| /* Copyright (c) 2015 The Regents of the University of California |
| * Kevin Klues <klueska@cs.berkeley.edu> |
| * See LICENSE for details. */ |
| |
| #include <stdio.h> |
| #include <stdint.h> |
| #include <stddef.h> |
| #include <kmalloc.h> |
| #include <string.h> |
| #include <ns.h> |
| #include <acpi.h> |
| #include <arch/arch.h> |
| #include <arch/apic.h> |
| #include <arch/topology.h> |
| |
| struct topology_info cpu_topology_info; |
| int *os_coreid_lookup; |
| |
| #define num_cpus (cpu_topology_info.num_cpus) |
| #define num_sockets (cpu_topology_info.num_sockets) |
| #define num_numa (cpu_topology_info.num_numa) |
| #define cores_per_numa (cpu_topology_info.cores_per_numa) |
| #define cores_per_socket (cpu_topology_info.cores_per_socket) |
| #define cores_per_cpu (cpu_topology_info.cores_per_cpu) |
| #define cpus_per_socket (cpu_topology_info.cpus_per_socket) |
| #define cpus_per_numa (cpu_topology_info.cpus_per_numa) |
| #define sockets_per_numa (cpu_topology_info.sockets_per_numa) |
| #define max_apic_id (cpu_topology_info.max_apic_id) |
| #define core_list (cpu_topology_info.core_list) |
| |
| /* Adjust the ids from any given node type to start at 0 and increase from |
| * there. We use the id_offset in the core_list to index the proper field. */ |
| static void adjust_ids(int id_offset) |
| { |
| int new_id = 0, old_id = -1; |
| |
| for (int i = 0; i < num_cores; i++) { |
| for (int j = 0; j < num_cores; j++) { |
| int *id_field = ((void*)&core_list[j] + id_offset); |
| if (*id_field >= new_id) { |
| if (old_id == -1) |
| old_id = *id_field; |
| if (old_id == *id_field) |
| *id_field = new_id; |
| } |
| } |
| old_id=-1; |
| new_id++; |
| } |
| } |
| |
| /* Set the actual socket id from the raw socket id extracted from cpuid. This |
| * algorithm is adapted from the algorithm given at |
| * http://wiki.osdev.org/Detecting_CPU_Topology_(80x86) */ |
| static void set_socket_ids(void) |
| { |
| int socket_id, raw_socket_id; |
| |
| for (int numa_id = 0; numa_id < num_numa; numa_id++) { |
| socket_id = 0; |
| for (int i = 0; i < num_cores; i++) { |
| if (core_list[i].numa_id == numa_id) { |
| if (core_list[i].socket_id == -1) { |
| core_list[i].socket_id = socket_id; |
| raw_socket_id = |
| core_list[i].raw_socket_id; |
| for (int j = i; j < num_cores; j++) { |
| if (core_list[j].numa_id == |
| numa_id) { |
| if (core_list[j].raw_socket_id == raw_socket_id) { |
| core_list[j].socket_id = socket_id; |
| } |
| } |
| } |
| } |
| socket_id++; |
| } |
| } |
| } |
| } |
| |
| /* Loop through our Srat table to find a matching numa domain for the given |
| * apid_id. */ |
| static int find_numa_domain(int apic_id) |
| { |
| if (srat == NULL) |
| return -1; |
| |
| for (int i = 0; i < srat->nchildren; i++) { |
| struct Srat *temp = srat->children[i]->tbl; |
| |
| if (temp != NULL && temp->type == SRlapic) { |
| if (temp->lapic.apic == apic_id) |
| return temp->lapic.dom; |
| } |
| } |
| return -1; |
| } |
| |
| /* Figure out the maximum number of cores we actually have and set it in our |
| * cpu_topology_info struct. */ |
| static void set_num_cores(void) |
| { |
| int old_num_cores = num_cores; |
| |
| if (apics == NULL) |
| return; |
| |
| num_cores = 0; |
| for (int i = 0; i < apics->nchildren; i++) { |
| struct Apicst *temp = apics->children[i]->tbl; |
| |
| if (temp != NULL && temp->type == ASlapic) |
