blob: 79cd19d48da76892b623727ed1352c5554009262 [file] [log] [blame]
// Simple command-line kernel monitor useful for
// controlling the kernel and exploring the system interactively.
#include <arch/arch.h>
#include <smp.h>
#include <arch/console.h>
#include <stdio.h>
#include <string.h>
#include <assert.h>
#include <monitor.h>
#include <trap.h>
#include <pmap.h>
#include <kdebug.h>
#include <testing.h>
#include <manager.h>
#include <schedule.h>
#include <kdebug.h>
#include <syscall.h>
#include <kmalloc.h>
#include <elf.h>
#include <event.h>
#include <trap.h>
#include <time.h>
#include <percpu.h>
#include <kprof.h>
#include <ros/memlayout.h>
#include <ros/event.h>
#define CMDBUF_SIZE 80 // enough for one VGA text line
typedef struct command {
const char *name;
const char *desc;
// return -1 to force monitor to exit
int (*func)(int argc, char **argv, struct hw_trapframe *hw_tf);
} command_t;
static command_t commands[] = {
{ "help", "Display this list of commands", mon_help },
{ "kerninfo", "Display information about the kernel", mon_kerninfo },
{ "backtrace", "Dump a backtrace", mon_backtrace },
{ "bt", "Dump a backtrace", mon_backtrace },
{ "reboot", "Take a ride to the South Bay", mon_reboot },
{ "showmapping", "Shows VA->PA mappings", mon_showmapping},
{ "sm", "Shows VA->PA mappings", mon_sm},
{ "cpuinfo", "Prints CPU diagnostics", mon_cpuinfo},
{ "ps", "Prints process list", mon_ps},
{ "nanwan", "Meet Nanwan!!", mon_nanwan},
{ "bin_run", "Create and run a program from /bin", mon_bin_run},
{ "manager", "Run the manager", mon_manager},
{ "procinfo", "Show information about processes", mon_procinfo},
{ "pip", "Shorthand for procinfo pid", mon_pip},
{ "kill", "Kills a process", mon_kill},
{ "exit", "Leave the monitor", mon_exit},
{ "e", "Leave the monitor", mon_exit},
{ "kfunc", "Run a kernel function directly (!!!)", mon_kfunc},
{ "notify", "Notify a process. Vcoreid will skip their prefs", mon_notify},
{ "measure", "Run a specific measurement", mon_measure},
{ "trace", "Run some tracing functions", mon_trace},
{ "monitor", "Run the monitor on another core", mon_monitor},
{ "sh", "Try to run a shell (bash)", mon_shell},
{ "bash", "Try to run a shell (bash)", mon_shell},
{ "bb", "Try to run a shell (bash)", mon_shell},
{ "alarm", "Alarm Diagnostics", mon_alarm},
{ "msr", "read/write msr: msr msr [value]", mon_msr},
{ "db", "Misc debugging", mon_db},
{ "px", "Toggle printx", mon_px},
{ "kpfret", "Attempt to idle after a kernel fault", mon_kpfret},
{ "ks", "Kernel scheduler hacks", mon_ks},
{ "coreinfo", "Print diagnostics for a core", mon_coreinfo},
{ "hexdump", "Hexdump PID's memory (0 for kernel)", mon_hexdump},
{ "hd", "Hexdump PID's memory (0 for kernel)", mon_hexdump},
{ "pahexdump", "Hexdump physical memory", mon_pahexdump},
{ "phd", "Hexdump physical memory", mon_pahexdump},
{ "dmesg", "Dump the dmesg buffer", mon_dmesg},
};
#define NCOMMANDS (sizeof(commands)/sizeof(commands[0]))
/***** Implementations of basic kernel monitor commands *****/
int mon_help(int argc, char **argv, struct hw_trapframe *hw_tf)
{
int i;
for (i = 0; i < NCOMMANDS; i++)
cprintf("%s - %s\n", commands[i].name, commands[i].desc);
return 0;
}
int mon_ps(int argc, char** argv, struct hw_trapframe *hw_tf)
{
print_allpids();
return 0;
}
int mon_kerninfo(int argc, char **argv, struct hw_trapframe *hw_tf)
{
extern char _start[], etext[], end[];
printk("Special kernel symbols:\n");
printk(" _start %016x (virt) %016x (phys)\n", _start,
(uintptr_t)(_start - KERNBASE));
printk(" etext %016x (virt) %016x (phys)\n", etext,
(uintptr_t)(etext - KERNBASE));
printk(" end %016x (virt) %016x (phys)\n", end,
(uintptr_t)(end - KERNBASE));
printk("Kernel executable memory footprint: %dKB\n",
(uint32_t)(end-_start + 1023)/1024);
return 0;
}
static int __backtrace(int argc, char **argv, struct hw_trapframe *hw_tf)
{
uintptr_t pc, fp;
