blob: f8a1fd14ed25b96043b6102d2c79912d7cd96580 [file] [log] [blame]
/* Copyright (c) 2016 Google Inc
* Barret Rhoden <brho@cs.berkeley.edu>
* See LICENSE for details.
*
* Network address translation for VM guests.
*
* There are two styles of addressing: qemu and real-addr. qemu-style is what
* you expect from Qemu's user-mode networking. real-addr mode uses the same
* addresses for the guest as the host uses.
*
* For qemu-style networking:
* guest = 10.0.2.15, mask = 255.255.255.0, router = 10.0.2.2.
* For real-addr networking:
* guest = host_v4, mask = host_mask, router = host's_route
*
* Real-addr mode is useful for guests that statically config their address from
* the nodes hard drive. It might also help for apps that want to advertise
* their IP address to external users (though that would require straight-thru
* port-fowardarding set up by the VMM).
*
* As far as the guest is concerned, the host is the guest_v4_router. If we
* ever get a remote IP addr of 'router', that'll be redirected to the host's
* loopback IP. That means the guest can't reach the "real" router (in
* real-addr mode). The host can reach the guest via 127.0.0.1. In either
* case, use the host's side of a mapping.
*
* TODO:
* - We're working with the IOVs that the guest gave us through virtio. If we
* care, that whole thing is susceptible to time-of-check attacks. The guest
* could be modifying the IOV that we're working on, so we need to not care
* too much about that.
*
* - Consider having the kernel proto bypass outbound path overwrite the src
* address and the proto port. We don't care about the proto payload. We
* might care about IP and proto headers. o/w, the user could fake traffic
* for other ports - basically they can craft whatever packet they want (which
* is what they had previously with unrestricted access to devether).
*
* - Consider injecting packets to the guest from #srv/snoop-PID.
*
* - IPv6 support
*
* FAQ:
* - Why are we using FD taps, instead of threads, to watch all the host FD?
* Couldn't we block a uthread on each FD? I went back and forth on this.
* The final reason for this is to avoid copies and weird joins. The
* concurrency with the guest is based on the number of IOVs they give us -
* not the number of host conversations open. We could listen on 1000 convs,
* each with their own read buffer, but we'd then have to copy the entire
* packet into the IOVs the guest gave us. We'd also need to synchronize on
* access to virtio and do some structural work (draw out how the packets
* would move around). It'd be different if each uthread could just push
* packets into virtio-net (push vs the current pull model).
*
* - What's the deal with sending packets to broadcast domain targets? Short
* answer: the host responds to every ARP request, regardless of the IP. If
* the networking is done QEMU style, there's only one other host: the router,
* so that's not interesting. If we are in real-addr mode and the guest is
* trying to reach someone in our broadcast, they'll be told that we
* (host_eth_addr) is the MAC for that addr. Then the guest sends us an IP
* packet for that target. Akaros will see an IP packet and will route it to
* its own broadcast (on the real network). The guest's ARP only matters when
* it comes to getting the packet to us, not the actual network's broadcast
* domain.
*
* - Why is the RX path single threaded? So it's possible to rewrite
* __poll_inbound() such that readv() is not called while holding the rx_mtx.
* To do so, we pop the first item off the inbound_todo list (so we have the
* ref), do the read, then put it back on the list if it hasn't been drained
* to empty. The main issue, apart from being more complicated, is that since
* we're unlocking and relocking, any invariant that we had before calling
* __poll_inbound needs to be rechecked. Specifically, we would need to check
* __poll_injection *after* returning from __poll_inbound. Otherwise we could
* sleep with a packet waiting to be injected. Whoops! That could have been
* dealt with, but it's subtle. There also might be races with FD taps
* firing, the fdtap_watcher not putting items on the list, and the thread
* then not putting it on the list. Specifically:
* fdtap_watcher: __poll_inbound:
* -------------------------------------------------------
* yanks map off list
* map tracked as "on inbound"
* unlock mtx
* readv, get -1 EAGAIN
* decide to drop the item
* packet arrives
* FD tap fires
* send event
* lock mtx
* see map is "on inbound"
* ignore event
* unlock mtx
* lock mtx
* clear "on inbound"
* unlock + sleep on CV
* The FD has data, but we lost the event, and we'll never read it.
*
* - Why is the fdtap_watcher its own thread? You can't kick a CV from vcore
* context, since you almost always want to hold the MTX while kicking the CV
* (see the lengthy comments in the CV code). It's easier to blockon an event
* queue as a uthread. But since the RX thread wants to sleep on two sources,
* it's simpler this way. It also decouples the inbound_todo list from the
* evq.
*
* - Could we model the packet injection with an event queue? Maybe with a UCQ
* or BCQ. We'd need some support from the kernel (minor) and maybe
* user-level event posting (major) to do it right. If we did that, we
* probably could get rid of the fdtap_watcher. The RX checks inbound_todo,
* then blocks on two evqs (inbound and inject). This way is simpler, for
* now.
*
* - Why do we rewrite IP addresses for the router to loopback, instead of
* host_v4_addr? First off, you have to pick one: loopback or host_v4_addr,
* not both. If we accept both (say, when the host connects to a static map),
* then on the other end (i.e. TX, response to an RX) will need to know which
* option we chose for its rewriting rule. We have to be consistent with how
* we handle ROUTER_IP and do the same thing in both directions. Given that
* we have to pick one of them, I opted for 127.0.0.1. That way, any host
* users know how to connect to the guest without worrying about their actual
* IP address. This also allows us to announce services on the host that are
* only available to loopback (i.e. not the main network) and let the guest
* reach those.
*
* - How can a guest reach the real host IP in qemu mode, but not in real-addr
* mode? This comes up when someone uses a static map but connects with the
* host_v4_addr as the source (which you do by contacting host_v4_addr as the
* *destination* from akaros). We don't rewrite those on the RX path. When
* the guest responds, it responds to whatever the src was on the inbound
* path. To the guest, our host_v4_addr is just another IP, which the host
* knows how to route to. It'd be similar to the guest trying to reach an
* address that is in the broadcast domain of the host. This doesn't work for
* real-addr mode, since the guest has the same IP as the host. Most guests
* won't emit a packet that is sent to their own IP address. If they did, the
* NAT code would remap it, but the guest just won't send it out. Hence the
* warning.
