blob: 94da1b2d297e5453abf2a0f75221033e23c3b746 [file] [log] [blame]
/* $OpenBSD: rijndael.c,v 1.6 2000/12/09 18:51:34 markus Exp $ */
/* contrib/pgcrypto/rijndael.c */
/* This is an independent implementation of the encryption algorithm: */
/* */
/* RIJNDAEL by Joan Daemen and Vincent Rijmen
*/
/* */
/* which is a candidate algorithm in the Advanced Encryption Standard */
/* programme of the US National Institute of Standards and Technology. */
/* */
/* Copyright in this implementation is held by Dr B R Gladman but I
*/
/* hereby give permission for its free direct or derivative use subject */
/* to acknowledgment of its origin and compliance with any conditions */
/* that the originators of the algorithm place on its exploitation.
*/
/* */
/* Dr Brian Gladman (gladman@seven77.demon.co.uk) 14th January 1999
*/
/* Timing data for Rijndael (rijndael.c)
Algorithm: rijndael (rijndael.c)
128 bit key:
Key Setup: 305/1389 cycles (encrypt/decrypt)
Encrypt: 374 cycles = 68.4 mbits/sec
Decrypt: 352 cycles = 72.7 mbits/sec
Mean: 363 cycles = 70.5 mbits/sec
192 bit key:
Key Setup: 277/1595 cycles (encrypt/decrypt)
Encrypt: 439 cycles = 58.3 mbits/sec
Decrypt: 425 cycles = 60.2 mbits/sec
Mean: 432 cycles = 59.3 mbits/sec
256 bit key:
Key Setup: 374/1960 cycles (encrypt/decrypt)
Encrypt: 502 cycles = 51.0 mbits/sec
Decrypt: 498 cycles = 51.4 mbits/sec
Mean: 500 cycles = 51.2 mbits/sec
*/
#include <random/rijndael.h>
#include "rijndael.tbl"
/* 3. Basic macros for speeding up generic operations */
/* Circular rotate of 32 bit values
*/
#define rotr(x, n) (((x) >> ((int)(n))) | ((x) << (32 - (int)(n))))
#define rotl(x, n) (((x) << ((int)(n))) | ((x) >> (32 - (int)(n))))
/* Invert byte order in a 32 bit variable
*/
#define bswap(x) ((rotl((x), 8) & 0x00ff00ff) | (rotr((x), 8) & 0xff00ff00))
/* Extract byte from a 32 bit quantity (little endian notation) */
#define byte(x, n) ((uint8_t)((x) >> (8 * (n))))
#define io_swap(x) (x)
#define ff_mult(a, b) \
((a) && (b) ? pow_tab[(log_tab[a] + log_tab[b]) % 255] : 0)
#define f_rn(bo, bi, n, k) \
(bo)[n] = ft_tab[0][byte((bi)[n], 0)] ^ \
ft_tab[1][byte((bi)[((n) + 1) & 3], 1)] ^ \
ft_tab[2][byte((bi)[((n) + 2) & 3], 2)] ^ \
ft_tab[3][byte((bi)[((n) + 3) & 3], 3)] ^ *((k) + (n))
#define i_rn(bo, bi, n, k) \
(bo)[n] = it_tab[0][byte((bi)[n], 0)] ^ \
it_tab[1][byte((bi)[((n) + 3) & 3], 1)] ^ \
it_tab[2][byte((bi)[((n) + 2) & 3], 2)] ^ \
it_tab[3][byte((bi)[((n) + 1) & 3], 3)] ^ *((k) + (n))
#define ls_box(x) \
(fl_tab[0][byte(x, 0)] ^ fl_tab[1][byte(x, 1)] ^ \
fl_tab[2][byte(x, 2)] ^ fl_tab[3][byte(x, 3)])
#define f_rl(bo, bi, n, k) \
(bo)[n] = fl_tab[0][byte((bi)[n], 0)] ^ \
fl_tab[1][byte((bi)[((n) + 1) & 3], 1)] ^ \
fl_tab[2][byte((bi)[((n) + 2) & 3], 2)] ^ \
fl_tab[3][byte((bi)[((n) + 3) & 3], 3)] ^ *((k) + (n))
#define i_rl(bo, bi, n, k) \
(bo)[n] = il_tab[0][byte((bi)[n], 0)] ^ \
il_tab[1][byte((bi)[((n) + 3) & 3], 1)] ^ \
il_tab[2][byte((bi)[((n) + 2) & 3], 2)] ^ \
il_tab[3][byte((bi)[((n) + 1) & 3], 3)] ^ *((k) + (n))
#define star_x(x) (((x)&0x7f7f7f7f) << 1) ^ ((((x)&0x80808080) >> 7) * 0x1b)
