|  | /* Copyright (c) 2009, 2012, 2015 The Regents of the University of California | 
|  | * Barret Rhoden <brho@cs.berkeley.edu> | 
|  | * Valmon Leymarie <leymariv@berkeley.edu> | 
|  | * Kevin Klues <klueska@cs.berkeley.edu> | 
|  | * See LICENSE for details. | 
|  | */ | 
|  |  | 
|  | #include <arch/topology.h> | 
|  | #include <sys/queue.h> | 
|  | #include <env.h> | 
|  | #include <corerequest.h> | 
|  | #include <kmalloc.h> | 
|  |  | 
|  | /* The pcores in the system. (array gets alloced in init()).  */ | 
|  | struct sched_pcore *all_pcores; | 
|  |  | 
|  | /* TAILQ of all unallocated, idle (CG) cores */ | 
|  | struct sched_pcore_tailq idlecores = TAILQ_HEAD_INITIALIZER(idlecores); | 
|  |  | 
|  | /* Initialize any data assocaited with doing core allocation. */ | 
|  | void corealloc_init(void) | 
|  | { | 
|  | /* Allocate all of our pcores. */ | 
|  | all_pcores = kzmalloc(sizeof(struct sched_pcore) * num_cores, 0); | 
|  | /* init the idlecore list.  if they turned off hyperthreading, give them | 
|  | * the odds from 1..max-1.  otherwise, give them everything by 0 | 
|  | * (default mgmt core).  TODO: (CG/LL) better LL/CG mgmt */ | 
|  | for (int i = 0; i < num_cores; i++) { | 
|  | if (is_ll_core(i)) | 
|  | continue; | 
|  | #ifdef CONFIG_DISABLE_SMT | 
|  | /* Remove all odd cores from consideration for allocation. */ | 
|  | if (i % 2 == 1) | 
|  | continue; | 
|  | #endif /* CONFIG_DISABLE_SMT */ | 
|  | TAILQ_INSERT_TAIL(&idlecores, pcoreid2spc(i), alloc_next); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Initialize any data associated with allocating cores to a process. */ | 
|  | void corealloc_proc_init(struct proc *p) | 
|  | { | 
|  | TAILQ_INIT(&p->ksched_data.crd.prov_alloc_me); | 
|  | TAILQ_INIT(&p->ksched_data.crd.prov_not_alloc_me); | 
|  | } | 
|  |  | 
|  | /* Find the best core to allocate to a process as dictated by the core | 
|  | * allocation algorithm. This code assumes that the scheduler that uses it | 
|  | * holds a lock for the duration of the call. */ | 
|  | uint32_t __find_best_core_to_alloc(struct proc *p) | 
|  | { | 
|  | struct sched_pcore *spc_i = NULL; | 
|  |  | 
|  | spc_i = TAILQ_FIRST(&p->ksched_data.crd.prov_not_alloc_me); | 
|  | if (!spc_i) | 
|  | spc_i = TAILQ_FIRST(&idlecores); | 
|  | if (!spc_i) | 
|  | return -1; | 
|  | return spc2pcoreid(spc_i); | 
|  | } | 
|  |  | 
|  | /* Track the pcore properly when it is allocated to p. This code assumes that | 
|  | * the scheduler that uses it holds a lock for the duration of the call. */ | 
|  | void __track_core_alloc(struct proc *p, uint32_t pcoreid) | 
|  | { | 
|  | struct sched_pcore *spc; | 
|  |  | 
|  | assert(pcoreid < num_cores);	/* catch bugs */ | 
|  | spc = pcoreid2spc(pcoreid); | 
|  | assert(spc->alloc_proc != p);	/* corruption or double-alloc */ | 
|  | spc->alloc_proc = p; | 
|  | /* if the pcore is prov to them and now allocated, move lists */ | 
|  | if (spc->prov_proc == p) { | 
|  | TAILQ_REMOVE(&p->ksched_data.crd.prov_not_alloc_me, spc, | 
|  | prov_next); | 
|  | TAILQ_INSERT_TAIL(&p->ksched_data.crd.prov_alloc_me, spc, | 
|  | prov_next); | 
|  | } | 
|  | /* Actually allocate the core, removing it from the idle core list. */ | 
|  | TAILQ_REMOVE(&idlecores, spc, alloc_next); | 
|  | } | 
|  |  | 
|  | /* Track the pcore properly when it is deallocated from p. This code assumes | 
|  | * that the scheduler that uses it holds a lock for the duration of the call. | 
|  | * */ | 
|  | void __track_core_dealloc(struct proc *p, uint32_t pcoreid) | 