*/
#include <vmm/net.h>
#include <parlib/iovec.h>
#include <iplib/iplib.h>
#include <parlib/ros_debug.h>
#include <parlib/uthread.h>
#include <ndblib/ndb.h>
#include <iplib/iplib.h>
#include <parlib/printf-ext.h>
#include <parlib/event.h>
#include <parlib/spinlock.h>
#include <parlib/kref.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <assert.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <sys/queue.h>
/* Global control variables. The main VMM sets these manually. */
bool vnet_snoop = FALSE;
bool vnet_real_ip_addrs = FALSE;
bool vnet_map_diagnostics = FALSE;
unsigned long vnet_nat_timeout = 200;
uint8_t host_v4_addr[IPV4_ADDR_LEN];
uint8_t host_v4_mask[IPV4_ADDR_LEN];
uint8_t host_v4_router[IPV4_ADDR_LEN];
uint8_t host_v4_dns[IPV4_ADDR_LEN];
uint8_t loopback_v4_addr[IPV4_ADDR_LEN];
uint8_t bcast_v4_addr[IPV4_ADDR_LEN];
uint8_t guest_v4_addr[IPV4_ADDR_LEN];
uint8_t guest_v4_mask[IPV4_ADDR_LEN];
uint8_t guest_v4_router[IPV4_ADDR_LEN];
uint8_t guest_v4_dns[IPV4_ADDR_LEN];
/* We'll use this in all our eth headers with the guest. */
uint8_t host_eth_addr[] = {0x00, 0x01, 0x02, 0x03, 0x04, 0x0a};
uint8_t guest_eth_addr[] = {0x00, 0x01, 0x02, 0x03, 0x04, 0x0b};
const char dhcp_hostname[] = "host";
const char dhcp_guestname[] = "guest";
int snoop_fd;
/* We map between host port and guest port for a given protocol. We don't care
* about confirming IP addresses or anything - we just swap ports. */
struct ip_nat_map {
TAILQ_ENTRY(ip_nat_map) lookup_tuple;
TAILQ_ENTRY(ip_nat_map) lookup_fd;
struct kref kref;
uint8_t protocol;
uint16_t guest_port;
uint16_t host_port;
int host_data_fd;
bool is_static;
bool is_stale;
/* These fields are protected by the rx mutex */
TAILQ_ENTRY(ip_nat_map) inbound;
bool is_on_inbound;
};
#define NR_VNET_HASH 128
TAILQ_HEAD(ip_nat_map_tailq, ip_nat_map);
struct spin_pdr_lock maps_lock = SPINPDR_INITIALIZER;
/* Two hash tables: one for tuples (tx) and one for FD (rx). There's one kref
* for being in both tables; they are treated as a unit. */
struct ip_nat_map_tailq map_hash_tuple[NR_VNET_HASH];
struct ip_nat_map_tailq map_hash_fd[NR_VNET_HASH];
/* The todo list, used to track FDs that had activity but haven't told us EAGAIN
* yet. The list is protected by the rx_mtx */
struct ip_nat_map_tailq inbound_todo = TAILQ_HEAD_INITIALIZER(inbound_todo);
/* buf_pkt: tracks a packet, used for injecting packets (usually synthetic
* responses) into the guest via receive_packet. */
struct buf_pkt {
STAILQ_ENTRY(buf_pkt) next;
uint8_t *buf;
size_t sz;
};
STAILQ_HEAD(buf_pkt_stailq, buf_pkt);
struct buf_pkt_stailq inject_pkts = STAILQ_HEAD_INITIALIZER(inject_pkts);
uth_mutex_t *rx_mtx;
uth_cond_var_t *rx_cv;
struct event_queue *inbound_evq;
static void tap_inbound_conv(int fd);
#define GOLDEN_RATIO_64 0x61C8864680B583EBull
static struct ip_nat_map_tailq *list_hash_tuple(uint8_t protocol,
uint16_t guest_port)
{
size_t idx;
idx = ((protocol << 16 | guest_port) * GOLDEN_RATIO_64) % NR_VNET_HASH;
return &map_hash_tuple[idx];
}
static struct ip_nat_map_tailq *list_hash_fd(int host_data_fd)
{
size_t idx;
idx = (host_data_fd * GOLDEN_RATIO_64) % NR_VNET_HASH;
return &map_hash_fd[idx];
}
/* Returnes a refcnted map. */
static struct ip_nat_map *lookup_map_by_tuple(uint8_t protocol,
uint16_t guest_port)
{
struct ip_nat_map *i;
spin_pdr_lock(&maps_lock);
TAILQ_FOREACH(i, list_hash_tuple(protocol, guest_port), lookup_tuple) {
if ((i->protocol == protocol) &&
(i->guest_port == guest_port)) {
kref_get(&i->kref, 1);
break;
}
}
spin_pdr_unlock(&maps_lock);
return i;
}
static struct ip_nat_map *lookup_map_by_hostfd(int host_data_fd)
{
struct ip_nat_map *i;
spin_pdr_lock(&maps_lock);
TAILQ_FOREACH(i, list_hash_fd(host_data_fd), lookup_fd) {
if (i->host_data_fd == host_data_fd) {
kref_get(&i->kref, 1);
break;
}
}
spin_pdr_unlock(&maps_lock);
return i;
}
/* Stores the ref to the map in the global lookup 'table.' */
static void add_map(struct ip_nat_map *map)
{
spin_pdr_lock(&maps_lock);
TAILQ_INSERT_HEAD(list_hash_tuple(map->protocol, map->guest_port),
map, lookup_tuple);
TAILQ_INSERT_HEAD(list_hash_fd(map->host_data_fd), map, lookup_fd);
spin_pdr_unlock(&maps_lock);
}
static void map_release(struct kref *kref)
{
struct ip_nat_map *map = container_of(kref, struct ip_nat_map, kref);
close(map->host_data_fd);
free(map);
}
/* Creates a reference counted ip_nat_map for protocol between guest_port and
* host_port. Static mappings are ones that never expire, such as a port
* forwarding. Caller should add it to the lookup structure.
*
* For the host port, pass "*" for any port, like in a dialstring. */
static struct ip_nat_map *create_map(uint8_t protocol, uint16_t guest_port,
char *host_port, bool is_static)
{
struct ip_nat_map *map;
char dialstring[128];
char conv_dir[NETPATHLEN];
char *proto_str;
int bypass_fd;
bool port_check;
map = malloc(sizeof(struct ip_nat_map));
assert(map);
kref_init(&map->kref, map_release, 1);
map->protocol = protocol;
map->guest_port = guest_port;
map->is_static = is_static;
map->is_stale = FALSE;
map->is_on_inbound = FALSE;
switch (protocol) {
case IP_UDPPROTO:
proto_str = "udp";
break;
case IP_TCPPROTO:
proto_str = "tcp";
break;
default:
panic("get_map for unsupported protocol %d!", protocol);
}