if (argc == 1) {
backtrace();
return 0;
}
if (argc != 3) {
printk("Need either no arguments, or two (PC and FP) in hex\n");
return 1;
}
pc = strtol(argv[1], 0, 16);
fp = strtol(argv[2], 0, 16);
print_lock();
printk("Backtrace from instruction %p, with frame pointer %p\n", pc,
fp);
backtrace_frame(pc, fp);
print_unlock();
return 0;
}
int mon_backtrace(int argc, char **argv, struct hw_trapframe *hw_tf)
{
return __backtrace(argc, argv, hw_tf);
}
int mon_reboot(int argc, char **argv, struct hw_trapframe *hw_tf)
{
cprintf("[Scottish Accent]: She's goin' down, Cap'n!\n");
reboot();
// really, should never see this
cprintf("Sigh....\n");
return 0;
}
static int __showmapping(int argc, char **argv, struct hw_trapframe *hw_tf)
{
struct proc *p = NULL;
uintptr_t start;
size_t size;
pgdir_t pgdir;
pid_t pid;
if (argc < 3) {
printk("Shows virt -> phys mappings for a virt addr range.\n");
printk("Usage: showmapping PID START_ADDR [END_ADDR]\n");
printk(" PID == 0 for the boot pgdir\n");
return 1;
}
pid = strtol(argv[1], 0, 10);
if (!pid) {
pgdir = boot_pgdir;
} else {
p = pid2proc(pid);
if (!p) {
printk("No proc with pid %d\n", pid);
return 1;
}
pgdir = p->env_pgdir;
}
start = ROUNDDOWN(strtol(argv[2], 0, 16), PGSIZE);
size = (argc == 3) ? 1 : strtol(argv[3], 0, 16) - start;
if (size/PGSIZE > 512) {
cprintf("Not going to do this for more than 512 items\n");
return 1;
}
show_mapping(pgdir, start, size);
if (p)
proc_decref(p);
return 0;
}
int mon_showmapping(int argc, char **argv, struct hw_trapframe *hw_tf)
{
return __showmapping(argc, argv, hw_tf);
}
int mon_sm(int argc, char **argv, struct hw_trapframe *hw_tf)
{
return __showmapping(argc, argv, hw_tf);
}
static void print_info_handler(struct hw_trapframe *hw_tf, void *data)
{
uint64_t tsc = read_tsc();
print_lock();
cprintf("----------------------------\n");
cprintf("This is Core %d\n", core_id());
cprintf("Timestamp = %lld\n", tsc);
#ifdef CONFIG_X86
cprintf("Hardware core %d\n", hw_core_id());
cprintf("MTRR_DEF_TYPE = 0x%08x\n", read_msr(IA32_MTRR_DEF_TYPE));
cprintf("MTRR Phys0 Base = 0x%016llx, Mask = 0x%016llx\n",
read_msr(0x200), read_msr(0x201));
cprintf("MTRR Phys1 Base = 0x%016llx, Mask = 0x%016llx\n",
read_msr(0x202), read_msr(0x203));
cprintf("MTRR Phys2 Base = 0x%016llx, Mask = 0x%016llx\n",
read_msr(0x204), read_msr(0x205));
cprintf("MTRR Phys3 Base = 0x%016llx, Mask = 0x%016llx\n",
read_msr(0x206), read_msr(0x207));
cprintf("MTRR Phys4 Base = 0x%016llx, Mask = 0x%016llx\n",
read_msr(0x208), read_msr(0x209));
cprintf("MTRR Phys5 Base = 0x%016llx, Mask = 0x%016llx\n",
read_msr(0x20a), read_msr(0x20b));
cprintf("MTRR Phys6 Base = 0x%016llx, Mask = 0x%016llx\n",
read_msr(0x20c), read_msr(0x20d));
cprintf("MTRR Phys7 Base = 0x%016llx, Mask = 0x%016llx\n",
read_msr(0x20e), read_msr(0x20f));
#endif // CONFIG_X86
cprintf("----------------------------\n");
print_unlock();
}
static bool print_all_info(void)
{
cprintf("\nCORE 0 asking all cores to print info:\n");
smp_call_function_all(print_info_handler, NULL, 0);
cprintf("\nDone!\n");
return true;
}
int mon_cpuinfo(int argc, char **argv, struct hw_trapframe *hw_tf)
{
cprintf("Number of Cores detected: %d\n", num_cores);
cprintf("Calling CPU's ID: 0x%08x\n", core_id());
if (argc < 2)
smp_call_function_self(print_info_handler, NULL, 0);
else
smp_call_function_single(strtol(argv[1], 0, 10),
print_info_handler, NULL, 0);
return 0;
}
int mon_manager(int argc, char** argv, struct hw_trapframe *hw_tf)
{
manager();
panic("should never get here");
return 0;
}
int mon_nanwan(int argc, char **argv, struct hw_trapframe *hw_tf)
{
/* Borrowed with love from http://www.geocities.com/SoHo/7373/zoo.htm
* (http://www.ascii-art.com/). Slightly modified to make it 25 lines
* tall. */
print_lock();
printk("\n");
printk(" .-. .-.\n");
printk(" | \\/ |\n");
printk(" /, ,_ `'-.\n");
printk(" .-|\\ /`\\ '. \n");
printk(" .' 0/ | 0\\ \\_ `\". \n");
