| /* bnx2x_cmn.c: Broadcom Everest network driver. | 
 |  * | 
 |  * Copyright (c) 2007-2013 Broadcom Corporation | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or modify | 
 |  * it under the terms of the GNU General Public License as published by | 
 |  * the Free Software Foundation. | 
 |  * | 
 |  * Maintained by: Ariel Elior <ariel.elior@qlogic.com> | 
 |  * Written by: Eliezer Tamir | 
 |  * Based on code from Michael Chan's bnx2 driver | 
 |  * UDP CSUM errata workaround by Arik Gendelman | 
 |  * Slowpath and fastpath rework by Vladislav Zolotarov | 
 |  * Statistics and Link management by Yitchak Gertner | 
 |  * | 
 |  */ | 
 |  | 
 | #include <linux_compat.h> | 
 |  | 
 | #include "bnx2x_cmn.h" | 
 | #include "bnx2x_init.h" | 
 | #include "bnx2x_sp.h" | 
 |  | 
 | static void bnx2x_free_fp_mem_cnic(struct bnx2x *bp); | 
 | static int bnx2x_alloc_fp_mem_cnic(struct bnx2x *bp); | 
 | static int bnx2x_alloc_fp_mem(struct bnx2x *bp); | 
 | static void bnx2x_poll(uint32_t srcid, long a0, long a1, long a2); | 
 |  | 
 | static void bnx2x_add_all_napi_cnic(struct bnx2x *bp) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	/* Add NAPI objects */ | 
 | 	for_each_rx_queue_cnic(bp, i) { | 
 | 		netif_napi_add(bp->dev, &bnx2x_fp(bp, i, napi), | 
 | 			       bnx2x_poll, NAPI_POLL_WEIGHT); | 
 | 		napi_hash_add(&bnx2x_fp(bp, i, napi)); | 
 | 	} | 
 | } | 
 |  | 
 | static void bnx2x_add_all_napi(struct bnx2x *bp) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	/* Add NAPI objects */ | 
 | 	for_each_eth_queue(bp, i) { | 
 | 		netif_napi_add(bp->dev, &bnx2x_fp(bp, i, napi), | 
 | 			       bnx2x_poll, NAPI_POLL_WEIGHT); | 
 | 		napi_hash_add(&bnx2x_fp(bp, i, napi)); | 
 | 	} | 
 | } | 
 |  | 
 | static int bnx2x_calc_num_queues(struct bnx2x *bp) | 
 | { | 
 | 	/* default is min(8, num_cores) in Linux.  we'll set it elsewhere */ | 
 | 	int nq = bnx2x_num_queues ? : 8; | 
 |  | 
 | 	/* Reduce memory usage in kdump environment by using only one queue */ | 
 | 	if (is_kdump_kernel()) | 
 | 		nq = 1; | 
 |  | 
 | 	nq = CLAMP(nq, 1, BNX2X_MAX_QUEUES(bp)); | 
 | 	return nq; | 
 | } | 
 |  | 
 | /** | 
 |  * bnx2x_move_fp - move content of the fastpath structure. | 
 |  * | 
 |  * @bp:		driver handle | 
 |  * @from:	source FP index | 
 |  * @to:		destination FP index | 
 |  * | 
 |  * Makes sure the contents of the bp->fp[to].napi is kept | 
 |  * intact. This is done by first copying the napi struct from | 
 |  * the target to the source, and then mem copying the entire | 
 |  * source onto the target. Update txdata pointers and related | 
 |  * content. | 
 |  */ | 
 | static inline void bnx2x_move_fp(struct bnx2x *bp, int from, int to) | 
 | { | 
 | 	struct bnx2x_fastpath *from_fp = &bp->fp[from]; | 
 | 	struct bnx2x_fastpath *to_fp = &bp->fp[to]; | 
 | 	struct bnx2x_sp_objs *from_sp_objs = &bp->sp_objs[from]; | 
 | 	struct bnx2x_sp_objs *to_sp_objs = &bp->sp_objs[to]; | 
 | 	struct bnx2x_fp_stats *from_fp_stats = &bp->fp_stats[from]; | 
 | 	struct bnx2x_fp_stats *to_fp_stats = &bp->fp_stats[to]; | 
 | 	int old_max_eth_txqs, new_max_eth_txqs; | 
 | 	int old_txdata_index = 0, new_txdata_index = 0; | 
 | 	struct bnx2x_agg_info *old_tpa_info = to_fp->tpa_info; | 
 |  | 
 | 	/* Copy the NAPI object as it has been already initialized */ | 
 | 	from_fp->napi = to_fp->napi; | 
 |  | 
 | 	/* Move bnx2x_fastpath contents */ | 
 | 	memcpy(to_fp, from_fp, sizeof(*to_fp)); | 
 | 	to_fp->index = to; | 
 |  | 
 | 	/* Retain the tpa_info of the original `to' version as we don't want | 
 | 	 * 2 FPs to contain the same tpa_info pointer. | 
 | 	 */ | 
 | 	to_fp->tpa_info = old_tpa_info; | 
 |  | 
 | 	/* move sp_objs contents as well, as their indices match fp ones */ | 
 | 	memcpy(to_sp_objs, from_sp_objs, sizeof(*to_sp_objs)); | 
 |  | 
 | 	/* move fp_stats contents as well, as their indices match fp ones */ | 
 | 	memcpy(to_fp_stats, from_fp_stats, sizeof(*to_fp_stats)); | 
 |  | 
 | 	/* Update txdata pointers in fp and move txdata content accordingly: | 
 | 	 * Each fp consumes 'max_cos' txdata structures, so the index should be | 
 | 	 * decremented by max_cos x delta. | 
 | 	 */ | 
 |  | 
 | 	old_max_eth_txqs = BNX2X_NUM_ETH_QUEUES(bp) * (bp)->max_cos; | 
 | 	new_max_eth_txqs = (BNX2X_NUM_ETH_QUEUES(bp) - from + to) * | 
 | 				(bp)->max_cos; | 
 | 	if (from == FCOE_IDX(bp)) { | 
 | 		old_txdata_index = old_max_eth_txqs + FCOE_TXQ_IDX_OFFSET; | 
 | 		new_txdata_index = new_max_eth_txqs + FCOE_TXQ_IDX_OFFSET; | 
 | 	} | 
 |  | 
 | 	memcpy(&bp->bnx2x_txq[new_txdata_index], | 
 | 	       &bp->bnx2x_txq[old_txdata_index], | 
 | 	       sizeof(struct bnx2x_fp_txdata)); | 
 | 	to_fp->txdata_ptr[0] = &bp->bnx2x_txq[new_txdata_index]; | 
 | } | 
 |  | 
 | /** | 
 |  * bnx2x_fill_fw_str - Fill buffer with FW version string. | 
 |  * | 
 |  * @bp:        driver handle | 
 |  * @buf:       character buffer to fill with the fw name | 
 |  * @buf_len:   length of the above buffer | 
 |  * | 
 |  */ | 
 | void bnx2x_fill_fw_str(struct bnx2x *bp, char *buf, size_t buf_len) | 
 | { | 
 | 	if (IS_PF(bp)) { | 
 | 		uint8_t phy_fw_ver[PHY_FW_VER_LEN]; | 
 |  | 
 | 		phy_fw_ver[0] = '\0'; | 
 | 		bnx2x_get_ext_phy_fw_version(&bp->link_params, | 
 | 					     phy_fw_ver, PHY_FW_VER_LEN); | 
 | 		strlcpy(buf, bp->fw_ver, buf_len); | 
 | 		snprintf(buf + strlen(bp->fw_ver), 32 - strlen(bp->fw_ver), | 
 | 			 "bc %d.%d.%d%s%s", | 
 | 			 (bp->common.bc_ver & 0xff0000) >> 16, | 
 | 			 (bp->common.bc_ver & 0xff00) >> 8, | 
 | 			 (bp->common.bc_ver & 0xff), | 
 | 			 ((phy_fw_ver[0] != '\0') ? " phy " : ""), phy_fw_ver); | 
 | 	} else { | 
 | 		bnx2x_vf_fill_fw_str(bp, buf, buf_len); | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * bnx2x_shrink_eth_fp - guarantees fastpath structures stay intact | 
 |  * | 
 |  * @bp:	driver handle | 
 |  * @delta:	number of eth queues which were not allocated | 
 |  */ | 
 | static void bnx2x_shrink_eth_fp(struct bnx2x *bp, int delta) | 
 | { | 
 | 	int i, cos, old_eth_num = BNX2X_NUM_ETH_QUEUES(bp); | 
 |  | 
 | 	/* Queue pointer cannot be re-set on an fp-basis, as moving pointer | 
 | 	 * backward along the array could cause memory to be overridden | 
 | 	 */ | 
 | 	for (cos = 1; cos < bp->max_cos; cos++) { | 
 | 		for (i = 0; i < old_eth_num - delta; i++) { | 
 | 			struct bnx2x_fastpath *fp = &bp->fp[i]; | 
 | 			int new_idx = cos * (old_eth_num - delta) + i; | 
 |  | 
 | 			memcpy(&bp->bnx2x_txq[new_idx], fp->txdata_ptr[cos], | 
 | 			       sizeof(struct bnx2x_fp_txdata)); | 
 | 			fp->txdata_ptr[cos] = &bp->bnx2x_txq[new_idx]; | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | int bnx2x_load_count[2][3] = { {0} }; /* per-path: 0-common, 1-port0, 2-port1 */ | 
 |  | 
 | /* free skb in the packet ring at pos idx | 
 |  * return idx of last bd freed | 
 |  */ | 
 | static uint16_t bnx2x_free_tx_pkt(struct bnx2x *bp, struct bnx2x_fp_txdata *txdata, | 
 | 			     uint16_t idx, unsigned int *pkts_compl, | 
 | 			     unsigned int *bytes_compl) | 
 | { | 
 | 	struct sw_tx_bd *tx_buf = &txdata->tx_buf_ring[idx]; | 
 | 	struct eth_tx_start_bd *tx_start_bd; | 
 | 	struct eth_tx_bd *tx_data_bd; | 
 | 	struct block *block = tx_buf->block; | 
 | 	uint16_t bd_idx = TX_BD(tx_buf->first_bd), new_cons; | 
 | 	int nbd; | 
 | 	uint16_t split_bd_len = 0; | 
 |  | 
 | 	/* prefetch skb end pointer to speedup dev_kfree_skb() */ | 
 | 	//prefetch(&skb->end); // AKAROS_PORT | 
 |  | 
 | 	DP(NETIF_MSG_TX_DONE, "fp[%d]: pkt_idx %d  buff @(%p)->block %p\n", | 
 | 	   txdata->txq_index, idx, tx_buf, block); | 
 |  | 
 | 	tx_start_bd = &txdata->tx_desc_ring[bd_idx].start_bd; | 
 |  | 
 | 	nbd = le16_to_cpu(tx_start_bd->nbd) - 1; | 
 | #ifdef BNX2X_STOP_ON_ERROR | 
 | 	if ((nbd - 1) > (MAX_SKB_FRAGS + 2)) { | 
 | 		BNX2X_ERR("BAD nbd!\n"); | 
 | 		bnx2x_panic(); | 
 | 	} | 
 | #endif | 
 | 	new_cons = nbd + tx_buf->first_bd; | 
 |  | 
 | 	/* Get the next bd */ | 
 | 	bd_idx = TX_BD(NEXT_TX_IDX(bd_idx)); | 
 |  | 
 | 	/* Skip a parse bd... */ | 
 | 	--nbd; | 
 | 	bd_idx = TX_BD(NEXT_TX_IDX(bd_idx)); | 
 |  | 
 | 	if (tx_buf->flags & BNX2X_HAS_SECOND_PBD) { | 
 | 		/* Skip second parse bd... */ | 
 | 		--nbd; | 
 | 		bd_idx = TX_BD(NEXT_TX_IDX(bd_idx)); | 
 | 	} | 
 |  | 
 | 	/* TSO headers+data bds share a common mapping. See bnx2x_tx_split() */ | 
 | 	if (tx_buf->flags & BNX2X_TSO_SPLIT_BD) { | 
 | 		tx_data_bd = &txdata->tx_desc_ring[bd_idx].reg_bd; | 
 | 		split_bd_len = BD_UNMAP_LEN(tx_data_bd); | 
 | 		--nbd; | 
 | 		bd_idx = TX_BD(NEXT_TX_IDX(bd_idx)); | 
 | 	} | 
 |  | 
 | 	/* unmap first bd */ | 
 | 	dma_unmap_single(&bp->pdev->dev, BD_UNMAP_ADDR(tx_start_bd), | 
 | 			 BD_UNMAP_LEN(tx_start_bd) + split_bd_len, | 
 | 			 DMA_TO_DEVICE); | 
 |  | 
 | 	/* now free frags */ | 
 | 	while (nbd > 0) { | 
 |  | 
 | 		tx_data_bd = &txdata->tx_desc_ring[bd_idx].reg_bd; | 
 | 		dma_unmap_page(&bp->pdev->dev, BD_UNMAP_ADDR(tx_data_bd), | 
 | 			       BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE); | 
 | 		if (--nbd) | 
 | 			bd_idx = TX_BD(NEXT_TX_IDX(bd_idx)); | 
 | 	} | 
 |  | 
 | 	/* release block */ | 
 | 	warn_on(!block); | 
 | 	if (likely(block)) { | 
 | 		(*pkts_compl)++; | 
 | 		(*bytes_compl) += BLEN(block); | 
 | 	} | 
 |  | 
 | 	freeb(block); | 
 | 	tx_buf->first_bd = 0; | 
 | 	tx_buf->block = NULL; | 
 |  | 
 | 	return new_cons; | 
 | } | 
 |  | 
 | int bnx2x_tx_int(struct bnx2x *bp, struct bnx2x_fp_txdata *txdata) | 
 | { | 
 | 	uint16_t hw_cons, sw_cons, bd_cons = txdata->tx_bd_cons; | 
 | 	unsigned int pkts_compl = 0, bytes_compl = 0; | 
 |  | 
 | #ifdef BNX2X_STOP_ON_ERROR | 
 | 	if (unlikely(bp->panic)) | 
 | 		return -1; | 
 | #endif | 
 |  | 
 | 	hw_cons = le16_to_cpu(*txdata->tx_cons_sb); | 
 | 	sw_cons = txdata->tx_pkt_cons; | 
 |  | 
 | 	while (sw_cons != hw_cons) { | 
 | 		uint16_t pkt_cons; | 
 |  | 
 | 		pkt_cons = TX_BD(sw_cons); | 
 |  | 
 | 		DP(NETIF_MSG_TX_DONE, | 
 | 		   "queue[%d]: hw_cons %u  sw_cons %u  pkt_cons %u\n", | 
 | 		   txdata->txq_index, hw_cons, sw_cons, pkt_cons); | 
 |  | 
 | 		bd_cons = bnx2x_free_tx_pkt(bp, txdata, pkt_cons, | 
 | 					    &pkts_compl, &bytes_compl); | 
 |  | 
 | 		sw_cons++; | 
 | 	} | 
 |  | 
 | 	txdata->tx_pkt_cons = sw_cons; | 
 | 	txdata->tx_bd_cons = bd_cons; | 
 |  | 
 | 	poke(&txdata->poker, txdata); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static inline void bnx2x_update_last_max_sge(struct bnx2x_fastpath *fp, | 
 | 					     uint16_t idx) | 
 | { | 
 | 	uint16_t last_max = fp->last_max_sge; | 
 |  | 
 | 	if (SUB_S16(idx, last_max) > 0) | 
 | 		fp->last_max_sge = idx; | 
 | } | 
 |  | 
 | static inline void bnx2x_update_sge_prod(struct bnx2x_fastpath *fp, | 
 | 					 uint16_t sge_len, | 
 | 					 struct eth_end_agg_rx_cqe *cqe) | 
 | { | 
 | 	struct bnx2x *bp = fp->bp; | 
 | 	uint16_t last_max, last_elem, first_elem; | 
 | 	uint16_t delta = 0; | 
 | 	uint16_t i; | 
 |  | 
 | 	if (!sge_len) | 
 | 		return; | 
 |  | 
 | 	/* First mark all used pages */ | 
 | 	for (i = 0; i < sge_len; i++) | 
 | 		BIT_VEC64_CLEAR_BIT(fp->sge_mask, | 
 | 			RX_SGE(le16_to_cpu(cqe->sgl_or_raw_data.sgl[i]))); | 
 |  | 
 | 	DP(NETIF_MSG_RX_STATUS, "fp_cqe->sgl[%d] = %d\n", | 
 | 	   sge_len - 1, le16_to_cpu(cqe->sgl_or_raw_data.sgl[sge_len - 1])); | 
 |  | 
 | 	/* Here we assume that the last SGE index is the biggest */ | 
 | 	prefetch((void *)(fp->sge_mask)); | 
 | 	bnx2x_update_last_max_sge(fp, | 
 | 		le16_to_cpu(cqe->sgl_or_raw_data.sgl[sge_len - 1])); | 
 |  | 
 | 	last_max = RX_SGE(fp->last_max_sge); | 
 | 	last_elem = last_max >> BIT_VEC64_ELEM_SHIFT; | 
 | 	first_elem = RX_SGE(fp->rx_sge_prod) >> BIT_VEC64_ELEM_SHIFT; | 
 |  | 
 | 	/* If ring is not full */ | 
 | 	if (last_elem + 1 != first_elem) | 
 | 		last_elem++; | 
 |  | 
 | 	/* Now update the prod */ | 
 | 	for (i = first_elem; i != last_elem; i = NEXT_SGE_MASK_ELEM(i)) { | 
 | 		if (likely(fp->sge_mask[i])) | 
 | 			break; | 
 |  | 
 | 		fp->sge_mask[i] = BIT_VEC64_ELEM_ONE_MASK; | 
 | 		delta += BIT_VEC64_ELEM_SZ; | 
 | 	} | 
 |  | 
 | 	if (delta > 0) { | 
 | 		fp->rx_sge_prod += delta; | 
 | 		/* clear page-end entries */ | 
 | 		bnx2x_clear_sge_mask_next_elems(fp); | 
 | 	} | 
 |  | 
 | 	DP(NETIF_MSG_RX_STATUS, | 
 | 	   "fp->last_max_sge = %d  fp->rx_sge_prod = %d\n", | 
 | 	   fp->last_max_sge, fp->rx_sge_prod); | 
 | } | 
 |  | 
 | /* Get Toeplitz hash value in the skb using the value from the | 
 |  * CQE (calculated by HW). | 
 |  */ | 
 | static uint32_t bnx2x_get_rxhash(const struct bnx2x *bp, | 
 | 			    const struct eth_fast_path_rx_cqe *cqe, | 
 | 			    enum pkt_hash_types *rxhash_type) | 
 | { | 
 | panic("Not implemented"); | 
 | #if 0 // AKAROS_PORT | 
 | 	/* Get Toeplitz hash from CQE */ | 
 | 	if ((bp->dev->feat & NETIF_F_RXHASH) && | 