snprintf(dialstring, sizeof(dialstring), "%s!*!%s", proto_str,
host_port);
bypass_fd = bypass9(dialstring, conv_dir, 0);
if (bypass_fd < 0) {
fprintf(stderr, "Failed to clone a conv for %s:%d (%r), won't bypass!\n",
proto_str, guest_port);
free(map);
return NULL;
}
port_check = get_port9(conv_dir, "local", &map->host_port);
parlib_assert_perror(port_check);
map->host_data_fd = open_data_fd9(conv_dir, O_NONBLOCK);
parlib_assert_perror(map->host_data_fd >= 0);
tap_inbound_conv(map->host_data_fd);
close(bypass_fd);
return map;
}
/* Looks up or creates an ip_nat_map for the given proto/port tuple. */
static struct ip_nat_map *get_map_by_tuple(uint8_t protocol,
uint16_t guest_port)
{
struct ip_nat_map *map;
map = lookup_map_by_tuple(protocol, guest_port);
if (map)
return map;
map = create_map(protocol, guest_port, "*", FALSE);
if (!map)
return NULL;
kref_get(&map->kref, 1);
add_map(map);
return map;
}
static void *map_reaper(void *arg)
{
struct ip_nat_map *i, *temp;
struct ip_nat_map_tailq to_release;
while (1) {
uthread_sleep(vnet_nat_timeout);
TAILQ_INIT(&to_release);
spin_pdr_lock(&maps_lock);
/* Only need to scan one map_hash, might as well be the tuple */
for (int j = 0; j < NR_VNET_HASH; j++) {
TAILQ_FOREACH_SAFE(i, &map_hash_tuple[j], lookup_tuple,
temp) {
if (i->is_static)
continue;
if (!i->is_stale) {
i->is_stale = TRUE;
continue;
}
/* Remove from both lists, hashing for the FD
* list */
TAILQ_REMOVE(&map_hash_tuple[j], i,
lookup_tuple);
TAILQ_REMOVE(list_hash_fd(i->host_data_fd), i,
lookup_fd);
/* Use the lookup_tuple for the temp list */
TAILQ_INSERT_HEAD(&to_release, i, lookup_tuple);
}
}
spin_pdr_unlock(&maps_lock);
TAILQ_FOREACH_SAFE(i, &to_release, lookup_tuple, temp)
kref_put(&i->kref);
}
return 0;
}
static void map_dumper(void)
{
struct ip_nat_map *i;
fprintf(stderr, "\n\nVNET NAT maps:\n---------------\n");
spin_pdr_lock(&maps_lock);
for (int j = 0; j < NR_VNET_HASH; j++) {
TAILQ_FOREACH(i, &map_hash_tuple[j], lookup_tuple) {
fprintf(stderr, "\tproto %2d, host %5d, guest %5d, FD %4d, stale %d, static %d, ref %d\n",
i->protocol, i->host_port, i->guest_port,
i->host_data_fd, i->is_stale, i->is_static,
i->kref.refcnt);
}
}
spin_pdr_unlock(&maps_lock);
}
static void init_map_lookup(struct virtual_machine *vm)
{
for (int i = 0; i < NR_VNET_HASH; i++)
TAILQ_INIT(&map_hash_tuple[i]);
for (int i = 0; i < NR_VNET_HASH; i++)
TAILQ_INIT(&map_hash_fd[i]);
vmm_run_task(vm, map_reaper, NULL);
}
static struct buf_pkt *zalloc_bpkt(size_t size)
{
struct buf_pkt *bpkt;
bpkt = malloc(sizeof(struct buf_pkt));
assert(bpkt);
bpkt->sz = size;
bpkt->buf = malloc(bpkt->sz);
assert(bpkt->buf);
memset(bpkt->buf, 0, bpkt->sz);
return bpkt;
}
static void free_bpkt(struct buf_pkt *bpkt)
{
free(bpkt->buf);
free(bpkt);
}
/* Queues a buf_pkt, which the rx thread will inject when it wakes. */
static void inject_buf_pkt(struct buf_pkt *bpkt)
{
uth_mutex_lock(rx_mtx);
STAILQ_INSERT_TAIL(&inject_pkts, bpkt, next);
uth_mutex_unlock(rx_mtx);
uth_cond_var_broadcast(rx_cv);
}
/* Helper for xsum_update, mostly for paranoia with integer promotion and
* cleanly keeping variables as u16. */
static uint16_t ones_comp(uint16_t x)
{
return ~x;
}
/* IP checksum updater. If you change amt bytes in a packet from old to new,
* this updates the xsum at xsum_off in the iov.
*
* Assumes a few things:
* - there's a 16 byte xsum at xsum_off
* - amt is a multiple of two
* - the data at *old and *new is network (big) endian
*
* There's no assumption about the alignment of old and new, thanks to Plan 9's
* sensible nhgets() (just byte accesses, not assuming u16 alignment).
*
* See RFC 1624 for the math. I opted for Eqn 3, instead of 4, since I didn't
* want to deal with subtraction underflow / carry / etc. Also note that we
* need to do the intermediate carry before doing the one's comp. That wasn't
* clear from the RFC either. RFC 1141 didn't need to do that, since they
* didn't complement the intermediate HC (xsum). */
static void xsum_update(struct iovec *iov, int iovcnt, size_t xsum_off,
uint8_t *old, uint8_t *new, size_t amt)
{
uint32_t xsum;
assert(amt % 2 == 0);
xsum = iov_get_be16(iov, iovcnt, xsum_off);
/* for each short: HC' = ~(~HC + ~m + m') (' == new, ~ == ones-comp) */
for (int i = 0; i < amt / 2; i++, old += 2, new += 2) {
xsum = ones_comp(xsum) + ones_comp(nhgets(old)) + nhgets(new);
/* Need to deal with the carry for any additions, before the
* outer ~() operation. (Not mentioned in the RFC, determined
* manually...) */
while (xsum >> 16)
xsum = (xsum & 0xffff) + (xsum >> 16);
/* Yes, next time around the loop we ones comp right back. Not
* worth optimizing. */
xsum = ones_comp(xsum);
}
iov_put_be16(iov, iovcnt, xsum_off, xsum);
}
static void snoop_on_virtio(void)
{
int ret;
int srv_fd, pipe_dir_fd, pipe_ctl_fd, pipe_srv_fd, pipe_snoop_fd;
const char cmd[] = "oneblock";
char buf[MAX_PATH_LEN];
pipe_dir_fd = open("#pipe", O_PATH);
parlib_assert_perror(pipe_dir_fd >= 0);
pipe_ctl_fd = openat(pipe_dir_fd, "ctl", O_RDWR);
parlib_assert_perror(pipe_ctl_fd >= 0);
ret = write(pipe_ctl_fd, cmd, sizeof(cmd));
parlib_assert_perror(ret == sizeof(cmd));
close(pipe_ctl_fd);
pipe_snoop_fd = openat(pipe_dir_fd, "data", O_RDWR);
parlib_assert_perror(pipe_snoop_fd >= 0);
ret = fcntl(pipe_snoop_fd, F_SETFL, O_NONBLOCK);