|  | { | 
|  | struct sched_pcore *spc; | 
|  |  | 
|  | assert(pcoreid < num_cores);	/* catch bugs */ | 
|  | spc = pcoreid2spc(pcoreid); | 
|  | spc->alloc_proc = 0; | 
|  | /* if the pcore is prov to them and now deallocated, move lists */ | 
|  | if (spc->prov_proc == p) { | 
|  | TAILQ_REMOVE(&p->ksched_data.crd.prov_alloc_me, spc, prov_next); | 
|  | /* this is the victim list, which can be sorted so that we pick | 
|  | * the right victim (sort by alloc_proc reverse priority, etc). | 
|  | * In this case, the core isn't alloc'd by anyone, so it should | 
|  | * be the first victim. */ | 
|  | TAILQ_INSERT_HEAD(&p->ksched_data.crd.prov_not_alloc_me, spc, | 
|  | prov_next); | 
|  | } | 
|  | /* Actually dealloc the core, putting it back on the idle core list. */ | 
|  | TAILQ_INSERT_TAIL(&idlecores, spc, alloc_next); | 
|  | } | 
|  |  | 
|  | /* Bulk interface for __track_core_dealloc */ | 
|  | void __track_core_dealloc_bulk(struct proc *p, uint32_t *pc_arr, | 
|  | uint32_t nr_cores) | 
|  | { | 
|  | for (int i = 0; i < nr_cores; i++) | 
|  | __track_core_dealloc(p, pc_arr[i]); | 
|  | } | 
|  |  | 
|  | /* One off function to make 'pcoreid' the next core chosen by the core | 
|  | * allocation algorithm (so long as no provisioned cores are still idle). | 
|  | * This code assumes that the scheduler that uses it holds a lock for the | 
|  | * duration of the call. */ | 
|  | void __next_core_to_alloc(uint32_t pcoreid) | 
|  | { | 
|  | struct sched_pcore *spc_i; | 
|  | bool match = FALSE; | 
|  |  | 
|  | TAILQ_FOREACH(spc_i, &idlecores, alloc_next) { | 
|  | if (spc2pcoreid(spc_i) == pcoreid) { | 
|  | match = TRUE; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (match) { | 
|  | TAILQ_REMOVE(&idlecores, spc_i, alloc_next); | 
|  | TAILQ_INSERT_HEAD(&idlecores, spc_i, alloc_next); | 
|  | printk("Pcore %d will be given out next (from the idles)\n", | 
|  | pcoreid); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* One off function to sort the idle core list for debugging in the kernel | 
|  | * monitor. This code assumes that the scheduler that uses it holds a lock | 
|  | * for the duration of the call. */ | 
|  | void __sort_idle_cores(void) | 
|  | { | 
|  | struct sched_pcore *spc_i, *spc_j, *temp; | 
|  | struct sched_pcore_tailq sorter = TAILQ_HEAD_INITIALIZER(sorter); | 
|  | bool added; | 
|  |  | 
|  | TAILQ_CONCAT(&sorter, &idlecores, alloc_next); | 
|  | TAILQ_FOREACH_SAFE(spc_i, &sorter, alloc_next, temp) { | 
|  | TAILQ_REMOVE(&sorter, spc_i, alloc_next); | 
|  | added = FALSE; | 
|  | /* don't need foreach_safe since we break after we muck with the | 
|  | * list */ | 
|  | TAILQ_FOREACH(spc_j, &idlecores, alloc_next) { | 
|  | if (spc_i < spc_j) { | 
|  | TAILQ_INSERT_BEFORE(spc_j, spc_i, alloc_next); | 
|  | added = TRUE; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (!added) | 
|  | TAILQ_INSERT_TAIL(&idlecores, spc_i, alloc_next); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Print the map of idle cores that are still allocatable through our core | 
|  | * allocation algorithm. */ | 
|  | void print_idle_core_map(void) | 
|  | { | 
|  | struct sched_pcore *spc_i; | 
|  | /* not locking, so we can look at this without deadlocking. */ | 
|  | printk("Idle cores (unlocked!):\n"); | 
|  | TAILQ_FOREACH(spc_i, &idlecores, alloc_next) | 
|  | printk("Core %d, prov to %d (%p)\n", spc2pcoreid(spc_i), | 
|  | spc_i->prov_proc ? spc_i->prov_proc->pid : 0, | 
|  | spc_i->prov_proc); | 
|  | } |