 | 	    (cqe->status_flags & ETH_FAST_PATH_RX_CQE_RSS_HASH_FLG)) { | 
 | 		enum eth_rss_hash_type htype; | 
 |  | 
 | 		htype = cqe->status_flags & ETH_FAST_PATH_RX_CQE_RSS_HASH_TYPE; | 
 | 		*rxhash_type = ((htype == TCP_IPV4_HASH_TYPE) || | 
 | 				(htype == TCP_IPV6_HASH_TYPE)) ? | 
 | 			       PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3; | 
 |  | 
 | 		return le32_to_cpu(cqe->rss_hash_result); | 
 | 	} | 
 | 	*rxhash_type = PKT_HASH_TYPE_NONE; | 
 | 	return 0; | 
 | #endif | 
 | } | 
 |  | 
 | static void bnx2x_tpa_start(struct bnx2x_fastpath *fp, uint16_t queue, | 
 | 			    uint16_t cons, uint16_t prod, | 
 | 			    struct eth_fast_path_rx_cqe *cqe) | 
 | { | 
 | panic("Not implemented"); | 
 | #if 0 // AKAROS_PORT | 
 | 	struct bnx2x *bp = fp->bp; | 
 | 	struct sw_rx_bd *cons_rx_buf = &fp->rx_buf_ring[cons]; | 
 | 	struct sw_rx_bd *prod_rx_buf = &fp->rx_buf_ring[prod]; | 
 | 	struct eth_rx_bd *prod_bd = &fp->rx_desc_ring[prod]; | 
 | 	dma_addr_t mapping; | 
 | 	struct bnx2x_agg_info *tpa_info = &fp->tpa_info[queue]; | 
 | 	struct sw_rx_bd *first_buf = &tpa_info->first_buf; | 
 |  | 
 | 	/* print error if current state != stop */ | 
 | 	if (tpa_info->tpa_state != BNX2X_TPA_STOP) | 
 | 		BNX2X_ERR("start of bin not in stop [%d]\n", queue); | 
 |  | 
 | 	/* Try to map an empty data buffer from the aggregation info  */ | 
 | 	mapping = dma_map_single(&bp->pdev->dev, | 
 | 				 first_buf->data + NET_SKB_PAD, | 
 | 				 fp->rx_buf_size, DMA_FROM_DEVICE); | 
 | 	/* | 
 | 	 *  ...if it fails - move the skb from the consumer to the producer | 
 | 	 *  and set the current aggregation state as ERROR to drop it | 
 | 	 *  when TPA_STOP arrives. | 
 | 	 */ | 
 |  | 
 | 	if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) { | 
 | 		/* Move the BD from the consumer to the producer */ | 
 | 		bnx2x_reuse_rx_data(fp, cons, prod); | 
 | 		tpa_info->tpa_state = BNX2X_TPA_ERROR; | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* move empty data from pool to prod */ | 
 | 	prod_rx_buf->data = first_buf->data; | 
 | 	dma_unmap_addr_set(prod_rx_buf, mapping, mapping); | 
 | 	/* point prod_bd to new data */ | 
 | 	prod_bd->addr_hi = cpu_to_le32(U64_HI(mapping)); | 
 | 	prod_bd->addr_lo = cpu_to_le32(U64_LO(mapping)); | 
 |  | 
 | 	/* move partial skb from cons to pool (don't unmap yet) */ | 
 | 	*first_buf = *cons_rx_buf; | 
 |  | 
 | 	/* mark bin state as START */ | 
 | 	tpa_info->parsing_flags = | 
 | 		le16_to_cpu(cqe->pars_flags.flags); | 
 | 	tpa_info->vlan_tag = le16_to_cpu(cqe->vlan_tag); | 
 | 	tpa_info->tpa_state = BNX2X_TPA_START; | 
 | 	tpa_info->len_on_bd = le16_to_cpu(cqe->len_on_bd); | 
 | 	tpa_info->placement_offset = cqe->placement_offset; | 
 | 	tpa_info->rxhash = bnx2x_get_rxhash(bp, cqe, &tpa_info->rxhash_type); | 
 | 	if (fp->mode == TPA_MODE_GRO) { | 
 | 		uint16_t gro_size = le16_to_cpu(cqe->pkt_len_or_gro_seg_len); | 
 | 		tpa_info->full_page = SGE_PAGES / gro_size * gro_size; | 
 | 		tpa_info->gro_size = gro_size; | 
 | 	} | 
 |  | 
 | #ifdef BNX2X_STOP_ON_ERROR | 
 | 	fp->tpa_queue_used |= (1 << queue); | 
 | 	DP(NETIF_MSG_RX_STATUS, "fp->tpa_queue_used = 0x%llx\n", | 
 | 	   fp->tpa_queue_used); | 
 | #endif | 
 | #endif | 
 | } | 
 |  | 
 | /* Timestamp option length allowed for TPA aggregation: | 
 |  * | 
 |  *		nop nop kind length echo val | 
 |  */ | 
 | #define TPA_TSTAMP_OPT_LEN	12 | 
 | /** | 
 |  * bnx2x_set_gro_params - compute GRO values | 
 |  * | 
 |  * @skb:		packet skb | 
 |  * @parsing_flags:	parsing flags from the START CQE | 
 |  * @len_on_bd:		total length of the first packet for the | 
 |  *			aggregation. | 
 |  * @pkt_len:		length of all segments | 
 |  * | 
 |  * Approximate value of the MSS for this aggregation calculated using | 
 |  * the first packet of it. | 
 |  * Compute number of aggregated segments, and gso_type. | 
 |  */ | 
 | static void bnx2x_set_gro_params(struct sk_buff *skb, uint16_t parsing_flags, | 
 | 				 uint16_t len_on_bd, unsigned int pkt_len, | 
 | 				 uint16_t num_of_coalesced_segs) | 
 | { | 
 | panic("Not implemented"); | 
 | #if 0 // AKAROS_PORT | 
 | 	/* TPA aggregation won't have either IP options or TCP options | 
 | 	 * other than timestamp or IPv6 extension headers. | 
 | 	 */ | 
 | 	uint16_t hdrs_len = ETHERHDRSIZE + sizeof(struct tcphdr); | 
 |  | 
 | 	if (GET_FLAG(parsing_flags, PARSING_FLAGS_OVER_ETHERNET_PROTOCOL) == | 
 | 	    PRS_FLAG_OVERETH_IPV6) { | 
 | 		hdrs_len += sizeof(struct ipv6hdr); | 
 | 		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6; | 
 | 	} else { | 
 | 		hdrs_len += sizeof(struct iphdr); | 
 | 		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4; | 
 | 	} | 
 |  | 
 | 	/* Check if there was a TCP timestamp, if there is it's will | 
 | 	 * always be 12 bytes length: nop nop kind length echo val. | 
 | 	 * | 
 | 	 * Otherwise FW would close the aggregation. | 
 | 	 */ | 
 | 	if (parsing_flags & PARSING_FLAGS_TIME_STAMP_EXIST_FLAG) | 
 | 		hdrs_len += TPA_TSTAMP_OPT_LEN; | 
 |  | 
 | 	skb_shinfo(skb)->gso_size = len_on_bd - hdrs_len; | 
 |  | 
 | 	/* tcp_gro_complete() will copy NAPI_GRO_CB(skb)->count | 
 | 	 * to skb_shinfo(skb)->gso_segs | 
 | 	 */ | 
 | 	NAPI_GRO_CB(skb)->count = num_of_coalesced_segs; | 
 | #endif | 
 | } | 
 |  | 
 | static int bnx2x_alloc_rx_sge(struct bnx2x *bp, struct bnx2x_fastpath *fp, | 
 | 			      uint16_t index, gfp_t gfp_mask) | 
 | { | 
 | 	/* AKAROS_PORT: our get_cont_pages returns KVAs, not struct page * */ | 
 | 	struct page *page = kva2page(get_cont_pages(PAGES_PER_SGE_SHIFT, gfp_mask)); | 
 | 	struct sw_rx_page *sw_buf = &fp->rx_page_ring[index]; | 
 | 	struct eth_rx_sge *sge = &fp->rx_sge_ring[index]; | 
 | 	dma_addr_t mapping; | 
 |  | 
 | 	if (unlikely(page == NULL)) { | 
 | 		BNX2X_ERR("Can't alloc sge\n"); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	mapping = dma_map_page(&bp->pdev->dev, page, 0, | 
 | 			       SGE_PAGES, DMA_FROM_DEVICE); | 
 | 	if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) { | 
 | 		free_cont_pages(page2kva(page), PAGES_PER_SGE_SHIFT); | 
 | 		BNX2X_ERR("Can't map sge\n"); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	sw_buf->page = page; | 
 | 	dma_unmap_addr_set(sw_buf, mapping, mapping); | 
 |  | 
 | 	sge->addr_hi = cpu_to_le32(U64_HI(mapping)); | 
 | 	sge->addr_lo = cpu_to_le32(U64_LO(mapping)); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int bnx2x_fill_frag_skb(struct bnx2x *bp, struct bnx2x_fastpath *fp, | 
 | 			       struct bnx2x_agg_info *tpa_info, | 
 | 			       uint16_t pages, | 
 | 			       struct sk_buff *skb, | 
 | 			       struct eth_end_agg_rx_cqe *cqe, | 
 | 			       uint16_t cqe_idx) | 
 | { | 
 | panic("Not implemented"); | 
 | #if 0 // AKAROS_PORT | 
 | 	struct sw_rx_page *rx_pg, old_rx_pg; | 
 | 	uint32_t i, frag_len, frag_size; | 
 | 	int err, j, frag_id = 0; | 
 | 	uint16_t len_on_bd = tpa_info->len_on_bd; | 
 | 	uint16_t full_page = 0, gro_size = 0; | 
 |  | 
 | 	frag_size = le16_to_cpu(cqe->pkt_len) - len_on_bd; | 
 |  | 
 | 	if (fp->mode == TPA_MODE_GRO) { | 
 | 		gro_size = tpa_info->gro_size; | 
 | 		full_page = tpa_info->full_page; | 
 | 	} | 
 |  | 
 | 	/* This is needed in order to enable forwarding support */ | 
 | 	if (frag_size) | 
 | 		bnx2x_set_gro_params(skb, tpa_info->parsing_flags, len_on_bd, | 
 | 				     le16_to_cpu(cqe->pkt_len), | 
 | 				     le16_to_cpu(cqe->num_of_coalesced_segs)); | 
 |  | 
 | #ifdef BNX2X_STOP_ON_ERROR | 
 | 	if (pages > MIN_T(uint32_t, 8, MAX_SKB_FRAGS) * SGE_PAGES) { | 
 | 		BNX2X_ERR("SGL length is too long: %d. CQE index is %d\n", | 
 | 			  pages, cqe_idx); | 
 | 		BNX2X_ERR("cqe->pkt_len = %d\n", cqe->pkt_len); | 
 | 		bnx2x_panic(); | 
 | 		return -EINVAL; | 
 | 	} | 
 | #endif | 
 |  | 
 | 	/* Run through the SGL and compose the fragmented skb */ | 
 | 	for (i = 0, j = 0; i < pages; i += PAGES_PER_SGE, j++) { | 
 | 		uint16_t sge_idx = RX_SGE(le16_to_cpu(cqe->sgl_or_raw_data.sgl[j])); | 
 |  | 
 | 		/* FW gives the indices of the SGE as if the ring is an array | 
 | 		   (meaning that "next" element will consume 2 indices) */ | 
 | 		if (fp->mode == TPA_MODE_GRO) | 
 | 			frag_len = MIN_T(uint32_t, frag_size, | 
 | 					 (uint32_t)full_page); | 
 | 		else /* LRO */ | 
 | 			frag_len = MIN_T(uint32_t, frag_size, | 
 | 					 (uint32_t)SGE_PAGES); | 
 |  | 
 | 		rx_pg = &fp->rx_page_ring[sge_idx]; | 
 | 		old_rx_pg = *rx_pg; | 
 |  | 
 | 		/* If we fail to allocate a substitute page, we simply stop | 
 | 		   where we are and drop the whole packet */ | 
 | 		err = bnx2x_alloc_rx_sge(bp, fp, sge_idx, 0); | 
 | 		if (unlikely(err)) { | 
 | 			bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++; | 
 | 			return err; | 
 | 		} | 
 |  | 
 | 		/* Unmap the page as we're going to pass it to the stack */ | 
 | 		dma_unmap_page(&bp->pdev->dev, | 
 | 			       dma_unmap_addr(&old_rx_pg, mapping), | 
 | 			       SGE_PAGES, DMA_FROM_DEVICE); | 
 | 		/* Add one frag and update the appropriate fields in the skb */ | 
 | 		if (fp->mode == TPA_MODE_LRO) | 
 | 			skb_fill_page_desc(skb, j, old_rx_pg.page, 0, frag_len); | 
 | 		else { /* GRO */ | 
 | 			int rem; | 
 | 			int offset = 0; | 
 | 			for (rem = frag_len; rem > 0; rem -= gro_size) { | 
 | 				int len = rem > gro_size ? gro_size : rem; | 
 | 				skb_fill_page_desc(skb, frag_id++, | 
 | 						   old_rx_pg.page, offset, len); | 
 | 				/* TODO: if this is pinning for I/O, we need to change to a | 
 | 				 * device-ownership / mmap model. */ | 
 | 				if (offset) | 
 | 					page_incref(old_rx_pg.page); | 
 | 				offset += len; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		skb->data_len += frag_len; | 
 | 		skb->truesize += SGE_PAGES; | 
 | 		skb->len += frag_len; | 
 |  | 
 | 		frag_size -= frag_len; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | #endif | 
 | } | 
 |  | 
 | static void bnx2x_frag_free(const struct bnx2x_fastpath *fp, void *data) | 
 | { | 
 | 	if (fp->rx_frag_size) | 
 | 		page_decref(kva2page(data)); | 
 | 	else | 
 | 		kfree(data); | 
 | } | 
 |  | 
 | static void *bnx2x_frag_alloc(const struct bnx2x_fastpath *fp, gfp_t gfp_mask) | 
 | { | 
 | 	if (fp->rx_frag_size) { | 
 | 		/* GFP_KERNEL allocations are used only during initialization */ | 
 | 		if (unlikely(gfp_mask & MEM_WAIT)) | 
 | 			return (void *)kpage_alloc_addr(); | 
 |  | 
 | #if 0 // AKAROS_PORT | 
 | 		return netdev_alloc_frag(fp->rx_frag_size); | 
 | #else | 
 | 		return (void *)kpage_alloc_addr(); | 
 | #endif | 
 | 	} | 
 |  | 
 | 	return kmalloc(fp->rx_buf_size + NET_SKB_PAD, gfp_mask); | 
 | } | 
 |  | 
 | #ifdef CONFIG_INET | 
 | static void bnx2x_gro_ip_csum(struct bnx2x *bp, struct sk_buff *skb) | 
 | { | 
 | 	const struct iphdr *iph = ip_hdr(skb); | 
 | 	struct tcphdr *th; | 
 |  | 
 | 	skb_set_transport_header(skb, sizeof(struct iphdr)); | 
 | 	th = tcp_hdr(skb); | 
 |  | 
 | 	th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb), | 
 | 				  iph->saddr, iph->daddr, 0); | 
 | } | 
 |  | 
 | static void bnx2x_gro_ipv6_csum(struct bnx2x *bp, struct sk_buff *skb) | 
 | { | 
 | 	struct ipv6hdr *iph = ipv6_hdr(skb); | 
 | 	struct tcphdr *th; | 
 |  | 
 | 	skb_set_transport_header(skb, sizeof(struct ipv6hdr)); | 
 | 	th = tcp_hdr(skb); | 
 |  | 
 | 	th->check = ~tcp_v6_check(skb->len - skb_transport_offset(skb), | 
 | 				  &iph->saddr, &iph->daddr, 0); | 
 | } | 
 |  | 
 | static void bnx2x_gro_csum(struct bnx2x *bp, struct sk_buff *skb, | 
 | 			    void (*gro_func)(struct bnx2x*, struct sk_buff*)) | 
 | { | 
 | 	skb_set_network_header(skb, 0); | 
 | 	gro_func(bp, skb); | 
 | 	tcp_gro_complete(skb); | 
 | } | 
 | #endif | 
 |  | 
 | static void bnx2x_gro_receive(struct bnx2x *bp, struct bnx2x_fastpath *fp, | 
 | 			       struct sk_buff *skb) | 
 | { | 
 | panic("Not implemented"); | 
 | #if 0 // AKAROS_PORT | 
 | #ifdef CONFIG_INET | 
 | 	if (skb_shinfo(skb)->gso_size) { | 
 | 		switch (be16_to_cpu(skb->protocol)) { | 
 | 		case ETH_P_IP: | 
 | 			bnx2x_gro_csum(bp, skb, bnx2x_gro_ip_csum); | 
 | 			break; | 
 | 		case ETH_P_IPV6: | 
 | 			bnx2x_gro_csum(bp, skb, bnx2x_gro_ipv6_csum); | 
 | 			break; | 
 | 		default: | 
 | 			BNX2X_ERR("Error: FW GRO supports only IPv4/IPv6, not 0x%04x\n", | 
 | 				  be16_to_cpu(skb->protocol)); | 
 | 		} | 
 | 	} | 
 | #endif | 
 | 	skb_record_rx_queue(skb, fp->rx_queue); | 
 | 	napi_gro_receive(&fp->napi, skb); | 
 | #endif | 
 | } | 
 |  | 
 | static void bnx2x_tpa_stop(struct bnx2x *bp, struct bnx2x_fastpath *fp, | 
 | 			   struct bnx2x_agg_info *tpa_info, | 
 | 			   uint16_t pages, | 
 | 			   struct eth_end_agg_rx_cqe *cqe, | 
 | 			   uint16_t cqe_idx) | 
 | { | 
 | panic("Not implemented"); | 
 | #if 0 // AKAROS_PORT | 
 | 	struct sw_rx_bd *rx_buf = &tpa_info->first_buf; | 
 | 	uint8_t pad = tpa_info->placement_offset; | 