parlib_assert_perror(!ret);
snoop_fd = pipe_snoop_fd;
pipe_srv_fd = openat(pipe_dir_fd, "data1", O_RDWR);
parlib_assert_perror(pipe_srv_fd >= 0);
ret = snprintf(buf, sizeof(buf), "#srv/%s-%d", "snoop", getpid());
/* We don't close srv_fd here. When we exit, it'll close and remove. */
srv_fd = open(buf, O_RDWR | O_EXCL | O_CREAT | O_REMCLO, 0444);
parlib_assert_perror(srv_fd >= 0);
ret = snprintf(buf, sizeof(buf), "%d", pipe_srv_fd);
ret = write(srv_fd, buf, ret);
parlib_assert_perror(ret > 0);
close(pipe_srv_fd);
}
/* Gets the host's IPv4 information from iplib and ndb. */
static void get_host_ip_addrs(void)
{
struct ndb *ndb;
struct ndbtuple *nt;
char *dns = "dns";
char my_ip_str[40];
char buf[128];
struct ipifc *to_free;
struct iplifc *lifc;
int ret;
uint8_t router_ip[IPaddrlen];
register_printf_specifier('i', printf_ipaddr, printf_ipaddr_info);
register_printf_specifier('M', printf_ipmask, printf_ipmask_info);
lifc = get_first_noloop_iplifc(NULL, &to_free);
if (!lifc) {
fprintf(stderr,
"IP addr lookup failed (%r), no VM networking\n");
return;
}
snprintf(my_ip_str, sizeof(my_ip_str), "%i", lifc->ip);
snprintf(buf, sizeof(buf), "%i%M", lifc->ip, lifc->mask);
v4parsecidr(host_v4_addr, host_v4_mask, buf);
free_ipifc(to_free);
ret = my_router_addr(router_ip, NULL);
if (ret) {
fprintf(stderr,
"Router lookup failed (%r), no VM networking\n");
return;
}
v6tov4(host_v4_router, router_ip);
ndb = ndbopen("/net/ndb");
if (!ndb) {
fprintf(stderr, "NDB open failed (%r), no VM networking\n");
return;
}
nt = ndbipinfo(ndb, "ip", my_ip_str, &dns, 1);
if (!nt) {
fprintf(stderr,
"DNS server lookup failed (%r), no VM networking\n");
return;
}
v4parseip(host_v4_dns, nt->val);
ndbfree(nt);
ndbclose(ndb);
}
static void set_ip_addrs(void)
{
get_host_ip_addrs();
loopback_v4_addr[0] = 127;
loopback_v4_addr[1] = 0;
loopback_v4_addr[2] = 0;
loopback_v4_addr[3] = 1;
bcast_v4_addr[0] = 255;
bcast_v4_addr[1] = 255;
bcast_v4_addr[2] = 255;
bcast_v4_addr[3] = 255;
/* even in qemu mode, the guest gets the real DNS IP */
memcpy(guest_v4_dns, host_v4_dns, IPV4_ADDR_LEN);
if (vnet_real_ip_addrs) {
memcpy(guest_v4_addr, host_v4_addr, IPV4_ADDR_LEN);
memcpy(guest_v4_mask, host_v4_mask, IPV4_ADDR_LEN);
memcpy(guest_v4_router, host_v4_router, IPV4_ADDR_LEN);
} else {
guest_v4_addr[0] = 10;
guest_v4_addr[1] = 0;
guest_v4_addr[2] = 2;
guest_v4_addr[3] = 15;
guest_v4_mask[0] = 255;
guest_v4_mask[1] = 255;
guest_v4_mask[2] = 255;
guest_v4_mask[3] = 0;
guest_v4_router[0] = 10;
guest_v4_router[1] = 0;
guest_v4_router[2] = 2;
guest_v4_router[3] = 2;
}
}
static void tap_inbound_conv(int fd)
{
struct fd_tap_req tap_req = {0};
int ret;
tap_req.fd = fd;
tap_req.cmd = FDTAP_CMD_ADD;
tap_req.filter = FDTAP_FILT_READABLE;
tap_req.ev_q = inbound_evq;
tap_req.ev_id = fd;
tap_req.data = NULL;
ret = sys_tap_fds(&tap_req, 1);
parlib_assert_perror(ret == 1);
}
/* For every FD tap that fires, make sure the map is on the inbound_todo list
* and kick the receiver.
*
* A map who's FD fires might already be on the list - it's possible for an FD
* to drain to 0 and get another packet (thus triggering a tap) before
* __poll_inbound() notices and removes it from the list. */
static void *fdtap_watcher(void *arg)
{
struct event_msg msg[1];
struct ip_nat_map *map;
while (1) {
uth_blockon_evqs(msg, NULL, 1, inbound_evq);
map = lookup_map_by_hostfd(msg->ev_type);
/* Could get an event for an FD/map that has since been reaped.
*/
if (!map)
continue;
uth_mutex_lock(rx_mtx);
if (!map->is_on_inbound) {
map->is_on_inbound = TRUE;
TAILQ_INSERT_TAIL(&inbound_todo, map, inbound);
uth_cond_var_broadcast(rx_cv);
} else {
kref_put(&map->kref);
}
uth_mutex_unlock(rx_mtx);
}
return 0;
}
static struct event_queue *get_inbound_evq(void)
{
struct event_queue *ceq;
ceq = get_eventq_raw();
ceq->ev_mbox->type = EV_MBOX_CEQ;
ceq_init(&ceq->ev_mbox->ceq, CEQ_OR, NR_FILE_DESC_MAX, 128);
/* As far as flags go, we might not want IPI in the future. Depends on
* some longer range VMM/2LS changes. Regarding INDIR, if you want to
* find out about the event (i.e. not poll) for non-VCPD mboxes (like
* this evq's mbox), then you need INDIR. We need that for the
* wakeup/blockon. */
ceq->ev_flags = EVENT_INDIR | EVENT_SPAM_INDIR | EVENT_WAKEUP |
EVENT_IPI;
evq_attach_wakeup_ctlr(ceq);
return ceq;
}
void vnet_port_forward(char *protocol, char *host_port, char *guest_port)
{
struct ip_nat_map *map;
uint8_t proto_nr;
if (!strcmp("udp", protocol)) {
proto_nr = IP_UDPPROTO;
} else if (!strcmp("tcp", protocol)) {
proto_nr = IP_TCPPROTO;
} else {
fprintf(stderr, "Can't port forward protocol %s\n", protocol);
return;
}
map = create_map(proto_nr, atoi(guest_port), host_port, TRUE);
if (!map) {
fprintf(stderr, "Failed to set up port forward!");
exit(-1);
}
add_map(map);
}
static void ev_handle_diag(struct event_msg *ev_msg, unsigned int ev_type,
void *data)
{
map_dumper();
}
void vnet_init(struct virtual_machine *vm, struct virtio_vq_dev *vqdev)
{
set_ip_addrs();
virtio_net_set_mac(vqdev, guest_eth_addr);
rx_mtx = uth_mutex_alloc();
rx_cv = uth_cond_var_alloc();
if (vnet_snoop)
snoop_on_virtio();
init_map_lookup(vm);
inbound_evq = get_inbound_evq();
vmm_run_task(vm, fdtap_watcher, NULL);
if (vnet_map_diagnostics)
register_ev_handler(EV_FREE_APPLE_PIE, ev_handle_diag, NULL);
