| /* $OpenBSD: rijndael.c,v 1.6 2000/12/09 18:51:34 markus Exp $ */ |
| |
| /* contrib/pgcrypto/rijndael.c */ |
| |
| /* This is an independent implementation of the encryption algorithm: */ |
| /* */ |
| /* RIJNDAEL by Joan Daemen and Vincent Rijmen |
| */ |
| /* */ |
| /* which is a candidate algorithm in the Advanced Encryption Standard */ |
| /* programme of the US National Institute of Standards and Technology. */ |
| /* */ |
| /* Copyright in this implementation is held by Dr B R Gladman but I |
| */ |
| /* hereby give permission for its free direct or derivative use subject */ |
| /* to acknowledgment of its origin and compliance with any conditions */ |
| /* that the originators of the algorithm place on its exploitation. |
| */ |
| /* */ |
| /* Dr Brian Gladman (gladman@seven77.demon.co.uk) 14th January 1999 |
| */ |
| |
| /* Timing data for Rijndael (rijndael.c) |
| |
| Algorithm: rijndael (rijndael.c) |
| |
| 128 bit key: |
| Key Setup: 305/1389 cycles (encrypt/decrypt) |
| Encrypt: 374 cycles = 68.4 mbits/sec |
| Decrypt: 352 cycles = 72.7 mbits/sec |
| Mean: 363 cycles = 70.5 mbits/sec |
| |
| 192 bit key: |
| Key Setup: 277/1595 cycles (encrypt/decrypt) |
| Encrypt: 439 cycles = 58.3 mbits/sec |
| Decrypt: 425 cycles = 60.2 mbits/sec |
| Mean: 432 cycles = 59.3 mbits/sec |
| |
| 256 bit key: |
| Key Setup: 374/1960 cycles (encrypt/decrypt) |
| Encrypt: 502 cycles = 51.0 mbits/sec |
| Decrypt: 498 cycles = 51.4 mbits/sec |
| Mean: 500 cycles = 51.2 mbits/sec |
| |
| */ |
| |
| #include <random/rijndael.h> |
| |
| #include "rijndael.tbl" |
| |
| /* 3. Basic macros for speeding up generic operations */ |
| |
| /* Circular rotate of 32 bit values |
| */ |
| |
| #define rotr(x, n) (((x) >> ((int)(n))) | ((x) << (32 - (int)(n)))) |
| #define rotl(x, n) (((x) << ((int)(n))) | ((x) >> (32 - (int)(n)))) |
| |
| /* Invert byte order in a 32 bit variable |
| */ |
| |
| #define bswap(x) ((rotl((x), 8) & 0x00ff00ff) | (rotr((x), 8) & 0xff00ff00)) |
| |
| /* Extract byte from a 32 bit quantity (little endian notation) */ |
| |
| #define byte(x, n) ((uint8_t)((x) >> (8 * (n)))) |
| |
| #define io_swap(x) (x) |
| |
| #define ff_mult(a, b) \ |
| ((a) && (b) ? pow_tab[(log_tab[a] + log_tab[b]) % 255] : 0) |
| |
| #define f_rn(bo, bi, n, k) \ |
| (bo)[n] = ft_tab[0][byte((bi)[n], 0)] ^ \ |
| ft_tab[1][byte((bi)[((n) + 1) & 3], 1)] ^ \ |
| ft_tab[2][byte((bi)[((n) + 2) & 3], 2)] ^ \ |
| ft_tab[3][byte((bi)[((n) + 3) & 3], 3)] ^ *((k) + (n)) |
| |
| #define i_rn(bo, bi, n, k) \ |
| (bo)[n] = it_tab[0][byte((bi)[n], 0)] ^ \ |
| it_tab[1][byte((bi)[((n) + 3) & 3], 1)] ^ \ |
| it_tab[2][byte((bi)[((n) + 2) & 3], 2)] ^ \ |
| it_tab[3][byte((bi)[((n) + 1) & 3], 3)] ^ *((k) + (n)) |
