *bp = netdev_priv(dev); | 
|  |  | 
|  | if (bp->recovery_state != BNX2X_RECOVERY_DONE) { | 
|  | netdev_err(bp->dev, "Handling parity error recovery. Try again later\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | rtnl_lock(); | 
|  |  | 
|  | bp->fw_seq = SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) & | 
|  | DRV_MSG_SEQ_NUMBER_MASK; | 
|  |  | 
|  | if (netif_running(dev)) | 
|  | bnx2x_nic_load(bp, LOAD_NORMAL); | 
|  |  | 
|  | netif_device_attach(dev); | 
|  |  | 
|  | rtnl_unlock(); | 
|  | #endif | 
|  | } | 
|  | #if 0 // AKAROS_PORT | 
|  | static const struct pci_error_handlers bnx2x_err_handler = { | 
|  | .error_detected = bnx2x_io_error_detected, | 
|  | .slot_reset     = bnx2x_io_slot_reset, | 
|  | .resume         = bnx2x_io_resume, | 
|  | }; | 
|  | #endif | 
|  |  | 
|  | static void bnx2x_shutdown(struct pci_device *pdev) | 
|  | { | 
|  | panic("Not implemented"); | 
|  | #if 0 // AKAROS_PORT | 
|  | struct ether *dev = pci_get_drvdata(pdev); | 
|  | struct bnx2x *bp; | 
|  |  | 
|  | if (!dev) | 
|  | return; | 
|  |  | 
|  | bp = netdev_priv(dev); | 
|  | if (!bp) | 
|  | return; | 
|  |  | 
|  | rtnl_lock(); | 
|  | netif_device_detach(dev); | 
|  | rtnl_unlock(); | 
|  |  | 
|  | /* Don't remove the netdevice, as there are scenarios which will cause | 
|  | * the kernel to hang, e.g., when trying to remove bnx2i while the | 
|  | * rootfs is mounted from SAN. | 
|  | */ | 
|  | __bnx2x_remove(pdev, dev, bp, false); | 
|  | #endif | 
|  | } | 
|  | #if 0 // AKAROS_PORT | 
|  | static struct pci_driver bnx2x_pci_driver = { | 
|  | .name        = DRV_MODULE_NAME, | 
|  | .id_table    = bnx2x_pci_tbl, | 
|  | .probe       = bnx2x_init_one, | 
|  | .remove      = bnx2x_remove_one, | 
|  | .suspend     = bnx2x_suspend, | 
|  | .resume      = bnx2x_resume, | 
|  | .err_handler = &bnx2x_err_handler, | 
|  | #ifdef CONFIG_BNX2X_SRIOV | 
|  | .sriov_configure = bnx2x_sriov_configure, | 
|  | #endif | 
|  | .shutdown    = bnx2x_shutdown, | 
|  | }; | 
|  | #endif | 
|  |  | 
|  | int __init bnx2x_init(void) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | pr_info("%s", version); | 
|  |  | 
|  | bnx2x_wq = create_singlethread_workqueue("bnx2x"); | 
|  | if (bnx2x_wq == NULL) { | 
|  | pr_err("Cannot create workqueue\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  | bnx2x_iov_wq = create_singlethread_workqueue("bnx2x_iov"); | 
|  | if (!bnx2x_iov_wq) { | 
|  | pr_err("Cannot create iov workqueue\n"); | 
|  | destroy_workqueue(bnx2x_wq); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | #if 0 // AKAROS_PORT pci registration.  we call it directly | 
|  | ret = pci_register_driver(&bnx2x_pci_driver); | 
|  | if (ret) { | 
|  | pr_err("Cannot register driver\n"); | 
|  | destroy_workqueue(bnx2x_wq); | 
|  | destroy_workqueue(bnx2x_iov_wq); | 
|  | } | 
|  | return ret; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static void __exit bnx2x_cleanup(void) | 