printk(" .-' _,/ '--'.'|#''---'\n");
printk(" `--' | / \\#\n");
printk(" | / \\#\n");
printk(" \\ ;|\\ .\\#\n");
printk(" |' ' // \\ ::\\# \n");
printk(" \\ /` \\ ':\\#\n");
printk(" `\"` \\.. \\#\n");
printk(" \\::. \\#\n");
printk(" \\:: \\#\n");
printk(" \\' .:\\#\n");
printk(" \\ :::\\#\n");
printk(" \\ '::\\#\n");
printk(" \\ \\#\n");
printk(" \\:. \\#\n");
printk(" \\:: \\#\n");
printk(" \\' .\\#\n");
printk(" jgs \\ ::\\#\n");
printk(" \\ \n");
print_unlock();
return 0;
}
int mon_bin_run(int argc, char **argv, struct hw_trapframe *hw_tf)
{
if (argc < 2) {
printk("Usage: bin_run FILENAME\n");
return 1;
}
struct file_or_chan *program;
int retval = 0;
char buf[5 + MAX_FILENAME_SZ + 1] = "/bin/"; /* /bin/ + max + \0 */
strlcpy(buf, "/bin/", sizeof(buf));
if (strlcat(buf, argv[1], sizeof(buf)) > sizeof(buf)) {
printk("Filename '%s' too long!\n", argv[1]);
return 1;
}
program = foc_open(buf, O_EXEC | O_READ, 0);
if (!program) {
printk("No such program!\n");
return 1;
}
char **p_argv = kmalloc(sizeof(char*) * argc, 0); /* bin_run's argc */
for (int i = 0; i < argc - 1; i++)
p_argv[i] = argv[i + 1];
p_argv[argc - 1] = 0;
/* super ugly: we need to stash current, so that proc_create doesn't
* pick up on random processes running here and assuming they are the
* parent */
struct proc *old_cur = current;
current = 0;
struct proc *p = proc_create(program, p_argv, NULL);
current = old_cur;
kfree(p_argv);
proc_wakeup(p);
proc_decref(p); /* let go of the reference created in proc_create() */
foc_decref(program);
/* Make a scheduling decision. You might not get the process you
* created, in the event there are others floating around that are
* runnable */
run_scheduler();
/* want to idle, so we un the process we just selected. this is a bit
* hackish, but so is the monitor. */
smp_idle();
assert(0);
return 0;
}
int mon_procinfo(int argc, char **argv, struct hw_trapframe *hw_tf)
{
int verbosity = 0;
if (argc < 2) {
printk("Usage: procinfo OPTION\n");
printk("\tall: show all active pids\n");
printk("\tpid NUM: show a lot of info for proc NUM\n");
printk("\tunlock: unlock the lock for the ADDR (OMG!!!)\n");
printk("\tkill NUM: destroy proc NUM\n");
return 1;
}
if (!strcmp(argv[1], "all")) {
print_allpids();
} else if (!strcmp(argv[1], "pid")) {
if (argc < 3) {
printk("Give me a pid number.\n");
return 1;
}
if (argc >= 4)
verbosity = strtol(argv[3], 0, 0);
print_proc_info(strtol(argv[2], 0, 0), verbosity);
} else if (!strcmp(argv[1], "unlock")) {
if (argc != 3) {
printk("Gimme lock address! Me want lock address!.\n");
return 1;
}
spinlock_t *lock = (spinlock_t*)strtol(argv[2], 0, 16);
if (!lock) {
printk("Null address...\n");
return 1;
}
spin_unlock(lock);
} else if (!strcmp(argv[1], "kill")) {
if (argc != 3) {
printk("Give me a pid number.\n");
return 1;
}
struct proc *p = pid2proc(strtol(argv[2], 0, 0));
if (!p) {
printk("No such proc\n");
return 1;
}
proc_destroy(p);
proc_decref(p);
} else {
printk("Bad option\n");
return 1;
}
return 0;
}
int mon_pip(int argc, char **argv, struct hw_trapframe *hw_tf)
{
int verbosity = 0;
if (argc < 2) {
printk("Give me a pid number.\n");
return 1;
}
if (argc >= 3)
verbosity = strtol(argv[2], 0, 0);
print_proc_info(strtol(argv[1], 0, 0), verbosity);
return 0;
}
int mon_kill(int argc, char **argv, struct hw_trapframe *hw_tf)
{
struct proc *p;
if (argc < 2) {
printk("Usage: kill PID\n");
return 1;
}
p = pid2proc(strtol(argv[1], 0, 0));
if (!p) {
printk("No such proc\n");
return 1;
}
p->exitcode = 1; /* typical EXIT_FAILURE */
proc_destroy(p);
proc_decref(p);
return 0;
}
int mon_exit(int argc, char **argv, struct hw_trapframe *hw_tf)
{
return -1;
}
int mon_kfunc(int argc, char **argv, struct hw_trapframe *hw_tf)
{
long ret;
long (*func)(void *arg, ...);
if (argc < 2) {
printk("Usage: kfunc FUNCTION [arg1] [arg2] [etc]\n");
printk("Use 0x with hex arguments. Can take 6 args.\n");