 | 	uint16_t len = tpa_info->len_on_bd; | 
 | 	struct sk_buff *skb = NULL; | 
 | 	uint8_t *new_data, *data = rx_buf->data; | 
 | 	uint8_t old_tpa_state = tpa_info->tpa_state; | 
 |  | 
 | 	tpa_info->tpa_state = BNX2X_TPA_STOP; | 
 |  | 
 | 	/* If we there was an error during the handling of the TPA_START - | 
 | 	 * drop this aggregation. | 
 | 	 */ | 
 | 	if (old_tpa_state == BNX2X_TPA_ERROR) | 
 | 		goto drop; | 
 |  | 
 | 	/* Try to allocate the new data */ | 
 | 	new_data = bnx2x_frag_alloc(fp, 0); | 
 | 	/* Unmap skb in the pool anyway, as we are going to change | 
 | 	   pool entry status to BNX2X_TPA_STOP even if new skb allocation | 
 | 	   fails. */ | 
 | 	dma_unmap_single(&bp->pdev->dev, dma_unmap_addr(rx_buf, mapping), | 
 | 			 fp->rx_buf_size, DMA_FROM_DEVICE); | 
 | 	if (likely(new_data)) | 
 | 		skb = build_skb(data, fp->rx_frag_size); | 
 |  | 
 | 	if (likely(skb)) { | 
 | #ifdef BNX2X_STOP_ON_ERROR | 
 | 		if (pad + len > fp->rx_buf_size) { | 
 | 			BNX2X_ERR("skb_put is about to fail...  pad %d  len %d  rx_buf_size %d\n", | 
 | 				  pad, len, fp->rx_buf_size); | 
 | 			bnx2x_panic(); | 
 | 			return; | 
 | 		} | 
 | #endif | 
 |  | 
 | 		skb_reserve(skb, pad + NET_SKB_PAD); | 
 | 		skb_put(skb, len); | 
 | 		skb_set_hash(skb, tpa_info->rxhash, tpa_info->rxhash_type); | 
 |  | 
 | 		skb->protocol = eth_type_trans(skb, bp->dev); | 
 | 		skb->ip_summed = CHECKSUM_UNNECESSARY; | 
 |  | 
 | 		if (!bnx2x_fill_frag_skb(bp, fp, tpa_info, pages, | 
 | 					 skb, cqe, cqe_idx)) { | 
 | 			if (tpa_info->parsing_flags & PARSING_FLAGS_VLAN) | 
 | 				__vlan_hwaccel_put_tag(skb, | 
 | 						       cpu_to_be16(ETH_P_8021Q), | 
 | 						       tpa_info->vlan_tag); | 
 | 			bnx2x_gro_receive(bp, fp, skb); | 
 | 		} else { | 
 | 			DP(NETIF_MSG_RX_STATUS, | 
 | 			   "Failed to allocate new pages - dropping packet!\n"); | 
 | 			dev_kfree_skb_any(skb); | 
 | 		} | 
 |  | 
 | 		/* put new data in bin */ | 
 | 		rx_buf->data = new_data; | 
 |  | 
 | 		return; | 
 | 	} | 
 | 	if (new_data) | 
 | 		bnx2x_frag_free(fp, new_data); | 
 | drop: | 
 | 	/* drop the packet and keep the buffer in the bin */ | 
 | 	DP(NETIF_MSG_RX_STATUS, | 
 | 	   "Failed to allocate or map a new skb - dropping packet!\n"); | 
 | 	bnx2x_fp_stats(bp, fp)->eth_q_stats.rx_skb_alloc_failed++; | 
 | #endif | 
 | } | 
 |  | 
 | static int bnx2x_alloc_rx_data(struct bnx2x *bp, struct bnx2x_fastpath *fp, | 
 | 			       uint16_t index, gfp_t gfp_mask) | 
 | { | 
 | 	uint8_t *data; | 
 | 	struct sw_rx_bd *rx_buf = &fp->rx_buf_ring[index]; | 
 | 	struct eth_rx_bd *rx_bd = &fp->rx_desc_ring[index]; | 
 | 	dma_addr_t mapping; | 
 |  | 
 | 	data = bnx2x_frag_alloc(fp, gfp_mask); | 
 | 	if (unlikely(data == NULL)) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	mapping = dma_map_single(&bp->pdev->dev, data + NET_SKB_PAD, | 
 | 				 fp->rx_buf_size, | 
 | 				 DMA_FROM_DEVICE); | 
 | 	if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) { | 
 | 		bnx2x_frag_free(fp, data); | 
 | 		BNX2X_ERR("Can't map rx data\n"); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	rx_buf->data = data; | 
 | 	dma_unmap_addr_set(rx_buf, mapping, mapping); | 
 |  | 
 | 	rx_bd->addr_hi = cpu_to_le32(U64_HI(mapping)); | 
 | 	rx_bd->addr_lo = cpu_to_le32(U64_LO(mapping)); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static | 
 | void bnx2x_csum_validate(struct sk_buff *skb, union eth_rx_cqe *cqe, | 
 | 				 struct bnx2x_fastpath *fp, | 
 | 				 struct bnx2x_eth_q_stats *qstats) | 
 | { | 
 | panic("Not implemented"); | 
 | #if 0 // AKAROS_PORT | 
 | 	/* Do nothing if no L4 csum validation was done. | 
 | 	 * We do not check whether IP csum was validated. For IPv4 we assume | 
 | 	 * that if the card got as far as validating the L4 csum, it also | 
 | 	 * validated the IP csum. IPv6 has no IP csum. | 
 | 	 */ | 
 | 	if (cqe->fast_path_cqe.status_flags & | 
 | 	    ETH_FAST_PATH_RX_CQE_L4_XSUM_NO_VALIDATION_FLG) | 
 | 		return; | 
 |  | 
 | 	/* If L4 validation was done, check if an error was found. */ | 
 |  | 
 | 	if (cqe->fast_path_cqe.type_error_flags & | 
 | 	    (ETH_FAST_PATH_RX_CQE_IP_BAD_XSUM_FLG | | 
 | 	     ETH_FAST_PATH_RX_CQE_L4_BAD_XSUM_FLG)) | 
 | 		qstats->hw_csum_err++; | 
 | 	else | 
 | 		skb->ip_summed = CHECKSUM_UNNECESSARY; | 
 | #endif | 
 | } | 
 |  | 
 | static int bnx2x_rx_int(struct bnx2x_fastpath *fp, int budget) | 
 | { | 
 | 	struct bnx2x *bp = fp->bp; | 
 | 	uint16_t bd_cons, bd_prod, bd_prod_fw, comp_ring_cons; | 
 | 	uint16_t sw_comp_cons, sw_comp_prod; | 
 | 	int rx_pkt = 0; | 
 | 	union eth_rx_cqe *cqe; | 
 | 	struct eth_fast_path_rx_cqe *cqe_fp; | 
 |  | 
 | 	struct block *block; | 
 |  | 
 | #ifdef BNX2X_STOP_ON_ERROR | 
 | 	if (unlikely(bp->panic)) | 
 | 		return 0; | 
 | #endif | 
 | 	if (budget <= 0) | 
 | 		return rx_pkt; | 
 |  | 
 | 	bd_cons = fp->rx_bd_cons; | 
 | 	bd_prod = fp->rx_bd_prod; | 
 | 	bd_prod_fw = bd_prod; | 
 | 	sw_comp_cons = fp->rx_comp_cons; | 
 | 	sw_comp_prod = fp->rx_comp_prod; | 
 |  | 
 | 	comp_ring_cons = RCQ_BD(sw_comp_cons); | 
 | 	cqe = &fp->rx_comp_ring[comp_ring_cons]; | 
 | 	cqe_fp = &cqe->fast_path_cqe; | 
 |  | 
 | 	DP(NETIF_MSG_RX_STATUS, | 
 | 	   "queue[%d]: sw_comp_cons %u\n", fp->index, sw_comp_cons); | 
 |  | 
 | 	while (BNX2X_IS_CQE_COMPLETED(cqe_fp)) { | 
 | 		struct sw_rx_bd *rx_buf = NULL; | 
 | 		uint8_t cqe_fp_flags; | 
 | 		enum eth_rx_cqe_type cqe_fp_type; | 
 | 		uint16_t len, pad, queue; | 
 | 		uint8_t *data; | 
 | 		uint32_t rxhash; | 
 |  | 
 | #ifdef BNX2X_STOP_ON_ERROR | 
 | 		if (unlikely(bp->panic)) | 
 | 			return 0; | 
 | #endif | 
 |  | 
 | 		bd_prod = RX_BD(bd_prod); | 
 | 		bd_cons = RX_BD(bd_cons); | 
 |  | 
 | 		/* A rmb() is required to ensure that the CQE is not read | 
 | 		 * before it is written by the adapter DMA.  PCI ordering | 
 | 		 * rules will make sure the other fields are written before | 
 | 		 * the marker at the end of struct eth_fast_path_rx_cqe | 
 | 		 * but without rmb() a weakly ordered processor can process | 
 | 		 * stale data.  Without the barrier TPA state-machine might | 
 | 		 * enter inconsistent state and kernel stack might be | 
 | 		 * provided with incorrect packet description - these lead | 
 | 		 * to various kernel crashed. | 
 | 		 */ | 
 | 		rmb(); | 
 |  | 
 | 		cqe_fp_flags = cqe_fp->type_error_flags; | 
 | 		cqe_fp_type = cqe_fp_flags & ETH_FAST_PATH_RX_CQE_TYPE; | 
 |  | 
 | 		DP(NETIF_MSG_RX_STATUS, | 
 | 		   "CQE type %x  err %x  status %x  queue %x  vlan %x  len %u\n", | 
 | 		   CQE_TYPE(cqe_fp_flags), | 
 | 		   cqe_fp_flags, cqe_fp->status_flags, | 
 | 		   le32_to_cpu(cqe_fp->rss_hash_result), | 
 | 		   le16_to_cpu(cqe_fp->vlan_tag), | 
 | 		   le16_to_cpu(cqe_fp->pkt_len_or_gro_seg_len)); | 
 |  | 
 | 		/* is this a slowpath msg? */ | 
 | 		if (unlikely(CQE_TYPE_SLOW(cqe_fp_type))) { | 
 | 			bnx2x_sp_event(fp, cqe); | 
 | 			goto next_cqe; | 
 | 		} | 
 |  | 
 | 		rx_buf = &fp->rx_buf_ring[bd_cons]; | 
 | 		data = rx_buf->data; | 
 |  | 
 | 		if (!CQE_TYPE_FAST(cqe_fp_type)) { | 
 | 			struct bnx2x_agg_info *tpa_info; | 
 | 			uint16_t frag_size, pages; | 
 | #ifdef BNX2X_STOP_ON_ERROR | 
 | 			/* sanity check */ | 
 | 			if (fp->disable_tpa && | 
 | 			    (CQE_TYPE_START(cqe_fp_type) || | 
 | 			     CQE_TYPE_STOP(cqe_fp_type))) | 
 | 				BNX2X_ERR("START/STOP packet while disable_tpa type %x\n", | 
 | 					  CQE_TYPE(cqe_fp_type)); | 
 | #endif | 
 |  | 
 | 			if (CQE_TYPE_START(cqe_fp_type)) { | 
 | 				uint16_t queue = cqe_fp->queue_index; | 
 | 				DP(NETIF_MSG_RX_STATUS, | 
 | 				   "calling tpa_start on queue %d\n", | 
 | 				   queue); | 
 |  | 
 | 				bnx2x_tpa_start(fp, queue, | 
 | 						bd_cons, bd_prod, | 
 | 						cqe_fp); | 
 |  | 
 | 				goto next_rx; | 
 | 			} | 
 | 			queue = cqe->end_agg_cqe.queue_index; | 
 | 			tpa_info = &fp->tpa_info[queue]; | 
 | 			DP(NETIF_MSG_RX_STATUS, | 
 | 			   "calling tpa_stop on queue %d\n", | 
 | 			   queue); | 
 |  | 
 | 			frag_size = le16_to_cpu(cqe->end_agg_cqe.pkt_len) - | 
 | 				    tpa_info->len_on_bd; | 
 |  | 
 | 			if (fp->mode == TPA_MODE_GRO) | 
 | 				pages = (frag_size + tpa_info->full_page - 1) / | 
 | 					 tpa_info->full_page; | 
 | 			else | 
 | 				pages = SGE_PAGE_ALIGN(frag_size) >> | 
 | 					SGE_PAGE_SHIFT; | 
 |  | 
 | 			bnx2x_tpa_stop(bp, fp, tpa_info, pages, | 
 | 				       &cqe->end_agg_cqe, comp_ring_cons); | 
 | #ifdef BNX2X_STOP_ON_ERROR | 
 | 			if (bp->panic) | 
 | 				return 0; | 
 | #endif | 
 |  | 
 | 			bnx2x_update_sge_prod(fp, pages, &cqe->end_agg_cqe); | 
 | 			goto next_cqe; | 
 | 		} | 
 | 		/* non TPA */ | 
 | 		len = le16_to_cpu(cqe_fp->pkt_len_or_gro_seg_len); | 
 | 		pad = cqe_fp->placement_offset; | 
 | 		dma_sync_single_for_cpu(&bp->pdev->dev, | 
 | 					dma_unmap_addr(rx_buf, mapping), | 
 | 					pad + RX_COPY_THRESH, | 
 | 					DMA_FROM_DEVICE); | 
 | 		pad += NET_SKB_PAD; | 
 | 		prefetch(data + pad); /* speedup eth_type_trans() */ | 
 | 		/* is this an error packet? */ | 
 | 		if (unlikely(cqe_fp_flags & ETH_RX_ERROR_FALGS)) { | 
 | 			DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS, | 
 | 			   "ERROR  flags %x  rx packet %u\n", | 
 | 			   cqe_fp_flags, sw_comp_cons); | 
 | 			bnx2x_fp_qstats(bp, fp)->rx_err_discard_pkt++; | 
 | 			goto reuse_rx; | 
 | 		} | 
 |  | 
 | 		/* Since we don't have a jumbo ring | 
 | 		 * copy small packets if mtu > 1500 | 
 | 		 */ | 
 | 		/* TODO: AKAROS_PORT always copy out the packet for now. */ | 
 | 		if (1) { | 
 | //		if ((bp->dev->mtu > ETH_MAX_PACKET_SIZE) && | 
 | //		    (len <= RX_COPY_THRESH)) { | 
 | 			block = block_alloc(len, MEM_ATOMIC); | 
 | 			if (block == NULL) { | 
 | 				DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS, | 
 | 				   "ERROR  packet dropped because of alloc failure\n"); | 
 | 				bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++; | 
 | 				goto reuse_rx; | 
 | 			} | 
 | 			memcpy(block->wp, data + pad, len); | 
 | 			block->wp += len; | 
 | 			bnx2x_reuse_rx_data(fp, bd_cons, bd_prod); | 
 | 		} else { | 
 | 			if (likely(bnx2x_alloc_rx_data(bp, fp, bd_prod, | 
 | 						       0) == 0)) { | 
 | 				dma_unmap_single(&bp->pdev->dev, | 
 | 						 dma_unmap_addr(rx_buf, | 
 | 								mapping), | 
 | 						 fp->rx_buf_size, | 
 | 						 DMA_FROM_DEVICE); | 
 | 				/* TODO: block extra data here */ | 
 | 				panic("Extra-data not implemented"); | 
 | 				#if 0 // AKAROS_PORT | 
 | 				skb = build_skb(data, fp->rx_frag_size); | 
 | 				if (unlikely(!skb)) { | 
 | 					bnx2x_frag_free(fp, data); | 
 | 					bnx2x_fp_qstats(bp, fp)-> | 
 | 							rx_skb_alloc_failed++; | 
 | 					goto next_rx; | 
 | 				} | 
 | 				skb_reserve(skb, pad); | 
 | 				#endif | 
 | 			} else { | 
 | 				DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS, | 
 | 				   "ERROR  packet dropped because of alloc failure\n"); | 
 | 				bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++; | 
 | reuse_rx: | 
 | 				bnx2x_reuse_rx_data(fp, bd_cons, bd_prod); | 
 | 				goto next_rx; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		// AKAROS_PORT TODO: set hash and checksum stuff | 
 | #if 0 | 
 | 		skb_put(skb, len); | 
 | 		skb->protocol = eth_type_trans(skb, bp->dev); | 
 |  | 
 | 		/* Set Toeplitz hash for a none-LRO skb */ | 
 | 		rxhash = bnx2x_get_rxhash(bp, cqe_fp, &rxhash_type); | 
 | 		skb_set_hash(skb, rxhash, rxhash_type); | 
 |  | 
 | 		skb_checksum_none_assert(skb); | 
 |  | 
 | 		if (bp->dev->feat & NETIF_F_RXCSUM) | 
 | 			bnx2x_csum_validate(skb, cqe, fp, | 
 | 					    bnx2x_fp_qstats(bp, fp)); | 
 |  | 
 | 		skb_record_rx_queue(skb, fp->rx_queue); | 
 |  | 
 | 		if (le16_to_cpu(cqe_fp->pars_flags.flags) & | 
 | 		    PARSING_FLAGS_VLAN) | 
 | 			__vlan_hwaccel_put_tag(skb, cpu_to_be16(ETH_P_8021Q), | 
 | 					       le16_to_cpu(cqe_fp->vlan_tag)); | 
 |  | 
 | 		skb_mark_napi_id(skb, &fp->napi); | 
 |  | 
 | 		if (bnx2x_fp_ll_polling(fp)) | 
 | 			netif_receive_skb(skb); | 
 | 		else | 
 | 			napi_gro_receive(&fp->napi, skb); | 
 | #endif | 
 | 		etheriq(bp->edev, block, TRUE); | 
 | next_rx: | 
 | 		rx_buf->data = NULL; | 
 |  | 
 | 		bd_cons = NEXT_RX_IDX(bd_cons); | 
 | 		bd_prod = NEXT_RX_IDX(bd_prod); | 
 | 		bd_prod_fw = NEXT_RX_IDX(bd_prod_fw); | 
 | 		rx_pkt++; | 
 | next_cqe: | 
 | 		sw_comp_prod = NEXT_RCQ_IDX(sw_comp_prod); | 
 | 		sw_comp_cons = NEXT_RCQ_IDX(sw_comp_cons); | 
 |  | 
 | 		/* mark CQE as free */ | 
 | 		BNX2X_SEED_CQE(cqe_fp); | 
 |  | 
 | 		if (rx_pkt == budget) | 
 | 			break; | 
 |  | 
 | 		comp_ring_cons = RCQ_BD(sw_comp_cons); | 
 | 		cqe = &fp->rx_comp_ring[comp_ring_cons]; | 
 | 		cqe_fp = &cqe->fast_path_cqe; | 
 | 	} /* while */ | 
 |  | 
 | 	fp->rx_bd_cons = bd_cons; | 
 | 	fp->rx_bd_prod = bd_prod_fw; | 
 | 	fp->rx_comp_cons = sw_comp_cons; | 
 | 	fp->rx_comp_prod = sw_comp_prod; | 