}
/* Good DHCP reference:
* http://www.tcpipguide.com/free/t_TCPIPDynamicHostConfigurationProtocolDHCP.htm
*/
#define DHCP_MAX_OPT_LEN 200
#define DHCP_MAIN_BODY_LEN 236
#define DHCP_RSP_LEN (DHCP_MAIN_BODY_LEN + DHCP_MAX_OPT_LEN)
#define DHCP_LEASE_TIME 3600
#define DHCP_OP_REQ 1
#define DHCP_OP_RSP 2
#define DHCP_MSG_DISCOVER 1
#define DHCP_MSG_OFFER 2
#define DHCP_MSG_REQUEST 3
#define DHCP_MSG_DECLINE 4
#define DHCP_MSG_ACK 5
#define DHCP_MSG_NAK 6
#define DHCP_MSG_RELEASE 7
#define DHCP_MSG_INFORM 8
#define DHCP_MAGIC_COOKIE_1 0x63
#define DHCP_MAGIC_COOKIE_2 0x82
#define DHCP_MAGIC_COOKIE_3 0x53
#define DHCP_MAGIC_COOKIE_4 0x63
#define DHCP_OPT_PAD 0
#define DHCP_OPT_SUBNET 1
#define DHCP_OPT_ROUTER 3
#define DHCP_OPT_DNS 6
#define DHCP_OPT_HOSTNAME 12
#define DHCP_OPT_LEASE 51
#define DHCP_OPT_MSG_TYPE 53
#define DHCP_OPT_SERVER_ID 54
#define DHCP_OPT_END_OF_OPT 255
static int get_dhcp_req_type(struct iovec *iov, int iovcnt)
{
size_t idx = ETH_HDR_LEN + IPV4_HDR_LEN + UDP_HDR_LEN
+ DHCP_MAIN_BODY_LEN;
if (!iov_has_bytes(iov, iovcnt, idx + 4)) {
fprintf(stderr, "DHCP request too short!\n");
return -1;
}
/* Sanity checks */
if ((iov_get_byte(iov, iovcnt, idx + 0) != DHCP_MAGIC_COOKIE_1) ||
(iov_get_byte(iov, iovcnt, idx + 1) != DHCP_MAGIC_COOKIE_2) ||
(iov_get_byte(iov, iovcnt, idx + 2) != DHCP_MAGIC_COOKIE_3) ||
(iov_get_byte(iov, iovcnt, idx + 3) != DHCP_MAGIC_COOKIE_4)) {
fprintf(stderr, "DHCP request didn't have magic cookie!\n");
return -1;
}
/* Some clients might ask us to look in sname or other locations, which
* is communicated by an option. So far, the clients I've seen just use
* the main options to communicate the message type. */
idx += 4;
while (1) {
if (!iov_has_bytes(iov, iovcnt, idx + 1)) {
fprintf(stderr, "DHCP request too short!\n");
return -1;
}
switch (iov_get_byte(iov, iovcnt, idx)) {
case DHCP_OPT_MSG_TYPE:
if (!iov_has_bytes(iov, iovcnt, idx + 3)) {
fprintf(stderr, "DHCP request too short!\n");
return -1;
}
return iov_get_byte(iov, iovcnt, idx + 2);
case DHCP_OPT_PAD:
idx += 1;
break;
case DHCP_OPT_END_OF_OPT:
fprintf(stderr, "DHCP request without a type!\n");
return -1;
default:
if (!iov_has_bytes(iov, iovcnt, idx + 2)) {
fprintf(stderr, "DHCP request too short!\n");
return -1;
}
/* idx + 1 is size of the payload. Skip the opt, size,
* payload. */
idx += 2 + iov_get_byte(iov, iovcnt, idx + 1);
break;
}
}
}
static size_t build_dhcp_response(struct iovec *iov, int iovcnt, uint8_t *buf)
{
uint8_t *p = buf;
int req_type;
*p++ = DHCP_OP_RSP;
*p++ = ETH_HTYPE_ETH;
*p++ = ETH_ADDR_LEN;
*p++ = 0x00; /* hops */
/* TODO: copies XID; assumes the inbound packet had standard headers */
iov_memcpy_from(iov, iovcnt,
ETH_HDR_LEN + IPV4_HDR_LEN + UDP_HDR_LEN + 4, p, 4);
p += 4;
p += 8; /* secs, flags, CIADDR */
memcpy(p, guest_v4_addr, IPV4_ADDR_LEN);
p += IPV4_ADDR_LEN;
memcpy(p, guest_v4_router, IPV4_ADDR_LEN);
p += IPV4_ADDR_LEN;
memcpy(p, guest_v4_router, IPV4_ADDR_LEN);
p += IPV4_ADDR_LEN;
iov_memcpy_from(iov, iovcnt, ETH_ADDR_LEN, p, ETH_ADDR_LEN);
p += 16; /* CHaddr has 16 bytes, we only use 6 */
memcpy(p, dhcp_hostname, strlen(dhcp_hostname));
p += 64;
p += 128;
req_type = get_dhcp_req_type(iov, iovcnt);
/* DHCP options: Technically, we should be responding with whatever
* fields they asked for in their incoming message. For the most part,
* there are a bunch of standard things we can just respond with. */
*p++ = DHCP_MAGIC_COOKIE_1;
*p++ = DHCP_MAGIC_COOKIE_2;
*p++ = DHCP_MAGIC_COOKIE_3;
*p++ = DHCP_MAGIC_COOKIE_4;
*p++ = DHCP_OPT_MSG_TYPE;
*p++ = 1;
switch (req_type) {
case DHCP_MSG_DISCOVER:
*p++ = DHCP_MSG_OFFER;
break;
case DHCP_MSG_REQUEST:
*p++ = DHCP_MSG_ACK;
break;
default:
panic("Unexpected DHCP message type %d", req_type);
}
*p++ = DHCP_OPT_SUBNET;
*p++ = 4;
memcpy(p, guest_v4_mask, IPV4_ADDR_LEN);
p += IPV4_ADDR_LEN;
*p++ = DHCP_OPT_ROUTER;
*p++ = 4;
memcpy(p, guest_v4_router, IPV4_ADDR_LEN);
p += IPV4_ADDR_LEN;
*p++ = DHCP_OPT_DNS;
*p++ = 4;
memcpy(p, guest_v4_dns, IPV4_ADDR_LEN);
p += IPV4_ADDR_LEN;
*p++ = DHCP_OPT_HOSTNAME;
*p++ = strlen(dhcp_guestname); /* not null-terminated */
memcpy(p, dhcp_guestname, strlen(dhcp_guestname));
p += strlen(dhcp_guestname);
if (req_type == DHCP_MSG_REQUEST) {
*p++ = DHCP_OPT_LEASE;
*p++ = 4;
hnputl(p, DHCP_LEASE_TIME);
p += 4;
*p++ = DHCP_OPT_SERVER_ID;
*p++ = 4;
memcpy(p, guest_v4_dns, IPV4_ADDR_LEN);
p += IPV4_ADDR_LEN;
}
*p++ = DHCP_OPT_END_OF_OPT;
return p - buf;
}
/* Builds a UDP packet responding to IOV with buf of payload_sz. Sent from
* src_port to dst_port. Returns the new size, including UDP headers. */
static size_t build_udp_response(struct iovec *iov, int iovcnt, uint8_t *buf,
size_t payload_sz,
uint16_t src_port, uint16_t dst_port)
{
uint8_t *p = buf;
hnputs(p, src_port);
p += 2;
hnputs(p, dst_port);
p += 2;
hnputs(p, payload_sz + UDP_HDR_LEN);
p += 2;
/* For v4, we don't need to do the xsum. It's a minor pain too, since
* they xsum parts of the IP header too. */
hnputs(p, 0);
p += 2;
return p - buf + payload_sz;
}
/* Builds an IP packet responding to iov with buf of payload_sz. Sent from->to
* with protocol. Returns the new size, including IP headers.
*
* We take parameters for the IP, since some usages won't use the iov's IP (e.g.
