blob: 69ece851d209a20a154fa760a89c8849a26bc59f [file] [log] [blame]
/* Copyright (c) 2009, 2010 The Regents of the University of California
* Barret Rhoden <brho@cs.berkeley.edu>
* See LICENSE for details.
*
* All things processes! As we move away from the old envs to processes,
* we'll move things into here that are designed for multicore processes. */
#pragma once
#include <ros/common.h>
#include <ros/event.h>
#include <trap.h>
#include <atomic.h>
#include <kref.h>
#include <schedule.h>
/* Process States. Not 100% on the names yet. RUNNABLE_* are waiting to go to
* RUNNING_*. For instance, RUNNABLE_M is expecting to go to RUNNING_M. It
* could be waiting for it's timeslice, or possibly for all the cores it asked
* for.
*
* Difference between the _M and the _S states:
* - _S : legacy process mode
* - RUNNING_M implies *guaranteed* core(s). You can be a single core in the
* RUNNING_M state. The guarantee is subject to time slicing, but when you
* run, you get all of your cores.
* - The time slicing is at a coarser granularity for _M states. This means
* that when you run an _S on a core, it should be interrupted/time sliced
* more often, which also means the core should be classified differently for
* a while. Possibly even using its local APIC timer.
* - A process in an _M state will be informed about changes to its state, e.g.,
* will have a handler run in the event of a page fault
*
* DYING vs. DYING_ABORT:
* - DYING is the initial stage when a process is dying, but before all of its
* syscalls should abort. At this point, we start closing FDs and blocking
* certain new operations.
* - DYING_ABORT is after all FDs were closed and all outstanding syscalls are
* aborted.
*/
#define PROC_CREATED 0x01
#define PROC_RUNNABLE_S 0x02
#define PROC_RUNNING_S 0x04
#define PROC_WAITING 0x08 // can split out to INT and UINT
#define PROC_DYING 0x10
#define PROC_DYING_ABORT 0x20
#define PROC_RUNNABLE_M 0x40
#define PROC_RUNNING_M 0x80
#define procstate2str(state) ((state) == PROC_CREATED ? "CREATED" : \
(state) == PROC_RUNNABLE_S ? "RUNNABLE_S" : \
(state) == PROC_RUNNING_S ? "RUNNING_S" : \
(state) == PROC_WAITING ? "WAITING" : \
(state) == PROC_DYING ? "DYING" : \
(state) == PROC_DYING_ABORT ? "DYING_ABORT" : \
(state) == PROC_RUNNABLE_M ? "RUNNABLE_M" : \
(state) == PROC_RUNNING_M ? "RUNNING_M" : \
"UNKNOWN")
#define DEFAULT_PROGNAME ""
#include <env.h>
static bool proc_is_dying(struct proc *p)
{
return (p->state == PROC_DYING) || (p->state == PROC_DYING_ABORT);
}
struct process_set {
size_t num_processes;
size_t size;
struct proc **procs;
};
/* Can use a htable iterator to iterate through all active procs */
extern struct hashtable *pid_hash;
extern spinlock_t pid_hash_lock;
/* Initialization */
void proc_init(void);
void proc_set_username(struct proc *p, char *name);
void proc_inherit_parent_username(struct proc *child, struct proc *parent);
void proc_set_progname(struct proc *p, char *name);
void proc_replace_binary_path(struct proc *p, char *path);
void proc_init_procinfo(struct proc* p);
void proc_init_procdata(struct proc* p);
/* Process management: */
struct proc *pid_nth(unsigned int n);
error_t proc_alloc(struct proc **pp, struct proc *parent, int flags);
void __proc_ready(struct proc *p);
struct proc *proc_create(struct file_or_chan *prog, char **argv, char **envp);
int __proc_set_state(struct proc *p, uint32_t state);
struct proc *pid2proc(pid_t pid);
bool proc_controls(struct proc *actor, struct proc *target);
void proc_incref(struct proc *p, unsigned int val);
void proc_decref(struct proc *p);
void proc_run_s(struct proc *p);
void __proc_run_m(struct proc *p);
void __proc_startcore(struct proc *p, struct user_context *ctx);
void proc_restartcore(void);
void proc_destroy(struct proc *p);
void proc_signal_parent(struct proc *child);
int __proc_disown_child(struct proc *parent, struct proc *child);
int proc_change_to_m(struct proc *p);
void __proc_save_fpu_s(struct proc *p);
void __proc_save_context_s(struct proc *p);
void proc_yield(struct proc *p, bool being_nice);
void proc_notify(struct proc *p, uint32_t vcoreid);
void proc_wakeup(struct proc *p);
bool __proc_is_mcp(struct proc *p);
bool proc_is_vcctx_ready(struct proc *p);
int proc_change_to_vcore(struct proc *p, uint32_t new_vcoreid,
bool enable_my_notif);
void proc_get_set(struct process_set *pset);
void proc_free_set(struct process_set *pset);
/* Vcoremap info: */
uint32_t proc_get_vcoreid(struct proc *p);
/* TODO: make all of these inline once we gut the Env crap */
bool vcore_is_mapped(struct proc *p, uint32_t vcoreid);
uint32_t vcore2vcoreid(struct proc *p, struct vcore *vc);
struct vcore *vcoreid2vcore(struct proc *p, uint32_t vcoreid);
/* Process core management. Only call these if you are RUNNING_M or RUNNABLE_M.