 |  | 
 | 	/* Update producers */ | 
 | 	bnx2x_update_rx_prod(bp, fp, bd_prod_fw, sw_comp_prod, | 
 | 			     fp->rx_sge_prod); | 
 |  | 
 | 	fp->rx_pkt += rx_pkt; | 
 | 	fp->rx_calls++; | 
 |  | 
 | 	return rx_pkt; | 
 | } | 
 |  | 
 | static void bnx2x_msix_fp_int(struct hw_trapframe *hw_tf, void *fp_cookie) | 
 | { | 
 | 	struct bnx2x_fastpath *fp = fp_cookie; | 
 | 	struct bnx2x *bp = fp->bp; | 
 | 	uint8_t cos; | 
 |  | 
 | 	DP(NETIF_MSG_INTR, | 
 | 	   "got an MSI-X interrupt on IDX:SB [fp %d fw_sd %d igusb %d]\n", | 
 | 	   fp->index, fp->fw_sb_id, fp->igu_sb_id); | 
 |  | 
 | 	bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0); | 
 |  | 
 | #ifdef BNX2X_STOP_ON_ERROR | 
 | 	if (unlikely(bp->panic)) | 
 | 		return; | 
 | #endif | 
 |  | 
 | 	/* Handle Rx and Tx according to MSI-X vector */ | 
 | 	for_each_cos_in_tx_queue(fp, cos) | 
 | 		prefetch(fp->txdata_ptr[cos]->tx_cons_sb); | 
 |  | 
 | 	prefetch(&fp->sb_running_index[SM_RX_ID]); | 
 | 	// AKAROS_PORT | 
 | 	send_kernel_message(core_id(), bnx2x_poll, (long)fp, 0, 0, | 
 | 			    KMSG_ROUTINE); | 
 | 	napi_schedule_irqoff(&bnx2x_fp(bp, fp->index, napi)); | 
 |  | 
 | 	return; | 
 | } | 
 |  | 
 | /* HW Lock for shared dual port PHYs */ | 
 | void bnx2x_acquire_phy_lock(struct bnx2x *bp) | 
 | { | 
 | 	qlock(&bp->port.phy_mutex); | 
 |  | 
 | 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_MDIO); | 
 | } | 
 |  | 
 | void bnx2x_release_phy_lock(struct bnx2x *bp) | 
 | { | 
 | 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_MDIO); | 
 |  | 
 | 	qunlock(&bp->port.phy_mutex); | 
 | } | 
 |  | 
 | /* calculates MF speed according to current linespeed and MF configuration */ | 
 | uint16_t bnx2x_get_mf_speed(struct bnx2x *bp) | 
 | { | 
 | 	uint16_t line_speed = bp->link_vars.line_speed; | 
 | 	if (IS_MF(bp)) { | 
 | 		uint16_t maxCfg = bnx2x_extract_max_cfg(bp, | 
 | 						   bp->mf_config[BP_VN(bp)]); | 
 |  | 
 | 		/* Calculate the current MAX line speed limit for the MF | 
 | 		 * devices | 
 | 		 */ | 
 | 		if (IS_MF_SI(bp)) | 
 | 			line_speed = (line_speed * maxCfg) / 100; | 
 | 		else { /* SD mode */ | 
 | 			uint16_t vn_max_rate = maxCfg * 100; | 
 |  | 
 | 			if (vn_max_rate < line_speed) | 
 | 				line_speed = vn_max_rate; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return line_speed; | 
 | } | 
 |  | 
 | /** | 
 |  * bnx2x_fill_report_data - fill link report data to report | 
 |  * | 
 |  * @bp:		driver handle | 
 |  * @data:	link state to update | 
 |  * | 
 |  * It uses a none-atomic bit operations because is called under the mutex. | 
 |  */ | 
 | static void bnx2x_fill_report_data(struct bnx2x *bp, | 
 | 				   struct bnx2x_link_report_data *data) | 
 | { | 
 | 	memset(data, 0, sizeof(*data)); | 
 |  | 
 | 	if (IS_PF(bp)) { | 
 | 		/* Fill the report data: effective line speed */ | 
 | 		data->line_speed = bnx2x_get_mf_speed(bp); | 
 |  | 
 | 		/* Link is down */ | 
 | 		if (!bp->link_vars.link_up || (bp->flags & MF_FUNC_DIS)) | 
 | 			__set_bit(BNX2X_LINK_REPORT_LINK_DOWN, | 
 | 				  &data->link_report_flags); | 
 |  | 
 | 		if (!BNX2X_NUM_ETH_QUEUES(bp)) | 
 | 			__set_bit(BNX2X_LINK_REPORT_LINK_DOWN, | 
 | 				  &data->link_report_flags); | 
 |  | 
 | 		/* Full DUPLEX */ | 
 | 		if (bp->link_vars.duplex == DUPLEX_FULL) | 
 | 			__set_bit(BNX2X_LINK_REPORT_FD, | 
 | 				  &data->link_report_flags); | 
 |  | 
 | 		/* Rx Flow Control is ON */ | 
 | 		if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_RX) | 
 | 			__set_bit(BNX2X_LINK_REPORT_RX_FC_ON, | 
 | 				  &data->link_report_flags); | 
 |  | 
 | 		/* Tx Flow Control is ON */ | 
 | 		if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX) | 
 | 			__set_bit(BNX2X_LINK_REPORT_TX_FC_ON, | 
 | 				  &data->link_report_flags); | 
 | 	} else { /* VF */ | 
 | 		*data = bp->vf_link_vars; | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * bnx2x_link_report - report link status to OS. | 
 |  * | 
 |  * @bp:		driver handle | 
 |  * | 
 |  * Calls the __bnx2x_link_report() under the same locking scheme | 
 |  * as a link/PHY state managing code to ensure a consistent link | 
 |  * reporting. | 
 |  */ | 
 |  | 
 | void bnx2x_link_report(struct bnx2x *bp) | 
 | { | 
 | 	bnx2x_acquire_phy_lock(bp); | 
 | 	__bnx2x_link_report(bp); | 
 | 	bnx2x_release_phy_lock(bp); | 
 | } | 
 |  | 
 | /** | 
 |  * __bnx2x_link_report - report link status to OS. | 
 |  * | 
 |  * @bp:		driver handle | 
 |  * | 
 |  * None atomic implementation. | 
 |  * Should be called under the phy_lock. | 
 |  */ | 
 | void __bnx2x_link_report(struct bnx2x *bp) | 
 | { | 
 | 	struct bnx2x_link_report_data cur_data; | 
 |  | 
 | 	/* reread mf_cfg */ | 
 | 	if (IS_PF(bp) && !CHIP_IS_E1(bp)) | 
 | 		bnx2x_read_mf_cfg(bp); | 
 |  | 
 | 	/* Read the current link report info */ | 
 | 	bnx2x_fill_report_data(bp, &cur_data); | 
 |  | 
 | 	/* Don't report link down or exactly the same link status twice */ | 
 | 	if (!memcmp(&cur_data, &bp->last_reported_link, sizeof(cur_data)) || | 
 | 	    (test_bit(BNX2X_LINK_REPORT_LINK_DOWN, | 
 | 		      &bp->last_reported_link.link_report_flags) && | 
 | 	     test_bit(BNX2X_LINK_REPORT_LINK_DOWN, | 
 | 		      &cur_data.link_report_flags))) | 
 | 		return; | 
 |  | 
 | 	bp->link_cnt++; | 
 |  | 
 | 	/* We are going to report a new link parameters now - | 
 | 	 * remember the current data for the next time. | 
 | 	 */ | 
 | 	memcpy(&bp->last_reported_link, &cur_data, sizeof(cur_data)); | 
 |  | 
 | 	/* propagate status to VFs */ | 
 | 	if (IS_PF(bp)) | 
 | 		bnx2x_iov_link_update(bp); | 
 |  | 
 | 	if (test_bit(BNX2X_LINK_REPORT_LINK_DOWN, | 
 | 		     &cur_data.link_report_flags)) { | 
 | 		netif_carrier_off(bp->dev); | 
 | 		netdev_err(bp->dev, "NIC Link is Down\n"); | 
 | 		return; | 
 | 	} else { | 
 | 		const char *duplex; | 
 | 		const char *flow; | 
 |  | 
 | 		netif_carrier_on(bp->dev); | 
 |  | 
 | 		if (test_and_clear_bit(BNX2X_LINK_REPORT_FD, | 
 | 				       &cur_data.link_report_flags)) | 
 | 			duplex = "full"; | 
 | 		else | 
 | 			duplex = "half"; | 
 |  | 
 | 		/* Handle the FC at the end so that only these flags would be | 
 | 		 * possibly set. This way we may easily check if there is no FC | 
 | 		 * enabled. | 
 | 		 */ | 
 | 		if (cur_data.link_report_flags) { | 
 | 			if (test_bit(BNX2X_LINK_REPORT_RX_FC_ON, | 
 | 				     &cur_data.link_report_flags)) { | 
 | 				if (test_bit(BNX2X_LINK_REPORT_TX_FC_ON, | 
 | 				     &cur_data.link_report_flags)) | 
 | 					flow = "ON - receive & transmit"; | 
 | 				else | 
 | 					flow = "ON - receive"; | 
 | 			} else { | 
 | 				flow = "ON - transmit"; | 
 | 			} | 
 | 		} else { | 
 | 			flow = "none"; | 
 | 		} | 
 | 		netdev_info(bp->dev, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n", | 
 | 			    cur_data.line_speed, duplex, flow); | 
 | 	} | 
 | } | 
 |  | 
 | static void bnx2x_set_next_page_sgl(struct bnx2x_fastpath *fp) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 1; i <= NUM_RX_SGE_PAGES; i++) { | 
 | 		struct eth_rx_sge *sge; | 
 |  | 
 | 		sge = &fp->rx_sge_ring[RX_SGE_CNT * i - 2]; | 
 | 		sge->addr_hi = | 
 | 			cpu_to_le32(U64_HI(fp->rx_sge_mapping + | 
 | 			BCM_PAGE_SIZE*(i % NUM_RX_SGE_PAGES))); | 
 |  | 
 | 		sge->addr_lo = | 
 | 			cpu_to_le32(U64_LO(fp->rx_sge_mapping + | 
 | 			BCM_PAGE_SIZE*(i % NUM_RX_SGE_PAGES))); | 
 | 	} | 
 | } | 
 |  | 
 | static void bnx2x_free_tpa_pool(struct bnx2x *bp, | 
 | 				struct bnx2x_fastpath *fp, int last) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < last; i++) { | 
 | 		struct bnx2x_agg_info *tpa_info = &fp->tpa_info[i]; | 
 | 		struct sw_rx_bd *first_buf = &tpa_info->first_buf; | 
 | 		uint8_t *data = first_buf->data; | 
 |  | 
 | 		if (data == NULL) { | 
 | 			DP(NETIF_MSG_IFDOWN, "tpa bin %d empty on free\n", i); | 
 | 			continue; | 
 | 		} | 
 | 		if (tpa_info->tpa_state == BNX2X_TPA_START) | 
 | 			dma_unmap_single(&bp->pdev->dev, | 
 | 					 dma_unmap_addr(first_buf, mapping), | 
 | 					 fp->rx_buf_size, DMA_FROM_DEVICE); | 
 | 		bnx2x_frag_free(fp, data); | 
 | 		first_buf->data = NULL; | 
 | 	} | 
 | } | 
 |  | 
 | void bnx2x_init_rx_rings_cnic(struct bnx2x *bp) | 
 | { | 
 | 	int j; | 
 |  | 
 | 	for_each_rx_queue_cnic(bp, j) { | 
 | 		struct bnx2x_fastpath *fp = &bp->fp[j]; | 
 |  | 
 | 		fp->rx_bd_cons = 0; | 
 |  | 
 | 		/* Activate BD ring */ | 
 | 		/* Warning! | 
 | 		 * this will generate an interrupt (to the TSTORM) | 
 | 		 * must only be done after chip is initialized | 
 | 		 */ | 
 | 		bnx2x_update_rx_prod(bp, fp, fp->rx_bd_prod, fp->rx_comp_prod, | 
 | 				     fp->rx_sge_prod); | 
 | 	} | 
 | } | 
 |  | 
 | void bnx2x_init_rx_rings(struct bnx2x *bp) | 
 | { | 
 | 	int func = BP_FUNC(bp); | 
 | 	uint16_t ring_prod; | 
 | 	int i, j; | 
 |  | 
 | 	/* Allocate TPA resources */ | 
 | 	for_each_eth_queue(bp, j) { | 
 | 		struct bnx2x_fastpath *fp = &bp->fp[j]; | 
 |  | 
 | 		DP(NETIF_MSG_IFUP, | 
 | 		   "mtu %d  rx_buf_size %d\n", bp->dev->mtu, fp->rx_buf_size); | 
 |  | 
 | 		if (!fp->disable_tpa) { | 
 | 			/* Fill the per-aggregation pool */ | 
 | 			for (i = 0; i < MAX_AGG_QS(bp); i++) { | 
 | 				struct bnx2x_agg_info *tpa_info = | 
 | 					&fp->tpa_info[i]; | 
 | 				struct sw_rx_bd *first_buf = | 
 | 					&tpa_info->first_buf; | 
 |  | 
 | 				first_buf->data = | 
 | 					bnx2x_frag_alloc(fp, MEM_WAIT); | 
 | 				if (!first_buf->data) { | 
 | 					BNX2X_ERR("Failed to allocate TPA skb pool for queue[%d] - disabling TPA on this queue!\n", | 
 | 						  j); | 
 | 					bnx2x_free_tpa_pool(bp, fp, i); | 
 | 					fp->disable_tpa = 1; | 
 | 					break; | 
 | 				} | 
 | 				dma_unmap_addr_set(first_buf, mapping, 0); | 
 | 				tpa_info->tpa_state = BNX2X_TPA_STOP; | 
 | 			} | 
 |  | 
 | 			/* "next page" elements initialization */ | 
 | 			bnx2x_set_next_page_sgl(fp); | 
 |  | 
 | 			/* set SGEs bit mask */ | 
 | 			bnx2x_init_sge_ring_bit_mask(fp); | 
 |  | 
 | 			/* Allocate SGEs and initialize the ring elements */ | 
 | 			for (i = 0, ring_prod = 0; | 
 | 			     i < MAX_RX_SGE_CNT*NUM_RX_SGE_PAGES; i++) { | 
 |  | 
 | 				if (bnx2x_alloc_rx_sge(bp, fp, ring_prod, | 
 | 						       MEM_WAIT) < 0) { | 
 | 					BNX2X_ERR("was only able to allocate %d rx sges\n", | 
 | 						  i); | 
 | 					BNX2X_ERR("disabling TPA for queue[%d]\n", | 
 | 						  j); | 
 | 					/* Cleanup already allocated elements */ | 
 | 					bnx2x_free_rx_sge_range(bp, fp, | 
 | 								ring_prod); | 
 | 					bnx2x_free_tpa_pool(bp, fp, | 
 | 							    MAX_AGG_QS(bp)); | 
 | 					fp->disable_tpa = 1; | 
 | 					ring_prod = 0; | 
 | 					break; | 
 | 				} | 
 | 				ring_prod = NEXT_SGE_IDX(ring_prod); | 
 | 			} | 
 |  | 
 | 			fp->rx_sge_prod = ring_prod; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	for_each_eth_queue(bp, j) { | 
 | 		struct bnx2x_fastpath *fp = &bp->fp[j]; | 
 |  | 
 | 		fp->rx_bd_cons = 0; | 
 |  | 
 | 		/* Activate BD ring */ | 
 | 		/* Warning! | 
 | 		 * this will generate an interrupt (to the TSTORM) | 
 | 		 * must only be done after chip is initialized | 
 | 		 */ | 
 | 		bnx2x_update_rx_prod(bp, fp, fp->rx_bd_prod, fp->rx_comp_prod, | 
 | 				     fp->rx_sge_prod); | 
 |  | 
 | 		if (j != 0) | 
 | 			continue; | 
 |  | 
 | 		if (CHIP_IS_E1(bp)) { | 
 | 			REG_WR(bp, BAR_USTRORM_INTMEM + | 
 | 			       USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(func), | 
 | 			       U64_LO(fp->rx_comp_mapping)); | 
 | 			REG_WR(bp, BAR_USTRORM_INTMEM + | 
 | 			       USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(func) + 4, | 
 | 			       U64_HI(fp->rx_comp_mapping)); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static void bnx2x_free_tx_skbs_queue(struct bnx2x_fastpath *fp) | 
 | { | 
 | panic("Not implemented"); | 
 | #if 0 // AKAROS_PORT | 
 | 	uint8_t cos; | 
 | 	struct bnx2x *bp = fp->bp; | 
 |  | 
 | 	for_each_cos_in_tx_queue(fp, cos) { | 
 | 		struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos]; | 
 | 		unsigned pkts_compl = 0, bytes_compl = 0; | 
 |  | 
 | 		uint16_t sw_prod = txdata->tx_pkt_prod; | 
 | 		uint16_t sw_cons = txdata->tx_pkt_cons; | 
 |  | 
 | 		while (sw_cons != sw_prod) { | 
 | 			bnx2x_free_tx_pkt(bp, txdata, TX_BD(sw_cons), | 
 | 					  &pkts_compl, &bytes_compl); | 
 | 			sw_cons++; | 
 | 		} | 
 |  | 
 | 		netdev_tx_reset_queue( | 
 | 			netdev_get_tx_queue(bp->dev, | 
 | 					    txdata->txq_index)); | 
 | 	} | 
 | #endif | 
 | } | 
 |  | 
 | static void bnx2x_free_tx_skbs_cnic(struct bnx2x *bp) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for_each_tx_queue_cnic(bp, i) { | 
 | 		bnx2x_free_tx_skbs_queue(&bp->fp[i]); | 
 | 	} | 
 | } | 
 |  | 
 | static void bnx2x_free_tx_skbs(struct bnx2x *bp) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for_each_eth_queue(bp, i) { | 
 | 		bnx2x_free_tx_skbs_queue(&bp->fp[i]); | 