|  | { | 
|  | panic("Not implemented"); | 
|  | #if 0 // AKAROS_PORT | 
|  | struct list_head *pos, *q; | 
|  |  | 
|  | pci_unregister_driver(&bnx2x_pci_driver); | 
|  |  | 
|  | destroy_workqueue(bnx2x_wq); | 
|  | destroy_workqueue(bnx2x_iov_wq); | 
|  |  | 
|  | /* Free globally allocated resources */ | 
|  | list_for_each_safe(pos, q, &bnx2x_prev_list) { | 
|  | struct bnx2x_prev_path_list *tmp = | 
|  | list_entry(pos, struct bnx2x_prev_path_list, list); | 
|  | list_del(pos); | 
|  | kfree(tmp); | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | void bnx2x_notify_link_changed(struct bnx2x *bp) | 
|  | { | 
|  | REG_WR(bp, | 
|  | MISC_REG_AEU_GENERAL_ATTN_12 + BP_FUNC(bp)*sizeof(uint32_t), | 
|  | 1); | 
|  | } | 
|  |  | 
|  | module_init(bnx2x_init); | 
|  | module_exit(bnx2x_cleanup); | 
|  |  | 
|  | /** | 
|  | * bnx2x_set_iscsi_eth_mac_addr - set iSCSI MAC(s). | 
|  | * | 
|  | * @bp:		driver handle | 
|  | * @set:	set or clear the CAM entry | 
|  | * | 
|  | * This function will wait until the ramrod completion returns. | 
|  | * Return 0 if success, -ENODEV if ramrod doesn't return. | 
|  | */ | 
|  | static int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x *bp) | 
|  | { | 
|  | unsigned long ramrod_flags = 0; | 
|  |  | 
|  | __set_bit(RAMROD_COMP_WAIT, &ramrod_flags); | 
|  | return bnx2x_set_mac_one(bp, bp->cnic_eth_dev.iscsi_mac, | 
|  | &bp->iscsi_l2_mac_obj, true, | 
|  | BNX2X_ISCSI_ETH_MAC, &ramrod_flags); | 
|  | } | 
|  |  | 
|  | /* count denotes the number of new completions we have seen */ | 
|  | static void bnx2x_cnic_sp_post(struct bnx2x *bp, int count) | 
|  | { | 
|  | struct eth_spe *spe; | 
|  | int cxt_index, cxt_offset; | 
|  |  | 
|  | #ifdef BNX2X_STOP_ON_ERROR | 
|  | if (unlikely(bp->panic)) | 
|  | return; | 
|  | #endif | 
|  |  | 
|  | spin_lock(&bp->spq_lock); | 
|  | assert(!(bp->cnic_spq_pending < count)); | 
|  | bp->cnic_spq_pending -= count; | 
|  |  | 
|  | for (; bp->cnic_kwq_pending; bp->cnic_kwq_pending--) { | 
|  | uint16_t type =  (le16_to_cpu(bp->cnic_kwq_cons->hdr.type) | 
|  | & SPE_HDR_CONN_TYPE) >> | 
|  | SPE_HDR_CONN_TYPE_SHIFT; | 
|  | uint8_t cmd = (le32_to_cpu(bp->cnic_kwq_cons->hdr.conn_and_cmd_data) | 
|  | >> SPE_HDR_CMD_ID_SHIFT) & 0xff; | 
|  |  | 
|  | /* Set validation for iSCSI L2 client before sending SETUP | 
|  | *  ramrod | 
|  | */ | 
|  | if (type == ETH_CONNECTION_TYPE) { | 
|  | if (cmd == RAMROD_CMD_ID_ETH_CLIENT_SETUP) { | 
|  | cxt_index = BNX2X_ISCSI_ETH_CID(bp) / | 
|  | ILT_PAGE_CIDS; | 
|  | cxt_offset = BNX2X_ISCSI_ETH_CID(bp) - | 
|  | (cxt_index * ILT_PAGE_CIDS); | 
|  | bnx2x_set_ctx_validation(bp, | 
|  | &bp->context[cxt_index]. | 
|  | vcxt[cxt_offset].eth, | 
|  | BNX2X_ISCSI_ETH_CID(bp)); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * There may be not more than 8 L2, not more than 8 L5 SPEs | 
|  | * and in the air. We also check that number of outstanding | 
|  | * COMMON ramrods is not more than the EQ and SPQ can | 