return 1;
}
func = (void*)get_symbol_addr(argv[1]);
if (!func) {
printk("Function not found.\n");
return 1;
}
/* Not elegant, but whatever. maybe there's a better syntax, or we can
* do it with asm magic. */
switch (argc) {
case 2: /* have to fake one arg */
ret = func((void*)0);
break;
case 3: /* the real first arg */
ret = func((void*)strtol(argv[2], 0, 0));
break;
case 4:
ret = func((void*)strtol(argv[2], 0, 0),
strtol(argv[3], 0, 0));
break;
case 5:
ret = func((void*)strtol(argv[2], 0, 0),
strtol(argv[3], 0, 0),
strtol(argv[4], 0, 0));
break;
case 6:
ret = func((void*)strtol(argv[2], 0, 0),
strtol(argv[3], 0, 0),
strtol(argv[4], 0, 0),
strtol(argv[5], 0, 0));
break;
case 7:
ret = func((void*)strtol(argv[2], 0, 0),
strtol(argv[3], 0, 0),
strtol(argv[4], 0, 0),
strtol(argv[5], 0, 0),
strtol(argv[6], 0, 0));
break;
case 8:
ret = func((void*)strtol(argv[2], 0, 0),
strtol(argv[3], 0, 0),
strtol(argv[4], 0, 0),
strtol(argv[5], 0, 0),
strtol(argv[6], 0, 0),
strtol(argv[7], 0, 0));
break;
default:
printk("Bad number of arguments.\n");
return -1;
}
printk("%s (might have) returned %p\n", argv[1], ret);
return 0;
}
/* Sending a vcoreid forces an event and an IPI/notification */
int mon_notify(int argc, char **argv, struct hw_trapframe *hw_tf)
{
struct proc *p;
uint32_t vcoreid;
struct event_msg msg = {0};
if (argc < 3) {
printk("Usage: notify PID NUM [VCOREID]\n");
return 1;
}
p = pid2proc(strtol(argv[1], 0, 0));
if (!p) {
printk("No such proc\n");
return 1;
}
msg.ev_type = strtol(argv[2], 0, 0);
if (argc == 4) {
vcoreid = strtol(argv[3], 0, 0);
/* This will go to the private mbox */
post_vcore_event(p, &msg, vcoreid, EVENT_VCORE_PRIVATE);
proc_notify(p, vcoreid);
} else {
/* o/w, try and do what they want */
send_kernel_event(p, &msg, 0);
}
proc_decref(p);
return 0;
}
/* Micro-benchmarky Measurements. This is really fragile code that probably
* won't work perfectly, esp as the kernel evolves. */
int mon_measure(int argc, char **argv, struct hw_trapframe *hw_tf)
{
uint64_t begin = 0, diff = 0;
uint32_t end_refcnt = 0;
if (argc < 2) {
printk("Usage: measure OPTION\n");
printk("\tkill PID : kill proc PID\n");
printk("\tpreempt PID : preempt proc PID (no delay)\n");
printk("\tpreempt PID [pcore] : preempt PID's pcore (no delay)\n");
printk("\tpreempt-warn PID : warn-preempt proc PID (pending)\n");
printk("\tpreempt-warn PID [pcore] : warn-preempt proc PID's pcore\n");
printk("\tpreempt-raw PID : raw-preempt proc PID\n");
printk("\tpreempt-raw PID [pcore] : raw-preempt proc PID's pcore\n");
return 1;
}
if (!strcmp(argv[1], "kill")) {
if (argc < 3) {
printk("Give me a pid number.\n");
return 1;
}
struct proc *p = pid2proc(strtol(argv[2], 0, 0));
if (!p) {
printk("No such proc\n");
return 1;
}
begin = start_timing();
#ifdef CONFIG_APPSERVER
printk("Warning: inaccurate due to the appserver.\n");
end_refcnt = kref_refcnt(&p->p_kref) - p->procinfo->num_vcores
- 1;
#endif /* CONFIG_APPSERVER */
proc_destroy(p);
proc_decref(p);
#ifdef CONFIG_APPSERVER
/* Won't be that accurate, since it's not actually going through
* the __proc_free() path. */
spin_on(kref_refcnt(&p->p_kref) != end_refcnt);
#else
/* this is a little ghetto. it's not fully free yet, but we are
* also slowing it down by messing with it, esp with the busy
* waiting on a hyperthreaded core. */
spin_on(p->env_cr3);
#endif /* CONFIG_APPSERVER */
/* No noticeable difference using stop_timing instead of
* read_tsc() */
diff = stop_timing(begin);
} else if (!strcmp(argv[1], "preempt")) {
if (argc < 3) {
printk("Give me a pid number.\n");
return 1;
}
struct proc *p = pid2proc(strtol(argv[2], 0, 0));
if (!p) {
printk("No such proc\n");
return 1;
}
if (argc == 4) {
/* single core being preempted, warned but no delay */
uint32_t pcoreid = strtol(argv[3], 0, 0);
begin = start_timing();
if (proc_preempt_core(p, pcoreid, 1000000)) {