* These all adjust the vcoremap and take appropriate actions (like __startcore
* if you were already RUNNING_M. You could be RUNNABLE_M with no vcores when
* these are done (basically preempted, and waiting to get run again).
*
* These are internal functions. Error checking is to catch bugs, and you
* shouldn't call these functions with parameters you are not sure about (like
* an invalid corelist).
*
* WARNING: YOU MUST HOLD THE PROC_LOCK BEFORE CALLING THESE! */
/* Gives process p the additional num cores listed in corelist */
int __proc_give_cores(struct proc *p, uint32_t *pc_arr, uint32_t num);
/* Takes from process p the num cores listed in pc_arr */
void __proc_take_corelist(struct proc *p, uint32_t *pc_arr, uint32_t num,
bool preempt);
/* Takes all cores, returns the count, fills in pc_arr with their pcoreid */
uint32_t __proc_take_allcores(struct proc *p, uint32_t *pc_arr, bool preempt);
/* Exposed for now for convenience */
void __map_vcore(struct proc *p, uint32_t vcoreid, uint32_t pcoreid);
void __unmap_vcore(struct proc *p, uint32_t vcoreid);
void vcore_account_online(struct proc *p, uint32_t vcoreid);
void vcore_account_offline(struct proc *p, uint32_t vcoreid);
uint64_t vcore_account_gettotal(struct proc *p, uint32_t vcoreid);
/* Preemption management. Some of these will change */
void __proc_preempt_warn(struct proc *p, uint32_t vcoreid, uint64_t when);
void __proc_preempt_warnall(struct proc *p, uint64_t when);
void __proc_preempt_core(struct proc *p, uint32_t pcoreid);
uint32_t __proc_preempt_all(struct proc *p, uint32_t *pc_arr);
bool proc_preempt_core(struct proc *p, uint32_t pcoreid, uint64_t usec);
void proc_preempt_all(struct proc *p, uint64_t usec);
/* Current / cr3 / context management */
uintptr_t switch_to(struct proc *new_p);
void switch_back(struct proc *new_p, uintptr_t old_ret);
bool abandon_core(void);
void clear_owning_proc(uint32_t coreid);
void proc_tlbshootdown(struct proc *p, uintptr_t start, uintptr_t end);
/* Kernel message handlers for process management */
void __startcore(uint32_t srcid, long a0, long a1, long a2);
void __set_curctx(uint32_t srcid, long a0, long a1, long a2);
void __notify(uint32_t srcid, long a0, long a1, long a2);
void __preempt(uint32_t srcid, long a0, long a1, long a2);
void __death(uint32_t srcid, long a0, long a1, long a2);
void __tlbshootdown(uint32_t srcid, long a0, long a1, long a2);
/* Arch Specific */
void proc_pop_ctx(struct user_context *ctx) __attribute__((noreturn));
void proc_init_ctx(struct user_context *ctx, uint32_t vcoreid, uintptr_t entryp,
uintptr_t stack_top, uintptr_t tls_desc);
void proc_secure_ctx(struct user_context *ctx);
void __abandon_core(void);
void __clear_owning_proc(uint32_t coreid);
/* Degubbing */
void print_allpids(void);
void print_proc_info(pid_t pid, int verbosity);