* DHCP). */
static size_t build_ip_response(struct iovec *iov, int iovcnt, uint8_t *buf,
size_t payload_sz, uint8_t *from, uint8_t *to,
uint8_t protocol)
{
uint8_t *p = buf;
uint8_t *xsum_addr;
*p = 0x45; /* version, etc */
p += 2;
hnputs(p, payload_sz + IPV4_HDR_LEN);
p += 2;
p += 4;
*p = 255; /* TTL */
p += 1;
*p = protocol;
p += 1;
xsum_addr = p;
p += 2;
memcpy(p, from, IPV4_ADDR_LEN);
p += IPV4_ADDR_LEN;
memcpy(p, to, IPV4_ADDR_LEN);
p += IPV4_ADDR_LEN;
hnputs(xsum_addr, ip_calc_xsum(buf, IPV4_HDR_LEN));
return p - buf + payload_sz;
}
/* Builds an ethernet response to iov from buf of payload_sz. Returns the new
* size, including ethernet headers. */
static size_t build_eth_response(struct iovec *iov, int iovcnt, uint8_t *buf,
size_t payload_sz, uint16_t ether_type)
{
uint8_t *p = buf;
iov_memcpy_from(iov, iovcnt, ETH_OFF_SRC, p, ETH_ADDR_LEN);
p += ETH_ADDR_LEN;
memcpy(p, host_eth_addr, ETH_ADDR_LEN);
p += ETH_ADDR_LEN;
hnputs(p, ether_type);
p += 2;
return p - buf + payload_sz;
}
static void fake_dhcp_response(struct iovec *iov, int iovcnt)
{
struct buf_pkt *bpkt;
size_t payload_sz;
switch (get_dhcp_req_type(iov, iovcnt)) {
case DHCP_MSG_OFFER:
case DHCP_MSG_DECLINE:
case DHCP_MSG_ACK:
case DHCP_MSG_NAK:
case DHCP_MSG_RELEASE:
case DHCP_MSG_INFORM:
return;
}
bpkt = zalloc_bpkt(ETH_HDR_LEN + IPV4_HDR_LEN + UDP_HDR_LEN +
DHCP_RSP_LEN);
payload_sz = build_dhcp_response(iov, iovcnt, bpkt->buf + ETH_HDR_LEN +
IPV4_HDR_LEN + UDP_HDR_LEN);
payload_sz = build_udp_response(iov, iovcnt,
bpkt->buf + ETH_HDR_LEN + IPV4_HDR_LEN,
payload_sz, 67, 68);
/* For offers and initial requests, we definitely need to send it to
* 255.255.255.255 (bcast). For renewals, it seems like that that also
* suffices, which seems reasonable. */
payload_sz = build_ip_response(iov, iovcnt, bpkt->buf + ETH_HDR_LEN,
payload_sz, guest_v4_router,
bcast_v4_addr, IP_UDPPROTO);
payload_sz = build_eth_response(iov, iovcnt, bpkt->buf, payload_sz,
ETH_TYPE_IPV4);
assert(payload_sz <= bpkt->sz);
bpkt->sz = payload_sz;
inject_buf_pkt(bpkt);
}
static size_t build_arp_response(struct iovec *iov, int iovcnt, uint8_t *buf)
{
uint8_t *p = buf;
hnputs(p, ETH_HTYPE_ETH);
p += 2;
hnputs(p, ETH_TYPE_IPV4);
p += 2;
*p++ = ETH_ADDR_LEN;
*p++ = IPV4_ADDR_LEN;
hnputs(p, ARP_OP_RSP);
p += 2;
/* SHA: addr they are looking for, which is always host's eth addr */
memcpy(p, host_eth_addr, ETH_ADDR_LEN);
p += ETH_ADDR_LEN;
/* SPA: addr they are looking for, which was the request TPA */
iov_memcpy_from(iov, iovcnt, ETH_HDR_LEN + ARP_OFF_TPA, p,
IPV4_ADDR_LEN);
p += IPV4_ADDR_LEN;
/* THA was the SHA of the request */
iov_memcpy_from(iov, iovcnt, ETH_HDR_LEN + ARP_OFF_SHA, p,
ETH_ADDR_LEN);
p += ETH_ADDR_LEN;
/* TPA was the SPA of the request */
iov_memcpy_from(iov, iovcnt, ETH_HDR_LEN + ARP_OFF_SPA, p,
IPV4_ADDR_LEN);
p += IPV4_ADDR_LEN;
return p - buf;
}
static bool should_ignore_arp(struct iovec *iov, int iovcnt)
{
size_t arp_off = ETH_HDR_LEN;
if (iov_get_be16(iov, iovcnt, arp_off + ARP_OFF_OP) != ARP_OP_REQ)
return TRUE;
/* ARP probes set the SPA to 0. Ignore these. */
if (iov_get_be32(iov, iovcnt, arp_off + ARP_OFF_SPA) == 0)
return TRUE;
return FALSE;
}
static void handle_arp_tx(struct iovec *iov, int iovcnt)
{
struct buf_pkt *bpkt;
size_t payload_sz;
if (should_ignore_arp(iov, iovcnt))
return;
bpkt = zalloc_bpkt(ETH_HDR_LEN + ARP_PKT_LEN);
payload_sz = build_arp_response(iov, iovcnt, bpkt->buf + ETH_HDR_LEN);
payload_sz = build_eth_response(iov, iovcnt, bpkt->buf, payload_sz,
ETH_TYPE_ARP);
assert(payload_sz <= bpkt->sz);
bpkt->sz = payload_sz;
inject_buf_pkt(bpkt);
}
/* Helper for protocols: updates an xsum, given a port number change */
static void xsum_changed_port(struct iovec *iov, int iovcnt, size_t xsum_off,
uint16_t old_port, uint16_t new_port)
{
uint16_t old_port_be, new_port_be;
/* xsum update expects to work on big endian */
hnputs(&old_port_be, old_port);
hnputs(&new_port_be, new_port);
xsum_update(iov, iovcnt, xsum_off, (uint8_t*)&old_port_be,
(uint8_t*)&new_port_be, 2);
}
static struct ip_nat_map *handle_udp_tx(struct iovec *iov, int iovcnt,
size_t udp_off)
{
uint16_t src_port, dst_port;
struct ip_nat_map *map;
if (!iov_has_bytes(iov, iovcnt, udp_off + UDP_HDR_LEN)) {
fprintf(stderr, "Short UDP header, dropping!\n");
return NULL;
}
src_port = iov_get_be16(iov, iovcnt, udp_off + UDP_OFF_SRC_PORT);
dst_port = iov_get_be16(iov, iovcnt, udp_off + UDP_OFF_DST_PORT);
if (dst_port == 67) {
fake_dhcp_response(iov, iovcnt);
return NULL;
}
map = get_map_by_tuple(IP_UDPPROTO, src_port);
if (!map)
return NULL;
xsum_changed_port(iov, iovcnt, udp_off + UDP_OFF_XSUM, src_port,
map->host_port);
iov_put_be16(iov, iovcnt, udp_off + UDP_OFF_SRC_PORT, map->host_port);
return map;
}
static struct ip_nat_map *handle_tcp_tx(struct iovec *iov, int iovcnt,
size_t tcp_off)
{
uint16_t src_port, dst_port;
struct ip_nat_map *map;
if (!iov_has_bytes(iov, iovcnt, tcp_off + TCP_HDR_LEN)) {
fprintf(stderr, "Short TCP header, dropping!\n");
return NULL;
}
src_port = iov_get_be16(iov, iovcnt, tcp_off + TCP_OFF_SRC_PORT);
dst_port = iov_get_be16(iov, iovcnt, tcp_off + TCP_OFF_DST_PORT);
map = get_map_by_tuple(IP_TCPPROTO, src_port);
if (!map)
return NULL;
xsum_changed_port(iov, iovcnt, tcp_off + TCP_OFF_XSUM, src_port,
map->host_port);
iov_put_be16(iov, iovcnt, tcp_off + TCP_OFF_SRC_PORT, map->host_port);
return map;
}
static struct ip_nat_map *handle_icmp_tx(struct iovec *iov, int iovcnt,
size_t icmp_off)
{
/* TODO: we could respond to pings sent to us (router_ip). For anything
* else, we'll need to work with the bypass (if possible, maybe ID it
* with the Identifier field and map that to the bypassed conv)). */
return NULL;
}
/* Some protocols (like TCP and UDP) need to adjust their xsums whenever an IPv4
* address changes. */
static void ipv4_proto_changed_addr(struct iovec *iov, int iovcnt,