__sched_put_idle_core(p, pcoreid);
/* done when unmapped (right before abandoning)
* */
spin_on(p->procinfo->pcoremap[pcoreid].valid);
} else {
printk("Core %d was not mapped to proc\n",
pcoreid);
}
diff = stop_timing(begin);
} else {
/* preempt all cores, warned but no delay */
end_refcnt = kref_refcnt(&p->p_kref)
- p->procinfo->num_vcores;
begin = start_timing();
proc_preempt_all(p, 1000000);
/* a little ghetto, implies no one is using p */
spin_on(kref_refcnt(&p->p_kref) != end_refcnt);
diff = stop_timing(begin);
}
proc_decref(p);
} else if (!strcmp(argv[1], "preempt-warn")) {
if (argc < 3) {
printk("Give me a pid number.\n");
return 1;
}
struct proc *p = pid2proc(strtol(argv[2], 0, 0));
if (!p) {
printk("No such proc\n");
return 1;
}
printk("if this hangs, then the process isn't responding.\n");
if (argc == 4) {
/* single core being preempted-warned */
uint32_t pcoreid = strtol(argv[3], 0, 0);
spin_lock(&p->proc_lock);
uint32_t vcoreid =
p->procinfo->pcoremap[pcoreid].vcoreid;
if (!p->procinfo->pcoremap[pcoreid].valid) {
printk("Pick a mapped pcore\n");
spin_unlock(&p->proc_lock);
return 1;
}
begin = start_timing();
__proc_preempt_warn(p, vcoreid, 1000000); // 1 sec
spin_unlock(&p->proc_lock);
/* done when unmapped (right before abandoning) */
spin_on(p->procinfo->pcoremap[pcoreid].valid);
diff = stop_timing(begin);
} else {
/* preempt-warn all cores */
printk("this won't work if they can't yield their last vcore, will stop at 1!\n");
spin_lock(&p->proc_lock);
begin = start_timing();
__proc_preempt_warnall(p, 1000000);
spin_unlock(&p->proc_lock);
/* target cores do the unmapping / changing of the
* num_vcores */
spin_on(p->procinfo->num_vcores > 1);
diff = stop_timing(begin);
}
proc_decref(p);
} else if (!strcmp(argv[1], "preempt-raw")) {
if (argc < 3) {
printk("Give me a pid number.\n");
return 1;
}
struct proc *p = pid2proc(strtol(argv[2], 0, 0));
if (!p) {
printk("No such proc\n");
return 1;
}
if (argc == 4) {
/* single core preempted, no warning or waiting */
uint32_t pcoreid = strtol(argv[3], 0, 0);
spin_lock(&p->proc_lock);
if (!p->procinfo->pcoremap[pcoreid].valid) {
printk("Pick a mapped pcore\n");
spin_unlock(&p->proc_lock);
return 1;
}
begin = start_timing();
__proc_preempt_core(p, pcoreid);
if (!p->procinfo->num_vcores)
__proc_set_state(p, PROC_RUNNABLE_M);
spin_unlock(&p->proc_lock);
/* ghetto, since the ksched should be calling all of
* this */
__sched_put_idle_core(p, pcoreid);
/* done when unmapped (right before abandoning) */
spin_on(p->procinfo->pcoremap[pcoreid].valid);
diff = stop_timing(begin);
} else {
/* preempt all cores, no warning or waiting */
spin_lock(&p->proc_lock);
uint32_t pc_arr[p->procinfo->num_vcores];
uint32_t num_revoked;
end_refcnt = kref_refcnt(&p->p_kref)
- p->procinfo->num_vcores;
begin = start_timing();
num_revoked = __proc_preempt_all(p, pc_arr);
__proc_set_state(p, PROC_RUNNABLE_M);
spin_unlock(&p->proc_lock);
if (num_revoked)
__sched_put_idle_cores(p, pc_arr, num_revoked);
/* a little ghetto, implies no one else is using p */
spin_on(kref_refcnt(&p->p_kref) != end_refcnt);
diff = stop_timing(begin);
}
proc_decref(p);
} else {
printk("Bad option\n");
return 1;
}
printk("[Tired Giraffe Accent] Took %llu usec (%llu nsec) to finish.\n",
tsc2usec(diff), tsc2nsec(diff));
return 0;
}
static bool mon_verbose_trace = FALSE;
static DEFINE_PERCPU(bool, mon_nmi_trace);
static void emit_hwtf_backtrace(struct hw_trapframe *hw_tf)
{
if (mon_verbose_trace) {
printk("\n");
print_trapframe(hw_tf);
backtrace_hwtf(hw_tf);
}
printk("Core %d is at %p (%s)\n", core_id(), get_hwtf_pc(hw_tf),
get_fn_name(get_hwtf_pc(hw_tf)));
}
static void emit_vmtf_backtrace(struct vm_trapframe *vm_tf)
{
if (mon_verbose_trace) {
printk("\n");
print_vmtrapframe(vm_tf);
}
printk("Core %d is at %p\n", core_id(), get_vmtf_pc(vm_tf));
}
/* This is dangerous and could cause a deadlock, since it runs in NMI context.
