| /* Copyright (c) 2009, 2010 The Regents of the University of California |
| * Barret Rhoden <brho@cs.berkeley.edu> |
| * See LICENSE for details. |
| * |
| * Virtual memory management functions. Creation, modification, etc, of virtual |
| * memory regions (VMRs) as well as mmap(), mprotect(), and munmap(). |
| * |
| * In general, error checking / bounds checks are done in the main function |
| * (e.g. mmap()), and the work is done in a do_ function (e.g. do_mmap()). |
| * Versions of those functions that are called when the vmr lock is already held |
| * begin with __ (e.g. __do_munmap()). |
| * |
| * Note that if we were called from kern/src/syscall.c, we probably don't have |
| * an edible reference to p. */ |
| |
| #include <ros/common.h> |
| #include <pmap.h> |
| #include <mm.h> |
| #include <process.h> |
| #include <stdio.h> |
| #include <syscall.h> |
| #include <slab.h> |
| #include <kmalloc.h> |
| #include <smp.h> |
| #include <profiler.h> |
| #include <umem.h> |
| #include <ns.h> |
| #include <tree_file.h> |
| |
| /* These are the only mmap flags that are saved in the VMR. If we implement |
| * more of the mmap interface, we may need to grow this. */ |
| #define MAP_PERSIST_FLAGS (MAP_SHARED | MAP_PRIVATE | MAP_ANONYMOUS) |
| |
| struct kmem_cache *vmr_kcache; |
| |
| static int __vmr_free_pgs(struct proc *p, pte_t pte, void *va, void *arg); |
| static int populate_pm_va(struct proc *p, uintptr_t va, unsigned long nr_pgs, |
| int pte_prot, struct page_map *pm, size_t offset, |
| int flags, bool exec); |
| |
| static struct page_map *foc_to_pm(struct file_or_chan *foc) |
| { |
| switch (foc->type) { |
| case F_OR_C_CHAN: |
| assert(foc->fsf); |
| return foc->fsf->pm; |
| } |
| panic("unknown F_OR_C type"); |
| } |
| |
| static struct page_map *vmr_to_pm(struct vm_region *vmr) |
| { |
| return foc_to_pm(vmr->__vm_foc); |
| } |
| |
| char *foc_to_name(struct file_or_chan *foc) |
| { |
| switch (foc->type) { |
| case F_OR_C_CHAN: |
| if (foc->fsf) |
| return foc->fsf->dir.name; |
| else |
| return foc->chan->name->s; |
| } |
| panic("unknown F_OR_C type"); |
| } |
| |
| char *foc_abs_path(struct file_or_chan *foc, char *path, size_t max_size) |
| { |
| switch (foc->type) { |
| case F_OR_C_CHAN: |
| return foc->chan->name->s; |
| } |
| panic("unknown F_OR_C type"); |
| } |
| |
| ssize_t foc_read(struct file_or_chan *foc, void *buf, size_t amt, off64_t off) |
| { |
| ERRSTACK(1); |
| off64_t fake_off = off; |
| ssize_t ret = -1; |
| |
| switch (foc->type) { |
| case F_OR_C_CHAN: |
| if (!qid_is_file(foc->chan->qid)) |
| return -1; |
| if (!waserror()) |
| ret = devtab[foc->chan->type].read(foc->chan, buf, amt, |
| off); |
| poperror(); |
| return ret; |
| } |
| panic("unknown F_OR_C type"); |
| } |
| |
| static void __foc_free_rcu(struct rcu_head *head) |
| { |
| struct file_or_chan *foc = container_of(head, struct file_or_chan, rcu); |
| |
| switch (foc->type) { |
| case F_OR_C_CHAN: |
| cclose(foc->chan); |
| break; |
| default: |
| panic("unknown F_OR_C type, %d", foc->type); |
| } |
| kfree(foc); |
| } |
| |
| static void foc_release(struct kref *kref) |
| { |
| struct file_or_chan *foc = container_of(kref, struct file_or_chan, |
| kref); |
| |
| /* A lot of places decref while holding a spinlock, but we can't free |
| * then, since the cclose() might block. */ |
| call_rcu(&foc->rcu, __foc_free_rcu); |
| } |
| |
| static struct file_or_chan *foc_alloc(void) |
| { |
| struct file_or_chan *foc; |
| |
| foc = kzmalloc(sizeof(struct file_or_chan), MEM_ATOMIC); |
| if (!foc) |
| return NULL; |
| kref_init(&foc->kref, foc_release, 1); |
| return foc; |
| } |
| |
| struct file_or_chan *foc_open(char *path, int omode, int perm) |
| { |
| ERRSTACK(1); |
| struct file_or_chan *foc = foc_alloc(); |
| |
| if (!foc) |
| return NULL; |
| if (waserror()) { |
| kfree(foc); |
| poperror(); |
| return NULL; |
| } |
| foc->chan = namec(path, Aopen, omode, perm, NULL); |
| foc->type = F_OR_C_CHAN; |
| poperror(); |
| return foc; |
| } |
| |
| struct file_or_chan *fd_to_foc(struct fd_table *fdt, int fd) |
| { |
| ERRSTACK(1); |
| struct file_or_chan *foc = foc_alloc(); |
| |
| if (!foc) |
| return NULL; |
| if (waserror()) { |
| kfree(foc); |
| poperror(); |
| return NULL; |
| } |
| /* We're not checking mode here (-1). mm code checks later. */ |
| foc->chan = fdtochan(fdt, fd, -1, true, true); |
| foc->type = F_OR_C_CHAN; |
| poperror(); |
| return foc; |
| } |
| |
| void foc_incref(struct file_or_chan *foc) |
| { |
| kref_get(&foc->kref, 1); |
| } |
| |
| void foc_decref(struct file_or_chan *foc) |
| { |
| kref_put(&foc->kref); |
| } |
| |
| void *foc_pointer(struct file_or_chan *foc) |
| { |
| if (!foc) |
| return NULL; |
| switch (foc->type) { |
| case F_OR_C_CHAN: |
| return foc->chan; |
| default: |
| panic("unknown F_OR_C type, %d", foc->type); |
| } |
| } |
| |
| size_t foc_get_len(struct file_or_chan *foc) |
| { |
| switch (foc->type) { |
| case F_OR_C_CHAN: |
| assert(foc->fsf); |
| return foc->fsf->dir.length; |
| } |
| panic("unknown F_OR_C type, %d", foc->type); |
| } |
| |
| static bool check_chan_perms(struct vm_region *vmr, struct chan *chan, int prot) |
| { |
| /* glibc isn't opening its files O_EXEC */ |
| prot &= ~PROT_EXEC; |
| if (!(chan->mode & O_READ)) |
| return false; |
| if (vmr->vm_flags & MAP_PRIVATE) |
| prot &= ~PROT_WRITE; |
| return (chan->mode & prot) == prot; |
| } |
| |
| static bool check_foc_perms(struct vm_region *vmr, struct file_or_chan *foc, |
| int prot) |
| { |
| switch (foc->type) { |
| case F_OR_C_CHAN: |
| return check_chan_perms(vmr, foc->chan, prot); |
| } |
| panic("unknown F_OR_C type"); |
| } |
| |
| static int foc_dev_mmap(struct file_or_chan *foc, struct vm_region *vmr, |
| int prot, int flags) |
| { |
| if (!check_foc_perms(vmr, foc, prot)) |
| return -1; |
| switch (foc->type) { |
| case F_OR_C_CHAN: |
| if (!devtab[foc->chan->type].mmap) { |
| set_error(ENODEV, "device does not support mmap"); |
| return -1; |
| } |
| foc->fsf = devtab[foc->chan->type].mmap(foc->chan, vmr, prot, |
| flags); |
| return foc->fsf ? 0 : -1; |
| } |
| panic("unknown F_OR_C type, %d", foc->type); |
| } |
| |
| void vmr_init(void) |
| { |
| vmr_kcache = kmem_cache_create("vm_regions", |
| sizeof(struct vm_region), |
| __alignof__(struct vm_region), 0, NULL, |
| 0, 0, NULL); |
| } |
| |
| static struct vm_region *vmr_zalloc(void) |