 | 	} | 
 | } | 
 |  | 
 | static void bnx2x_free_rx_bds(struct bnx2x_fastpath *fp) | 
 | { | 
 | 	struct bnx2x *bp = fp->bp; | 
 | 	int i; | 
 |  | 
 | 	/* ring wasn't allocated */ | 
 | 	if (fp->rx_buf_ring == NULL) | 
 | 		return; | 
 |  | 
 | 	for (i = 0; i < NUM_RX_BD; i++) { | 
 | 		struct sw_rx_bd *rx_buf = &fp->rx_buf_ring[i]; | 
 | 		uint8_t *data = rx_buf->data; | 
 |  | 
 | 		if (data == NULL) | 
 | 			continue; | 
 | 		dma_unmap_single(&bp->pdev->dev, | 
 | 				 dma_unmap_addr(rx_buf, mapping), | 
 | 				 fp->rx_buf_size, DMA_FROM_DEVICE); | 
 |  | 
 | 		rx_buf->data = NULL; | 
 | 		bnx2x_frag_free(fp, data); | 
 | 	} | 
 | } | 
 |  | 
 | static void bnx2x_free_rx_skbs_cnic(struct bnx2x *bp) | 
 | { | 
 | 	int j; | 
 |  | 
 | 	for_each_rx_queue_cnic(bp, j) { | 
 | 		bnx2x_free_rx_bds(&bp->fp[j]); | 
 | 	} | 
 | } | 
 |  | 
 | static void bnx2x_free_rx_skbs(struct bnx2x *bp) | 
 | { | 
 | 	int j; | 
 |  | 
 | 	for_each_eth_queue(bp, j) { | 
 | 		struct bnx2x_fastpath *fp = &bp->fp[j]; | 
 |  | 
 | 		bnx2x_free_rx_bds(fp); | 
 |  | 
 | 		if (!fp->disable_tpa) | 
 | 			bnx2x_free_tpa_pool(bp, fp, MAX_AGG_QS(bp)); | 
 | 	} | 
 | } | 
 |  | 
 | static void bnx2x_free_skbs_cnic(struct bnx2x *bp) | 
 | { | 
 | 	bnx2x_free_tx_skbs_cnic(bp); | 
 | 	bnx2x_free_rx_skbs_cnic(bp); | 
 | } | 
 |  | 
 | void bnx2x_free_skbs(struct bnx2x *bp) | 
 | { | 
 | 	bnx2x_free_tx_skbs(bp); | 
 | 	bnx2x_free_rx_skbs(bp); | 
 | } | 
 |  | 
 | void bnx2x_update_max_mf_config(struct bnx2x *bp, uint32_t value) | 
 | { | 
 | 	/* load old values */ | 
 | 	uint32_t mf_cfg = bp->mf_config[BP_VN(bp)]; | 
 |  | 
 | 	if (value != bnx2x_extract_max_cfg(bp, mf_cfg)) { | 
 | 		/* leave all but MAX value */ | 
 | 		mf_cfg &= ~FUNC_MF_CFG_MAX_BW_MASK; | 
 |  | 
 | 		/* set new MAX value */ | 
 | 		mf_cfg |= (value << FUNC_MF_CFG_MAX_BW_SHIFT) | 
 | 				& FUNC_MF_CFG_MAX_BW_MASK; | 
 |  | 
 | 		bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW, mf_cfg); | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * bnx2x_free_msix_irqs - free previously requested MSI-X IRQ vectors | 
 |  * | 
 |  * @bp:		driver handle | 
 |  * @nvecs:	number of vectors to be released | 
 |  */ | 
 | static void bnx2x_free_msix_irqs(struct bnx2x *bp, int nvecs) | 
 | { | 
 | panic("Not implemented"); | 
 | #if 0 // AKAROS_PORT | 
 | 	int i, offset = 0; | 
 |  | 
 | 	if (nvecs == offset) | 
 | 		return; | 
 |  | 
 | 	/* VFs don't have a default SB */ | 
 | 	if (IS_PF(bp)) { | 
 | 		free_irq(bp->msix_table[offset].vector, bp->dev); | 
 | 		DP(NETIF_MSG_IFDOWN, "released sp irq (%d)\n", | 
 | 		   bp->msix_table[offset].vector); | 
 | 		offset++; | 
 | 	} | 
 |  | 
 | 	if (CNIC_SUPPORT(bp)) { | 
 | 		if (nvecs == offset) | 
 | 			return; | 
 | 		offset++; | 
 | 	} | 
 |  | 
 | 	for_each_eth_queue(bp, i) { | 
 | 		if (nvecs == offset) | 
 | 			return; | 
 | 		DP(NETIF_MSG_IFDOWN, "about to release fp #%d->%d irq\n", | 
 | 		   i, bp->msix_table[offset].vector); | 
 |  | 
 | 		free_irq(bp->msix_table[offset++].vector, &bp->fp[i]); | 
 | 	} | 
 | #endif | 
 | } | 
 |  | 
 | void bnx2x_free_irq(struct bnx2x *bp) | 
 | { | 
 | panic("Not implemented"); | 
 | #if 0 // AKAROS_PORT | 
 | 	if (bp->flags & USING_MSIX_FLAG && | 
 | 	    !(bp->flags & USING_SINGLE_MSIX_FLAG)) { | 
 | 		int nvecs = BNX2X_NUM_ETH_QUEUES(bp) + CNIC_SUPPORT(bp); | 
 |  | 
 | 		/* vfs don't have a default status block */ | 
 | 		if (IS_PF(bp)) | 
 | 			nvecs++; | 
 |  | 
 | 		bnx2x_free_msix_irqs(bp, nvecs); | 
 | 	} else { | 
 | 		free_irq(bp->dev->irq, bp->dev); | 
 | 	} | 
 | #endif | 
 | } | 
 |  | 
 | int bnx2x_enable_msix(struct bnx2x *bp) | 
 | { | 
 | 	int msix_vec = 0, i, rc; | 
 | panic("Not implemented"); | 
 | #if 0 // AKAROS_PORT | 
 | 	/* VFs don't have a default status block */ | 
 | 	if (IS_PF(bp)) { | 
 | 		bp->msix_table[msix_vec].entry = msix_vec; | 
 | 		BNX2X_DEV_INFO("msix_table[0].entry = %d (slowpath)\n", | 
 | 			       bp->msix_table[0].entry); | 
 | 		msix_vec++; | 
 | 	} | 
 |  | 
 | 	/* Cnic requires an msix vector for itself */ | 
 | 	if (CNIC_SUPPORT(bp)) { | 
 | 		bp->msix_table[msix_vec].entry = msix_vec; | 
 | 		BNX2X_DEV_INFO("msix_table[%d].entry = %d (CNIC)\n", | 
 | 			       msix_vec, bp->msix_table[msix_vec].entry); | 
 | 		msix_vec++; | 
 | 	} | 
 |  | 
 | 	/* We need separate vectors for ETH queues only (not FCoE) */ | 
 | 	for_each_eth_queue(bp, i) { | 
 | 		bp->msix_table[msix_vec].entry = msix_vec; | 
 | 		BNX2X_DEV_INFO("msix_table[%d].entry = %d (fastpath #%u)\n", | 
 | 			       msix_vec, msix_vec, i); | 
 | 		msix_vec++; | 
 | 	} | 
 |  | 
 | 	DP(BNX2X_MSG_SP, "about to request enable msix with %d vectors\n", | 
 | 	   msix_vec); | 
 |  | 
 | 	rc = pci_enable_msix_range(bp->pdev, &bp->msix_table[0], | 
 | 				   BNX2X_MIN_MSIX_VEC_CNT(bp), msix_vec); | 
 | 	/* | 
 | 	 * reconfigure number of tx/rx queues according to available | 
 | 	 * MSI-X vectors | 
 | 	 */ | 
 | 	if (rc == -ENOSPC) { | 
 | 		/* Get by with single vector */ | 
 | 		rc = pci_enable_msix_range(bp->pdev, &bp->msix_table[0], 1, 1); | 
 | 		if (rc < 0) { | 
 | 			BNX2X_DEV_INFO("Single MSI-X is not attainable rc %d\n", | 
 | 				       rc); | 
 | 			goto no_msix; | 
 | 		} | 
 |  | 
 | 		BNX2X_DEV_INFO("Using single MSI-X vector\n"); | 
 | 		bp->flags |= USING_SINGLE_MSIX_FLAG; | 
 |  | 
 | 		BNX2X_DEV_INFO("set number of queues to 1\n"); | 
 | 		bp->num_ethernet_queues = 1; | 
 | 		bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues; | 
 | 	} else if (rc < 0) { | 
 | 		BNX2X_DEV_INFO("MSI-X is not attainable rc %d\n", rc); | 
 | 		goto no_msix; | 
 | 	} else if (rc < msix_vec) { | 
 | 		/* how less vectors we will have? */ | 
 | 		int diff = msix_vec - rc; | 
 |  | 
 | 		BNX2X_DEV_INFO("Trying to use less MSI-X vectors: %d\n", rc); | 
 |  | 
 | 		/* | 
 | 		 * decrease number of queues by number of unallocated entries | 
 | 		 */ | 
 | 		bp->num_ethernet_queues -= diff; | 
 | 		bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues; | 
 |  | 
 | 		BNX2X_DEV_INFO("New queue configuration set: %d\n", | 
 | 			       bp->num_queues); | 
 | 	} | 
 |  | 
 | 	bp->flags |= USING_MSIX_FLAG; | 
 |  | 
 | 	return 0; | 
 |  | 
 | no_msix: | 
 | 	/* fall to INTx if not enough memory */ | 
 | 	if (rc == -ENOMEM) | 
 | 		bp->flags |= DISABLE_MSI_FLAG; | 
 |  | 
 | 	return rc; | 
 | #endif | 
 | } | 
 |  | 
 | static void bullshit_handler(struct hw_trapframe *hw_tf, void *cnic_turd) | 
 | { | 
 | 	printk("bnx2x CNIC IRQ fired.  Probably a bug!\n"); | 
 | } | 
 |  | 
 | static int bnx2x_req_msix_irqs(struct bnx2x *bp) | 
 | { | 
 | 	int i, rc, offset = 0; | 
 |  | 
 | 	/* no default status block for vf */ | 
 | 	if (IS_PF(bp)) { | 
 | 		rc = register_irq(bp->msix_table[offset++].vector, | 
 | 				  bnx2x_msix_sp_int, bp->dev, | 
 | 				  pci_to_tbdf(bp->pdev)); | 
 | 		if (rc) { | 
 | 			BNX2X_ERR("request sp irq failed\n"); | 
 | 			return -EBUSY; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (CNIC_SUPPORT(bp)) { | 
 | 		offset++; | 
 | 		// AKAROS_PORT | 
 | 		rc = register_irq(0, bullshit_handler, 0, | 
 | 				  pci_to_tbdf(bp->pdev)); | 
 | 		if (rc) { | 
 | 			BNX2X_ERR("Fucked up getting a CNIC MSIX vector!"); | 
 | 			return -EBUSY; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	for_each_eth_queue(bp, i) { | 
 | 		struct bnx2x_fastpath *fp = &bp->fp[i]; | 
 | 		snprintf(fp->name, sizeof(fp->name), "%s-fp-%d", | 
 | 			 bp->dev->name, i); | 
 |  | 
 | 		rc = register_irq(bp->msix_table[offset].vector, | 
 | 				  bnx2x_msix_fp_int, fp, pci_to_tbdf(bp->pdev)); | 
 | 		if (rc) { | 
 | 			BNX2X_ERR("request fp #%d irq (%d) failed  rc %d\n", i, | 
 | 			      bp->msix_table[offset].vector, rc); | 
 | 			bnx2x_free_msix_irqs(bp, offset); | 
 | 			return -EBUSY; | 
 | 		} | 
 |  | 
 | 		offset++; | 
 | 	} | 
 |  | 
 | 	i = BNX2X_NUM_ETH_QUEUES(bp); | 
 | 	if (IS_PF(bp)) { | 
 | 		offset = 1 + CNIC_SUPPORT(bp); | 
 | 		netdev_info(bp->dev, | 
 | 			    "using MSI-X  IRQs: sp %d  fp[%d] %d ... fp[%d] %d\n", | 
 | 			    bp->msix_table[0].vector, | 
 | 			    0, bp->msix_table[offset].vector, | 
 | 			    i - 1, bp->msix_table[offset + i - 1].vector); | 
 | 	} else { | 
 | 		offset = CNIC_SUPPORT(bp); | 
 | 		netdev_info(bp->dev, | 
 | 			    "using MSI-X  IRQs: fp[%d] %d ... fp[%d] %d\n", | 
 | 			    0, bp->msix_table[offset].vector, | 
 | 			    i - 1, bp->msix_table[offset + i - 1].vector); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | int bnx2x_enable_msi(struct bnx2x *bp) | 
 | { | 
 | panic("Not implemented"); | 
 | #if 0 // AKAROS_PORT | 
 | 	int rc; | 
 |  | 
 | 	rc = pci_enable_msi(bp->pdev); | 
 | 	if (rc) { | 
 | 		BNX2X_DEV_INFO("MSI is not attainable\n"); | 
 | 		return -1; | 
 | 	} | 
 | 	bp->flags |= USING_MSI_FLAG; | 
 |  | 
 | 	return 0; | 
 | #endif | 
 | } | 
 |  | 
 | static int bnx2x_req_irq(struct bnx2x *bp) | 
 | { | 
 | 	unsigned long flags; | 
 | panic("Not implemented"); | 
 | #if 0 // AKAROS_PORT | 
 | 	unsigned int irq; | 
 |  | 
 | 	if (bp->flags & (USING_MSI_FLAG | USING_MSIX_FLAG)) | 
 | 		flags = 0; | 
 | 	else | 
 | 		flags = IRQF_SHARED; | 
 |  | 
 | 	if (bp->flags & USING_MSIX_FLAG) | 
 | 		irq = bp->msix_table[0].vector; | 
 | 	else | 
 | 		irq = bp->pdev->irq; | 
 |  | 
 | 	return register_irq(irq, bnx2x_interrupt, bp->dev, | 
 | 			    pci_to_tbdf(bp->pdev)); | 
 | #endif | 
 | } | 
 |  | 
 | static int bnx2x_setup_irqs(struct bnx2x *bp) | 
 | { | 
 | 	return bnx2x_req_msix_irqs(bp); | 
 | #if 0 // AKAROS_PORT we just register_irq | 
 | 	if (bp->flags & USING_MSIX_FLAG && | 
 | 	    !(bp->flags & USING_SINGLE_MSIX_FLAG)) { | 
 | 		rc = bnx2x_req_msix_irqs(bp); | 
 | 		if (rc) | 
 | 			return rc; | 
 | 	} else { | 
 | 		rc = bnx2x_req_irq(bp); | 
 | 		if (rc) { | 
 | 			BNX2X_ERR("IRQ request failed  rc %d, aborting\n", rc); | 
 | 			return rc; | 
 | 		} | 
 | 		if (bp->flags & USING_MSI_FLAG) { | 
 | 			bp->dev->irq = bp->pdev->irq; | 
 | 			netdev_info(bp->dev, "using MSI IRQ %d\n", | 
 | 				    bp->dev->irq); | 
 | 		} | 
 | 		if (bp->flags & USING_MSIX_FLAG) { | 
 | 			bp->dev->irq = bp->msix_table[0].vector; | 
 | 			netdev_info(bp->dev, "using MSIX IRQ %d\n", | 
 | 				    bp->dev->irq); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | #endif | 
 | } | 
 |  | 
 | static void bnx2x_napi_enable_cnic(struct bnx2x *bp) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for_each_rx_queue_cnic(bp, i) { | 
 | 		bnx2x_fp_init_lock(&bp->fp[i]); | 
 | 		napi_enable(&bnx2x_fp(bp, i, napi)); | 
 | 	} | 
 | } | 
 |  | 
 | static void bnx2x_napi_enable(struct bnx2x *bp) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for_each_eth_queue(bp, i) { | 
 | 		bnx2x_fp_init_lock(&bp->fp[i]); | 
 | 		napi_enable(&bnx2x_fp(bp, i, napi)); | 
 | 	} | 
 | } | 
 |  | 
 | static void bnx2x_napi_disable_cnic(struct bnx2x *bp) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for_each_rx_queue_cnic(bp, i) { | 
 | 		napi_disable(&bnx2x_fp(bp, i, napi)); | 
 | 		while (!bnx2x_fp_ll_disable(&bp->fp[i])) | 
 | 			kthread_usleep(1000); | 
 | 	} | 
 | } | 
 |  | 
 | static void bnx2x_napi_disable(struct bnx2x *bp) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for_each_eth_queue(bp, i) { | 
 | 		napi_disable(&bnx2x_fp(bp, i, napi)); | 
 | 		while (!bnx2x_fp_ll_disable(&bp->fp[i])) | 
 | 			kthread_usleep(1000); | 
 | 	} | 
 | } | 
 |  | 
 | void bnx2x_netif_start(struct bnx2x *bp) | 
 | { | 
 | panic("Not implemented"); | 
 | #if 0 // AKAROS_PORT | 
 | 	if (netif_running(bp->dev)) { | 
 | 		bnx2x_napi_enable(bp); | 
 | 		if (CNIC_LOADED(bp)) | 
 | 			bnx2x_napi_enable_cnic(bp); | 
 | 		bnx2x_int_enable(bp); | 
 | 		if (bp->state == BNX2X_STATE_OPEN) | 
 | 			netif_tx_wake_all_queues(bp->dev); | 
 | 	} | 
 | #endif | 
 | } | 
 |  | 
 | void bnx2x_netif_stop(struct bnx2x *bp, int disable_hw) | 
 | { | 
 | 	bnx2x_int_disable_sync(bp, disable_hw); | 
 | 	bnx2x_napi_disable(bp); | 
 | 	if (CNIC_LOADED(bp)) | 
 | 		bnx2x_napi_disable_cnic(bp); | 
 | } | 
 |  | 
 | uint16_t bnx2x_select_queue(struct ether *dev, struct sk_buff *skb, | 
 | 		       void *accel_priv, select_queue_fallback_t fallback) | 
 | { | 
 | panic("Not implemented"); | 
 | #if 0 // AKAROS_PORT | 
 | 	struct bnx2x *bp = netdev_priv(dev); | 
 |  | 
 | 	if (CNIC_LOADED(bp) && !NO_FCOE(bp)) { | 
 | 		struct ethhdr *hdr = (struct ethhdr *)skb->data; | 
 | 		uint16_t ether_type = be16_to_cpu(hdr->h_proto); | 
 |  | 
 | 		/* Skip VLAN tag if present */ | 
 | 		if (ether_type == ETH_P_8021Q) { | 
 | 			struct vlan_ethhdr *vhdr = | 
 | 				(struct vlan_ethhdr *)skb->data; | 
 |  | 
 | 			ether_type = be16_to_cpu(vhdr->h_vlan_encapsulated_proto); | 
 | 		} | 
 |  | 
 | 		/* If ethertype is FCoE or FIP - use FCoE ring */ | 
 | 		if ((ether_type == ETH_P_FCOE) || (ether_type == ETH_P_FIP)) | 