|  | * accommodate. | 
|  | */ | 
|  | if (type == ETH_CONNECTION_TYPE) { | 
|  | if (!atomic_read(&bp->cq_spq_left)) | 
|  | break; | 
|  | else | 
|  | atomic_dec(&bp->cq_spq_left); | 
|  | } else if (type == NONE_CONNECTION_TYPE) { | 
|  | if (!atomic_read(&bp->eq_spq_left)) | 
|  | break; | 
|  | else | 
|  | atomic_dec(&bp->eq_spq_left); | 
|  | } else if ((type == ISCSI_CONNECTION_TYPE) || | 
|  | (type == FCOE_CONNECTION_TYPE)) { | 
|  | if (bp->cnic_spq_pending >= | 
|  | bp->cnic_eth_dev.max_kwqe_pending) | 
|  | break; | 
|  | else | 
|  | bp->cnic_spq_pending++; | 
|  | } else { | 
|  | BNX2X_ERR("Unknown SPE type: %d\n", type); | 
|  | bnx2x_panic(); | 
|  | break; | 
|  | } | 
|  |  | 
|  | spe = bnx2x_sp_get_next(bp); | 
|  | *spe = *bp->cnic_kwq_cons; | 
|  |  | 
|  | DP(BNX2X_MSG_SP, "pending on SPQ %d, on KWQ %d count %d\n", | 
|  | bp->cnic_spq_pending, bp->cnic_kwq_pending, count); | 
|  |  | 
|  | if (bp->cnic_kwq_cons == bp->cnic_kwq_last) | 
|  | bp->cnic_kwq_cons = bp->cnic_kwq; | 
|  | else | 
|  | bp->cnic_kwq_cons++; | 
|  | } | 
|  | bnx2x_sp_prod_update(bp); | 
|  | spin_unlock(&bp->spq_lock); | 
|  | } | 
|  |  | 
|  | static int bnx2x_cnic_sp_queue(struct ether *dev, | 
|  | struct kwqe_16 *kwqes[], uint32_t count) | 
|  | { | 
|  | struct bnx2x *bp = netdev_priv(dev); | 
|  | int i; | 
|  |  | 
|  | #ifdef BNX2X_STOP_ON_ERROR | 
|  | if (unlikely(bp->panic)) { | 
|  | BNX2X_ERR("Can't post to SP queue while panic\n"); | 
|  | return -EIO; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | if ((bp->recovery_state != BNX2X_RECOVERY_DONE) && | 
|  | (bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) { | 
|  | BNX2X_ERR("Handling parity error recovery. Try again later\n"); | 
|  | return -EAGAIN; | 
|  | } | 
|  |  | 
|  | spin_lock(&bp->spq_lock); | 
|  |  | 
|  | for (i = 0; i < count; i++) { | 
|  | struct eth_spe *spe = (struct eth_spe *)kwqes[i]; | 
|  |  | 
|  | if (bp->cnic_kwq_pending == MAX_SP_DESC_CNT) | 
|  | break; | 
|  |  | 
|  | *bp->cnic_kwq_prod = *spe; | 
|  |  | 
|  | bp->cnic_kwq_pending++; | 
|  |  | 
|  | DP(BNX2X_MSG_SP, "L5 SPQE %x %x %x:%x pos %d\n", | 
|  | spe->hdr.conn_and_cmd_data, spe->hdr.type, | 
|  | spe->data.update_data_addr.hi, | 
|  | spe->data.update_data_addr.lo, | 
|  | bp->cnic_kwq_pending); | 
|  |  | 
|  | if (bp->cnic_kwq_prod == bp->cnic_kwq_last) | 
|  | bp->cnic_kwq_prod = bp->cnic_kwq; | 
|  | else | 
|  | bp->cnic_kwq_prod++; | 
|  | } | 
|  |  | 
|  | spin_unlock(&bp->spq_lock); | 
|  |  | 
|  | if (bp->cnic_spq_pending < bp->cnic_eth_dev.max_kwqe_pending) | 
|  | bnx2x_cnic_sp_post(bp, 0); | 
|  |  | 
|  | return i; | 
|  | } | 
|  |  | 
|  | static int bnx2x_cnic_ctl_send(struct bnx2x *bp, struct cnic_ctl_info *ctl) | 
|  | { | 
|  | struct cnic_ops *c_ops; | 
|  | int rc = 0; | 
|  |  | 
|  | qlock(&bp->cnic_mutex); | 
|  | c_ops = rcu_dereference_protected(bp->cnic_ops, | 