uint8_t protocol, size_t proto_hdr_off,
uint8_t *old_addr, uint8_t *new_addr)
{
switch (protocol) {
case IP_UDPPROTO:
xsum_update(iov, iovcnt, proto_hdr_off + UDP_OFF_XSUM, old_addr,
new_addr, IPV4_ADDR_LEN);
break;
case IP_TCPPROTO:
xsum_update(iov, iovcnt, proto_hdr_off + TCP_OFF_XSUM, old_addr,
new_addr, IPV4_ADDR_LEN);
break;
}
}
/* Helper, changes a packet's IP address, updating xsums. 'which' controls
* whether we're changing the src or dst address. */
static void ipv4_change_addr(struct iovec *iov, int iovcnt, size_t ip_off,
uint8_t protocol, uint8_t proto_hdr_off,
uint8_t *old_addr, uint8_t *new_addr, size_t which)
{
xsum_update(iov, iovcnt, ip_off + IPV4_OFF_XSUM, old_addr, new_addr,
IPV4_ADDR_LEN);
ipv4_proto_changed_addr(iov, iovcnt, protocol, proto_hdr_off, old_addr,
new_addr);
iov_memcpy_to(iov, iovcnt, ip_off + which, new_addr, IPV4_ADDR_LEN);
}
static size_t ipv4_get_header_len(struct iovec *iov, int iovcnt, size_t ip_off)
{
/* First byte, lower nibble, times 4. */
return (iov_get_byte(iov, iovcnt, ip_off + 0) & 0x0f) * 4;
}
static size_t ipv4_get_proto_off(struct iovec *iov, int iovcnt, size_t ip_off)
{
return ipv4_get_header_len(iov, iovcnt, ip_off) + ip_off;
}
static uint8_t ipv4_get_version(struct iovec *iov, int iovcnt, size_t ip_off)
{
/* First byte, upper nibble, but keep in the upper nibble location */
return iov_get_byte(iov, iovcnt, ip_off + 0) & 0xf0;
}
static void handle_ipv4_tx(struct iovec *iov, int iovcnt)
{
size_t ip_off = ETH_HDR_LEN;
uint8_t protocol;
size_t proto_hdr_off;
struct ip_nat_map *map;
uint8_t src_addr[IPV4_ADDR_LEN];
uint8_t dst_addr[IPV4_ADDR_LEN];
if (!iov_has_bytes(iov, iovcnt, ip_off + IPV4_HDR_LEN)) {
fprintf(stderr, "Short IPv4 header, dropping!\n");
return;
}
/* It's up to each protocol to give us the ip_nat_map matching the
* packet and to change the packet's src port. */
protocol = iov_get_byte(iov, iovcnt, ip_off + IPV4_OFF_PROTO);
proto_hdr_off = ipv4_get_proto_off(iov, iovcnt, ip_off);
switch (protocol) {
case IP_UDPPROTO:
map = handle_udp_tx(iov, iovcnt, proto_hdr_off);
break;
case IP_TCPPROTO:
map = handle_tcp_tx(iov, iovcnt, proto_hdr_off);
break;
case IP_ICMPPROTO:
map = handle_icmp_tx(iov, iovcnt, proto_hdr_off);
break;
}
/* If the protocol handler already dealt with it (e.g. via emulation),
* we bail out. o/w, they gave us the remapping we should use to
* rewrite and send the packet. */
if (!map)
return;
/* At this point, we have a refcnted map, which will keep the map alive
* and its FD open. */
iov_memcpy_from(iov, iovcnt, ip_off + IPV4_OFF_SRC, src_addr,
IPV4_ADDR_LEN);
iov_memcpy_from(iov, iovcnt, ip_off + IPV4_OFF_DST, dst_addr,
IPV4_ADDR_LEN);
/* If the destination is the ROUTER_IP, then it's really meant to go to
* the host (loopback). In that case, we also need the src to be
* loopback, so that the *host's* IP stack recognizes the connection
* (necessary for host-initiated connections via static maps). */
if (!memcmp(dst_addr, guest_v4_router, IPV4_ADDR_LEN)) {
ipv4_change_addr(iov, iovcnt, ip_off, protocol, proto_hdr_off,
dst_addr, loopback_v4_addr, IPV4_OFF_DST);
ipv4_change_addr(iov, iovcnt, ip_off, protocol, proto_hdr_off,
src_addr, loopback_v4_addr, IPV4_OFF_SRC);
} else {
ipv4_change_addr(iov, iovcnt, ip_off, protocol, proto_hdr_off,
src_addr, host_v4_addr, IPV4_OFF_SRC);
}
/* We didn't change the size of the packet, just a few fields. So we
* shouldn't need to worry about iov[] being too big. This is different
* than the receive case, where the guest should give us an MTU-sized
* iov. Here, they just gave us whatever they wanted to send.
*
* However, we still need to drop the ethernet header from the front of
* the packet, and just send the IP header + payload. */
iov_strip_bytes(iov, iovcnt, ETH_HDR_LEN);
/* As far as blocking goes, this is like blasting out a raw IP packet.
* It shouldn't block, preferring to drop, though there might be some
* cases where a qlock is grabbed or the medium/NIC blocks. */
writev(map->host_data_fd, iov, iovcnt);
map->is_stale = FALSE;
kref_put(&map->kref);
}
static void handle_ipv6_tx(struct iovec *iov, int iovcnt)
{
}
/* virtio-net calls this when the guest transmits a packet */
int vnet_transmit_packet(struct iovec *iov, int iovcnt)
{
uint16_t ether_type;
if (vnet_snoop)
writev(snoop_fd, iov, iovcnt);
if (!iov_has_bytes(iov, iovcnt, ETH_HDR_LEN)) {
fprintf(stderr,
"Short ethernet frame from the guest, dropping!\n");
return -1;
}
ether_type = iov_get_be16(iov, iovcnt, ETH_OFF_ETYPE);
switch (ether_type) {
case ETH_TYPE_ARP:
handle_arp_tx(iov, iovcnt);
break;
case ETH_TYPE_IPV4:
handle_ipv4_tx(iov, iovcnt);
break;
case ETH_TYPE_IPV6:
handle_ipv6_tx(iov, iovcnt);
break;
default:
fprintf(stderr, "Unknown ethertype 0x%x, dropping!\n",
ether_type);
return -1;
};
return 0;
}
/* Polls for injected packets, filling the iov[iovcnt] on success and returning
* the amount. 0 means 'nothing there.' */
static size_t __poll_injection(struct iovec *iov, int iovcnt)
{
size_t ret;
struct buf_pkt *bpkt;
if (STAILQ_EMPTY(&inject_pkts))
return 0;
bpkt = STAILQ_FIRST(&inject_pkts);
STAILQ_REMOVE_HEAD(&inject_pkts, next);
iov_memcpy_to(iov, iovcnt, 0, bpkt->buf, bpkt->sz);
ret = bpkt->sz;
free_bpkt(bpkt);
return ret;
}
static void handle_udp_rx(struct iovec *iov, int iovcnt, size_t len,
struct ip_nat_map *map, size_t udp_off)
{
assert(len >= udp_off + UDP_HDR_LEN);
xsum_changed_port(iov, iovcnt, udp_off + UDP_OFF_XSUM,
iov_get_be16(iov, iovcnt, udp_off + UDP_OFF_DST_PORT),
map->guest_port);
iov_put_be16(iov, iovcnt, udp_off + UDP_OFF_DST_PORT, map->guest_port);
}
static void handle_tcp_rx(struct iovec *iov, int iovcnt, size_t len,
struct ip_nat_map *map, size_t tcp_off)
{
assert(len >= tcp_off + TCP_HDR_LEN);
xsum_changed_port(iov, iovcnt, tcp_off + TCP_OFF_XSUM,