| { |
| struct vm_region *vmr; |
| |
| vmr = kmem_cache_alloc(vmr_kcache, MEM_WAIT); |
| memset(vmr, 0, sizeof(struct vm_region)); |
| return vmr; |
| } |
| |
| static void vmr_free(struct vm_region *vmr) |
| { |
| kmem_cache_free(vmr_kcache, vmr); |
| } |
| |
| /* The caller will set the prot, flags, file, and offset. We find a spot for it |
| * in p's address space, set proc, base, and end. Caller holds p's vmr_lock. |
| * |
| * TODO: take a look at solari's vmem alloc. And consider keeping these in a |
| * tree of some sort for easier lookups. */ |
| static bool vmr_insert(struct vm_region *vmr, struct proc *p, uintptr_t va, |
| size_t len) |
| { |
| struct vm_region *vm_i, *vm_next; |
| uintptr_t gap_end; |
| bool ret = false; |
| |
| assert(!PGOFF(va)); |
| assert(!PGOFF(len)); |
| assert(__is_user_addr((void*)va, len, UMAPTOP)); |
| /* Is there room before the first one: */ |
| vm_i = TAILQ_FIRST(&p->vm_regions); |
| /* This works for now, but if all we have is BRK_END ones, we'll start |
| * growing backwards (TODO) */ |
| if (!vm_i || (va + len <= vm_i->vm_base)) { |
| vmr->vm_base = va; |
| TAILQ_INSERT_HEAD(&p->vm_regions, vmr, vm_link); |
| ret = true; |
| } else { |
| TAILQ_FOREACH(vm_i, &p->vm_regions, vm_link) { |
| vm_next = TAILQ_NEXT(vm_i, vm_link); |
| gap_end = vm_next ? vm_next->vm_base : UMAPTOP; |
| /* skip til we get past the 'hint' va */ |
| if (va >= gap_end) |
| continue; |
| /* Find a gap that is big enough */ |
| if (gap_end - vm_i->vm_end >= len) { |
| /* if we can put it at va, let's do that. o/w, |
| * put it so it fits */ |
| if ((gap_end >= va + len) && |
| (va >= vm_i->vm_end)) |
| vmr->vm_base = va; |
| else |
| vmr->vm_base = vm_i->vm_end; |
| TAILQ_INSERT_AFTER(&p->vm_regions, vm_i, vmr, |
| vm_link); |
| ret = true; |
| break; |
| } |
| } |
| } |
| /* Finalize the creation, if we got one */ |
| if (ret) { |
| vmr->vm_proc = p; |
| vmr->vm_end = vmr->vm_base + len; |
| } |
| if (!ret) |
| warn("Not making a VMR, wanted %p, + %p = %p", va, len, va + |
| len); |
| return ret; |
| } |
| |
| /* Split a VMR at va, returning the new VMR. It is set up the same way, with |
| * file offsets fixed accordingly. 'va' is the beginning of the new one, and |
| * must be page aligned. */ |
| static struct vm_region *split_vmr(struct vm_region *old_vmr, uintptr_t va) |
| { |
| struct vm_region *new_vmr; |
| |
| assert(!PGOFF(va)); |
| if ((old_vmr->vm_base >= va) || (old_vmr->vm_end <= va)) |
| return 0; |
| new_vmr = kmem_cache_alloc(vmr_kcache, 0); |
| assert(new_vmr); |
| TAILQ_INSERT_AFTER(&old_vmr->vm_proc->vm_regions, old_vmr, new_vmr, |
| vm_link); |
| new_vmr->vm_proc = old_vmr->vm_proc; |
| new_vmr->vm_base = va; |
| new_vmr->vm_end = old_vmr->vm_end; |
| old_vmr->vm_end = va; |
| new_vmr->vm_prot = old_vmr->vm_prot; |
| new_vmr->vm_flags = old_vmr->vm_flags; |
| if (vmr_has_file(old_vmr)) { |
| foc_incref(old_vmr->__vm_foc); |
| new_vmr->__vm_foc = old_vmr->__vm_foc; |
| new_vmr->vm_foff = old_vmr->vm_foff + |
| old_vmr->vm_end - old_vmr->vm_base; |
| pm_add_vmr(vmr_to_pm(old_vmr), new_vmr); |
| } else { |
| new_vmr->__vm_foc = NULL; |
| new_vmr->vm_foff = 0; |
| } |
| return new_vmr; |
| } |
| |
| /* Called by the unmapper, just cleans up. Whoever calls this will need to sort |
| * out the page table entries. */ |
| static void destroy_vmr(struct vm_region *vmr) |
| { |
| if (vmr_has_file(vmr)) { |
| pm_remove_vmr(vmr_to_pm(vmr), vmr); |
| foc_decref(vmr->__vm_foc); |
| } |
| TAILQ_REMOVE(&vmr->vm_proc->vm_regions, vmr, vm_link); |
| vmr_free(vmr); |
| } |
| |
| /* Merges two vm regions. For now, it will check to make sure they are the |
| * same. The second one will be destroyed. */ |
| static int merge_vmr(struct vm_region *first, struct vm_region *second) |
| { |
| assert(first->vm_proc == second->vm_proc); |
| if ((first->vm_end != second->vm_base) || |
| (first->vm_prot != second->vm_prot) || |
| (first->vm_flags != second->vm_flags) || |
| (first->__vm_foc != second->__vm_foc)) |
| return -1; |
| if (vmr_has_file(first) && (second->vm_foff != first->vm_foff + |
| first->vm_end - first->vm_base)) |
| return -1; |
| first->vm_end = second->vm_end; |
| destroy_vmr(second); |
| return 0; |
| } |
| |
| /* Attempts to merge vmr with adjacent VMRs, returning a ptr to be used for vmr. |
| * It could be the same struct vmr, or possibly another one (usually lower in |
| * the address space. */ |
| static struct vm_region *merge_me(struct vm_region *vmr) |
| { |
| struct vm_region *vmr_temp; |
| |
| /* Merge will fail if it cannot do it. If it succeeds, the second VMR |
| * is destroyed, so we need to be a bit careful. */ |
| vmr_temp = TAILQ_PREV(vmr, vmr_tailq, vm_link); |
| if (vmr_temp) |
| if (!merge_vmr(vmr_temp, vmr)) |
| vmr = vmr_temp; |
| vmr_temp = TAILQ_NEXT(vmr, vm_link); |
| if (vmr_temp) |
| merge_vmr(vmr, vmr_temp); |
| return vmr; |
| } |
| |
| /* Grows the vm region up to (and not including) va. Fails if another is in the |
| * way, etc. */ |
| static int grow_vmr(struct vm_region *vmr, uintptr_t va) |
| { |
| assert(!PGOFF(va)); |
| struct vm_region *next = TAILQ_NEXT(vmr, vm_link); |
| if (next && next->vm_base < va) |
| return -1; |
| if (va <= vmr->vm_end) |
| return -1; |
| vmr->vm_end = va; |
| return 0; |
| } |
| |
| /* Shrinks the vm region down to (and not including) va. Whoever calls this |
| * will need to sort out the page table entries. */ |
| static int shrink_vmr(struct vm_region *vmr, uintptr_t va) |
| { |
| assert(!PGOFF(va)); |
| if ((va < vmr->vm_base) || (va > vmr->vm_end)) |
| return -1; |
| vmr->vm_end = va; |
| return 0; |
| } |
| |
| /* Given a va and a proc (later an mm, possibly), returns the owning vmr, or 0 |
| * if there is none. */ |
| static struct vm_region *find_vmr(struct proc *p, uintptr_t va) |
| { |
| struct vm_region *vmr; |
| |
| /* ugly linear seach */ |
| TAILQ_FOREACH(vmr, &p->vm_regions, vm_link) { |
| if ((vmr->vm_base <= va) && (vmr->vm_end > va)) |
| return vmr; |
| } |
| return 0; |
| } |
| |
| /* Finds the first vmr after va (including the one holding va), or 0 if there is |
| * none. */ |
| static struct vm_region *find_first_vmr(struct proc *p, uintptr_t va) |
| { |
| struct vm_region *vmr; |
| |
| /* ugly linear seach */ |
| TAILQ_FOREACH(vmr, &p->vm_regions, vm_link) { |
| if ((vmr->vm_base <= va) && (vmr->vm_end > va)) |