|  | lockdep_is_held(&bp->cnic_mutex)); | 
|  | if (c_ops) | 
|  | rc = c_ops->cnic_ctl(bp->cnic_data, ctl); | 
|  | qunlock(&bp->cnic_mutex); | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static int bnx2x_cnic_ctl_send_bh(struct bnx2x *bp, struct cnic_ctl_info *ctl) | 
|  | { | 
|  | struct cnic_ops *c_ops; | 
|  | int rc = 0; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | c_ops = rcu_dereference(bp->cnic_ops); | 
|  | if (c_ops) | 
|  | rc = c_ops->cnic_ctl(bp->cnic_data, ctl); | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * for commands that have no data | 
|  | */ | 
|  | int bnx2x_cnic_notify(struct bnx2x *bp, int cmd) | 
|  | { | 
|  | struct cnic_ctl_info ctl = {0}; | 
|  |  | 
|  | ctl.cmd = cmd; | 
|  |  | 
|  | return bnx2x_cnic_ctl_send(bp, &ctl); | 
|  | } | 
|  |  | 
|  | static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, uint8_t err) | 
|  | { | 
|  | struct cnic_ctl_info ctl = {0}; | 
|  |  | 
|  | /* first we tell CNIC and only then we count this as a completion */ | 
|  | ctl.cmd = CNIC_CTL_COMPLETION_CMD; | 
|  | ctl.data.comp.cid = cid; | 
|  | ctl.data.comp.error = err; | 
|  |  | 
|  | bnx2x_cnic_ctl_send_bh(bp, &ctl); | 
|  | bnx2x_cnic_sp_post(bp, 0); | 
|  | } | 
|  |  | 
|  | /* Called with netif_addr_lock_bh() taken. | 
|  | * Sets an rx_mode config for an iSCSI ETH client. | 
|  | * Doesn't block. | 
|  | * Completion should be checked outside. | 
|  | */ | 
|  | static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start) | 
|  | { | 
|  | unsigned long accept_flags = 0, ramrod_flags = 0; | 
|  | uint8_t cl_id = bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX); | 
|  | int sched_state = BNX2X_FILTER_ISCSI_ETH_STOP_SCHED; | 
|  |  | 
|  | if (start) { | 
|  | /* Start accepting on iSCSI L2 ring. Accept all multicasts | 
|  | * because it's the only way for UIO Queue to accept | 
|  | * multicasts (in non-promiscuous mode only one Queue per | 
|  | * function will receive multicast packets (leading in our | 
|  | * case). | 
|  | */ | 
|  | __set_bit(BNX2X_ACCEPT_UNICAST, &accept_flags); | 
|  | __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &accept_flags); | 
|  | __set_bit(BNX2X_ACCEPT_BROADCAST, &accept_flags); | 
|  | __set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags); | 
|  |  | 
|  | /* Clear STOP_PENDING bit if START is requested */ | 
|  | clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &bp->sp_state); | 
|  |  | 
|  | sched_state = BNX2X_FILTER_ISCSI_ETH_START_SCHED; | 
|  | } else | 
|  | /* Clear START_PENDING bit if STOP is requested */ | 
|  | clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &bp->sp_state); | 
|  |  | 
|  | if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) | 
|  | set_bit(sched_state, &bp->sp_state); | 
|  | else { | 
|  | __set_bit(RAMROD_RX, &ramrod_flags); | 
|  | bnx2x_set_q_rx_mode(bp, cl_id, 0, accept_flags, 0, | 