| |
| #define ls_box(x) \ |
| (fl_tab[0][byte(x, 0)] ^ fl_tab[1][byte(x, 1)] ^ \ |
| fl_tab[2][byte(x, 2)] ^ fl_tab[3][byte(x, 3)]) |
| |
| #define f_rl(bo, bi, n, k) \ |
| (bo)[n] = fl_tab[0][byte((bi)[n], 0)] ^ \ |
| fl_tab[1][byte((bi)[((n) + 1) & 3], 1)] ^ \ |
| fl_tab[2][byte((bi)[((n) + 2) & 3], 2)] ^ \ |
| fl_tab[3][byte((bi)[((n) + 3) & 3], 3)] ^ *((k) + (n)) |
| |
| #define i_rl(bo, bi, n, k) \ |
| (bo)[n] = il_tab[0][byte((bi)[n], 0)] ^ \ |
| il_tab[1][byte((bi)[((n) + 3) & 3], 1)] ^ \ |
| il_tab[2][byte((bi)[((n) + 2) & 3], 2)] ^ \ |
| il_tab[3][byte((bi)[((n) + 1) & 3], 3)] ^ *((k) + (n)) |
| |
| #define star_x(x) (((x)&0x7f7f7f7f) << 1) ^ ((((x)&0x80808080) >> 7) * 0x1b) |
| |
| #define imix_col(y, x) \ |
| do { \ |
| u = star_x(x); \ |
| v = star_x(u); \ |
| w = star_x(v); \ |
| t = w ^ (x); \ |
| (y) = u ^ v ^ w; \ |
| (y) ^= rotr(u ^ t, 8) ^ rotr(v ^ t, 16) ^ rotr(t, 24); \ |
| } while (0) |
| |
| /* initialise the key schedule from the user supplied key */ |
| |
| #define loop4(i) \ |
| do { \ |
| t = ls_box(rotr(t, 8)) ^ rco_tab[i]; \ |
| t ^= e_key[4 * i]; \ |
| e_key[4 * i + 4] = t; \ |
| t ^= e_key[4 * i + 1]; \ |
| e_key[4 * i + 5] = t; \ |
| t ^= e_key[4 * i + 2]; \ |
| e_key[4 * i + 6] = t; \ |
| t ^= e_key[4 * i + 3]; \ |
| e_key[4 * i + 7] = t; \ |
| } while (0) |
| |
| #define loop6(i) \ |
| do { \ |
| t = ls_box(rotr(t, 8)) ^ rco_tab[i]; \ |
| t ^= e_key[6 * (i)]; \ |
| e_key[6 * (i) + 6] = t; \ |
| t ^= e_key[6 * (i) + 1]; \ |
| e_key[6 * (i) + 7] = t; \ |
| t ^= e_key[6 * (i) + 2]; \ |
| e_key[6 * (i) + 8] = t; \ |
| t ^= e_key[6 * (i) + 3]; \ |
| e_key[6 * (i) + 9] = t; \ |
| t ^= e_key[6 * (i) + 4]; \ |
| e_key[6 * (i) + 10] = t; \ |
| t ^= e_key[6 * (i) + 5]; \ |
| e_key[6 * (i) + 11] = t; \ |
| } while (0) |
| |
| #define loop8(i) \ |
| do { \ |
| t = ls_box(rotr(t, 8)) ^ rco_tab[i]; \ |
| t ^= e_key[8 * (i)]; \ |
| e_key[8 * (i) + 8] = t; \ |
| t ^= e_key[8 * (i) + 1]; \ |
| e_key[8 * (i) + 9] = t; \ |
| t ^= e_key[8 * (i) + 2]; \ |
| e_key[8 * (i) + 10] = t; \ |
| t ^= e_key[8 * (i) + 3]; \ |
| e_key[8 * (i) + 11] = t; \ |
| t = e_key[8 * (i) + 4] ^ ls_box(t); \ |
| e_key[8 * (i) + 12] = t; \ |
| t ^= e_key[8 * (i) + 5]; \ |
| e_key[8 * (i) + 13] = t; \ |
| t ^= e_key[8 * (i) + 6]; \ |
| e_key[8 * (i) + 14] = t; \ |
| t ^= e_key[8 * (i) + 7]; \ |
| e_key[8 * (i) + 15] = t; \ |
| } while (0) |
| |
| rijndaelCtx *rijndael_set_key(rijndaelCtx *ctx, const uint32_t *in_key, |
| const uint32_t key_len, int encrypt) |
| { |
| uint32_t i, t, u, v, w; |
| uint32_t *e_key = ctx->e_key; |
| uint32_t *d_key = ctx->d_key; |
| |
| ctx->decrypt = !encrypt; |
| |
| ctx->k_len = (key_len + 31) / 32; |
| |
| e_key[0] = io_swap(in_key[0]); |
