blob: 0a645e5c3e1d434968b26d258abbc845ae72f993 [file] [log] [blame]
/*
* fortuna.c
* Fortuna-like PRNG.
*
* Copyright (c) 2005 Marko Kreen
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* contrib/pgcrypto/fortuna.c
*/
#include <arch/arch.h>
#include <time.h>
#include <random/fortuna.h>
#include <random/rijndael.h>
#include <random/sha2.h>
/*
* Why Fortuna-like: There does not seem to be any definitive reference
* on Fortuna in the net. Instead this implementation is based on
* following references:
*
* http://en.wikipedia.org/wiki/Fortuna_(PRNG)
* - Wikipedia article
* http://jlcooke.ca/random/
* - Jean-Luc Cooke Fortuna-based /dev/random driver for Linux.
*/
/*
* There is some confusion about whether and how to carry forward
* the state of the pools. Seems like original Fortuna does not
* do it, resetting hash after each request. I guess expecting
* feeding to happen more often that requesting. This is absolutely
* unsuitable for pgcrypto, as nothing asynchronous happens here.
*
* J.L. Cooke fixed this by feeding previous hash to new re-initialized
* hash context.
*
* Fortuna predecessor Yarrow requires ability to query intermediate
* 'final result' from hash, without affecting it.
*
* This implementation uses the Yarrow method - asking intermediate
* results, but continuing with old state.
*/
/*
* Algorithm parameters
*/
/*
* How many pools.
*
* Original Fortuna uses 32 pools, that means 32'th pool is
* used not earlier than in 13th year. This is a waste in
* pgcrypto, as we have very low-frequancy seeding. Here
* is preferable to have all entropy usable in reasonable time.
*
* With 23 pools, 23th pool is used after 9 days which seems
* more sane.
*
* In our case the minimal cycle time would be bit longer
* than the system-randomness feeding frequency.
*/
enum { numPools = 23,
/* in microseconds */
reseedInterval = 100000, /* 0.1 sec */
/* for one big request, reseed after this many bytes */
reseedBytes = (1024 * 1024),
/*
* Skip reseed if pool 0 has less than this many
* bytes added since last reseed.
*/
pool0Fill = (256 / 8),
/*
* Algorithm constants
*/
/* Both cipher key size and hash result size */
block = 32,
/* cipher block size */
ciphBlock = 16 };
/* for internal wrappers */
typedef SHA256Ctx mdCtx;
typedef rijndaelCtx ciphCtx;
struct FState {
uint8_t counter[ciphBlock];
uint8_t result[ciphBlock];
uint8_t key[block];
mdCtx pool[numPools];
ciphCtx ciph;
unsigned reseedCount;
int32_t lastReseedTime;
unsigned pool0Bytes;
unsigned rndPos;
int tricksDone;
};
typedef struct FState FState;
/*
* Use our own wrappers here.
* - Need to get intermediate result from digest, without affecting it.
* - Need re-set key on a cipher context.
* - Algorithms are guaranteed to exist.
* - No memory allocations.
*/
static void ciph_init(ciphCtx *ctx, const uint8_t *key, int klen)
{
rijndael_set_key(ctx, (const uint32_t *)key, klen, 1);
}
static void ciph_encrypt(ciphCtx *ctx, const uint8_t *in, uint8_t *out)
{
rijndael_encrypt(ctx, (const uint32_t *)in, (uint32_t *)out);
}
static void md_init(mdCtx *ctx)
{
SHA256_Init(ctx);
}
static void md_update(mdCtx *ctx, const uint8_t *data, int len)
{
SHA256_Update(ctx, data, len);
}
static void md_result(mdCtx *ctx, uint8_t *dst)
{
SHA256Ctx tmp;
memmove(&tmp, ctx, sizeof(*ctx));
SHA256_Final(dst, &tmp);
memset(&tmp, 0, sizeof(tmp));
}
/*
* initialize state
*/
static void init_state(FState *st)
{
int i;
memset(st, 0, sizeof(*st));
for (i = 0; i < numPools; i++)
md_init(&st->pool[i]);
}
/*
* Endianess does not matter.
* It just needs to change without repeating.
*/
static void inc_counter(FState *st)
{
uint32_t *val = (uint32_t *)st->counter;
if (++val[0])
return;
if (++val[1])
return;
if (++val[2])
return;
++val[3];
}
/*
* This is called 'cipher in counter mode'.
*/
static void encrypt_counter(FState *st, uint8_t *dst)
{
ciph_encrypt(&st->ciph, st->counter, dst);
inc_counter(st);
}
/*
* The time between reseed must be at least reseedInterval
* microseconds.