| return vmr; |
| if (vmr->vm_base > va) |
| return vmr; |
| } |
| return 0; |
| } |
| |
| /* Makes sure that no VMRs cross either the start or end of the given region |
| * [va, va + len), splitting any VMRs that are on the endpoints. */ |
| static void isolate_vmrs(struct proc *p, uintptr_t va, size_t len) |
| { |
| struct vm_region *vmr; |
| if ((vmr = find_vmr(p, va))) |
| split_vmr(vmr, va); |
| /* TODO: don't want to do another find (linear search) */ |
| if ((vmr = find_vmr(p, va + len))) |
| split_vmr(vmr, va + len); |
| } |
| |
| void unmap_and_destroy_vmrs(struct proc *p) |
| { |
| struct vm_region *vmr_i, *vmr_temp; |
| |
| /* this only gets called from __proc_free, so there should be no sync |
| * concerns. still, better safe than sorry. */ |
| spin_lock(&p->vmr_lock); |
| p->vmr_history++; |
| spin_lock(&p->pte_lock); |
| TAILQ_FOREACH(vmr_i, &p->vm_regions, vm_link) { |
| /* note this CB sets the PTE = 0, regardless of if it was P or |
| * not */ |
| env_user_mem_walk(p, (void*)vmr_i->vm_base, |
| vmr_i->vm_end - vmr_i->vm_base, |
| __vmr_free_pgs, 0); |
| } |
| spin_unlock(&p->pte_lock); |
| /* need the safe style, since destroy_vmr modifies the list. also, we |
| * want to do this outside the pte lock, since it grabs the pm lock. */ |
| TAILQ_FOREACH_SAFE(vmr_i, &p->vm_regions, vm_link, vmr_temp) |
| destroy_vmr(vmr_i); |
| spin_unlock(&p->vmr_lock); |
| } |
| |
| /* Helper: copies the contents of pages from p to new p. For pages that aren't |
| * present, once we support swapping or CoW, we can do something more |
| * intelligent. 0 on success, -ERROR on failure. Can't handle jumbos. */ |
| static int copy_pages(struct proc *p, struct proc *new_p, uintptr_t va_start, |
| uintptr_t va_end) |
| { |
| int ret; |
| |
| /* Sanity checks. If these fail, we had a screwed up VMR. |
| * Check for: alignment, wraparound, or userspace addresses */ |
| if ((PGOFF(va_start)) || |
| (PGOFF(va_end)) || |
| (va_end < va_start) ||/* now, start > UMAPTOP -> end > UMAPTOP */ |
| (va_end > UMAPTOP)) { |
| warn("VMR mapping is probably screwed up (%p - %p)", va_start, |
| va_end); |
| return -EINVAL; |
| } |
| int copy_page(struct proc *p, pte_t pte, void *va, void *arg) { |
| struct proc *new_p = (struct proc*)arg; |
| struct page *pp; |
| |
| if (pte_is_unmapped(pte)) |
| return 0; |
| /* pages could be !P, but right now that's only for file backed |
| * VMRs undergoing page removal, which isn't the caller of |
| * copy_pages. */ |
| if (pte_is_mapped(pte)) { |
| /* TODO: check for jumbos */ |
| if (upage_alloc(new_p, &pp, 0)) |
| return -ENOMEM; |
| memcpy(page2kva(pp), KADDR(pte_get_paddr(pte)), PGSIZE); |
| if (page_insert(new_p->env_pgdir, pp, va, |
| pte_get_settings(pte))) { |
| page_decref(pp); |
| return -ENOMEM; |
| } |
| } else if (pte_is_paged_out(pte)) { |
| /* TODO: (SWAP) will need to either make a copy or |
| * CoW/refcnt the backend store. For now, this PTE will |
| * be the same as the original PTE */ |
| panic("Swapping not supported!"); |
| } else { |
| panic("Weird PTE %p in %s!", pte_print(pte), |
| __FUNCTION__); |
| } |
| return 0; |
| } |
| spin_lock(&p->pte_lock); /* walking and changing PTEs */ |
| ret = env_user_mem_walk(p, (void*)va_start, va_end - va_start, |
| ©_page, new_p); |
| spin_unlock(&p->pte_lock); |
| return ret; |
| } |
| |
| static int fill_vmr(struct proc *p, struct proc *new_p, struct vm_region *vmr) |
| { |
| int ret = 0; |
| |
| if (!vmr_has_file(vmr) || (vmr->vm_flags & MAP_PRIVATE)) { |
| /* We don't support ANON + SHARED yet */ |
| assert(!(vmr->vm_flags & MAP_SHARED)); |
| ret = copy_pages(p, new_p, vmr->vm_base, vmr->vm_end); |
| } else { |
| /* non-private file, i.e. page cacheable. we have to honor |
| * MAP_LOCKED, (but we might be able to ignore MAP_POPULATE). */ |
| if (vmr->vm_flags & MAP_LOCKED) { |
| /* need to keep the file alive in case we unlock/block |
| */ |
| foc_incref(vmr->__vm_foc); |
| /* math is a bit nasty if vm_base isn't page aligned */ |
| assert(!PGOFF(vmr->vm_base)); |
| ret = populate_pm_va(new_p, vmr->vm_base, |
| (vmr->vm_end - vmr->vm_base) >> |
| PGSHIFT, |
| vmr->vm_prot, vmr_to_pm(vmr), |
| vmr->vm_foff, vmr->vm_flags, |
| vmr->vm_prot & PROT_EXEC); |
| foc_decref(vmr->__vm_foc); |
| } |
| } |
| return ret; |
| } |
| |
| /* This will make new_p have the same VMRs as p, and it will make sure all |
| * physical pages are copied over, with the exception of MAP_SHARED files. |
| * MAP_SHARED files that are also MAP_LOCKED will be attached to the process - |
| * presumably they are in the page cache since the parent locked them. This is |
| * all pretty nasty. |
| * |
| * This is used by fork(). |
| * |
| * Note that if you are working on a VMR that is a file, you'll want to be |
| * careful about how it is mapped (SHARED, PRIVATE, etc). */ |
| int duplicate_vmrs(struct proc *p, struct proc *new_p) |
| { |
| int ret = 0; |
| struct vm_region *vmr, *vm_i; |
| |
| TAILQ_FOREACH(vm_i, &p->vm_regions, vm_link) { |
| vmr = kmem_cache_alloc(vmr_kcache, 0); |
| if (!vmr) |
| return -ENOMEM; |
| vmr->vm_proc = new_p; |
| vmr->vm_base = vm_i->vm_base; |
| vmr->vm_end = vm_i->vm_end; |
| vmr->vm_prot = vm_i->vm_prot; |
| vmr->vm_flags = vm_i->vm_flags; |
| vmr->__vm_foc = vm_i->__vm_foc; |
| vmr->vm_foff = vm_i->vm_foff; |
| if (vmr_has_file(vm_i)) { |
| foc_incref(vm_i->__vm_foc); |
| pm_add_vmr(vmr_to_pm(vm_i), vmr); |
| } |
| ret = fill_vmr(p, new_p, vmr); |
| if (ret) { |
| if (vmr_has_file(vm_i)) { |
| pm_remove_vmr(vmr_to_pm(vm_i), vmr); |
| foc_decref(vm_i->__vm_foc); |
| } |
| vmr_free(vmr); |
| return ret; |
| } |
| TAILQ_INSERT_TAIL(&new_p->vm_regions, vmr, vm_link); |
| } |
| return 0; |
| } |
| |
| void print_vmrs(struct proc *p) |
| { |
| int count = 0; |
| struct vm_region *vmr; |
| |
| print_lock(); |
| printk("VM Regions for proc %d\n", p->pid); |
| printk("NR:" |
| " Range:" |
| " Prot," |
| " Flags," |
| " File," |
| " Off\n"); |
| TAILQ_FOREACH(vmr, &p->vm_regions, vm_link) |
| printk("%02d: (%p - %p): 0x%08x, 0x%08x, %p, %p\n", count++, |
| vmr->vm_base, vmr->vm_end, vmr->vm_prot, vmr->vm_flags, |
| foc_pointer(vmr->__vm_foc), vmr->vm_foff); |
| print_unlock(); |
| } |
| |
| void enumerate_vmrs(struct proc *p, void (*func)(struct vm_region *vmr, |
| void *opaque), void *opaque) |
| { |
| struct vm_region *vmr; |
| |
| spin_lock(&p->vmr_lock); |