* It's only for monitor debugging, so YMMV. We pass the type since the kernel
* doesn't deal in contexts (yet) */
void emit_monitor_backtrace(int type, void *tf)
{
if (!PERCPU_VAR(mon_nmi_trace))
return;
/* To prevent a spew of output during a lot of perf NMIs, we'll turn off
* the monitor output as soon as any NMI hits our core. */
PERCPU_VAR(mon_nmi_trace) = FALSE;
print_lock();
if (type == ROS_HW_CTX)
emit_hwtf_backtrace((struct hw_trapframe*)tf);
else
emit_vmtf_backtrace((struct vm_trapframe*)tf);
print_kmsgs(core_id());
print_unlock();
}
int mon_trace(int argc, char **argv, struct hw_trapframe *hw_tf)
{
int core;
if (argc < 2) {
printk("Usage: trace OPTION\n");
printk("\tsyscall start [silent (0 or non-zero, NOT the word silent)] [pid]: starts tracing\n");
printk("\tsyscall stop: stops tracing.\n");
printk("\tcoretf COREID: prints PC, -1 for all cores, verbose => TF\n");
printk("\tpcpui [type [coreid]]: runs pcpui trace ring handlers\n");
printk("\tpcpui-reset [noclear]: resets/clears pcpui trace ring\n");
printk("\tverbose: toggles verbosity, depends on trace command\n");
return 1;
}
if (!strcmp(argv[1], "syscall")) {
if (argc < 3) {
printk("Need a start or stop.\n");
return 1;
}
if (!strcmp(argv[2], "start")) {
systrace_loud = TRUE;
} else if (!strcmp(argv[2], "stop")) {
systrace_loud = FALSE;
} else {
printk("Need a start or stop.\n");
return 1;
}
} else if (!strcmp(argv[1], "coretf")) {
if (argc != 3) {
printk("Need a coreid, fool.\n");
return 1;
}
core = strtol(argv[2], 0, 0);
if (core < 0) {
printk("Sending NMIs to all cores:\n");
for (int i = 0; i < num_cores; i++) {
_PERCPU_VAR(mon_nmi_trace, i) = TRUE;
send_nmi(i);
udelay(1000000);
}
} else {
printk("Sending NMI core %d:\n", core);
if (core >= num_cores) {
printk("No such core! Maybe it's in another cell...\n");
return 1;
}
_PERCPU_VAR(mon_nmi_trace, core) = TRUE;
send_nmi(core);
}
udelay(1000000);
} else if (!strcmp(argv[1], "pcpui")) {
int pcpui_type, pcpui_coreid;
if (argc >= 3)
pcpui_type = strtol(argv[2], 0, 0);
else
pcpui_type = 0;
printk("\nRunning PCPUI Trace Ring handlers for type %d\n",
pcpui_type);
if (argc >= 4) {
pcpui_coreid = strtol(argv[3], 0, 0);
pcpui_tr_foreach(pcpui_coreid, pcpui_type);
} else {
pcpui_tr_foreach_all(pcpui_type);
}
} else if (!strcmp(argv[1], "pcpui-reset")) {
if (argc >= 3) {
printk("\nResetting all PCPUI Trace Rings\n");
pcpui_tr_reset_all();
} else {
printk("\nResetting/clearing all PCPUI Trace Rings\n");
pcpui_tr_reset_and_clear_all();
}
} else if (!strcmp(argv[1], "verbose")) {
if (mon_verbose_trace) {
printk("Turning trace verbosity off\n");
mon_verbose_trace = FALSE;
} else {
printk("Turning trace verbosity on\n");
mon_verbose_trace = TRUE;
}
} else if (!strcmp(argv[1], "opt2")) {
if (argc != 3) {
printk("ERRRRRRRRRR.\n");
return 1;
}
print_proc_info(strtol(argv[2], 0, 0), 0);
} else {
printk("Bad option\n");
return 1;
}
return 0;
}
int mon_monitor(int argc, char **argv, struct hw_trapframe *hw_tf)
{
if (argc < 2) {
printk("Usage: monitor COREID\n");
return 1;
}
uint32_t core = strtol(argv[1], 0, 0);
if (core >= num_cores) {
printk("No such core! Maybe it's in another cell...\n");
return 1;
}
send_kernel_message(core, __run_mon, 0, 0, 0, KMSG_ROUTINE);
return 0;
}
/***** Kernel monitor command interpreter *****/
#define WHITESPACE "\t\r\n "
#define MAXARGS 16
int onecmd(int argc, char *argv[], struct hw_trapframe *hw_tf) {
int i;
if (!argc)
return -1;
for (i = 0; i < NCOMMANDS; i++) {
if (strcmp(argv[0], commands[i].name) == 0)
return commands[i].func(argc, argv, hw_tf);
}
return -1;
}
void __run_mon(uint32_t srcid, long a0, long a1, long a2)
{
monitor(0);
}
static int runcmd(char *real_buf, struct hw_trapframe *hw_tf) {
char * buf = real_buf;
int argc;
char *argv[MAXARGS];
int i;
// Parse the command buffer into whitespace-separated arguments
argc = 0;
argv[argc] = 0;
/* Discard initial 'm ', which is a common mistake when using 'm' a lot
*/
if ((buf[0] == 'm') && (buf[1] == ' '))
buf += 2;
while (1) {
// gobble whitespace
while (*buf && strchr(WHITESPACE, *buf))