*/
static int enough_time_passed(FState *st)
{
int ok;
int32_t now;
int32_t last = st->lastReseedTime;
now = tsc2sec(read_tsc());
/* check how much time has passed */
ok = 0;
if (now - last >= reseedInterval)
ok = 1;
/* reseed will happen, update lastReseedTime */
if (ok)
st->lastReseedTime = now;
return ok;
}
/*
* generate new key from all the pools
*/
static void reseed(FState *st)
{
unsigned k;
unsigned n;
mdCtx key_md;
uint8_t buf[block];
/* set pool as empty */
st->pool0Bytes = 0;
/*
* Both #0 and #1 reseed would use only pool 0. Just skip #0 then.
*/
n = ++st->reseedCount;
/*
* The goal: use k-th pool only 1/(2^k) of the time.
*/
md_init(&key_md);
for (k = 0; k < numPools; k++) {
md_result(&st->pool[k], buf);
md_update(&key_md, buf, block);
if (n & 1 || !n)
break;
n >>= 1;
}
/* add old key into mix too */
md_update(&key_md, st->key, block);
/* now we have new key */
md_result(&key_md, st->key);
/* use new key */
ciph_init(&st->ciph, st->key, block);
memset(&key_md, 0, sizeof(key_md));
memset(buf, 0, block);
}
/*
* Pick a random pool. This uses key bytes as random source.
*/
static unsigned get_rand_pool(FState *st)
{
unsigned rnd;
/*
* This slightly prefers lower pools - thats OK.
*/
rnd = st->key[st->rndPos] % numPools;
st->rndPos++;
if (st->rndPos >= block)
st->rndPos = 0;
return rnd;
}
/*
* update pools
*/
static void add_entropy(FState *st, const uint8_t *data, unsigned len)
{
unsigned pos;
uint8_t hash[block];
mdCtx md;
/* hash given data */
md_init(&md);
md_update(&md, data, len);
md_result(&md, hash);
/*
* Make sure the pool 0 is initialized, then update randomly.
*/
if (st->reseedCount == 0)
pos = 0;
else
pos = get_rand_pool(st);
md_update(&st->pool[pos], hash, block);
if (pos == 0)
st->pool0Bytes += len;
memset(hash, 0, block);
memset(&md, 0, sizeof(md));
}
/*
* Just take 2 next blocks as new key
*/
static void rekey(FState *st)
{
encrypt_counter(st, st->key);
encrypt_counter(st, st->key + ciphBlock);
ciph_init(&st->ciph, st->key, block);
}
/*
* Hide public constants. (counter, pools > 0)
*
* This can also be viewed as spreading the startup
* entropy over all of the components.
*/
static void startup_tricks(FState *st)
{
int i;
uint8_t buf[block];
/* Use next block as counter. */
encrypt_counter(st, st->counter);
/* Now shuffle pools, excluding #0 */
for (i = 1; i < numPools; i++) {
encrypt_counter(st, buf);
encrypt_counter(st, buf + ciphBlock);
md_update(&st->pool[i], buf, block);
}
memset(buf, 0, block);
/* Hide the key. */
rekey(st);
/* This can be done only once. */
st->tricksDone = 1;
}
static void extract_data(FState *st, unsigned count, uint8_t *dst)
{
unsigned n;
unsigned block_nr = 0;
/* Should we reseed? */
if (st->pool0Bytes >= pool0Fill || st->reseedCount == 0)
if (enough_time_passed(st))
reseed(st);
/* Do some randomization on first call */
if (!st->tricksDone)
startup_tricks(st);
while (count > 0) {
/* produce bytes */
encrypt_counter(st, st->result);
/* copy result */
if (count > ciphBlock)
n = ciphBlock;
else
n = count;
memmove(dst, st->result, n);
dst += n;
count -= n;
/* must not give out too many bytes with one key */
block_nr++;
if (block_nr > (reseedBytes / ciphBlock)) {
rekey(st);
block_nr = 0;
}
}
/* Set new key for next request. */
rekey(st);
}
static FState mainState;
static int initDone;
static void init()
{
init_state(&mainState);
initDone = 1;
}
/*
* public interface
*/
void fortuna_add_entropy(const uint8_t *data, unsigned len)
{
if (!initDone)
init();
if (!data || !len)
return;
add_entropy(&mainState, data, len);
}
void fortuna_get_bytes(unsigned len, uint8_t *dst)
{
if (!initDone)
init();
if (!dst || !len)
return;
extract_data(&mainState, len, dst);
}