| TAILQ_FOREACH(vmr, &p->vm_regions, vm_link) |
| func(vmr, opaque); |
| spin_unlock(&p->vmr_lock); |
| } |
| |
| static bool mmap_flags_priv_ok(int flags) |
| { |
| return (flags & (MAP_PRIVATE | MAP_SHARED)) == MAP_PRIVATE || |
| (flags & (MAP_PRIVATE | MAP_SHARED)) == MAP_SHARED; |
| } |
| |
| static bool prot_has_access(int prot) |
| { |
| return prot & (PROT_READ | PROT_WRITE | PROT_EXEC); |
| } |
| |
| /* Error values aren't quite comprehensive - check man mmap() once we do better |
| * with the FS. |
| * |
| * The mmap call's offset is in units of PGSIZE (like Linux's mmap2()), but |
| * internally, the offset is tracked in bytes. The reason for the PGSIZE is for |
| * 32bit apps to enumerate large files, but a full 64bit system won't need that. |
| * We track things internally in bytes since that is how file pointers work, vmr |
| * bases and ends, and similar math. While it's not a hard change, there's no |
| * need for it, and ideally we'll be a fully 64bit system before we deal with |
| * files that large. */ |
| void *mmap(struct proc *p, uintptr_t addr, size_t len, int prot, int flags, |
| int fd, size_t offset) |
| { |
| struct file_or_chan *file = NULL; |
| void *result; |
| |
| offset <<= PGSHIFT; |
| printd("mmap(addr %x, len %x, prot %x, flags %x, fd %x, off %x)\n", |
| addr, len, prot, flags, fd, offset); |
| if (!mmap_flags_priv_ok(flags)) { |
| set_errno(EINVAL); |
| return MAP_FAILED; |
| } |
| if (!len) { |
| set_errno(EINVAL); |
| return MAP_FAILED; |
| } |
| if (!(flags & MAP_ANON) && (fd >= 0)) { |
| file = fd_to_foc(&p->open_files, fd); |
| if (!file) { |
| set_errno(EBADF); |
| result = MAP_FAILED; |
| goto out_ref; |
| } |
| } |
| /* Check for overflow. This helps do_mmap and populate_va, among |
| * others. */ |
| if (offset + len < offset) { |
| set_errno(EINVAL); |
| result = MAP_FAILED; |
| goto out_ref; |
| } |
| /* If they don't care where to put it, we'll start looking after the |
| * break. We could just have userspace handle this (in glibc's mmap), |
| * so we don't need to know about BRK_END, but this will work for now |
| * (and may avoid bugs). Note that this limits mmap(0) a bit. Keep |
| * this in sync with do_mmap()'s check. (Both are necessary). */ |
| if (addr == 0) |
| addr = BRK_END; |
| /* Still need to enforce this: */ |
| addr = MAX(addr, MMAP_LOWEST_VA); |
| /* Need to check addr + len, after we do our addr adjustments */ |
| if (!__is_user_addr((void*)addr, len, UMAPTOP)) { |
| set_errno(EINVAL); |
| result = MAP_FAILED; |
| goto out_ref; |
| } |
| if (PGOFF(addr)) { |
| set_errno(EINVAL); |
| result = MAP_FAILED; |
| goto out_ref; |
| } |
| result = do_mmap(p, addr, len, prot, flags, file, offset); |
| out_ref: |
| if (file) |
| foc_decref(file); |
| return result; |
| } |
| |
| /* Helper, maps in page at addr, but only if nothing is mapped there. Returns |
| * 0 on success. Will take ownership of non-pagemap pages, including on error |
| * cases. This just means we free it on error, and notionally store it in the |
| * PTE on success, which will get freed later. |
| * |
| * It's possible that a page has already been mapped here, in which case we'll |
| * treat as success. So when we return 0, *a* page is mapped here, but not |
| * necessarily the one you passed in. */ |
| static int map_page_at_addr(struct proc *p, struct page *page, uintptr_t addr, |
| int pte_prot) |
| { |
| pte_t pte; |
| |
| spin_lock(&p->pte_lock); /* walking and changing PTEs */ |
| /* find offending PTE (prob don't read this in). This might alloc an |
| * intermediate page table page. */ |
| pte = pgdir_walk(p->env_pgdir, (void*)addr, TRUE); |
| if (!pte_walk_okay(pte)) { |
| spin_unlock(&p->pte_lock); |
| if (!page_is_pagemap(page)) |
| page_decref(page); |
| return -ENOMEM; |
| } |
| /* a spurious, valid PF is possible due to a legit race: the page might |
| * have been faulted in by another core already (and raced on the memory |
| * lock), in which case we should just return. */ |
| if (pte_is_present(pte)) { |
| spin_unlock(&p->pte_lock); |
| if (!page_is_pagemap(page)) |
| page_decref(page); |
| return 0; |
| } |
| /* I used to allow clobbering an old entry (contrary to the |
| * documentation), but it's probably a sign of another bug. */ |
| assert(!pte_is_mapped(pte)); |
| /* preserve the dirty bit - pm removal could be looking concurrently */ |
| pte_prot |= (pte_is_dirty(pte) ? PTE_D : 0); |
| /* We have a ref to page (for non PMs), which we are storing in the PTE |
| */ |
| pte_write(pte, page2pa(page), pte_prot); |
| spin_unlock(&p->pte_lock); |
| return 0; |
| } |
| |
| /* Helper: copies *pp's contents to a new page, replacing your page pointer. If |
| * this succeeds, you'll have a non-PM page, which matters for how you put it.*/ |
| static int __copy_and_swap_pmpg(struct proc *p, struct page **pp) |
| { |
| struct page *new_page, *old_page = *pp; |
| |
| if (upage_alloc(p, &new_page, FALSE)) |
| return -ENOMEM; |
| memcpy(page2kva(new_page), page2kva(old_page), PGSIZE); |
| pm_put_page(old_page); |
| *pp = new_page; |
| return 0; |
| } |
| |
| /* Hold the VMR lock when you call this - it'll assume the entire VA range is |
| * mappable, which isn't true if there are concurrent changes to the VMRs. */ |
| static int populate_anon_va(struct proc *p, uintptr_t va, unsigned long nr_pgs, |
| int pte_prot) |
| { |
| struct page *page; |
| int ret; |
| |
| for (long i = 0; i < nr_pgs; i++) { |
| if (upage_alloc(p, &page, TRUE)) |
| return -ENOMEM; |
| /* could imagine doing a memwalk instead of a for loop */ |
| ret = map_page_at_addr(p, page, va + i * PGSIZE, pte_prot); |
| if (ret) |
| return ret; |
| } |
| return 0; |
| } |
| |
| /* This will periodically unlock the vmr lock. */ |
| static int populate_pm_va(struct proc *p, uintptr_t va, unsigned long nr_pgs, |
| int pte_prot, struct page_map *pm, size_t offset, |
| int flags, bool exec) |
| { |
| int ret = 0; |
| unsigned long pm_idx0 = offset >> PGSHIFT; |
| int vmr_history = ACCESS_ONCE(p->vmr_history); |
| struct page *page; |
| |
| /* This is a racy check - see the comments in fs_file.c. Also, we're |
| * not even attempting to populate the va, though we could do a partial |
| * if necessary. */ |
| if (pm_idx0 + nr_pgs > nr_pages(fs_file_get_length(pm->pm_file))) |
| return -ESPIPE; |
| /* locking rules: start the loop holding the vmr lock, enter and exit |