|  | ramrod_flags); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int bnx2x_drv_ctl(struct ether *dev, struct drv_ctl_info *ctl) | 
|  | { | 
|  | panic("Not implemented"); | 
|  | #if 0 // AKAROS_PORT | 
|  | struct bnx2x *bp = netdev_priv(dev); | 
|  | int rc = 0; | 
|  |  | 
|  | switch (ctl->cmd) { | 
|  | case DRV_CTL_CTXTBL_WR_CMD: { | 
|  | uint32_t index = ctl->data.io.offset; | 
|  | dma_addr_t addr = ctl->data.io.dma_addr; | 
|  |  | 
|  | bnx2x_ilt_wr(bp, index, addr); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case DRV_CTL_RET_L5_SPQ_CREDIT_CMD: { | 
|  | int count = ctl->data.credit.credit_count; | 
|  |  | 
|  | bnx2x_cnic_sp_post(bp, count); | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* rtnl_lock is held.  */ | 
|  | case DRV_CTL_START_L2_CMD: { | 
|  | struct cnic_eth_dev *cp = &bp->cnic_eth_dev; | 
|  | unsigned long sp_bits = 0; | 
|  |  | 
|  | /* Configure the iSCSI classification object */ | 
|  | bnx2x_init_mac_obj(bp, &bp->iscsi_l2_mac_obj, | 
|  | cp->iscsi_l2_client_id, | 
|  | cp->iscsi_l2_cid, BP_FUNC(bp), | 
|  | bnx2x_sp(bp, mac_rdata), | 
|  | bnx2x_sp_mapping(bp, mac_rdata), | 
|  | BNX2X_FILTER_MAC_PENDING, | 
|  | &bp->sp_state, BNX2X_OBJ_TYPE_RX, | 
|  | &bp->macs_pool); | 
|  |  | 
|  | /* Set iSCSI MAC address */ | 
|  | rc = bnx2x_set_iscsi_eth_mac_addr(bp); | 
|  | if (rc) | 
|  | break; | 
|  |  | 
|  | bus_wmb(); | 
|  | cmb(); | 
|  |  | 
|  | /* Start accepting on iSCSI L2 ring */ | 
|  |  | 
|  | qlock(&dev->qlock); | 
|  | bnx2x_set_iscsi_eth_rx_mode(bp, true); | 
|  | qunlock(&dev->qlock); | 
|  |  | 
|  | /* bits to wait on */ | 
|  | __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits); | 
|  | __set_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &sp_bits); | 
|  |  | 
|  | if (!bnx2x_wait_sp_comp(bp, sp_bits)) | 
|  | BNX2X_ERR("rx_mode completion timed out!\n"); | 
|  |  | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* rtnl_lock is held.  */ | 
|  | case DRV_CTL_STOP_L2_CMD: { | 
|  | unsigned long sp_bits = 0; | 
|  |  | 
|  | /* Stop accepting on iSCSI L2 ring */ | 
|  | qlock(&dev->qlock); | 
|  | bnx2x_set_iscsi_eth_rx_mode(bp, false); | 
|  | qunlock(&dev->qlock); | 
|  |  | 
|  | /* bits to wait on */ | 
|  | __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits); | 
|  | __set_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &sp_bits); | 
|  |  | 
|  | if (!bnx2x_wait_sp_comp(bp, sp_bits)) | 
|  | BNX2X_ERR("rx_mode completion timed out!\n"); | 
|  |  | 
|  | bus_wmb(); | 
|  | cmb(); | 
|  |  | 
|  | /* Unset iSCSI L2 MAC */ | 
|  | rc = bnx2x_del_all_macs(bp, &bp->iscsi_l2_mac_obj, | 
|  | BNX2X_ISCSI_ETH_MAC, true); | 
|  | break; | 
|  | } | 
|  | case DRV_CTL_RET_L2_SPQ_CREDIT_CMD: { | 
|  | int count = ctl->data.credit.credit_count; | 
|  |  | 
|  | cmb(); | 
|  | atomic_add(count, &bp->cq_spq_left); | 
|  | cmb(); | 
|  | break; | 
|  | } | 
|  | case DRV_CTL_ULP_REGISTER_CMD: { | 
|  | int ulp_type = ctl->data.register_data.ulp_type; | 
|  |  | 