| num_cores++; |
| } |
| if (num_cores < old_num_cores) |
| warn("Topology found less cores than early MADT parsing!"); |
| /* Too many cores will be a problem for some data structures. */ |
| if (num_cores > old_num_cores) |
| panic("Topology found more cores than early MADT parsing!"); |
| } |
| |
| /* Determine if srat has a unique numa domain compared to to all of the srat |
| * records in list_head that are of type SRlapic. |
| * |
| * Note that this only finds a unique NUMA domain when we're on the last core in |
| * the list with that domain. When we find that one, we'll need to scan the |
| * O(n) other cores from the other domains that are ahead of us in the list. |
| * It's a little inefficient, but OK for now. */ |
| static bool is_unique_numa(struct Srat *srat, struct Atable **tail, |
| size_t begin, size_t end) |
| { |
| for (int i = begin; i < end; i++) { |
| struct Srat *st = tail[i]->tbl; |
| |
| if (st && st->type == SRlapic) |
| if (srat->lapic.dom == st->lapic.dom) |
| return FALSE; |
| } |
| return TRUE; |
| } |
| |
| /* Figure out the maximum number of numa domains we actually have. |
| * This code should always return >= 0 domains. */ |
| static int get_num_numa(void) |
| { |
| int numa = 0; |
| |
| if (srat == NULL) |
| return 0; |
| |
| for (int i = 0; i < srat->nchildren; i++) { |
| struct Srat *temp = srat->children[i]->tbl; |
| |
| if (temp != NULL && temp->type == SRlapic) |
| if (is_unique_numa(temp, srat->children, i + 1, |
| srat->nchildren)) |
| numa++; |
| } |
| |
| return numa; |
| } |
| |
| /* Set num_numa in our topology struct */ |
| static void set_num_numa(void) |
| { |
| num_numa = get_num_numa(); |
| } |
| |
| /* Figure out what the max apic_id we will ever have is and set it in our |
| * cpu_topology_info struct. */ |
| static void set_max_apic_id(void) |
| { |
| for (int i = 0; i < apics->nchildren; i++) { |
| struct Apicst *temp = apics->children[i]->tbl; |
| |
| if (temp->type == ASlapic) { |
| if (temp->lapic.id > max_apic_id) |
| max_apic_id = temp->lapic.id; |
| } |
| } |
| } |
| |
| static void init_os_coreid_lookup(void) |
| { |
| /* Allocate (max_apic_id+1) entries in our os_coreid_lookup table. |
| * There may be holes in this table because of the way apic_ids work, |
| * but a little wasted space is OK for a constant time lookup of apic_id |
| * -> logical core id (from the OS's perspective). Memset the array to |
| * -1 to to represent invalid entries (which it's very possible we |
| * might have if the apic_id space has holes in it). */ |
| os_coreid_lookup = kmalloc((max_apic_id + 1) * sizeof(int), 0); |
| memset(os_coreid_lookup, -1, (max_apic_id + 1) * sizeof(int)); |
| |
| /* Loop through and set all valid entries to 0 to start with (making |
| * them temporarily valid, but not yet set to the correct value). This |
| * step is necessary because there is no ordering to the linked list we |
| * are |
| * pulling these ids from. After this, loop back through and set the |
| * mapping appropriately. */ |
| for (int i = 0; i < apics->nchildren; i++) { |
| struct Apicst *temp = apics->children[i]->tbl; |
| |
| if (temp->type == ASlapic) |
| os_coreid_lookup[temp->lapic.id] = 0; |
| } |
| int os_coreid = 0; |
| |
| for (int i = 0; i <= max_apic_id; i++) |
| if (os_coreid_lookup[i] == 0) |
| os_coreid_lookup[i] = os_coreid++; |