| * the entire func holding the lock. */ |
| for (long i = 0; i < nr_pgs; i++) { |
| ret = pm_load_page_nowait(pm, pm_idx0 + i, &page); |
| if (ret) { |
| if (ret != -EAGAIN) |
| break; |
| spin_unlock(&p->vmr_lock); |
| /* might block here, can't hold the spinlock */ |
| ret = pm_load_page(pm, pm_idx0 + i, &page); |
| spin_lock(&p->vmr_lock); |
| if (ret) |
| break; |
| /* while we were sleeping, the VMRs could have changed |
| * on us. */ |
| if (vmr_history != ACCESS_ONCE(p->vmr_history)) { |
| pm_put_page(page); |
| printk("[kernel] " |
| "FYI: VMR changed during populate\n"); |
| break; |
| } |
| } |
| if (flags & MAP_PRIVATE) { |
| ret = __copy_and_swap_pmpg(p, &page); |
| if (ret) { |
| pm_put_page(page); |
| break; |
| } |
| } |
| /* if this is an executable page, we might have to flush the |
| * instruction cache if our HW requires it. |
| * TODO: is this still needed? andrew put this in a while ago*/ |
| if (exec) |
| icache_flush_page(0, page2kva(page)); |
| /* The page could be either in the PM, or a private, now-anon |
| * page. */ |
| ret = map_page_at_addr(p, page, va + i * PGSIZE, pte_prot); |
| if (page_is_pagemap(page)) |
| pm_put_page(page); |
| if (ret) |
| break; |
| } |
| return ret; |
| } |
| |
| void *do_mmap(struct proc *p, uintptr_t addr, size_t len, int prot, int flags, |
| struct file_or_chan *file, size_t offset) |
| { |
| len = ROUNDUP(len, PGSIZE); |
| struct vm_region *vmr, *vmr_temp; |
| |
| assert(mmap_flags_priv_ok(flags)); |
| vmr = vmr_zalloc(); |
| |
| /* Sanity check, for callers that bypass mmap(). We want addr for anon |
| * memory to start above the break limit (BRK_END), but not 0. Keep |
| * this in sync with BRK_END in mmap(). */ |
| if (addr == 0) |
| addr = BRK_END; |
| assert(!PGOFF(offset)); |
| /* MCPs will need their code and data pinned. This check will start to |
| * fail after uthread_slim_init(), at which point userspace should have |
| * enough control over its mmaps (i.e. no longer done by LD or load_elf) |
| * that it can ask for pinned and populated pages. Except for |
| * dl_opens(). */ |
| struct preempt_data *vcpd = &p->procdata->vcore_preempt_data[0]; |
| |
| if (file && (atomic_read(&vcpd->flags) & VC_SCP_NOVCCTX)) |
| flags |= MAP_POPULATE | MAP_LOCKED; |
| vmr->vm_prot = prot; |
| vmr->vm_foff = offset; |
| vmr->vm_flags = flags & MAP_PERSIST_FLAGS; |
| /* We grab the file early, so we can block. This is all hokey. The VMR |
| * isn't ready yet, so the PM code will ignore it. */ |
| if (file) { |
| /* Prep the FS and make sure it can mmap the file. The |
| * device/FS checks perms, and does whatever else it needs to |
| * make the mmap work. */ |
| if (foc_dev_mmap(file, vmr, prot, flags & MAP_PERSIST_FLAGS)) { |
| vmr_free(vmr); |
| set_errno(EACCES); /* not quite */ |
| return MAP_FAILED; |
| } |
| /* TODO: push the PM stuff into the chan/fs_file. */ |
| pm_add_vmr(foc_to_pm(file), vmr); |
| foc_incref(file); |
| vmr->__vm_foc = file; |
| /* TODO: consider locking the file while checking (not as |
| * manadatory as in handle_page_fault() */ |
| if (nr_pages(offset + len) > nr_pages(foc_get_len(file))) { |
| /* We're allowing them to set up the VMR, though if they |
| * attempt to fault in any pages beyond the file's |
| * limit, they'll fail. Since they might not access the |
| * region, we need to make sure POPULATE is off. FYI, |
| * 64 bit glibc shared libs map in an extra 2MB of |
| * unaligned space between their RO and RW sections, but |
| * then immediately mprotect it to PROT_NONE. */ |
| flags &= ~MAP_POPULATE; |
| } |
| } |
| /* read/write vmr lock (will change the tree) */ |
| spin_lock(&p->vmr_lock); |
| p->vmr_history++; |
| /* Need to make sure nothing is in our way when we want a FIXED |
| * location. We just need to split on the end points (if they exist), |
| * and then remove everything in between. __do_munmap() will do this. |
| * Careful, this means an mmap can be an implied munmap() (not my |
| * call...). */ |
| if (flags & MAP_FIXED) |
| __do_munmap(p, addr, len); |
| if (!vmr_insert(vmr, p, addr, len)) { |
| spin_unlock(&p->vmr_lock); |
| if (vmr_has_file(vmr)) { |
| pm_remove_vmr(vmr_to_pm(vmr), vmr); |
| foc_decref(vmr->__vm_foc); |
| } |
| vmr_free(vmr); |
| set_error(ENOMEM, "probably tried to mmap beyond UMAPTOP"); |
| /* Slightly weird semantics: if we fail and had munmapped the |
| * space, they will have a hole in their VM now. */ |
| return MAP_FAILED; |
| } |
| addr = vmr->vm_base; |
| vmr->vm_ready = true; |
| |
| vmr = merge_me(vmr); /* attempts to merge with neighbors */ |
| |
| if (flags & MAP_POPULATE && prot_has_access(prot)) { |
| int pte_prot = (prot & PROT_WRITE) ? PTE_USER_RW : |
| (prot & (PROT_READ|PROT_EXEC)) ? PTE_USER_RO : 0; |
| unsigned long nr_pgs = len >> PGSHIFT; |
| int ret = 0; |
| if (!file) { |
| ret = populate_anon_va(p, addr, nr_pgs, pte_prot); |
| } else { |
| /* Note: this will unlock if it blocks. our refcnt on |
| * the file keeps the pm alive when we unlock */ |
| ret = populate_pm_va(p, addr, nr_pgs, pte_prot, |
| foc_to_pm(file), offset, flags, |
| prot & PROT_EXEC); |
| } |
| if (ret == -ENOMEM) { |
| spin_unlock(&p->vmr_lock); |
| printk("[kernel] ENOMEM, killing %d\n", p->pid); |
| proc_destroy(p); |
| /* this will never make it back to userspace */ |
| return MAP_FAILED; |
| } |
| } |
| spin_unlock(&p->vmr_lock); |
| |
| profiler_notify_mmap(p, addr, len, prot, flags, file, offset); |
| |
| return (void*)addr; |
| } |
| |
| int mprotect(struct proc *p, uintptr_t addr, size_t len, int prot) |
| { |
| int ret; |
| |
| printd("mprotect: (addr %p, len %p, prot 0x%x)\n", addr, len, prot); |
| if (!len) |
| return 0; |
| len = ROUNDUP(len, PGSIZE); |
| if (PGOFF(addr)) { |
| set_errno(EINVAL); |
| return -1; |
| } |
| if (!__is_user_addr((void*)addr, len, UMAPTOP)) { |
| set_errno(ENOMEM); |
| return -1; |
| } |
| /* read/write lock, will probably change the tree and settings */ |
| spin_lock(&p->vmr_lock); |
| p->vmr_history++; |
| ret = __do_mprotect(p, addr, len, prot); |
| spin_unlock(&p->vmr_lock); |
| return ret; |
| } |
| |
| /* This does not care if the region is not mapped. POSIX says you should return |
| * ENOMEM if any part of it is unmapped. Can do this later if we care, based on |
| * the VMRs, not the actual page residency. */ |