| e_key[1] = io_swap(in_key[1]); |
| e_key[2] = io_swap(in_key[2]); |
| e_key[3] = io_swap(in_key[3]); |
| |
| switch (ctx->k_len) { |
| case 4: |
| t = e_key[3]; |
| for (i = 0; i < 10; ++i) |
| loop4(i); |
| break; |
| |
| case 6: |
| e_key[4] = io_swap(in_key[4]); |
| t = e_key[5] = io_swap(in_key[5]); |
| for (i = 0; i < 8; ++i) |
| loop6(i); |
| break; |
| |
| case 8: |
| e_key[4] = io_swap(in_key[4]); |
| e_key[5] = io_swap(in_key[5]); |
| e_key[6] = io_swap(in_key[6]); |
| t = e_key[7] = io_swap(in_key[7]); |
| for (i = 0; i < 7; ++i) |
| loop8(i); |
| break; |
| } |
| |
| if (!encrypt) { |
| d_key[0] = e_key[0]; |
| d_key[1] = e_key[1]; |
| d_key[2] = e_key[2]; |
| d_key[3] = e_key[3]; |
| |
| for (i = 4; i < 4 * ctx->k_len + 24; ++i) |
| imix_col(d_key[i], e_key[i]); |
| } |
| |
| return ctx; |
| } |
| |
| /* encrypt a block of text */ |
| |
| #define f_nround(bo, bi, k) \ |
| do { \ |
| f_rn(bo, bi, 0, k); \ |
| f_rn(bo, bi, 1, k); \ |
| f_rn(bo, bi, 2, k); \ |
| f_rn(bo, bi, 3, k); \ |
| k += 4; \ |
| } while (0) |
| |
| #define f_lround(bo, bi, k) \ |
| do { \ |
| f_rl(bo, bi, 0, k); \ |
| f_rl(bo, bi, 1, k); \ |
| f_rl(bo, bi, 2, k); \ |
| f_rl(bo, bi, 3, k); \ |
| } while (0) |
| |
| void rijndael_encrypt(rijndaelCtx *ctx, const uint32_t *in_blk, |
| uint32_t *out_blk) |
| { |
| uint32_t k_len = ctx->k_len; |
| uint32_t *e_key = ctx->e_key; |
| uint32_t b0[4], b1[4], *kp; |
| |
| b0[0] = io_swap(in_blk[0]) ^ e_key[0]; |
| b0[1] = io_swap(in_blk[1]) ^ e_key[1]; |
| b0[2] = io_swap(in_blk[2]) ^ e_key[2]; |
| b0[3] = io_swap(in_blk[3]) ^ e_key[3]; |
| |
| kp = e_key + 4; |
| |
| if (k_len > 6) { |
| f_nround(b1, b0, kp); |
| f_nround(b0, b1, kp); |
| } |
| |
| if (k_len > 4) { |
| f_nround(b1, b0, kp); |
| f_nround(b0, b1, kp); |
| } |
| |
| f_nround(b1, b0, kp); |
| f_nround(b0, b1, kp); |
| f_nround(b1, b0, kp); |
| f_nround(b0, b1, kp); |
| f_nround(b1, b0, kp); |
| f_nround(b0, b1, kp); |
| f_nround(b1, b0, kp); |
| f_nround(b0, b1, kp); |
| f_nround(b1, b0, kp); |
| f_lround(b0, b1, kp); |
| |
| out_blk[0] = io_swap(b0[0]); |
| out_blk[1] = io_swap(b0[1]); |
| out_blk[2] = io_swap(b0[2]); |
| out_blk[3] = io_swap(b0[3]); |
| } |
| |
| /* decrypt a block of text */ |
| |
| #define i_nround(bo, bi, k) \ |
| do { \ |
| i_rn(bo, bi, 0, k); \ |
| i_rn(bo, bi, 1, k); \ |
| i_rn(bo, bi, 2, k); \ |
| i_rn(bo, bi, 3, k); \ |
| k -= 4; \ |
| } while (0) |
| |
| #define i_lround(bo, bi, k) \ |
| do { \ |
| i_rl(bo, bi, 0, k); \ |
| i_rl(bo, bi, 1, k); \ |
| i_rl(bo, bi, 2, k); \ |
| i_rl(bo, bi, 3, k); \ |
| } while (0) |
| |
| void rijndael_decrypt(rijndaelCtx *ctx, const uint32_t *in_blk, |
| uint32_t *out_blk) |
| { |
| uint32_t b0[4], b1[4], *kp; |
| uint32_t k_len = ctx->k_len; |