#define imix_col(y, x) \
do { \
u = star_x(x); \
v = star_x(u); \
w = star_x(v); \
t = w ^ (x); \
(y) = u ^ v ^ w; \
(y) ^= rotr(u ^ t, 8) ^ rotr(v ^ t, 16) ^ rotr(t, 24); \
} while (0)
/* initialise the key schedule from the user supplied key */
#define loop4(i) \
do { \
t = ls_box(rotr(t, 8)) ^ rco_tab[i]; \
t ^= e_key[4 * i]; \
e_key[4 * i + 4] = t; \
t ^= e_key[4 * i + 1]; \
e_key[4 * i + 5] = t; \
t ^= e_key[4 * i + 2]; \
e_key[4 * i + 6] = t; \
t ^= e_key[4 * i + 3]; \
e_key[4 * i + 7] = t; \
} while (0)
#define loop6(i) \
do { \
t = ls_box(rotr(t, 8)) ^ rco_tab[i]; \
t ^= e_key[6 * (i)]; \
e_key[6 * (i) + 6] = t; \
t ^= e_key[6 * (i) + 1]; \
e_key[6 * (i) + 7] = t; \
t ^= e_key[6 * (i) + 2]; \
e_key[6 * (i) + 8] = t; \
t ^= e_key[6 * (i) + 3]; \
e_key[6 * (i) + 9] = t; \
t ^= e_key[6 * (i) + 4]; \
e_key[6 * (i) + 10] = t; \
t ^= e_key[6 * (i) + 5]; \
e_key[6 * (i) + 11] = t; \
} while (0)
#define loop8(i) \
do { \
t = ls_box(rotr(t, 8)) ^ rco_tab[i]; \
t ^= e_key[8 * (i)]; \
e_key[8 * (i) + 8] = t; \
t ^= e_key[8 * (i) + 1]; \
e_key[8 * (i) + 9] = t; \
t ^= e_key[8 * (i) + 2]; \
e_key[8 * (i) + 10] = t; \
t ^= e_key[8 * (i) + 3]; \
e_key[8 * (i) + 11] = t; \
t = e_key[8 * (i) + 4] ^ ls_box(t); \
e_key[8 * (i) + 12] = t; \
t ^= e_key[8 * (i) + 5]; \
e_key[8 * (i) + 13] = t; \
t ^= e_key[8 * (i) + 6]; \
e_key[8 * (i) + 14] = t; \
t ^= e_key[8 * (i) + 7]; \
e_key[8 * (i) + 15] = t; \
} while (0)
rijndaelCtx *rijndael_set_key(rijndaelCtx *ctx, const uint32_t *in_key,
const uint32_t key_len, int encrypt)
{
uint32_t i, t, u, v, w;
uint32_t *e_key = ctx->e_key;
uint32_t *d_key = ctx->d_key;
ctx->decrypt = !encrypt;
ctx->k_len = (key_len + 31) / 32;
e_key[0] = io_swap(in_key[0]);
e_key[1] = io_swap(in_key[1]);
e_key[2] = io_swap(in_key[2]);
e_key[3] = io_swap(in_key[3]);
switch (ctx->k_len) {
case 4:
t = e_key[3];
for (i = 0; i < 10; ++i)
loop4(i);
break;
case 6:
e_key[4] = io_swap(in_key[4]);
t = e_key[5] = io_swap(in_key[5]);
for (i = 0; i < 8; ++i)
loop6(i);
break;
case 8:
e_key[4] = io_swap(in_key[4]);
e_key[5] = io_swap(in_key[5]);
e_key[6] = io_swap(in_key[6]);
t = e_key[7] = io_swap(in_key[7]);
for (i = 0; i < 7; ++i)
loop8(i);
break;
}
if (!encrypt) {
d_key[0] = e_key[0];
d_key[1] = e_key[1];
d_key[2] = e_key[2];
d_key[3] = e_key[3];
for (i = 4; i < 4 * ctx->k_len + 24; ++i)
imix_col(d_key[i], e_key[i]);
}
return ctx;
}
/* encrypt a block of text */
#define f_nround(bo, bi, k) \
do { \
f_rn(bo, bi, 0, k); \
f_rn(bo, bi, 1, k); \
f_rn(bo, bi, 2, k); \
f_rn(bo, bi, 3, k); \
k += 4; \
} while (0)
#define f_lround(bo, bi, k) \
do { \
f_rl(bo, bi, 0, k); \
f_rl(bo, bi, 1, k); \
f_rl(bo, bi, 2, k); \
f_rl(bo, bi, 3, k); \
} while (0)
void rijndael_encrypt(rijndaelCtx *ctx, const uint32_t *in_blk,
uint32_t *out_blk)
{
uint32_t k_len = ctx->k_len;
uint32_t *e_key = ctx->e_key;
uint32_t b0[4], b1[4], *kp;
b0[0] = io_swap(in_blk[0]) ^ e_key[0];
b0[1] = io_swap(in_blk[1]) ^ e_key[1];
b0[2] = io_swap(in_blk[2]) ^ e_key[2];
b0[3] = io_swap(in_blk[3]) ^ e_key[3];
kp = e_key + 4;
if (k_len > 6) {
f_nround(b1, b0, kp);