| } |
| |
| static void init_core_list(uint32_t core_bits, uint32_t cpu_bits) |
| { |
| /* Assuming num_cores and max_apic_id have been set, we can allocate our |
| * core_list to the proper size. Initialize all entries to 0s to being |
| * with. */ |
| core_list = kzmalloc(num_cores * sizeof(struct core_info), 0); |
| |
| /* Loop through all possible apic_ids and fill in the core_list array |
| * with *relative* topology info. We will change this relative info to |
| * absolute info in a future step. As part of this step, we update our |
| * os_coreid_lookup array to contain the proper value. */ |
| int os_coreid = 0; |
| int max_cpus = (1 << cpu_bits); |
| int max_cores_per_cpu = (1 << core_bits); |
| int max_logical_cores = (1 << (core_bits + cpu_bits)); |
| int raw_socket_id = 0, cpu_id = 0, core_id = 0; |
| |
| for (int apic_id = 0; apic_id <= max_apic_id; apic_id++) { |
| if (os_coreid_lookup[apic_id] != -1) { |
| raw_socket_id = apic_id & ~(max_logical_cores - 1); |
| cpu_id = (apic_id >> core_bits) & (max_cpus - 1); |
| core_id = apic_id & (max_cores_per_cpu - 1); |
| |
| core_list[os_coreid].numa_id = |
| find_numa_domain(apic_id); |
| core_list[os_coreid].raw_socket_id = raw_socket_id; |
| core_list[os_coreid].socket_id = -1; |
| core_list[os_coreid].cpu_id = cpu_id; |
| core_list[os_coreid].core_id = core_id; |
| core_list[os_coreid].apic_id = apic_id; |
| os_coreid++; |
| } |
| } |
| |
| /* In general, the various id's set in the previous step are all unique |
| * in terms of representing the topology (i.e. all cores under the same |
| * socket have the same socket_id set), but these id's are not |
| * necessarily contiguous, and are only relative to the level of the |
| * hierarchy they exist at (e.g. cpu_id 4 may exist under *both* |
| * socket_id 0 and socket_id 1). In this step, we squash these id's down |
| * so they are contiguous. In a following step, we will make them all |
| * absolute instead of relative. */ |
| adjust_ids(offsetof(struct core_info, numa_id)); |
| adjust_ids(offsetof(struct core_info, raw_socket_id)); |
| adjust_ids(offsetof(struct core_info, cpu_id)); |
| adjust_ids(offsetof(struct core_info, core_id)); |
| |
| /* We haven't yet set the socket id of each core yet. So far, all we've |
| * extracted is a "raw" socket id from the top bits in our apic id, but |
| * we need to condense these down into something workable for a socket |
| * id, per numa domain. OSDev has an algorithm for doing so |
| * (http://wiki.osdev.org/Detecting_CPU_Topology_%2880x86%29). |
| * We adapt it for our setup. */ |
| set_socket_ids(); |
| } |
| |
| static void init_core_list_flat(void) |
| { |
| /* Assuming num_cores and max_apic_id have been set, we can allocate our |
| * core_list to the proper size. Initialize all entries to 0s to being |
| * with. */ |
| core_list = kzmalloc(num_cores * sizeof(struct core_info), 0); |
| |
| /* Loop through all possible apic_ids and fill in the core_list array |
| * with flat topology info. */ |
| int os_coreid = 0; |
| |
| for (int apic_id = 0; apic_id <= max_apic_id; apic_id++) { |
| if (os_coreid_lookup[apic_id] != -1) { |
| core_list[os_coreid].numa_id = 0; |
| core_list[os_coreid].raw_socket_id = 0; |
| core_list[os_coreid].socket_id = 0; |
| core_list[os_coreid].cpu_id = 0; |
| core_list[os_coreid].core_id = os_coreid; |