| uint32_t *e_key = ctx->e_key; |
| uint32_t *d_key = ctx->d_key; |
| |
| b0[0] = io_swap(in_blk[0]) ^ e_key[4 * k_len + 24]; |
| b0[1] = io_swap(in_blk[1]) ^ e_key[4 * k_len + 25]; |
| b0[2] = io_swap(in_blk[2]) ^ e_key[4 * k_len + 26]; |
| b0[3] = io_swap(in_blk[3]) ^ e_key[4 * k_len + 27]; |
| |
| kp = d_key + 4 * (k_len + 5); |
| |
| if (k_len > 6) { |
| i_nround(b1, b0, kp); |
| i_nround(b0, b1, kp); |
| } |
| |
| if (k_len > 4) { |
| i_nround(b1, b0, kp); |
| i_nround(b0, b1, kp); |
| } |
| |
| i_nround(b1, b0, kp); |
| i_nround(b0, b1, kp); |
| i_nround(b1, b0, kp); |
| i_nround(b0, b1, kp); |
| i_nround(b1, b0, kp); |
| i_nround(b0, b1, kp); |
| i_nround(b1, b0, kp); |
| i_nround(b0, b1, kp); |
| i_nround(b1, b0, kp); |
| i_lround(b0, b1, kp); |
| |
| out_blk[0] = io_swap(b0[0]); |
| out_blk[1] = io_swap(b0[1]); |
| out_blk[2] = io_swap(b0[2]); |
| out_blk[3] = io_swap(b0[3]); |
| } |
| |
| /* |
| * conventional interface |
| * |
| * ATM it hopes all data is 4-byte aligned - which |
| * should be true for PX. -marko |
| */ |
| |
| void aes_set_key(rijndaelCtx *ctx, const uint8_t *key, unsigned keybits, |
| int enc) |
| { |
| uint32_t *k; |
| |
| k = (uint32_t *)key; |
| rijndael_set_key(ctx, k, keybits, enc); |
| } |
| |
| void aes_ecb_encrypt(rijndaelCtx *ctx, uint8_t *data, unsigned len) |
| { |
| unsigned bs = 16; |
| uint32_t *d; |
| |
| while (len >= bs) { |
| d = (uint32_t *)data; |
| rijndael_encrypt(ctx, d, d); |
| |
| len -= bs; |
| data += bs; |
| } |
| } |
| |
| void aes_ecb_decrypt(rijndaelCtx *ctx, uint8_t *data, unsigned len) |
| { |
| unsigned bs = 16; |
| uint32_t *d; |
| |
| while (len >= bs) { |
| d = (uint32_t *)data; |
| rijndael_decrypt(ctx, d, d); |
| |
| len -= bs; |
| data += bs; |
| } |
| } |
| |
| void aes_cbc_encrypt(rijndaelCtx *ctx, uint8_t *iva, uint8_t *data, |
| unsigned len) |
| { |
| uint32_t *iv = (uint32_t *)iva; |
| uint32_t *d = (uint32_t *)data; |
| unsigned bs = 16; |
| |
| while (len >= bs) { |
| d[0] ^= iv[0]; |
| d[1] ^= iv[1]; |
| d[2] ^= iv[2]; |
| d[3] ^= iv[3]; |
| |
| rijndael_encrypt(ctx, d, d); |
| |
| iv = d; |
| d += bs / 4; |
| len -= bs; |
| } |
| } |
| |
| void aes_cbc_decrypt(rijndaelCtx *ctx, uint8_t *iva, uint8_t *data, |
| unsigned len) |
| { |
| uint32_t *d = (uint32_t *)data; |
| unsigned bs = 16; |
| uint32_t buf[4], iv[4]; |
| |
| memcpy(iv, iva, bs); |
| while (len >= bs) { |
| buf[0] = d[0]; |
| buf[1] = d[1]; |
| buf[2] = d[2]; |
| buf[3] = d[3]; |
| |
| rijndael_decrypt(ctx, buf, d); |
| |
| d[0] ^= iv[0]; |
| d[1] ^= iv[1]; |
| d[2] ^= iv[2]; |
| d[3] ^= iv[3]; |
| |
| iv[0] = buf[0]; |
| iv[1] = buf[1]; |
| iv[2] = buf[2]; |
| iv[3] = buf[3]; |
| d += 4; |
| len -= bs; |
| } |
| } |