|  | if (CHIP_IS_E3(bp)) { | 
|  | int idx = BP_FW_MB_IDX(bp); | 
|  | uint32_t cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]); | 
|  | int path = BP_PATH(bp); | 
|  | int port = BP_PORT(bp); | 
|  | int i; | 
|  | uint32_t scratch_offset; | 
|  | uint32_t *host_addr; | 
|  |  | 
|  | /* first write capability to shmem2 */ | 
|  | if (ulp_type == CNIC_ULP_ISCSI) | 
|  | cap |= DRV_FLAGS_CAPABILITIES_LOADED_ISCSI; | 
|  | else if (ulp_type == CNIC_ULP_FCOE) | 
|  | cap |= DRV_FLAGS_CAPABILITIES_LOADED_FCOE; | 
|  | SHMEM2_WR(bp, drv_capabilities_flag[idx], cap); | 
|  |  | 
|  | if ((ulp_type != CNIC_ULP_FCOE) || | 
|  | (!SHMEM2_HAS(bp, ncsi_oem_data_addr)) || | 
|  | (!(bp->flags &  BC_SUPPORTS_FCOE_FEATURES))) | 
|  | break; | 
|  |  | 
|  | /* if reached here - should write fcoe capabilities */ | 
|  | scratch_offset = SHMEM2_RD(bp, ncsi_oem_data_addr); | 
|  | if (!scratch_offset) | 
|  | break; | 
|  | scratch_offset += offsetof(struct glob_ncsi_oem_data, | 
|  | fcoe_features[path][port]); | 
|  | host_addr = (uint32_t *) &(ctl->data.register_data. | 
|  | fcoe_features); | 
|  | for (i = 0; i < sizeof(struct fcoe_capabilities); | 
|  | i += 4) | 
|  | REG_WR(bp, scratch_offset + i, | 
|  | *(host_addr + i/4)); | 
|  | } | 
|  | bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case DRV_CTL_ULP_UNREGISTER_CMD: { | 
|  | int ulp_type = ctl->data.ulp_type; | 
|  |  | 
|  | if (CHIP_IS_E3(bp)) { | 
|  | int idx = BP_FW_MB_IDX(bp); | 
|  | uint32_t cap; | 
|  |  | 
|  | cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]); | 
|  | if (ulp_type == CNIC_ULP_ISCSI) | 
|  | cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_ISCSI; | 
|  | else if (ulp_type == CNIC_ULP_FCOE) | 
|  | cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_FCOE; | 
|  | SHMEM2_WR(bp, drv_capabilities_flag[idx], cap); | 
|  | } | 
|  | bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0); | 
|  | break; | 
|  | } | 
|  |  | 
|  | default: | 
|  | BNX2X_ERR("unknown command %x\n", ctl->cmd); | 
|  | rc = -EINVAL; | 
|  | } | 
|  |  | 
|  | return rc; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | void bnx2x_setup_cnic_irq_info(struct bnx2x *bp) | 
|  | { | 
|  | struct cnic_eth_dev *cp = &bp->cnic_eth_dev; | 
|  |  | 
|  | if (bp->flags & USING_MSIX_FLAG) { | 
|  | cp->drv_state |= CNIC_DRV_STATE_USING_MSIX; | 
|  | cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX; | 
|  | cp->irq_arr[0].vector = bp->msix_table[1].vector; | 
|  | } else { | 
|  | cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX; | 
|  | cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX; | 
|  | } | 
|  | if (!CHIP_IS_E1x(bp)) | 
|  | cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e2_sb; | 
|  | else | 
|  | cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e1x_sb; | 
|  |  | 
|  | cp->irq_arr[0].status_blk_num =  bnx2x_cnic_fw_sb_id(bp); | 
|  | cp->irq_arr[0].status_blk_num2 = bnx2x_cnic_igu_sb_id(bp); | 