 | 			return bnx2x_fcoe_tx(bp, txq_index); | 
 | 	} | 
 |  | 
 | 	/* select a non-FCoE queue */ | 
 | 	return fallback(dev, skb) % BNX2X_NUM_ETH_QUEUES(bp); | 
 | #endif | 
 | } | 
 |  | 
 | void bnx2x_set_num_queues(struct bnx2x *bp) | 
 | { | 
 | 	/* RSS queues */ | 
 | 	bp->num_ethernet_queues = bnx2x_calc_num_queues(bp); | 
 |  | 
 | 	/* override in STORAGE SD modes */ | 
 | 	if (IS_MF_STORAGE_ONLY(bp)) | 
 | 		bp->num_ethernet_queues = 1; | 
 |  | 
 | 	/* Add special queues */ | 
 | 	bp->num_cnic_queues = CNIC_SUPPORT(bp); /* For FCOE */ | 
 | 	bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues; | 
 |  | 
 | 	BNX2X_DEV_INFO("set number of queues to %d\n", bp->num_queues); | 
 | } | 
 |  | 
 | /** | 
 |  * bnx2x_set_real_num_queues - configure netdev->real_num_[tx,rx]_queues | 
 |  * | 
 |  * @bp:		Driver handle | 
 |  * | 
 |  * We currently support for at most 16 Tx queues for each CoS thus we will | 
 |  * allocate a multiple of 16 for ETH L2 rings according to the value of the | 
 |  * bp->max_cos. | 
 |  * | 
 |  * If there is an FCoE L2 queue the appropriate Tx queue will have the next | 
 |  * index after all ETH L2 indices. | 
 |  * | 
 |  * If the actual number of Tx queues (for each CoS) is less than 16 then there | 
 |  * will be the holes at the end of each group of 16 ETh L2 indices (0..15, | 
 |  * 16..31,...) with indices that are not coupled with any real Tx queue. | 
 |  * | 
 |  * The proper configuration of skb->queue_mapping is handled by | 
 |  * bnx2x_select_queue() and __skb_tx_hash(). | 
 |  * | 
 |  * bnx2x_setup_tc() takes care of the proper TC mappings so that __skb_tx_hash() | 
 |  * will return a proper Tx index if TC is enabled (netdev->num_tc > 0). | 
 |  */ | 
 | static int bnx2x_set_real_num_queues(struct bnx2x *bp, int include_cnic) | 
 | { | 
 | 	int rc, tx, rx; | 
 |  | 
 | 	tx = BNX2X_NUM_ETH_QUEUES(bp) * bp->max_cos; | 
 | 	rx = BNX2X_NUM_ETH_QUEUES(bp); | 
 |  | 
 | /* account for fcoe queue */ | 
 | 	if (include_cnic && !NO_FCOE(bp)) { | 
 | 		rx++; | 
 | 		tx++; | 
 | 	} | 
 |  | 
 | #if 0 // AKAROS_PORT XME: set queues in ether | 
 | 	rc = netif_set_real_num_tx_queues(bp->dev, tx); | 
 | 	if (rc) { | 
 | 		BNX2X_ERR("Failed to set real number of Tx queues: %d\n", rc); | 
 | 		return rc; | 
 | 	} | 
 | 	rc = netif_set_real_num_rx_queues(bp->dev, rx); | 
 | 	if (rc) { | 
 | 		BNX2X_ERR("Failed to set real number of Rx queues: %d\n", rc); | 
 | 		return rc; | 
 | 	} | 
 | #else | 
 | 	rc = 0; | 
 | #endif | 
 |  | 
 | 	DP(NETIF_MSG_IFUP, "Setting real num queues to (tx, rx) (%d, %d)\n", | 
 | 			  tx, rx); | 
 |  | 
 | 	return rc; | 
 | } | 
 |  | 
 | static void bnx2x_set_rx_buf_size(struct bnx2x *bp) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for_each_queue(bp, i) { | 
 | 		struct bnx2x_fastpath *fp = &bp->fp[i]; | 
 | 		uint32_t mtu; | 
 |  | 
 | 		/* Always use a mini-jumbo MTU for the FCoE L2 ring */ | 
 | 		if (IS_FCOE_IDX(i)) | 
 | 			/* | 
 | 			 * Although there are no IP frames expected to arrive to | 
 | 			 * this ring we still want to add an | 
 | 			 * IP_HEADER_ALIGNMENT_PADDING to prevent a buffer | 
 | 			 * overrun attack. | 
 | 			 */ | 
 | 			mtu = BNX2X_FCOE_MINI_JUMBO_MTU; | 
 | 		else | 
 | 			mtu = bp->dev->mtu; | 
 | 		/* AKAROS_PORT XME struct block alignment and size issues? */ | 
 | 		fp->rx_buf_size = BNX2X_FW_RX_ALIGN_START + | 
 | 				  IP_HEADER_ALIGNMENT_PADDING + | 
 | 				  ETH_OVREHEAD + | 
 | 				  mtu + | 
 | 				  BNX2X_FW_RX_ALIGN_END; | 
 | 		/* Note : rx_buf_size doesn't take into account NET_SKB_PAD */ | 
 | 		if (fp->rx_buf_size + NET_SKB_PAD <= PAGE_SIZE) | 
 | 			fp->rx_frag_size = fp->rx_buf_size + NET_SKB_PAD; | 
 | 		else | 
 | 			fp->rx_frag_size = 0; | 
 | 	} | 
 | } | 
 |  | 
 | static int bnx2x_init_rss(struct bnx2x *bp) | 
 | { | 
 | 	int i; | 
 | 	uint8_t num_eth_queues = BNX2X_NUM_ETH_QUEUES(bp); | 
 |  | 
 | 	/* Prepare the initial contents for the indirection table if RSS is | 
 | 	 * enabled | 
 | 	 */ | 
 | 	for (i = 0; i < sizeof(bp->rss_conf_obj.ind_table); i++) | 
 | 		bp->rss_conf_obj.ind_table[i] = | 
 | 			bp->fp->cl_id + | 
 | 			ethtool_rxfh_indir_default(i, num_eth_queues); | 
 |  | 
 | 	/* | 
 | 	 * For 57710 and 57711 SEARCHER configuration (rss_keys) is | 
 | 	 * per-port, so if explicit configuration is needed , do it only | 
 | 	 * for a PMF. | 
 | 	 * | 
 | 	 * For 57712 and newer on the other hand it's a per-function | 
 | 	 * configuration. | 
 | 	 */ | 
 | 	return bnx2x_config_rss_eth(bp, bp->port.pmf || !CHIP_IS_E1x(bp)); | 
 | } | 
 |  | 
 | int bnx2x_rss(struct bnx2x *bp, struct bnx2x_rss_config_obj *rss_obj, | 
 | 	      bool config_hash, bool enable) | 
 | { | 
 | 	struct bnx2x_config_rss_params params = {NULL}; | 
 |  | 
 | 	/* Although RSS is meaningless when there is a single HW queue we | 
 | 	 * still need it enabled in order to have HW Rx hash generated. | 
 | 	 * | 
 | 	 * if (!is_eth_multi(bp)) | 
 | 	 *      bp->multi_mode = ETH_RSS_MODE_DISABLED; | 
 | 	 */ | 
 |  | 
 | 	params.rss_obj = rss_obj; | 
 |  | 
 | 	__set_bit(RAMROD_COMP_WAIT, ¶ms.ramrod_flags); | 
 |  | 
 | 	if (enable) { | 
 | 		__set_bit(BNX2X_RSS_MODE_REGULAR, ¶ms.rss_flags); | 
 |  | 
 | 		/* RSS configuration */ | 
 | 		__set_bit(BNX2X_RSS_IPV4, ¶ms.rss_flags); | 
 | 		__set_bit(BNX2X_RSS_IPV4_TCP, ¶ms.rss_flags); | 
 | 		__set_bit(BNX2X_RSS_IPV6, ¶ms.rss_flags); | 
 | 		__set_bit(BNX2X_RSS_IPV6_TCP, ¶ms.rss_flags); | 
 | 		if (rss_obj->udp_rss_v4) | 
 | 			__set_bit(BNX2X_RSS_IPV4_UDP, ¶ms.rss_flags); | 
 | 		if (rss_obj->udp_rss_v6) | 
 | 			__set_bit(BNX2X_RSS_IPV6_UDP, ¶ms.rss_flags); | 
 |  | 
 | 		if (!CHIP_IS_E1x(bp)) | 
 | 			/* valid only for TUNN_MODE_GRE tunnel mode */ | 
 | 			__set_bit(BNX2X_RSS_GRE_INNER_HDRS, ¶ms.rss_flags); | 
 | 	} else { | 
 | 		__set_bit(BNX2X_RSS_MODE_DISABLED, ¶ms.rss_flags); | 
 | 	} | 
 |  | 
 | 	/* Hash bits */ | 
 | 	params.rss_result_mask = MULTI_MASK; | 
 |  | 
 | 	memcpy(params.ind_table, rss_obj->ind_table, sizeof(params.ind_table)); | 
 |  | 
 | 	if (config_hash) { | 
 | 		/* RSS keys */ | 
 | 		#if 0 // AKAROS_PORT | 
 | 		netdev_rss_key_fill(params.rss_key, T_ETH_RSS_KEY * 4); | 
 | 		#else | 
 | 		/* linux picks a random, once, then uses it here.  it could be | 
 | 		 * 5a! */ | 
 | 		memset(params.rss_key, 0x5a, T_ETH_RSS_KEY * 4); | 
 | 		#endif | 
 | 		__set_bit(BNX2X_RSS_SET_SRCH, ¶ms.rss_flags); | 
 | 	} | 
 |  | 
 | 	if (IS_PF(bp)) | 
 | 		return bnx2x_config_rss(bp, ¶ms); | 
 | 	else | 
 | 		return bnx2x_vfpf_config_rss(bp, ¶ms); | 
 | } | 
 |  | 
 | static int bnx2x_init_hw(struct bnx2x *bp, uint32_t load_code) | 
 | { | 
 | 	struct bnx2x_func_state_params func_params = {NULL}; | 
 |  | 
 | 	/* Prepare parameters for function state transitions */ | 
 | 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); | 
 |  | 
 | 	func_params.f_obj = &bp->func_obj; | 
 | 	func_params.cmd = BNX2X_F_CMD_HW_INIT; | 
 |  | 
 | 	func_params.params.hw_init.load_phase = load_code; | 
 |  | 
 | 	return bnx2x_func_state_change(bp, &func_params); | 
 | } | 
 |  | 
 | /* | 
 |  * Cleans the object that have internal lists without sending | 
 |  * ramrods. Should be run when interrupts are disabled. | 
 |  */ | 
 | void bnx2x_squeeze_objects(struct bnx2x *bp) | 
 | { | 
 | 	int rc; | 
 | 	unsigned long ramrod_flags = 0, vlan_mac_flags = 0; | 
 | 	struct bnx2x_mcast_ramrod_params rparam = {NULL}; | 
 | 	struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj; | 
 |  | 
 | 	/***************** Cleanup MACs' object first *************************/ | 
 |  | 
 | 	/* Wait for completion of requested */ | 
 | 	__set_bit(RAMROD_COMP_WAIT, &ramrod_flags); | 
 | 	/* Perform a dry cleanup */ | 
 | 	__set_bit(RAMROD_DRV_CLR_ONLY, &ramrod_flags); | 
 |  | 
 | 	/* Clean ETH primary MAC */ | 
 | 	__set_bit(BNX2X_ETH_MAC, &vlan_mac_flags); | 
 | 	rc = mac_obj->delete_all(bp, &bp->sp_objs->mac_obj, &vlan_mac_flags, | 
 | 				 &ramrod_flags); | 
 | 	if (rc != 0) | 
 | 		BNX2X_ERR("Failed to clean ETH MACs: %d\n", rc); | 
 |  | 
 | 	/* Cleanup UC list */ | 
 | 	vlan_mac_flags = 0; | 
 | 	__set_bit(BNX2X_UC_LIST_MAC, &vlan_mac_flags); | 
 | 	rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, | 
 | 				 &ramrod_flags); | 
 | 	if (rc != 0) | 
 | 		BNX2X_ERR("Failed to clean UC list MACs: %d\n", rc); | 
 |  | 
 | 	/***************** Now clean mcast object *****************************/ | 
 | 	rparam.mcast_obj = &bp->mcast_obj; | 
 | 	__set_bit(RAMROD_DRV_CLR_ONLY, &rparam.ramrod_flags); | 
 |  | 
 | 	/* Add a DEL command... - Since we're doing a driver cleanup only, | 
 | 	 * we take a lock surrounding both the initial send and the CONTs, | 
 | 	 * as we don't want a true completion to disrupt us in the middle. | 
 | 	 */ | 
 | 	qlock(&bp->dev->qlock); | 
 | 	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL); | 
 | 	if (rc < 0) | 
 | 		BNX2X_ERR("Failed to add a new DEL command to a multi-cast object: %d\n", | 
 | 			  rc); | 
 |  | 
 | 	/* ...and wait until all pending commands are cleared */ | 
 | 	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT); | 
 | 	while (rc != 0) { | 
 | 		if (rc < 0) { | 
 | 			BNX2X_ERR("Failed to clean multi-cast object: %d\n", | 
 | 				  rc); | 
 | 			qunlock(&bp->dev->qlock); | 
 | 			return; | 
 | 		} | 
 |  | 
 | 		rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT); | 
 | 	} | 
 | 	qunlock(&bp->dev->qlock); | 
 | } | 
 |  | 
 | #ifndef BNX2X_STOP_ON_ERROR | 
 | #define LOAD_ERROR_EXIT(bp, label) \ | 
 | 	do { \ | 
 | 		(bp)->state = BNX2X_STATE_ERROR; \ | 
 | 		goto label; \ | 
 | 	} while (0) | 
 |  | 
 | #define LOAD_ERROR_EXIT_CNIC(bp, label) \ | 
 | 	do { \ | 
 | 		bp->cnic_loaded = false; \ | 
 | 		goto label; \ | 
 | 	} while (0) | 
 | #else /*BNX2X_STOP_ON_ERROR*/ | 
 | #define LOAD_ERROR_EXIT(bp, label) \ | 
 | 	do { \ | 
 | 		(bp)->state = BNX2X_STATE_ERROR; \ | 
 | 		(bp)->panic = 1; \ | 
 | 		return -EBUSY; \ | 
 | 	} while (0) | 
 | #define LOAD_ERROR_EXIT_CNIC(bp, label) \ | 
 | 	do { \ | 
 | 		bp->cnic_loaded = false; \ | 
 | 		(bp)->panic = 1; \ | 
 | 		return -EBUSY; \ | 
 | 	} while (0) | 
 | #endif /*BNX2X_STOP_ON_ERROR*/ | 
 |  | 
 | static void bnx2x_free_fw_stats_mem(struct bnx2x *bp) | 
 | { | 
 | 	BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping, | 
 | 		       bp->fw_stats_data_sz + bp->fw_stats_req_sz); | 
 | 	return; | 
 | } | 
 |  | 
 | static int bnx2x_alloc_fw_stats_mem(struct bnx2x *bp) | 
 | { | 
 | 	int num_groups, vf_headroom = 0; | 
 | 	int is_fcoe_stats = NO_FCOE(bp) ? 0 : 1; | 
 |  | 
 | 	/* number of queues for statistics is number of eth queues + FCoE */ | 
 | 	uint8_t num_queue_stats = BNX2X_NUM_ETH_QUEUES(bp) + is_fcoe_stats; | 
 |  | 
 | 	/* Total number of FW statistics requests = | 
 | 	 * 1 for port stats + 1 for PF stats + potential 2 for FCoE (fcoe proper | 
 | 	 * and fcoe l2 queue) stats + num of queues (which includes another 1 | 
 | 	 * for fcoe l2 queue if applicable) | 
 | 	 */ | 
 | 	bp->fw_stats_num = 2 + is_fcoe_stats + num_queue_stats; | 
 |  | 
 | 	/* vf stats appear in the request list, but their data is allocated by | 
 | 	 * the VFs themselves. We don't include them in the bp->fw_stats_num as | 
 | 	 * it is used to determine where to place the vf stats queries in the | 
 | 	 * request struct | 
 | 	 */ | 
 | 	if (IS_SRIOV(bp)) | 
 | 		vf_headroom = bnx2x_vf_headroom(bp); | 
 |  | 
 | 	/* Request is built from stats_query_header and an array of | 
 | 	 * stats_query_cmd_group each of which contains | 
 | 	 * STATS_QUERY_CMD_COUNT rules. The real number or requests is | 
 | 	 * configured in the stats_query_header. | 
 | 	 */ | 
 | 	num_groups = | 
 | 		(((bp->fw_stats_num + vf_headroom) / STATS_QUERY_CMD_COUNT) + | 
 | 		 (((bp->fw_stats_num + vf_headroom) % STATS_QUERY_CMD_COUNT) ? | 
 | 		 1 : 0)); | 
 |  | 
 | 	DP(BNX2X_MSG_SP, "stats fw_stats_num %d, vf headroom %d, num_groups %d\n", | 
 | 	   bp->fw_stats_num, vf_headroom, num_groups); | 
 | 	bp->fw_stats_req_sz = sizeof(struct stats_query_header) + | 
 | 		num_groups * sizeof(struct stats_query_cmd_group); | 
 |  | 
 | 	/* Data for statistics requests + stats_counter | 
 | 	 * stats_counter holds per-STORM counters that are incremented | 
 | 	 * when STORM has finished with the current request. | 
 | 	 * memory for FCoE offloaded statistics are counted anyway, | 
 | 	 * even if they will not be sent. | 
 | 	 * VF stats are not accounted for here as the data of VF stats is stored | 
 | 	 * in memory allocated by the VF, not here. | 
 | 	 */ | 
 | 	bp->fw_stats_data_sz = sizeof(struct per_port_stats) + | 
 | 		sizeof(struct per_pf_stats) + | 
 | 		sizeof(struct fcoe_statistics_params) + | 
 | 		sizeof(struct per_queue_stats) * num_queue_stats + | 