*buf++ = 0;
if (*buf == 0)
break;
// save and scan past next arg
if (argc == MAXARGS-1) {
cprintf("Too many arguments (max %d)\n", MAXARGS);
return 0;
}
//This will get fucked at runtime..... in the ASS
argv[argc++] = buf;
while (*buf && !strchr(WHITESPACE, *buf))
buf++;
}
argv[argc] = 0;
// Lookup and invoke the command
if (argc == 0)
return 0;
for (i = 0; i < NCOMMANDS; i++) {
if (strcmp(argv[0], commands[i].name) == 0)
return commands[i].func(argc, argv, hw_tf);
}
cprintf("Unknown command '%s'\n", argv[0]);
return 0;
}
void monitor(struct hw_trapframe *hw_tf)
{
#define MON_CMD_LENGTH 256
char buf[MON_CMD_LENGTH];
int cnt;
int coreid = core_id_early();
/* they are always disabled, since we have this irqsave lock */
if (irq_is_enabled())
printk("Entering Nanwan's Dungeon on Core %d (Ints on):\n",
coreid);
else
printk("Entering Nanwan's Dungeon on Core %d (Ints off):\n",
coreid);
printk("Type 'help' for a list of commands.\n");
if (hw_tf != NULL)
print_trapframe(hw_tf);
while (1) {
/* on occasion, the kernel monitor can migrate (like if you run
* something that blocks / syncs and wakes up on another core)
*/
cmb();
cnt = readline(buf, MON_CMD_LENGTH, "ROS(Core %d)> ",
core_id_early());
if (cnt > 0) {
buf[cnt] = 0;
if (runcmd(buf, hw_tf) < 0)
break;
}
}
}
int mon_shell(int argc, char **argv, struct hw_trapframe *hw_tf)
{
char *l_argv[2] = {"/bin/bash", "bash"};
return mon_bin_run(2, l_argv, hw_tf);
}
int mon_alarm(int argc, char **argv, struct hw_trapframe *hw_tf)
{
if (argc < 2) {
printk("Usage: alarm OPTION\n");
printk("\tpcpu: print full alarm tchains from every core\n");
return 1;
}
if (!strcmp(argv[1], "pcpu")) {
print_pcpu_chains();
} else {
printk("Bad option\n");
return 1;
}
return 0;
}
static void show_msr(struct hw_trapframe *unused, void *v)
{
int core = core_id();
uint64_t val;
uint32_t msr = *(uint32_t *)v;
val = read_msr(msr);
printk("%d: %08x: %016llx\n", core, msr, val);
}
struct set {
uint32_t msr;
uint64_t val;
};
static void set_msr(struct hw_trapframe *unused, void *v)
{
int core = core_id();
struct set *s = v;
uint32_t msr = s->msr;
uint64_t val = s->val;
write_msr(msr, val);
val = read_msr(msr);
printk("%d: %08x: %016llx\n", core, msr, val);
}
int mon_msr(int argc, char **argv, struct hw_trapframe *hw_tf)
{
#ifndef CONFIG_X86
cprintf("Not on this architecture\n");
return 1;
#else
uint64_t val;
uint32_t msr;
if (argc < 2 || argc > 3) {
printk("Usage: msr register [value]\n");
return 1;
}
msr = strtoul(argv[1], 0, 16);
handler_wrapper_t *w;
smp_call_function_all(show_msr, &msr, &w);
smp_call_wait(w);
if (argc < 3)
return 0;
/* somewhat bogus on 32 bit. */
val = strtoul(argv[2], 0, 16);
struct set set;
set.msr = msr;
set.val = val;
smp_call_function_all(set_msr, &set, &w);
smp_call_wait(w);
return 0;
#endif
}
int mon_db(int argc, char **argv, struct hw_trapframe *hw_tf)
{
pid_t pid = -1;
if (argc < 2) {
printk("Usage: db OPTION\n");
printk("\tblk [PID]: print all blocked kthreads\n");
printk("\taddr PID 0xADDR: lookup ADDR's file/vmr info\n");
printk("\trv WAITER: backtrace rendez alarm waiter\n");
return 1;
}
if (!strcmp(argv[1], "blk") || !strcmp(argv[1], "sem")) {
if (argc > 2)
pid = strtol(argv[2], 0, 0);
print_db_blk_info(pid);
} else if (!strcmp(argv[1], "addr")) {
if (argc < 4) {
printk("Usage: db addr PID 0xADDR\n");
return 1;
}
debug_addr_pid(strtol(argv[2], 0, 10), strtol(argv[3], 0, 16));
} else if (!strcmp(argv[1], "rv")) {
if (argc < 3) {
printk("Usage: db rv 0xWAITER\n");
return 1;
}
rendez_debug_waiter((struct alarm_waiter*)strtoul(argv[2], 0,
16));
} else {
printk("Bad option\n");
return 1;
}
return 0;
}
int mon_px(int argc, char **argv, struct hw_trapframe *hw_tf)
{
pid_t pid = 0;
struct proc *p;
if (argc == 2)
pid = strtol(argv[1], 0, 0);
if (!pid) {
set_printx(2);
printk("Printxing is now %sabled\n", printx_on ? "en" : "dis");
return 0;
}
p = pid2proc(pid);
if (!p) {
printk("No proc with pid %d\n", pid);
return 1;
}
p->procdata->printx_on = !p->procdata->printx_on;
proc_decref(p);
return 0;
}