| int __do_mprotect(struct proc *p, uintptr_t addr, size_t len, int prot) |
| { |
| struct vm_region *vmr, *next_vmr; |
| pte_t pte; |
| bool shootdown_needed = FALSE; |
| bool file_access_failure = FALSE; |
| int pte_prot = (prot & PROT_WRITE) ? PTE_USER_RW : |
| (prot & (PROT_READ|PROT_EXEC)) ? PTE_USER_RO : PTE_NONE; |
| |
| /* TODO: this is aggressively splitting, when we might not need to if |
| * the prots are the same as the previous. Plus, there are three |
| * excessive scans. */ |
| isolate_vmrs(p, addr, len); |
| vmr = find_first_vmr(p, addr); |
| while (vmr && vmr->vm_base < addr + len) { |
| if (vmr->vm_prot == prot) |
| goto next_vmr; |
| if (vmr_has_file(vmr) && |
| !check_foc_perms(vmr, vmr->__vm_foc, prot)) { |
| file_access_failure = TRUE; |
| goto next_vmr; |
| } |
| vmr->vm_prot = prot; |
| spin_lock(&p->pte_lock); /* walking and changing PTEs */ |
| /* TODO: use a memwalk. At a minimum, we need to change every |
| * existing PTE that won't trigger a PF (meaning, present PTEs) |
| * to have the new prot. The others will fault on access, and |
| * we'll change the PTE then. In the off chance we have a |
| * mapped but not present PTE, we might as well change it too, |
| * since we're already here. */ |
| for (uintptr_t va = vmr->vm_base; va < vmr->vm_end; |
| va += PGSIZE) { |
| pte = pgdir_walk(p->env_pgdir, (void*)va, 0); |
| if (pte_walk_okay(pte) && pte_is_mapped(pte)) { |
| pte_replace_perm(pte, pte_prot); |
| shootdown_needed = TRUE; |
| } |
| } |
| spin_unlock(&p->pte_lock); |
| next_vmr: |
| /* Note that this merger could cause us to not look at the next |
| * one, since we merged with it. That's ok, since in that case, |
| * the next one already has the right prots. Also note that |
| * every VMR in the region, including the ones at the endpoints, |
| * attempted to merge left and right. */ |
| vmr = merge_me(vmr); |
| next_vmr = TAILQ_NEXT(vmr, vm_link); |
| vmr = next_vmr; |
| } |
| if (shootdown_needed) |
| proc_tlbshootdown(p, addr, addr + len); |
| if (file_access_failure) { |
| set_errno(EACCES); |
| return -1; |
| } |
| return 0; |
| } |
| |
| int munmap(struct proc *p, uintptr_t addr, size_t len) |
| { |
| int ret; |
| |
| printd("munmap(addr %x, len %x)\n", addr, len); |
| if (!len) |
| return 0; |
| len = ROUNDUP(len, PGSIZE); |
| if (PGOFF(addr)) { |
| set_errno(EINVAL); |
| return -1; |
| } |
| if (!__is_user_addr((void*)addr, len, UMAPTOP)) { |
| set_errno(EINVAL); |
| return -1; |
| } |
| /* read/write: changing the vmrs (trees, properties, and whatnot) */ |
| spin_lock(&p->vmr_lock); |
| p->vmr_history++; |
| ret = __do_munmap(p, addr, len); |
| spin_unlock(&p->vmr_lock); |
| return ret; |
| } |
| |
| static int __munmap_pte(struct proc *p, pte_t pte, void *va, void *arg) |
| { |
| bool *shootdown_needed = (bool*)arg; |
| struct page *page; |
| |
| /* could put in some checks here for !P and also !0 */ |
| if (!pte_is_present(pte)) /* unmapped (== 0) *ptes are also not PTE_P */ |
| return 0; |
| if (pte_is_dirty(pte)) { |
| page = pa2page(pte_get_paddr(pte)); |
| atomic_or(&page->pg_flags, PG_DIRTY); |
| } |
| pte_clear_present(pte); |
| *shootdown_needed = TRUE; |
| return 0; |
| } |
| |
| /* If our page is actually in the PM, we don't do anything. All a page map |
| * really needs is for our VMR to no longer track it (vmr being in the pm's |
| * list) and to not point at its pages (mark it 0, dude). |
| * |
| * But private mappings mess with that a bit. Luckily, we can tell by looking |
| * at a page whether the specific page is in the PM or not. If it isn't, we |
| * still need to free our "VMR local" copy. |
| * |
| * For pages in a PM, we're racing with PM removers. Both of us sync with the |
| * mm lock, so once we hold the lock, it's a matter of whether or not the PTE is |
| * 0 or not. If it isn't, then we're still okay to look at the page. Consider |
| * the PTE a weak ref on the page. So long as you hold the mm lock, you can |
| * look at the PTE and know the page isn't being freed. */ |
| static int __vmr_free_pgs(struct proc *p, pte_t pte, void *va, void *arg) |
| { |
| struct page *page; |
| if (pte_is_unmapped(pte)) |
| return 0; |
| page = pa2page(pte_get_paddr(pte)); |
| pte_clear(pte); |
| if (!page_is_pagemap(page)) |
| page_decref(page); |
| return 0; |
| } |
| |
| int __do_munmap(struct proc *p, uintptr_t addr, size_t len) |
| { |
| struct vm_region *vmr, *next_vmr, *first_vmr; |
| bool shootdown_needed = FALSE; |
| |
| /* TODO: this will be a bit slow, since we end up doing three linear |
| * searches (two in isolate, one in find_first). */ |
| isolate_vmrs(p, addr, len); |
| first_vmr = find_first_vmr(p, addr); |
| vmr = first_vmr; |
| spin_lock(&p->pte_lock); /* changing PTEs */ |
| while (vmr && vmr->vm_base < addr + len) { |
| /* It's important that we call __munmap_pte and sync the |
| * PG_DIRTY bit before we unhook the VMR from the PM (in |
| * destroy_vmr). */ |
| env_user_mem_walk(p, (void*)vmr->vm_base, |
| vmr->vm_end - vmr->vm_base, __munmap_pte, |
| &shootdown_needed); |
| vmr = TAILQ_NEXT(vmr, vm_link); |
| } |
| spin_unlock(&p->pte_lock); |
| /* we haven't freed the pages yet; still using the PTEs to store the |
| * them. There should be no races with inserts/faults, since we still |
| * hold the mm lock since the previous CB. */ |
| if (shootdown_needed) |
| proc_tlbshootdown(p, addr, addr + len); |
| vmr = first_vmr; |
| while (vmr && vmr->vm_base < addr + len) { |
| /* there is rarely more than one VMR in this loop. o/w, we'll |
| * need to gather up the vmrs and destroy outside the pte_lock. |
| */ |
| spin_lock(&p->pte_lock); /* changing PTEs */ |
| env_user_mem_walk(p, (void*)vmr->vm_base, |
| vmr->vm_end - vmr->vm_base, __vmr_free_pgs, |
| 0); |
| spin_unlock(&p->pte_lock); |
| next_vmr = TAILQ_NEXT(vmr, vm_link); |
| destroy_vmr(vmr); |
| vmr = next_vmr; |
| } |
| return 0; |
| } |
| |
| /* Helper - drop the page differently based on where it is from */ |
| static void __put_page(struct page *page) |
| { |
| if (page_is_pagemap(page)) |
| pm_put_page(page); |
| else |
| page_decref(page); |
| } |
| |
| static int __hpf_load_page(struct proc *p, struct page_map *pm, |
| unsigned long idx, struct page **page, bool first) |
| { |
| int ret = 0; |
| int coreid = core_id(); |
| struct per_cpu_info *pcpui = &per_cpu_info[coreid]; |
| bool wake_scp = FALSE; |
| spin_lock(&p->proc_lock); |