 | 		sizeof(struct stats_counter); | 
 |  | 
 | 	bp->fw_stats = BNX2X_PCI_ALLOC(&bp->fw_stats_mapping, | 
 | 				       bp->fw_stats_data_sz + bp->fw_stats_req_sz); | 
 | 	if (!bp->fw_stats) | 
 | 		goto alloc_mem_err; | 
 |  | 
 | 	/* Set shortcuts */ | 
 | 	bp->fw_stats_req = (struct bnx2x_fw_stats_req *)bp->fw_stats; | 
 | 	bp->fw_stats_req_mapping = bp->fw_stats_mapping; | 
 | 	bp->fw_stats_data = (struct bnx2x_fw_stats_data *) | 
 | 		((uint8_t *)bp->fw_stats + bp->fw_stats_req_sz); | 
 | 	bp->fw_stats_data_mapping = bp->fw_stats_mapping + | 
 | 		bp->fw_stats_req_sz; | 
 |  | 
 | 	DP(BNX2X_MSG_SP, "statistics request base address set to %x %x\n", | 
 | 	   U64_HI(bp->fw_stats_req_mapping), | 
 | 	   U64_LO(bp->fw_stats_req_mapping)); | 
 | 	DP(BNX2X_MSG_SP, "statistics data base address set to %x %x\n", | 
 | 	   U64_HI(bp->fw_stats_data_mapping), | 
 | 	   U64_LO(bp->fw_stats_data_mapping)); | 
 | 	return 0; | 
 |  | 
 | alloc_mem_err: | 
 | 	bnx2x_free_fw_stats_mem(bp); | 
 | 	BNX2X_ERR("Can't allocate FW stats memory\n"); | 
 | 	return -ENOMEM; | 
 | } | 
 |  | 
 | /* send load request to mcp and analyze response */ | 
 | static int bnx2x_nic_load_request(struct bnx2x *bp, uint32_t *load_code) | 
 | { | 
 | 	uint32_t param; | 
 |  | 
 | 	/* init fw_seq */ | 
 | 	bp->fw_seq = | 
 | 		(SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) & | 
 | 		 DRV_MSG_SEQ_NUMBER_MASK); | 
 | 	BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq); | 
 |  | 
 | 	/* Get current FW pulse sequence */ | 
 | 	bp->fw_drv_pulse_wr_seq = | 
 | 		(SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb) & | 
 | 		 DRV_PULSE_SEQ_MASK); | 
 | 	BNX2X_DEV_INFO("drv_pulse 0x%x\n", bp->fw_drv_pulse_wr_seq); | 
 |  | 
 | 	param = DRV_MSG_CODE_LOAD_REQ_WITH_LFA; | 
 |  | 
 | 	if (IS_MF_SD(bp) && bnx2x_port_after_undi(bp)) | 
 | 		param |= DRV_MSG_CODE_LOAD_REQ_FORCE_LFA; | 
 |  | 
 | 	/* load request */ | 
 | 	(*load_code) = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ, param); | 
 |  | 
 | 	/* if mcp fails to respond we must abort */ | 
 | 	if (!(*load_code)) { | 
 | 		BNX2X_ERR("MCP response failure, aborting\n"); | 
 | 		return -EBUSY; | 
 | 	} | 
 |  | 
 | 	/* If mcp refused (e.g. other port is in diagnostic mode) we | 
 | 	 * must abort | 
 | 	 */ | 
 | 	if ((*load_code) == FW_MSG_CODE_DRV_LOAD_REFUSED) { | 
 | 		BNX2X_ERR("MCP refused load request, aborting\n"); | 
 | 		return -EBUSY; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* check whether another PF has already loaded FW to chip. In | 
 |  * virtualized environments a pf from another VM may have already | 
 |  * initialized the device including loading FW | 
 |  */ | 
 | int bnx2x_compare_fw_ver(struct bnx2x *bp, uint32_t load_code, | 
 | 			 bool print_err) | 
 | { | 
 | 	/* is another pf loaded on this engine? */ | 
 | 	if (load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP && | 
 | 	    load_code != FW_MSG_CODE_DRV_LOAD_COMMON) { | 
 | 		/* build my FW version dword */ | 
 | 		uint32_t my_fw = (BCM_5710_FW_MAJOR_VERSION) + | 
 | 			(BCM_5710_FW_MINOR_VERSION << 8) + | 
 | 			(BCM_5710_FW_REVISION_VERSION << 16) + | 
 | 			(BCM_5710_FW_ENGINEERING_VERSION << 24); | 
 |  | 
 | 		/* read loaded FW from chip */ | 
 | 		uint32_t loaded_fw = REG_RD(bp, XSEM_REG_PRAM); | 
 |  | 
 | 		DP(BNX2X_MSG_SP, "loaded fw %x, my fw %x\n", | 
 | 		   loaded_fw, my_fw); | 
 |  | 
 | 		/* abort nic load if version mismatch */ | 
 | 		if (my_fw != loaded_fw) { | 
 | 			if (print_err) | 
 | 				BNX2X_ERR("bnx2x with FW %x was already loaded which mismatches my %x FW. Aborting\n", | 
 | 					  loaded_fw, my_fw); | 
 | 			else | 
 | 				BNX2X_DEV_INFO("bnx2x with FW %x was already loaded which mismatches my %x FW, possibly due to MF UNDI\n", | 
 | 					       loaded_fw, my_fw); | 
 | 			return -EBUSY; | 
 | 		} | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* returns the "mcp load_code" according to global load_count array */ | 
 | static int bnx2x_nic_load_no_mcp(struct bnx2x *bp, int port) | 
 | { | 
 | 	int path = BP_PATH(bp); | 
 |  | 
 | 	DP(NETIF_MSG_IFUP, "NO MCP - load counts[%d]      %d, %d, %d\n", | 
 | 	   path, bnx2x_load_count[path][0], bnx2x_load_count[path][1], | 
 | 	   bnx2x_load_count[path][2]); | 
 | 	bnx2x_load_count[path][0]++; | 
 | 	bnx2x_load_count[path][1 + port]++; | 
 | 	DP(NETIF_MSG_IFUP, "NO MCP - new load counts[%d]  %d, %d, %d\n", | 
 | 	   path, bnx2x_load_count[path][0], bnx2x_load_count[path][1], | 
 | 	   bnx2x_load_count[path][2]); | 
 | 	if (bnx2x_load_count[path][0] == 1) | 
 | 		return FW_MSG_CODE_DRV_LOAD_COMMON; | 
 | 	else if (bnx2x_load_count[path][1 + port] == 1) | 
 | 		return FW_MSG_CODE_DRV_LOAD_PORT; | 
 | 	else | 
 | 		return FW_MSG_CODE_DRV_LOAD_FUNCTION; | 
 | } | 
 |  | 
 | /* mark PMF if applicable */ | 
 | static void bnx2x_nic_load_pmf(struct bnx2x *bp, uint32_t load_code) | 
 | { | 
 | 	if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) || | 
 | 	    (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) || | 
 | 	    (load_code == FW_MSG_CODE_DRV_LOAD_PORT)) { | 
 | 		bp->port.pmf = 1; | 
 | 		/* We need the barrier to ensure the ordering between the | 
 | 		 * writing to bp->port.pmf here and reading it from the | 
 | 		 * bnx2x_periodic_task(). | 
 | 		 */ | 
 | 		mb(); | 
 | 	} else { | 
 | 		bp->port.pmf = 0; | 
 | 	} | 
 |  | 
 | 	DP(NETIF_MSG_LINK, "pmf %d\n", bp->port.pmf); | 
 | } | 
 |  | 
 | static void bnx2x_nic_load_afex_dcc(struct bnx2x *bp, int load_code) | 
 | { | 
 | 	if (((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) || | 
 | 	     (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP)) && | 
 | 	    (bp->common.shmem2_base)) { | 
 | 		if (SHMEM2_HAS(bp, dcc_support)) | 
 | 			SHMEM2_WR(bp, dcc_support, | 
 | 				  (SHMEM_DCC_SUPPORT_DISABLE_ENABLE_PF_TLV | | 
 | 				   SHMEM_DCC_SUPPORT_BANDWIDTH_ALLOCATION_TLV)); | 
 | 		if (SHMEM2_HAS(bp, afex_driver_support)) | 
 | 			SHMEM2_WR(bp, afex_driver_support, | 
 | 				  SHMEM_AFEX_SUPPORTED_VERSION_ONE); | 
 | 	} | 
 |  | 
 | 	/* Set AFEX default VLAN tag to an invalid value */ | 
 | 	bp->afex_def_vlan_tag = -1; | 
 | } | 
 |  | 
 | /** | 
 |  * bnx2x_bz_fp - zero content of the fastpath structure. | 
 |  * | 
 |  * @bp:		driver handle | 
 |  * @index:	fastpath index to be zeroed | 
 |  * | 
 |  * Makes sure the contents of the bp->fp[index].napi is kept | 
 |  * intact. | 
 |  */ | 
 | static void bnx2x_bz_fp(struct bnx2x *bp, int index) | 
 | { | 
 | 	struct bnx2x_fastpath *fp = &bp->fp[index]; | 
 | 	int cos; | 
 | 	struct napi_struct orig_napi = fp->napi; | 
 | 	struct bnx2x_agg_info *orig_tpa_info = fp->tpa_info; | 
 |  | 
 | 	/* bzero bnx2x_fastpath contents */ | 
 | 	if (fp->tpa_info) | 
 | 		memset(fp->tpa_info, 0, ETH_MAX_AGGREGATION_QUEUES_E1H_E2 * | 
 | 		       sizeof(struct bnx2x_agg_info)); | 
 | 	memset(fp, 0, sizeof(*fp)); | 
 |  | 
 | 	/* AKAROS_PORT: let the code set up whatever fake napi stuff it needs */ | 
 | 	/* Restore the NAPI object as it has been already initialized */ | 
 | 	fp->napi = orig_napi; | 
 | 	fp->tpa_info = orig_tpa_info; | 
 | 	fp->bp = bp; | 
 | 	fp->index = index; | 
 | 	if (IS_ETH_FP(fp)) | 
 | 		fp->max_cos = bp->max_cos; | 
 | 	else | 
 | 		/* Special queues support only one CoS */ | 
 | 		fp->max_cos = 1; | 
 |  | 
 | 	/* Init txdata pointers */ | 
 | 	if (IS_FCOE_FP(fp)) | 
 | 		fp->txdata_ptr[0] = &bp->bnx2x_txq[FCOE_TXQ_IDX(bp)]; | 
 | 	if (IS_ETH_FP(fp)) | 
 | 		for_each_cos_in_tx_queue(fp, cos) | 
 | 			fp->txdata_ptr[cos] = &bp->bnx2x_txq[cos * | 
 | 				BNX2X_NUM_ETH_QUEUES(bp) + index]; | 
 |  | 
 | 	/* set the tpa flag for each queue. The tpa flag determines the queue | 
 | 	 * minimal size so it must be set prior to queue memory allocation | 
 | 	 */ | 
 | 	fp->disable_tpa = !(bp->flags & TPA_ENABLE_FLAG || | 
 | 				  (bp->flags & GRO_ENABLE_FLAG && | 
 | 				   bnx2x_mtu_allows_gro(bp->dev->mtu))); | 
 | 	if (bp->flags & TPA_ENABLE_FLAG) | 
 | 		fp->mode = TPA_MODE_LRO; | 
 | 	else if (bp->flags & GRO_ENABLE_FLAG) | 
 | 		fp->mode = TPA_MODE_GRO; | 
 |  | 
 | 	/* We don't want TPA on an FCoE L2 ring */ | 
 | 	if (IS_FCOE_FP(fp)) | 
 | 		fp->disable_tpa = 1; | 
 | } | 
 |  | 
 | int bnx2x_load_cnic(struct bnx2x *bp) | 
 | { | 
 | 	int i, rc, port = BP_PORT(bp); | 
 |  | 
 | 	DP(NETIF_MSG_IFUP, "Starting CNIC-related load\n"); | 
 |  | 
 | 	qlock_init(&bp->cnic_mutex); | 
 |  | 
 | 	if (IS_PF(bp)) { | 
 | 		rc = bnx2x_alloc_mem_cnic(bp); | 
 | 		if (rc) { | 
 | 			BNX2X_ERR("Unable to allocate bp memory for cnic\n"); | 
 | 			LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	rc = bnx2x_alloc_fp_mem_cnic(bp); | 
 | 	if (rc) { | 
 | 		BNX2X_ERR("Unable to allocate memory for cnic fps\n"); | 
 | 		LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0); | 
 | 	} | 
 |  | 
 | 	/* Update the number of queues with the cnic queues */ | 
 | 	rc = bnx2x_set_real_num_queues(bp, 1); | 
 | 	if (rc) { | 
 | 		BNX2X_ERR("Unable to set real_num_queues including cnic\n"); | 
 | 		LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0); | 
 | 	} | 
 |  | 
 | 	/* Add all CNIC NAPI objects */ | 
 | 	bnx2x_add_all_napi_cnic(bp); | 
 | 	DP(NETIF_MSG_IFUP, "cnic napi added\n"); | 
 | 	bnx2x_napi_enable_cnic(bp); | 
 |  | 
 | 	rc = bnx2x_init_hw_func_cnic(bp); | 
 | 	if (rc) | 
 | 		LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic1); | 
 |  | 
 | 	bnx2x_nic_init_cnic(bp); | 
 |  | 
 | 	if (IS_PF(bp)) { | 
 | 		/* Enable Timer scan */ | 
 | 		REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 1); | 
 |  | 
 | 		/* setup cnic queues */ | 
 | 		for_each_cnic_queue(bp, i) { | 
 | 			rc = bnx2x_setup_queue(bp, &bp->fp[i], 0); | 
 | 			if (rc) { | 
 | 				BNX2X_ERR("Queue setup failed\n"); | 
 | 				LOAD_ERROR_EXIT(bp, load_error_cnic2); | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Initialize Rx filter. */ | 
 | 	bnx2x_set_rx_mode_inner(bp); | 
 |  | 
 | 	/* re-read iscsi info */ | 
 | 	bnx2x_get_iscsi_info(bp); | 
 | 	bnx2x_setup_cnic_irq_info(bp); | 
 | 	bnx2x_setup_cnic_info(bp); | 
 | 	bp->cnic_loaded = true; | 
 | 	if (bp->state == BNX2X_STATE_OPEN) | 
 | 		bnx2x_cnic_notify(bp, CNIC_CTL_START_CMD); | 
 |  | 
 | 	DP(NETIF_MSG_IFUP, "Ending successfully CNIC-related load\n"); | 
 |  | 
 | 	return 0; | 
 |  | 
 | #ifndef BNX2X_STOP_ON_ERROR | 
 | load_error_cnic2: | 
 | 	/* Disable Timer scan */ | 
 | 	REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0); | 
 |  | 
 | load_error_cnic1: | 
 | 	bnx2x_napi_disable_cnic(bp); | 
 | 	/* Update the number of queues without the cnic queues */ | 
 | 	if (bnx2x_set_real_num_queues(bp, 0)) | 
 | 		BNX2X_ERR("Unable to set real_num_queues not including cnic\n"); | 
 | load_error_cnic0: | 
 | 	BNX2X_ERR("CNIC-related load failed\n"); | 
 | 	bnx2x_free_fp_mem_cnic(bp); | 
 | 	bnx2x_free_mem_cnic(bp); | 
 | 	return rc; | 
 | #endif /* ! BNX2X_STOP_ON_ERROR */ | 
 | } | 
 |  | 
 | /* must be called with rtnl_lock */ | 
 | int bnx2x_nic_load(struct bnx2x *bp, int load_mode) | 
 | { | 
 | 	int port = BP_PORT(bp); | 
 | 	int i, rc = 0; | 
 | 	uint32_t load_code = 0; | 
 |  | 
 | 	DP(NETIF_MSG_IFUP, "Starting NIC load\n"); | 
 | 	DP(NETIF_MSG_IFUP, | 
 | 	   "CNIC is %s\n", CNIC_ENABLED(bp) ? "enabled" : "disabled"); | 
 |  | 
 | #ifdef BNX2X_STOP_ON_ERROR | 
 | 	if (unlikely(bp->panic)) { | 
 | 		BNX2X_ERR("Can't load NIC when there is panic\n"); | 
 | 		return -EPERM; | 
 | 	} | 
 | #endif | 
 |  | 
 | 	bp->state = BNX2X_STATE_OPENING_WAIT4_LOAD; | 
 |  | 
 | 	/* zero the structure w/o any lock, before SP handler is initialized */ | 
 | 	memset(&bp->last_reported_link, 0, sizeof(bp->last_reported_link)); | 
 | 	__set_bit(BNX2X_LINK_REPORT_LINK_DOWN, | 
 | 		&bp->last_reported_link.link_report_flags); | 
 |  | 
 | 	if (IS_PF(bp)) | 
 | 		/* must be called before memory allocation and HW init */ | 
 | 		bnx2x_ilt_set_info(bp); | 
 |  | 
 | 	/* | 
 | 	 * Zero fastpath structures preserving invariants like napi, which are | 
 | 	 * allocated only once, fp index, max_cos, bp pointer. | 
 | 	 * Also set fp->disable_tpa and txdata_ptr. | 
 | 	 */ | 
 | 	DP(NETIF_MSG_IFUP, "num queues: %d", bp->num_queues); | 
 | 	for_each_queue(bp, i) | 
 | 		bnx2x_bz_fp(bp, i); | 
 | 	memset(bp->bnx2x_txq, 0, (BNX2X_MAX_RSS_COUNT(bp) * BNX2X_MULTI_TX_COS + | 
 | 				  bp->num_cnic_queues) * | 
 | 				  sizeof(struct bnx2x_fp_txdata)); | 
 |  | 
 | 	bp->fcoe_init = false; | 
 |  | 
 | 	/* Set the receive queues buffer size */ | 
 | 	bnx2x_set_rx_buf_size(bp); | 
 |  | 
 | 	if (IS_PF(bp)) { | 
 | 		rc = bnx2x_alloc_mem(bp); | 
 | 		if (rc) { | 
 | 			BNX2X_ERR("Unable to allocate bp memory\n"); | 
 | 			return rc; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* need to be done after alloc mem, since it's self adjusting to amount | 