|  | cp->irq_arr[1].status_blk = bp->def_status_blk; | 
|  | cp->irq_arr[1].status_blk_num = DEF_SB_ID; | 
|  | cp->irq_arr[1].status_blk_num2 = DEF_SB_IGU_ID; | 
|  |  | 
|  | cp->num_irq = 2; | 
|  | } | 
|  |  | 
|  | void bnx2x_setup_cnic_info(struct bnx2x *bp) | 
|  | { | 
|  | struct cnic_eth_dev *cp = &bp->cnic_eth_dev; | 
|  |  | 
|  | cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) + | 
|  | bnx2x_cid_ilt_lines(bp); | 
|  | cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS; | 
|  | cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp); | 
|  | cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp); | 
|  |  | 
|  | DP(NETIF_MSG_IFUP, "BNX2X_1st_NON_L2_ETH_CID(bp) %x, cp->starting_cid %x, cp->fcoe_init_cid %x, cp->iscsi_l2_cid %x\n", | 
|  | BNX2X_1st_NON_L2_ETH_CID(bp), cp->starting_cid, cp->fcoe_init_cid, | 
|  | cp->iscsi_l2_cid); | 
|  |  | 
|  | if (NO_ISCSI_OOO(bp)) | 
|  | cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO; | 
|  | } | 
|  |  | 
|  | static int bnx2x_register_cnic(struct ether *dev, struct cnic_ops *ops, | 
|  | void *data) | 
|  | { | 
|  | struct bnx2x *bp = netdev_priv(dev); | 
|  | struct cnic_eth_dev *cp = &bp->cnic_eth_dev; | 
|  | int rc; | 
|  |  | 
|  | DP(NETIF_MSG_IFUP, "Register_cnic called\n"); | 
|  |  | 
|  | if (ops == NULL) { | 
|  | BNX2X_ERR("NULL ops received\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (!CNIC_SUPPORT(bp)) { | 
|  | BNX2X_ERR("Can't register CNIC when not supported\n"); | 
|  | return -EOPNOTSUPP; | 
|  | } | 
|  |  | 
|  | if (!CNIC_LOADED(bp)) { | 
|  | rc = bnx2x_load_cnic(bp); | 
|  | if (rc) { | 
|  | BNX2X_ERR("CNIC-related load failed\n"); | 
|  | return rc; | 
|  | } | 
|  | } | 
|  |  | 
|  | bp->cnic_enabled = true; | 
|  |  | 
|  | bp->cnic_kwq = kzmalloc(PAGE_SIZE, MEM_WAIT); | 
|  | if (!bp->cnic_kwq) | 
|  | return -ENOMEM; | 
|  |  | 
|  | bp->cnic_kwq_cons = bp->cnic_kwq; | 
|  | bp->cnic_kwq_prod = bp->cnic_kwq; | 
|  | bp->cnic_kwq_last = bp->cnic_kwq + MAX_SP_DESC_CNT; | 
|  |  | 
|  | bp->cnic_spq_pending = 0; | 
|  | bp->cnic_kwq_pending = 0; | 
|  |  | 
|  | bp->cnic_data = data; | 
|  |  | 
|  | cp->num_irq = 0; | 
|  | cp->drv_state |= CNIC_DRV_STATE_REGD; | 
|  | cp->iro_arr = bp->iro_arr; | 
|  |  | 
|  | bnx2x_setup_cnic_irq_info(bp); | 
|  |  | 
|  | rcu_assign_pointer(bp->cnic_ops, ops); | 
|  |  | 
|  | /* Schedule driver to read CNIC driver versions */ | 
|  | bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int bnx2x_unregister_cnic(struct ether *dev) | 
|  | { | 
|  | struct bnx2x *bp = netdev_priv(dev); | 
|  | struct cnic_eth_dev *cp = &bp->cnic_eth_dev; | 
|  |  | 
|  | qlock(&bp->cnic_mutex); | 
|  | cp->drv_state = 0; | 
|  | RCU_INIT_POINTER(bp->cnic_ops, NULL); | 
|  | qunlock(&bp->cnic_mutex); | 
|  | synchronize_rcu(); | 
|  | bp->cnic_enabled = false; | 
|  | kfree(bp->cnic_kwq); | 
|  | bp->cnic_kwq = NULL; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct cnic_eth_dev *bnx2x_cnic_probe(struct ether *dev) | 