iov_get_be16(iov, iovcnt, tcp_off + TCP_OFF_DST_PORT),
map->guest_port);
iov_put_be16(iov, iovcnt, tcp_off + TCP_OFF_DST_PORT, map->guest_port);
}
/* Computes and stores the xsum for the ipv4 header in the iov. */
static void xsum_ipv4_header(struct iovec *iov, int iovcnt, size_t ip_off)
{
size_t hdr_len = ipv4_get_header_len(iov, iovcnt, ip_off);
uint8_t buf[hdr_len];
iov_memcpy_from(iov, iovcnt, ip_off, buf, hdr_len);
*(uint16_t*)&buf[IPV4_OFF_XSUM] = 0;
iov_put_be16(iov, iovcnt, ip_off + IPV4_OFF_XSUM,
ip_calc_xsum(buf, IPV4_HDR_LEN));
}
static void handle_ipv4_rx(struct iovec *iov, int iovcnt, size_t len,
struct ip_nat_map *map)
{
size_t ip_off = ETH_HDR_LEN;
uint8_t protocol;
size_t proto_hdr_off;
uint8_t src_addr[IPV4_ADDR_LEN];
uint8_t dst_addr[IPV4_ADDR_LEN];
protocol = iov_get_byte(iov, iovcnt, ip_off + IPV4_OFF_PROTO);
proto_hdr_off = ipv4_get_proto_off(iov, iovcnt, ip_off);
switch (map->protocol) {
case IP_UDPPROTO:
handle_udp_rx(iov, iovcnt, len, map, proto_hdr_off);
break;
case IP_TCPPROTO:
handle_tcp_rx(iov, iovcnt, len, map, proto_hdr_off);
break;
default:
panic("Bad proto %d on map for conv FD %d\n", map->protocol,
map->host_data_fd);
}
iov_memcpy_from(iov, iovcnt, ip_off + IPV4_OFF_SRC, src_addr,
IPV4_ADDR_LEN);
iov_memcpy_from(iov, iovcnt, ip_off + IPV4_OFF_DST, dst_addr,
IPV4_ADDR_LEN);
/* If the src was the host (loopback), the guest thinks the remote is
* ROUTER_IP. */
if (!memcmp(src_addr, loopback_v4_addr, IPV4_ADDR_LEN)) {
ipv4_change_addr(iov, iovcnt, ip_off, map->protocol,
proto_hdr_off, src_addr, guest_v4_router,
IPV4_OFF_SRC);
}
/* Interesting case. If we rewrite it to guest_v4_router, when the
* guest responds, *that* packet will get rewritten to loopback. If we
* ignore it, and it's qemu mode, it'll actually work. If it's real
* addr mode, the guest won't send an IP packet out that it thinks is
* for itself. */
if (vnet_real_ip_addrs && !memcmp(src_addr, host_v4_addr,
IPV4_ADDR_LEN)) {
fprintf(stderr, "VNET received packet from host_v4_addr. Not translating, the guest cannot respond!\n");
}
/* Regardless, the dst changes from HOST_IP/loopback to GUEST_IP */
ipv4_change_addr(iov, iovcnt, ip_off, map->protocol, proto_hdr_off,
dst_addr, guest_v4_addr, IPV4_OFF_DST);
/* Note we did the incremental xsum for the IP header, but also do a
* final xsum. We need the final xsum in case the kernel's networking
* stack messed up the header. */
xsum_ipv4_header(iov, iovcnt, ip_off);
}
/* NAT / translate an inbound packet iov[len], using map. If a packet comes in
* on a certain FD, then it's going to the guest at the appropriate port, no
* questions asked.
*
* The iov has ETH_HDR_LEN bytes at the front. The data actually read from the
* conv starts at that offset. len includes this frontal padding - it's the
* full length of the real data in the iov + the ethernet header. len may
* include data beyond the IP packet length; we often get padding from the
* kernel networking stack. Returns the final size of the packet. */
static size_t handle_rx(struct iovec *iov, int iovcnt, size_t len,
struct ip_nat_map *map)
{
size_t ip_off = ETH_HDR_LEN;
uint8_t version;
uint16_t ether_type;
/* The conv is reading from a Qmsg queue. We should always receive at
* least an IPv4 header from the kernel. */
assert(len >= IPV4_HDR_LEN + ETH_HDR_LEN);
version = ipv4_get_version(iov, iovcnt, ip_off);
switch (version) {
case IP_VER4:
ether_type = ETH_TYPE_IPV4;
handle_ipv4_rx(iov, iovcnt, len, map);
break;
case IP_VER6:
ether_type = ETH_TYPE_IPV6;
/* Technically, this could be a bad actor outside our node */
panic("Got an IPv6 packet on FD %d!\n", map->host_data_fd);
default:
panic("Unexpected IP version 0x%x, probably a bug", version);
}
iov_memcpy_to(iov, iovcnt, ETH_OFF_DST, guest_eth_addr, ETH_ADDR_LEN);
iov_memcpy_to(iov, iovcnt, ETH_OFF_SRC, host_eth_addr, ETH_ADDR_LEN);
iov_put_be16(iov, iovcnt, ETH_OFF_ETYPE, ether_type);
return len;
}
/* Polls for inbound packets on the host's FD, filling the iov[iovcnt] on
* success and returning the amount. 0 means 'nothing there.'
*
* Notes on concurrency:
* - The inbound_todo list is protected by the rx_mtx. Since we're readv()ing
* while holding the mtx (because we're in a FOREACH), we're single threaded
* in the RX path.
* - The inbound_todo list is filled by another thread that puts maps on the
* list whenever their FD tap fires.
* - The maps on the inbound_todo list are refcounted. It's possible for them
* to be reaped and removed from the mapping lookup, but the mapping would
* stay around until we drained all of the packets from the inbound conv. */
static size_t __poll_inbound(struct iovec *iov, int iovcnt)
{
struct ip_nat_map *i, *temp;
ssize_t pkt_sz = 0;
struct iovec iov_copy[iovcnt];
/* We're going to readv ETH_HDR_LEN bytes into the iov. To do so, we'll
* use a separate iov to track this offset. The iov and iov_copy both
* point to the same memory (minus the stripping). */
memcpy(iov_copy, iov, sizeof(struct iovec) * iovcnt);
iov_strip_bytes(iov_copy, iovcnt, ETH_HDR_LEN);
TAILQ_FOREACH_SAFE(i, &inbound_todo, inbound, temp) {
pkt_sz = readv(i->host_data_fd, iov_copy, iovcnt);
if (pkt_sz > 0) {
i->is_stale = FALSE;
return handle_rx(iov, iovcnt, pkt_sz + ETH_HDR_LEN, i);
}
parlib_assert_perror(errno == EAGAIN);
TAILQ_REMOVE(&inbound_todo, i, inbound);
i->is_on_inbound = FALSE;
kref_put(&i->kref);
}
return 0;
}
/* virtio-net calls this when it wants us to fill iov with a packet. */
int vnet_receive_packet(struct iovec *iov, int iovcnt)
{
size_t rx_amt;
uth_mutex_lock(rx_mtx);
while (1) {
rx_amt = __poll_injection(iov, iovcnt);
if (rx_amt)
break;
rx_amt = __poll_inbound(iov, iovcnt);
if (rx_amt)
break;
uth_cond_var_wait(rx_cv, rx_mtx);
}
uth_mutex_unlock(rx_mtx);
iov_trim_len_to(iov, iovcnt, rx_amt);
if (vnet_snoop)
writev(snoop_fd, iov, iovcnt);
return rx_amt;
}