/* Super hack. Given a kernel hw_tf, we hack the RIP to smp_idle, then return
* to it. Any locks or other stuff being done is completely lost, so you could
* deadlock. This gets out of the "we're totall screwed, but don't want to
* reboot right now", typically caused by screw-ups from the monitor. */
int mon_kpfret(int argc, char **argv, struct hw_trapframe *hw_tf)
{
struct per_cpu_info *pcpui = &per_cpu_info[core_id()];
/* if monitor had a TF, try to use that */
if (!hw_tf) {
if (argc < 2) {
printk("Usage: kpfret HW_TF\n");
return 1;
}
/* the hw_tf passed in is the one we got from monitor, which is
* 0 from panics. */
hw_tf = (struct hw_trapframe*)strtol(argv[1], 0, 16);
}
if (!in_kernel(hw_tf)) {
printk("hw_tf %p was not a kernel tf!\n", hw_tf);
return -1;
}
#ifdef CONFIG_X86
hw_tf->tf_rip = (uintptr_t)smp_idle;
dec_ktrap_depth(pcpui);
asm volatile("mov %0, %%rsp;"
"addq $0x10, %%rsp;"
"popq %%rax;"
"popq %%rbx;"
"popq %%rcx;"
"popq %%rdx;"
"popq %%rbp;"
"popq %%rsi;"
"popq %%rdi;"
"popq %%r8;"
"popq %%r9;"
"popq %%r10;"
"popq %%r11;"
"popq %%r12;"
"popq %%r13;"
"popq %%r14;"
"popq %%r15;"
"addq $0x10, %%rsp;"
"iretq;"
: : "r"(hw_tf));
assert(0);
#else
printk("KPF return not supported\n");
return -1;
#endif /* CONFIG_X86 */
}
int mon_ks(int argc, char **argv, struct hw_trapframe *hw_tf)
{
if (argc < 2) {
usage:
printk("Usage: ks OPTION\n");
printk("\tidles: show idle core map\n");
printk("\tdiag: scheduler diagnostic report\n");
printk("\tresources: show resources wanted/granted for all procs\n");
printk("\tsort: sorts the idlecoremap, 1..n\n");
printk("\tnc PCOREID: sets the next CG core allocated\n");
return 1;
}
if (!strcmp(argv[1], "idles")) {
print_idle_core_map();
} else if (!strcmp(argv[1], "diag")) {
sched_diag();
} else if (!strcmp(argv[1], "resources")) {
print_all_resources();
} else if (!strcmp(argv[1], "sort")) {
sort_idle_cores();
} else if (!strcmp(argv[1], "nc")) {
if (argc != 3) {
printk("Need a pcore number.\n");
return 1;
}
next_core_to_alloc(strtol(argv[2], 0, 0));
} else {
printk("Bad option %s\n", argv[1]);
goto usage;
}
return 0;
}
/* Prints info about a core. Optional first arg == coreid. */
int mon_coreinfo(int argc, char **argv, struct hw_trapframe *hw_tf)
{
struct per_cpu_info *pcpui;
struct kthread *kth;
int coreid = core_id();
if (argc >= 2)
coreid = strtol(argv[1], 0, 0);
pcpui = &per_cpu_info[coreid];
printk("Core %d:\n\tcur_proc %d\n\towning proc %d, owning vc %d\n",
coreid, pcpui->cur_proc ? pcpui->cur_proc->pid : 0,
pcpui->owning_proc ? pcpui->owning_proc->pid : 0,
pcpui->owning_vcoreid != 0xdeadbeef ? pcpui->owning_vcoreid : 0);
kth = pcpui->cur_kthread;
if (kth) {
/* kth->proc is only used when the kthread is sleeping. when
* it's running, we care about cur_proc. if we're here, proc
* should be 0 unless the kth is concurrently sleeping (we
* called this remotely) */
printk("\tkthread %p (%s), sysc %p (%d)\n", kth, kth->name,
kth->sysc, kth->sysc ? kth->sysc->num : -1);
} else {
/* Can happen during early boot */
printk("\tNo kthread!\n");
}
return 0;
}
int mon_hexdump(int argc, char **argv, struct hw_trapframe *hw_tf)
{
struct proc *p = NULL;
uintptr_t switch_state;
pid_t pid;
uintptr_t start;
size_t len;
assert(argc >= 1);
if (argc < 4) {
printk("Usage: %s PID ADDR LEN\n", argv[0]);
printk(" PID == 0 for kernel / don't care\n");
return 1;
}
pid = strtol(argv[1], 0, 0);
start = strtoul(argv[2], 0, 0);
len = strtoul(argv[3], 0, 0);
if (pid) {
p = pid2proc(pid);
if (!p) {
printk("No proc with pid %d\n", pid);
return 1;
}
switch_state = switch_to(p);
}
hexdump((void*)start, len);
if (p) {
switch_back(p, switch_state);
proc_decref(p);
}
return 0;
}
int mon_pahexdump(int argc, char **argv, struct hw_trapframe *hw_tf)
{
uintptr_t start;
size_t len;
assert(argc >= 1);
if (argc < 3) {
printk("Usage: %s PHYS_ADDR LEN\n", argv[0]);
return 1;
}
start = strtoul(argv[1], 0, 0);
len = strtoul(argv[2], 0, 0);
pahexdump(start, len);
return 0;
}
int mon_dmesg(int argc, char **argv, struct hw_trapframe *hw_tf)
{
kprof_dump_data();
return 0;
}