| switch (p->state) { |
| case (PROC_RUNNING_S): |
| wake_scp = TRUE; |
| __proc_set_state(p, PROC_WAITING); |
| /* it's possible for HPF to loop a few times; we can only save |
| * the first time, o/w we could clobber. */ |
| if (first) { |
| __proc_save_context_s(p); |
| __proc_save_fpu_s(p); |
| /* We clear the owner, since userspace doesn't run here |
| * anymore, but we won't abandon since the fault handler |
| * still runs in our process. */ |
| clear_owning_proc(coreid); |
| } |
| /* other notes: we don't currently need to tell the ksched |
| * we switched from running to waiting, though we probably |
| * will later for more generic scheds. */ |
| break; |
| case (PROC_RUNNABLE_M): |
| case (PROC_RUNNING_M): |
| spin_unlock(&p->proc_lock); |
| return -EAGAIN; /* will get reflected back to userspace */ |
| case (PROC_DYING): |
| case (PROC_DYING_ABORT): |
| spin_unlock(&p->proc_lock); |
| return -EINVAL; |
| default: |
| /* shouldn't have any waitings, under the current yield style. |
| * if this becomes an issue, we can branch on is_mcp(). */ |
| printk("HPF unexpectecd state(%s)", procstate2str(p->state)); |
| spin_unlock(&p->proc_lock); |
| return -EINVAL; |
| } |
| spin_unlock(&p->proc_lock); |
| ret = pm_load_page(pm, idx, page); |
| if (wake_scp) |
| proc_wakeup(p); |
| if (ret) { |
| printk("load failed with ret %d\n", ret); |
| return ret; |
| } |
| /* need to put our old ref, next time around HPF will get another. */ |
| pm_put_page(*page); |
| return 0; |
| } |
| |
| /* Returns 0 on success, or an appropriate -error code. |
| * |
| * Notes: if your TLB caches negative results, you'll need to flush the |
| * appropriate tlb entry. Also, you could have a weird race where a present PTE |
| * faulted for a different reason (was mprotected on another core), and the |
| * shootdown is on its way. Userspace should have waited for the mprotect to |
| * return before trying to write (or whatever), so we don't care and will fault |
| * them. */ |
| static int __hpf(struct proc *p, uintptr_t va, int prot, bool file_ok) |
| { |
| struct vm_region *vmr; |
| struct file_or_chan *file; |
| struct page *a_page; |
| unsigned int f_idx; /* index of the missing page in the file */ |
| int ret = 0; |
| bool first = TRUE; |
| va = ROUNDDOWN(va,PGSIZE); |
| |
| refault: |
| /* read access to the VMRs TODO: RCU */ |
| spin_lock(&p->vmr_lock); |
| /* Check the vmr's protection */ |
| vmr = find_vmr(p, va); |
| if (!vmr) { /* not mapped at all */ |
| printd("fault: %p not mapped\n", va); |
| ret = -EFAULT; |
| goto out; |
| } |
| if (!(vmr->vm_prot & prot)) { /* wrong prots for this vmr */ |
| ret = -EPERM; |
| goto out; |
| } |
| if (!vmr_has_file(vmr)) { |
| /* No file - just want anonymous memory */ |
| if (upage_alloc(p, &a_page, TRUE)) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| } else { |
| if (!file_ok) { |
| ret = -EACCES; |
| goto out; |
| } |
| file = vmr->__vm_foc; |
| /* If this fails, either something got screwed up with the VMR, |
| * or the permissions changed after mmap/mprotect. Either way, |
| * I want to know (though it's not critical). */ |
| if (!check_foc_perms(vmr, file, prot)) |
| printk("[kernel] " |
| "possible issue with VMR prots on file %s!\n", |
| foc_to_name(file)); |
| /* Load the file's page in the page cache. |
| * TODO: (BLK) Note, we are holding the mem lock! We need to |
| * rewrite this stuff so we aren't hold the lock as excessively |
| * as we are, and such that we can block and resume later. */ |
| assert(!PGOFF(va - vmr->vm_base + vmr->vm_foff)); |
| f_idx = (va - vmr->vm_base + vmr->vm_foff) >> PGSHIFT; |
| /* This is a racy check - see the comments in fs_file.c */ |
| if (f_idx + 1 > nr_pages(foc_get_len(file))) { |
| ret = -ESPIPE; /* linux sends a SIGBUS at access time */ |
| goto out; |
| } |
| ret = pm_load_page_nowait(foc_to_pm(file), f_idx, &a_page); |
| if (ret) { |
| if (ret != -EAGAIN) |
| goto out; |
| /* keep the file alive after we unlock */ |
| foc_incref(file); |
| spin_unlock(&p->vmr_lock); |
| ret = __hpf_load_page(p, foc_to_pm(file), f_idx, |
| &a_page, first); |
| first = FALSE; |
| foc_decref(file); |
| if (ret) |
| return ret; |
| goto refault; |
| } |
| /* If we want a private map, we'll preemptively give you a new |
| * page. We used to just care if it was private and writable, |
| * but were running into issues with libc changing its mapping |
| * (map private, then mprotect to writable...) In the future, |
| * we want to CoW this anyway, so it's not a big deal. */ |
| if ((vmr->vm_flags & MAP_PRIVATE)) { |
| ret = __copy_and_swap_pmpg(p, &a_page); |
| if (ret) |
| goto out_put_pg; |
| } |
| /* if this is an executable page, we might have to flush the |
| * instruction cache if our HW requires it. */ |
| if (vmr->vm_prot & PROT_EXEC) |
| icache_flush_page((void*)va, page2kva(a_page)); |
| } |
| /* update the page table TODO: careful with MAP_PRIVATE etc. might do |
| * this separately (file, no file) */ |
| int pte_prot = (vmr->vm_prot & PROT_WRITE) ? PTE_USER_RW : |
| (vmr->vm_prot & (PROT_READ|PROT_EXEC)) ? PTE_USER_RO : 0; |
| ret = map_page_at_addr(p, a_page, va, pte_prot); |
| /* fall through, even for errors */ |
| out_put_pg: |
| /* the VMR's existence in the PM (via the mmap) allows us to have PTE |
| * point to a_page without it magically being reallocated. For non-PM |
| * memory (anon memory or private pages) we transferred the ref to the |
| * PTE. */ |
| if (page_is_pagemap(a_page)) |
| pm_put_page(a_page); |
| out: |
| spin_unlock(&p->vmr_lock); |
| return ret; |
| } |
| |
| int handle_page_fault(struct proc *p, uintptr_t va, int prot) |
| { |
| return __hpf(p, va, prot, TRUE); |
| } |
| |
| int handle_page_fault_nofile(struct proc *p, uintptr_t va, int prot) |
| { |
| return __hpf(p, va, prot, FALSE); |
| } |
| |
| /* Attempts to populate the pages, as if there was a page faults. Bails on |
| * errors, and returns the number of pages populated. */ |
| unsigned long populate_va(struct proc *p, uintptr_t va, unsigned long nr_pgs) |
| { |
| struct vm_region *vmr, vmr_copy; |
| struct file_or_chan *file; |
| unsigned long nr_pgs_this_vmr; |
| unsigned long nr_filled = 0; |
| struct page *page; |
| int pte_prot; |
| int ret; |
| |
| /* we can screw around with ways to limit the find_vmr calls (can do the |
| * next in line if we didn't unlock, etc., but i don't expect us to do |