| core_list[os_coreid].apic_id = apic_id; |
| os_coreid++; |
| } |
| } |
| } |
| |
| static void set_remaining_topology_info(void) |
| { |
| /* Assuming we have our core_list set up with relative topology info, |
| * loop through our core_list and calculate the other statistics that we |
| * hold in our cpu_topology_info struct. */ |
| int last_numa = -1, last_socket = -1, last_cpu = -1, last_core = -1; |
| for (int i = 0; i < num_cores; i++) { |
| if (core_list[i].socket_id > last_socket) { |
| last_socket = core_list[i].socket_id; |
| sockets_per_numa++; |
| } |
| if (core_list[i].cpu_id > last_cpu) { |
| last_cpu = core_list[i].cpu_id; |
| cpus_per_socket++; |
| } |
| if (core_list[i].core_id > last_core) { |
| last_core = core_list[i].core_id; |
| cores_per_cpu++; |
| } |
| } |
| cores_per_socket = cpus_per_socket * cores_per_cpu; |
| cores_per_numa = sockets_per_numa * cores_per_socket; |
| cpus_per_numa = sockets_per_numa * cpus_per_socket; |
| num_sockets = sockets_per_numa * num_numa; |
| num_cpus = cpus_per_socket * num_sockets; |
| } |
| |
| static void update_core_list_with_absolute_ids(void) |
| { |
| /* Fix up our core_list to have absolute id's at every level. */ |
| for (int i = 0; i < num_cores; i++) { |
| struct core_info *c = &core_list[i]; |
| c->socket_id = num_sockets/num_numa * c->numa_id + c->socket_id; |
| c->cpu_id = num_cpus/num_sockets * c->socket_id + c->cpu_id; |
| c->core_id = num_cores/num_cpus * c->cpu_id + c->core_id; |
| } |
| } |
| |
| static void build_topology(uint32_t core_bits, uint32_t cpu_bits) |
| { |
| set_num_cores(); |
| set_num_numa(); |
| set_max_apic_id(); |
| init_os_coreid_lookup(); |
| init_core_list(core_bits, cpu_bits); |
| set_remaining_topology_info(); |
| update_core_list_with_absolute_ids(); |
| } |
| |
| static void build_flat_topology(void) |
| { |
| set_num_cores(); |
| num_numa = 1; |
| set_max_apic_id(); |
| init_os_coreid_lookup(); |
| init_core_list_flat(); |
| set_remaining_topology_info(); |
| } |
| |
| void topology_init(void) |
| { |
| uint32_t eax, ebx, ecx, edx; |
| int smt_leaf, core_leaf; |
| uint32_t core_bits = 0, cpu_bits = 0; |
| |
| eax = 0x0000000b; |
| ecx = 1; |
| cpuid(eax, ecx, &eax, &ebx, &ecx, &edx); |
| core_leaf = (ecx >> 8) & 0x00000002; |
| if (core_leaf == 2) { |
| cpu_bits = eax; |
| eax = 0x0000000b; |
| ecx = 0; |
| cpuid(eax, ecx, &eax, &ebx, &ecx, &edx); |
| smt_leaf = (ecx >> 8) & 0x00000001; |
| if (smt_leaf == 1) { |
| core_bits = eax; |
| cpu_bits = cpu_bits - core_bits; |
| } |
| } |
| /* BIOSes are not strictly required to put NUMA information |
| * into the ACPI table. If there is no information the safest |
| * thing to do is assume it's a non-NUMA system, i.e. flat. */ |
| if (cpu_bits && get_num_numa()) |
| build_topology(core_bits, cpu_bits); |
| else |
| build_flat_topology(); |
| } |
| |
| void print_cpu_topology(void) |
| { |
| printk("num_numa: %d, num_sockets: %d, num_cpus: %d, num_cores: %d\n", |
| num_numa, num_sockets, num_cpus, num_cores); |
| for (int i = 0; i < num_cores; i++) { |
| printk("OScoreid: %3d, HWcoreid: %3d, RawSocketid: %3d, " |
| "Numa Domain: %3d, Socket: %3d, Cpu: %3d, Core: %3d\n", |
| i, |
| core_list[i].apic_id, |
| core_list[i].numa_id, |
| core_list[i].raw_socket_id, |
| core_list[i].socket_id, |
| core_list[i].cpu_id, |
| core_list[i].core_id); |
| } |
| } |