|  | { | 
|  | struct bnx2x *bp = netdev_priv(dev); | 
|  | struct cnic_eth_dev *cp = &bp->cnic_eth_dev; | 
|  |  | 
|  | /* If both iSCSI and FCoE are disabled - return NULL in | 
|  | * order to indicate CNIC that it should not try to work | 
|  | * with this device. | 
|  | */ | 
|  | if (NO_ISCSI(bp) && NO_FCOE(bp)) | 
|  | return NULL; | 
|  |  | 
|  | cp->drv_owner = THIS_MODULE; | 
|  | cp->chip_id = CHIP_ID(bp); | 
|  | cp->pdev = bp->pdev; | 
|  | cp->io_base = bp->regview; | 
|  | cp->io_base2 = bp->doorbells; | 
|  | cp->max_kwqe_pending = 8; | 
|  | cp->ctx_blk_size = CDU_ILT_PAGE_SZ; | 
|  | cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) + | 
|  | bnx2x_cid_ilt_lines(bp); | 
|  | cp->ctx_tbl_len = CNIC_ILT_LINES; | 
|  | cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS; | 
|  | cp->drv_submit_kwqes_16 = bnx2x_cnic_sp_queue; | 
|  | cp->drv_ctl = bnx2x_drv_ctl; | 
|  | cp->drv_register_cnic = bnx2x_register_cnic; | 
|  | cp->drv_unregister_cnic = bnx2x_unregister_cnic; | 
|  | cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp); | 
|  | cp->iscsi_l2_client_id = | 
|  | bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX); | 
|  | cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp); | 
|  |  | 
|  | if (NO_ISCSI_OOO(bp)) | 
|  | cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO; | 
|  |  | 
|  | if (NO_ISCSI(bp)) | 
|  | cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI; | 
|  |  | 
|  | if (NO_FCOE(bp)) | 
|  | cp->drv_state |= CNIC_DRV_STATE_NO_FCOE; | 
|  |  | 
|  | BNX2X_DEV_INFO( | 
|  | "page_size %d, tbl_offset %d, tbl_lines %d, starting cid %d\n", | 
|  | cp->ctx_blk_size, | 
|  | cp->ctx_tbl_offset, | 
|  | cp->ctx_tbl_len, | 
|  | cp->starting_cid); | 
|  | return cp; | 
|  | } | 
|  |  | 
|  | static uint32_t bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp) | 
|  | { | 
|  | struct bnx2x *bp = fp->bp; | 
|  | uint32_t offset = BAR_USTRORM_INTMEM; | 
|  |  | 
|  | if (IS_VF(bp)) | 
|  | return bnx2x_vf_ustorm_prods_offset(bp, fp); | 
|  | else if (!CHIP_IS_E1x(bp)) | 
|  | offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id); | 
|  | else | 
|  | offset += USTORM_RX_PRODS_E1X_OFFSET(BP_PORT(bp), fp->cl_id); | 
|  |  | 
|  | return offset; | 
|  | } | 
|  |  | 
|  | /* called only on E1H or E2. | 
|  | * When pretending to be PF, the pretend value is the function number 0...7 | 
|  | * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID | 
|  | * combination | 
|  | */ | 
|  | int bnx2x_pretend_func(struct bnx2x *bp, uint16_t pretend_func_val) | 
|  | { | 
|  | uint32_t pretend_reg; | 
|  |  | 
|  | if (CHIP_IS_E1H(bp) && pretend_func_val >= E1H_FUNC_MAX) | 
|  | return -1; | 
|  |  | 
|  | /* get my own pretend register */ | 
|  | pretend_reg = bnx2x_get_pretend_reg(bp); | 
|  | REG_WR(bp, pretend_reg, pretend_func_val); | 
|  | REG_RD(bp, pretend_reg); | 
|  | return 0; | 
|  | } |