| * this for more than a single VMR in most cases. */ |
| spin_lock(&p->vmr_lock); |
| while (nr_pgs) { |
| vmr = find_vmr(p, va); |
| if (!vmr) |
| break; |
| if (!prot_has_access(vmr->vm_prot)) |
| break; |
| pte_prot = (vmr->vm_prot & PROT_WRITE) ? PTE_USER_RW : |
| (vmr->vm_prot & (PROT_READ|PROT_EXEC)) ? PTE_USER_RO |
| : 0; |
| nr_pgs_this_vmr = MIN(nr_pgs, (vmr->vm_end - va) >> PGSHIFT); |
| if (!vmr_has_file(vmr)) { |
| if (populate_anon_va(p, va, nr_pgs_this_vmr, pte_prot)) |
| { |
| /* on any error, we can just bail. we might be |
| * underestimating nr_filled. */ |
| break; |
| } |
| } else { |
| file = vmr->__vm_foc; |
| /* need to keep the file alive in case we unlock/block |
| */ |
| foc_incref(file); |
| /* Regarding foff + (va - base): va - base < len, and |
| * foff + len does not over flow */ |
| ret = populate_pm_va(p, va, nr_pgs_this_vmr, pte_prot, |
| foc_to_pm(file), |
| vmr->vm_foff + (va - vmr->vm_base), |
| vmr->vm_flags, |
| vmr->vm_prot & PROT_EXEC); |
| foc_decref(file); |
| if (ret) { |
| /* we might have failed if the underlying file |
| * doesn't cover the mmap window, depending on |
| * how we'll deal with truncation. */ |
| break; |
| } |
| } |
| nr_filled += nr_pgs_this_vmr; |
| va += nr_pgs_this_vmr << PGSHIFT; |
| nr_pgs -= nr_pgs_this_vmr; |
| } |
| spin_unlock(&p->vmr_lock); |
| return nr_filled; |
| } |
| |
| /* Kernel Dynamic Memory Mappings */ |
| |
| static struct arena *vmap_addr_arena; |
| struct arena *vmap_arena; |
| static spinlock_t vmap_lock = SPINLOCK_INITIALIZER; |
| struct vmap_free_tracker { |
| void *addr; |
| size_t nr_bytes; |
| }; |
| static struct vmap_free_tracker *vmap_to_free; |
| static size_t vmap_nr_to_free; |
| /* This value tunes the ratio of global TLB shootdowns to __vmap_free()s. */ |
| #define VMAP_MAX_TO_FREE 1000 |
| |
| /* We don't immediately return the addrs to their source (vmap_addr_arena). |
| * Instead, we hold on to them until we have a suitable amount, then free them |
| * in a batch. This amoritizes the cost of the TLB global shootdown. We can |
| * explore other tricks in the future too (like RCU for a certain index in the |
| * vmap_to_free array). */ |
| static void __vmap_free(struct arena *source, void *obj, size_t size) |
| { |
| struct vmap_free_tracker *vft; |
| |
| spin_lock(&vmap_lock); |
| /* All objs get *unmapped* immediately, but we'll shootdown later. Note |
| * that it is OK (but slightly dangerous) for the kernel to reuse the |
| * paddrs pointed to by the vaddrs before a TLB shootdown. */ |
| unmap_segment(boot_pgdir, (uintptr_t)obj, size); |
| if (vmap_nr_to_free < VMAP_MAX_TO_FREE) { |
| vft = &vmap_to_free[vmap_nr_to_free++]; |
| vft->addr = obj; |
| vft->nr_bytes = size; |
| spin_unlock(&vmap_lock); |
| return; |
| } |
| tlb_shootdown_global(); |
| for (int i = 0; i < vmap_nr_to_free; i++) { |
| vft = &vmap_to_free[i]; |
| arena_free(source, vft->addr, vft->nr_bytes); |
| } |
| /* don't forget to free the one passed in */ |
| arena_free(source, obj, size); |
| vmap_nr_to_free = 0; |
| spin_unlock(&vmap_lock); |
| } |
| |
| void vmap_init(void) |
| { |
| vmap_addr_arena = arena_create("vmap_addr", (void*)KERN_DYN_BOT, |
| KERN_DYN_TOP - KERN_DYN_BOT, |
| PGSIZE, NULL, NULL, NULL, 0, MEM_WAIT); |
| vmap_arena = arena_create("vmap", NULL, 0, PGSIZE, arena_alloc, |
| __vmap_free, vmap_addr_arena, 0, MEM_WAIT); |
| vmap_to_free = kmalloc(sizeof(struct vmap_free_tracker) |
| * VMAP_MAX_TO_FREE, MEM_WAIT); |
| /* This ensures the boot_pgdir's top-most PML (PML4) has entries |
| * pointing to PML3s that cover the dynamic mapping range. Now, it's |
| * safe to create processes that copy from boot_pgdir and still |
| * dynamically change the kernel mappings. */ |
| arch_add_intermediate_pts(boot_pgdir, KERN_DYN_BOT, |
| KERN_DYN_TOP - KERN_DYN_BOT); |
| } |
| |
| uintptr_t get_vmap_segment(size_t nr_bytes) |
| { |
| uintptr_t ret; |
| |
| ret = (uintptr_t)arena_alloc(vmap_arena, nr_bytes, MEM_ATOMIC); |
| assert(ret); |
| return ret; |
| } |
| |
| void put_vmap_segment(uintptr_t vaddr, size_t nr_bytes) |
| { |
| arena_free(vmap_arena, (void*)vaddr, nr_bytes); |
| } |
| |
| /* Map a virtual address chunk to physical addresses. Make sure you got a vmap |
| * segment before actually trying to do the mapping. |
| * |
| * Careful with more than one 'page', since it will assume your physical pages |
| * are also contiguous. Most callers will only use one page. |
| * |
| * Finally, note that this does not care whether or not there are real pages |
| * being mapped, and will not attempt to incref your page (if there is such a |
| * thing). Handle your own refcnting for pages. */ |
| int map_vmap_segment(uintptr_t vaddr, uintptr_t paddr, unsigned long num_pages, |
| int perm) |
| { |
| #ifdef CONFIG_X86 |
| perm |= PTE_G; |
| #endif |
| spin_lock(&vmap_lock); |
| map_segment(boot_pgdir, vaddr, num_pages * PGSIZE, paddr, perm, |
| arch_max_jumbo_page_shift()); |
| spin_unlock(&vmap_lock); |
| return 0; |
| } |
| |
| /* This can handle unaligned paddrs */ |
| static uintptr_t vmap_pmem_flags(uintptr_t paddr, size_t nr_bytes, int flags) |
| { |
| uintptr_t vaddr; |
| unsigned long nr_pages; |
| |
| assert(nr_bytes && paddr); |
| nr_bytes += PGOFF(paddr); |
| nr_pages = ROUNDUP(nr_bytes, PGSIZE) >> PGSHIFT; |
| vaddr = get_vmap_segment(nr_bytes); |
| if (!vaddr) { |
| warn("Unable to get a vmap segment"); /* probably a bug */ |
| return 0; |
| } |
| /* it's not strictly necessary to drop paddr's pgoff, but it might save |
| * some vmap heartache in the future. */ |
| if (map_vmap_segment(vaddr, PG_ADDR(paddr), nr_pages, |
| PTE_KERN_RW | flags)) { |
| warn("Unable to map a vmap segment"); /* probably a bug */ |
| return 0; |
| } |
| return vaddr + PGOFF(paddr); |
| } |
| |
| uintptr_t vmap_pmem(uintptr_t paddr, size_t nr_bytes) |
| { |
| return vmap_pmem_flags(paddr, nr_bytes, 0); |
| } |
| |
| uintptr_t vmap_pmem_nocache(uintptr_t paddr, size_t nr_bytes) |
| { |
| return vmap_pmem_flags(paddr, nr_bytes, PTE_NOCACHE); |
| } |
| |
| uintptr_t vmap_pmem_writecomb(uintptr_t paddr, size_t nr_bytes) |
| { |
| return vmap_pmem_flags(paddr, nr_bytes, PTE_WRITECOMB); |
| } |
| |
| int vunmap_vmem(uintptr_t vaddr, size_t nr_bytes) |
| { |
| nr_bytes += PGOFF(vaddr); |
| put_vmap_segment(PG_ADDR(vaddr), nr_bytes); |
| return 0; |
| } |