f_nround(b0, b1, kp);
}
if (k_len > 4) {
f_nround(b1, b0, kp);
f_nround(b0, b1, kp);
}
f_nround(b1, b0, kp);
f_nround(b0, b1, kp);
f_nround(b1, b0, kp);
f_nround(b0, b1, kp);
f_nround(b1, b0, kp);
f_nround(b0, b1, kp);
f_nround(b1, b0, kp);
f_nround(b0, b1, kp);
f_nround(b1, b0, kp);
f_lround(b0, b1, kp);
out_blk[0] = io_swap(b0[0]);
out_blk[1] = io_swap(b0[1]);
out_blk[2] = io_swap(b0[2]);
out_blk[3] = io_swap(b0[3]);
}
/* decrypt a block of text */
#define i_nround(bo, bi, k) \
do { \
i_rn(bo, bi, 0, k); \
i_rn(bo, bi, 1, k); \
i_rn(bo, bi, 2, k); \
i_rn(bo, bi, 3, k); \
k -= 4; \
} while (0)
#define i_lround(bo, bi, k) \
do { \
i_rl(bo, bi, 0, k); \
i_rl(bo, bi, 1, k); \
i_rl(bo, bi, 2, k); \
i_rl(bo, bi, 3, k); \
} while (0)
void rijndael_decrypt(rijndaelCtx *ctx, const uint32_t *in_blk,
uint32_t *out_blk)
{
uint32_t b0[4], b1[4], *kp;
uint32_t k_len = ctx->k_len;
uint32_t *e_key = ctx->e_key;
uint32_t *d_key = ctx->d_key;
b0[0] = io_swap(in_blk[0]) ^ e_key[4 * k_len + 24];
b0[1] = io_swap(in_blk[1]) ^ e_key[4 * k_len + 25];
b0[2] = io_swap(in_blk[2]) ^ e_key[4 * k_len + 26];
b0[3] = io_swap(in_blk[3]) ^ e_key[4 * k_len + 27];
kp = d_key + 4 * (k_len + 5);
if (k_len > 6) {
i_nround(b1, b0, kp);
i_nround(b0, b1, kp);
}
if (k_len > 4) {
i_nround(b1, b0, kp);
i_nround(b0, b1, kp);
}
i_nround(b1, b0, kp);
i_nround(b0, b1, kp);
i_nround(b1, b0, kp);
i_nround(b0, b1, kp);
i_nround(b1, b0, kp);
i_nround(b0, b1, kp);
i_nround(b1, b0, kp);
i_nround(b0, b1, kp);
i_nround(b1, b0, kp);
i_lround(b0, b1, kp);
out_blk[0] = io_swap(b0[0]);
out_blk[1] = io_swap(b0[1]);
out_blk[2] = io_swap(b0[2]);
out_blk[3] = io_swap(b0[3]);
}
/*
* conventional interface
*
* ATM it hopes all data is 4-byte aligned - which
* should be true for PX. -marko
*/
void aes_set_key(rijndaelCtx *ctx, const uint8_t *key, unsigned keybits,
int enc)
{
uint32_t *k;
k = (uint32_t *)key;
rijndael_set_key(ctx, k, keybits, enc);
}
void aes_ecb_encrypt(rijndaelCtx *ctx, uint8_t *data, unsigned len)
{
unsigned bs = 16;
uint32_t *d;
while (len >= bs) {
d = (uint32_t *)data;
rijndael_encrypt(ctx, d, d);
len -= bs;
data += bs;
}
}
void aes_ecb_decrypt(rijndaelCtx *ctx, uint8_t *data, unsigned len)
{
unsigned bs = 16;
uint32_t *d;
while (len >= bs) {
d = (uint32_t *)data;
rijndael_decrypt(ctx, d, d);
len -= bs;
data += bs;
}
}
void aes_cbc_encrypt(rijndaelCtx *ctx, uint8_t *iva, uint8_t *data,
unsigned len)
{
uint32_t *iv = (uint32_t *)iva;
uint32_t *d = (uint32_t *)data;
unsigned bs = 16;
while (len >= bs) {
d[0] ^= iv[0];
d[1] ^= iv[1];
d[2] ^= iv[2];
d[3] ^= iv[3];
rijndael_encrypt(ctx, d, d);
iv = d;
d += bs / 4;
len -= bs;
}
}
void aes_cbc_decrypt(rijndaelCtx *ctx, uint8_t *iva, uint8_t *data,
unsigned len)
{
uint32_t *d = (uint32_t *)data;
unsigned bs = 16;
uint32_t buf[4], iv[4];
memcpy(iv, iva, bs);
while (len >= bs) {
buf[0] = d[0];
buf[1] = d[1];
buf[2] = d[2];
buf[3] = d[3];
rijndael_decrypt(ctx, buf, d);
d[0] ^= iv[0];
d[1] ^= iv[1];
d[2] ^= iv[2];
d[3] ^= iv[3];
iv[0] = buf[0];
iv[1] = buf[1];
iv[2] = buf[2];
iv[3] = buf[3];
d += 4;
len -= bs;
}
}