 | 	 * of memory available for RSS queues | 
 | 	 */ | 
 | 	rc = bnx2x_alloc_fp_mem(bp); | 
 | 	if (rc) { | 
 | 		BNX2X_ERR("Unable to allocate memory for fps\n"); | 
 | 		LOAD_ERROR_EXIT(bp, load_error0); | 
 | 	} | 
 |  | 
 | 	/* Allocated memory for FW statistics  */ | 
 | 	if (bnx2x_alloc_fw_stats_mem(bp)) | 
 | 		LOAD_ERROR_EXIT(bp, load_error0); | 
 |  | 
 | 	/* request pf to initialize status blocks */ | 
 | 	if (IS_VF(bp)) { | 
 | 		rc = bnx2x_vfpf_init(bp); | 
 | 		if (rc) | 
 | 			LOAD_ERROR_EXIT(bp, load_error0); | 
 | 	} | 
 |  | 
 | 	/* As long as bnx2x_alloc_mem() may possibly update | 
 | 	 * bp->num_queues, bnx2x_set_real_num_queues() should always | 
 | 	 * come after it. At this stage cnic queues are not counted. | 
 | 	 */ | 
 | 	rc = bnx2x_set_real_num_queues(bp, 0); | 
 | 	if (rc) { | 
 | 		BNX2X_ERR("Unable to set real_num_queues\n"); | 
 | 		LOAD_ERROR_EXIT(bp, load_error0); | 
 | 	} | 
 |  | 
 | 	/* configure multi cos mappings in kernel. | 
 | 	 * this configuration may be overridden by a multi class queue | 
 | 	 * discipline or by a dcbx negotiation result. | 
 | 	 */ | 
 | 	bnx2x_setup_tc(bp->dev, bp->max_cos); | 
 |  | 
 | 	/* Add all NAPI objects */ | 
 | 	bnx2x_add_all_napi(bp); | 
 | 	DP(NETIF_MSG_IFUP, "napi added\n"); | 
 | 	bnx2x_napi_enable(bp); | 
 |  | 
 | 	if (IS_PF(bp)) { | 
 | 		/* set pf load just before approaching the MCP */ | 
 | 		bnx2x_set_pf_load(bp); | 
 |  | 
 | 		/* if mcp exists send load request and analyze response */ | 
 | 		if (!BP_NOMCP(bp)) { | 
 | 			/* attempt to load pf */ | 
 | 			rc = bnx2x_nic_load_request(bp, &load_code); | 
 | 			if (rc) | 
 | 				LOAD_ERROR_EXIT(bp, load_error1); | 
 |  | 
 | 			/* what did mcp say? */ | 
 | 			rc = bnx2x_compare_fw_ver(bp, load_code, true); | 
 | 			if (rc) { | 
 | 				bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0); | 
 | 				LOAD_ERROR_EXIT(bp, load_error2); | 
 | 			} | 
 | 		} else { | 
 | 			load_code = bnx2x_nic_load_no_mcp(bp, port); | 
 | 		} | 
 |  | 
 | 		/* mark pmf if applicable */ | 
 | 		bnx2x_nic_load_pmf(bp, load_code); | 
 |  | 
 | 		/* Init Function state controlling object */ | 
 | 		bnx2x__init_func_obj(bp); | 
 |  | 
 | 		/* Initialize HW */ | 
 | 		rc = bnx2x_init_hw(bp, load_code); | 
 | 		if (rc) { | 
 | 			BNX2X_ERR("HW init failed, aborting\n"); | 
 | 			bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0); | 
 | 			LOAD_ERROR_EXIT(bp, load_error2); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	bnx2x_pre_irq_nic_init(bp); | 
 |  | 
 | 	/* Connect to IRQs */ | 
 | 	rc = bnx2x_setup_irqs(bp); | 
 | 	if (rc) { | 
 | 		BNX2X_ERR("setup irqs failed\n"); | 
 | 		if (IS_PF(bp)) | 
 | 			bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0); | 
 | 		LOAD_ERROR_EXIT(bp, load_error2); | 
 | 	} | 
 |  | 
 | 	/* Init per-function objects */ | 
 | 	if (IS_PF(bp)) { | 
 | 		/* Setup NIC internals and enable interrupts */ | 
 | 		bnx2x_post_irq_nic_init(bp, load_code); | 
 |  | 
 | 		bnx2x_init_bp_objs(bp); | 
 | 		bnx2x_iov_nic_init(bp); | 
 |  | 
 | 		/* Set AFEX default VLAN tag to an invalid value */ | 
 | 		bp->afex_def_vlan_tag = -1; | 
 | 		bnx2x_nic_load_afex_dcc(bp, load_code); | 
 | 		bp->state = BNX2X_STATE_OPENING_WAIT4_PORT; | 
 | 		rc = bnx2x_func_start(bp); | 
 | 		if (rc) { | 
 | 			BNX2X_ERR("Function start failed!\n"); | 
 | 			bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0); | 
 |  | 
 | 			LOAD_ERROR_EXIT(bp, load_error3); | 
 | 		} | 
 |  | 
 | 		/* Send LOAD_DONE command to MCP */ | 
 | 		if (!BP_NOMCP(bp)) { | 
 | 			load_code = bnx2x_fw_command(bp, | 
 | 						     DRV_MSG_CODE_LOAD_DONE, 0); | 
 | 			if (!load_code) { | 
 | 				BNX2X_ERR("MCP response failure, aborting\n"); | 
 | 				rc = -EBUSY; | 
 | 				LOAD_ERROR_EXIT(bp, load_error3); | 
 | 			} | 
 | 		} | 
 |  | 
 | 		/* initialize FW coalescing state machines in RAM */ | 
 | 		bnx2x_update_coalesce(bp); | 
 | 	} | 
 |  | 
 | 	/* setup the leading queue */ | 
 | 	rc = bnx2x_setup_leading(bp); | 
 | 	if (rc) { | 
 | 		BNX2X_ERR("Setup leading failed!\n"); | 
 | 		LOAD_ERROR_EXIT(bp, load_error3); | 
 | 	} | 
 |  | 
 | 	/* set up the rest of the queues */ | 
 | 	for_each_nondefault_eth_queue(bp, i) { | 
 | 		if (IS_PF(bp)) | 
 | 			rc = bnx2x_setup_queue(bp, &bp->fp[i], false); | 
 | 		else /* VF */ | 
 | 			rc = bnx2x_vfpf_setup_q(bp, &bp->fp[i], false); | 
 | 		if (rc) { | 
 | 			BNX2X_ERR("Queue %d setup failed\n", i); | 
 | 			LOAD_ERROR_EXIT(bp, load_error3); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* setup rss */ | 
 | 	rc = bnx2x_init_rss(bp); | 
 | 	if (rc) { | 
 | 		BNX2X_ERR("PF RSS init failed\n"); | 
 | 		LOAD_ERROR_EXIT(bp, load_error3); | 
 | 	} | 
 |  | 
 | 	/* Now when Clients are configured we are ready to work */ | 
 | 	bp->state = BNX2X_STATE_OPEN; | 
 |  | 
 | 	/* Configure a ucast MAC */ | 
 | 	if (IS_PF(bp)) | 
 | 		rc = bnx2x_set_eth_mac(bp, true); | 
 | 	else /* vf */ | 
 | 		rc = bnx2x_vfpf_config_mac(bp, bp->dev->ea, bp->fp->index, | 
 | 					   true); | 
 | 	if (rc) { | 
 | 		BNX2X_ERR("Setting Ethernet MAC failed\n"); | 
 | 		LOAD_ERROR_EXIT(bp, load_error3); | 
 | 	} | 
 |  | 
 | 	if (IS_PF(bp) && bp->pending_max) { | 
 | 		bnx2x_update_max_mf_config(bp, bp->pending_max); | 
 | 		bp->pending_max = 0; | 
 | 	} | 
 |  | 
 | 	if (bp->port.pmf) { | 
 | 		rc = bnx2x_initial_phy_init(bp, load_mode); | 
 | 		if (rc) | 
 | 			LOAD_ERROR_EXIT(bp, load_error3); | 
 | 	} | 
 | 	bp->link_params.feature_config_flags &= ~FEATURE_CONFIG_BOOT_FROM_SAN; | 
 |  | 
 | 	/* Start fast path */ | 
 |  | 
 | 	/* Initialize Rx filter. */ | 
 | 	bnx2x_set_rx_mode_inner(bp); | 
 |  | 
 | 	/* Start Tx */ | 
 | 	switch (load_mode) { | 
 | 	case LOAD_NORMAL: | 
 | 		/* Tx queue should be only re-enabled */ | 
 | 		netif_tx_wake_all_queues(bp->dev); | 
 | 		break; | 
 |  | 
 | 	case LOAD_OPEN: | 
 | 		netif_tx_start_all_queues(bp->dev); | 
 | 		cmb(); | 
 | 		break; | 
 |  | 
 | 	case LOAD_DIAG: | 
 | 	case LOAD_LOOPBACK_EXT: | 
 | 		bp->state = BNX2X_STATE_DIAG; | 
 | 		break; | 
 |  | 
 | 	default: | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	if (bp->port.pmf) | 
 | 		bnx2x_update_drv_flags(bp, 1 << DRV_FLAGS_PORT_MASK, 0); | 
 | 	else | 
 | 		bnx2x__link_status_update(bp); | 
 |  | 
 | 	/* start the timer */ | 
 | 	set_awaiter_rel(&bp->timer, bp->current_interval * 1000); // fudge | 
 | 	set_alarm(&per_cpu_info[0].tchain, &bp->timer); | 
 |  | 
 | 	if (CNIC_ENABLED(bp)) | 
 | 		bnx2x_load_cnic(bp); | 
 |  | 
 | 	if (IS_PF(bp)) | 
 | 		bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0); | 
 |  | 
 | 	if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) { | 
 | 		/* mark driver is loaded in shmem2 */ | 
 | 		uint32_t val; | 
 | 		val = SHMEM2_RD(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)]); | 
 | 		SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)], | 
 | 			  val | DRV_FLAGS_CAPABILITIES_LOADED_SUPPORTED | | 
 | 			  DRV_FLAGS_CAPABILITIES_LOADED_L2); | 
 | 	} | 
 |  | 
 | 	/* Wait for all pending SP commands to complete */ | 
 | 	if (IS_PF(bp) && !bnx2x_wait_sp_comp(bp, ~0x0UL)) { | 
 | 		BNX2X_ERR("Timeout waiting for SP elements to complete\n"); | 
 | 		bnx2x_nic_unload(bp, UNLOAD_CLOSE, false); | 
 | 		return -EBUSY; | 
 | 	} | 
 |  | 
 | 	/* If PMF - send ADMIN DCBX msg to MFW to initiate DCBX FSM */ | 
 | 	if (bp->port.pmf && (bp->state != BNX2X_STATE_DIAG)) | 
 | 		bnx2x_dcbx_init(bp, false); | 
 |  | 
 | 	DP(NETIF_MSG_IFUP, "Ending successfully NIC load\n"); | 
 |  | 
 | 	return 0; | 
 |  | 
 | #ifndef BNX2X_STOP_ON_ERROR | 
 | load_error3: | 
 | 	if (IS_PF(bp)) { | 
 | 		bnx2x_int_disable_sync(bp, 1); | 
 |  | 
 | 		/* Clean queueable objects */ | 
 | 		bnx2x_squeeze_objects(bp); | 
 | 	} | 
 |  | 
 | 	/* Free SKBs, SGEs, TPA pool and driver internals */ | 
 | 	bnx2x_free_skbs(bp); | 
 | 	for_each_rx_queue(bp, i) | 
 | 		bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE); | 
 |  | 
 | 	/* Release IRQs */ | 
 | 	bnx2x_free_irq(bp); | 
 | load_error2: | 
 | 	if (IS_PF(bp) && !BP_NOMCP(bp)) { | 
 | 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0); | 
 | 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0); | 
 | 	} | 
 |  | 
 | 	bp->port.pmf = 0; | 
 | load_error1: | 
 | 	bnx2x_napi_disable(bp); | 
 | 	bnx2x_del_all_napi(bp); | 
 |  | 
 | 	/* clear pf_load status, as it was already set */ | 
 | 	if (IS_PF(bp)) | 
 | 		bnx2x_clear_pf_load(bp); | 
 | load_error0: | 
 | 	bnx2x_free_fw_stats_mem(bp); | 
 | 	bnx2x_free_fp_mem(bp); | 
 | 	bnx2x_free_mem(bp); | 
 |  | 
 | 	return rc; | 
 | #endif /* ! BNX2X_STOP_ON_ERROR */ | 
 | } | 
 |  | 
 | int bnx2x_drain_tx_queues(struct bnx2x *bp) | 
 | { | 
 | 	uint8_t rc = 0, cos, i; | 
 |  | 
 | 	/* Wait until tx fastpath tasks complete */ | 
 | 	for_each_tx_queue(bp, i) { | 
 | 		struct bnx2x_fastpath *fp = &bp->fp[i]; | 
 |  | 
 | 		for_each_cos_in_tx_queue(fp, cos) | 
 | 			rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]); | 
 | 		if (rc) | 
 | 			return rc; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* must be called with rtnl_lock */ | 
 | int bnx2x_nic_unload(struct bnx2x *bp, int unload_mode, bool keep_link) | 
 | { | 
 | panic("Not implemented"); | 
 | #if 0 // AKAROS_PORT | 
 | 	int i; | 
 | 	bool global = false; | 
 |  | 
 | 	DP(NETIF_MSG_IFUP, "Starting NIC unload\n"); | 
 |  | 
 | 	/* mark driver is unloaded in shmem2 */ | 
 | 	if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) { | 
 | 		uint32_t val; | 
 | 		val = SHMEM2_RD(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)]); | 
 | 		SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)], | 
 | 			  val & ~DRV_FLAGS_CAPABILITIES_LOADED_L2); | 
 | 	} | 
 |  | 
 | 	if (IS_PF(bp) && bp->recovery_state != BNX2X_RECOVERY_DONE && | 
 | 	    (bp->state == BNX2X_STATE_CLOSED || | 
 | 	     bp->state == BNX2X_STATE_ERROR)) { | 
 | 		/* We can get here if the driver has been unloaded | 
 | 		 * during parity error recovery and is either waiting for a | 
 | 		 * leader to complete or for other functions to unload and | 
 | 		 * then ifdown has been issued. In this case we want to | 
 | 		 * unload and let other functions to complete a recovery | 
 | 		 * process. | 
 | 		 */ | 
 | 		bp->recovery_state = BNX2X_RECOVERY_DONE; | 
 | 		bp->is_leader = 0; | 
 | 		bnx2x_release_leader_lock(bp); | 
 | 		mb(); | 
 |  | 
 | 		DP(NETIF_MSG_IFDOWN, "Releasing a leadership...\n"); | 
 | 		BNX2X_ERR("Can't unload in closed or error state\n"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	/* Nothing to do during unload if previous bnx2x_nic_load() | 
 | 	 * have not completed successfully - all resources are released. | 
 | 	 * | 
 | 	 * we can get here only after unsuccessful ndo_* callback, during which | 
 | 	 * dev->IFF_UP flag is still on. | 
 | 	 */ | 
 | 	if (bp->state == BNX2X_STATE_CLOSED || bp->state == BNX2X_STATE_ERROR) | 
 | 		return 0; | 
 |  | 
 | 	/* It's important to set the bp->state to the value different from | 
 | 	 * BNX2X_STATE_OPEN and only then stop the Tx. Otherwise bnx2x_tx_int() | 
 | 	 * may restart the Tx from the NAPI context (see bnx2x_tx_int()). | 
 | 	 */ | 
 | 	bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT; | 
 | 	mb(); | 
 |  | 
 | 	/* indicate to VFs that the PF is going down */ | 
 | 	bnx2x_iov_channel_down(bp); | 
 |  | 
 | 	if (CNIC_LOADED(bp)) | 
 | 		bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD); | 
 |  | 
 | 	/* Stop Tx */ | 
 | 	bnx2x_tx_disable(bp); | 
 | 	netdev_reset_tc(bp->dev); | 
 |  | 
 | 	bp->rx_mode = BNX2X_RX_MODE_NONE; | 
 |  | 
 | 	del_timer_sync(&bp->timer); | 
 |  | 
 | 	if (IS_PF(bp)) { | 
 | 		/* Set ALWAYS_ALIVE bit in shmem */ | 
 | 		bp->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE; | 
 | 		bnx2x_drv_pulse(bp); | 
 | 		bnx2x_stats_handle(bp, STATS_EVENT_STOP); | 
 | 		bnx2x_save_statistics(bp); | 
 | 	} | 
 |  | 
 | 	/* wait till consumers catch up with producers in all queues */ | 
 | 	bnx2x_drain_tx_queues(bp); | 
 |  | 
 | 	/* if VF indicate to PF this function is going down (PF will delete sp | 
 | 	 * elements and clear initializations | 
 | 	 */ | 
 | 	if (IS_VF(bp)) | 
 | 		bnx2x_vfpf_close_vf(bp); | 
 | 	else if (unload_mode != UNLOAD_RECOVERY) | 
 | 		/* if this is a normal/close unload need to clean up chip*/ | 
 | 		bnx2x_chip_cleanup(bp, unload_mode, keep_link); | 
 | 	else { | 
 | 		/* Send the UNLOAD_REQUEST to the MCP */ | 
 | 		bnx2x_send_unload_req(bp, unload_mode); | 
 |  | 
 | 		/* Prevent transactions to host from the functions on the | 
 | 		 * engine that doesn't reset global blocks in case of global | 
 | 		 * attention once global blocks are reset and gates are opened | 
 | 		 * (the engine which leader will perform the recovery | 
 | 		 * last). | 
 | 		 */ | 
 | 		if (!CHIP_IS_E1x(bp)) | 
 | 			bnx2x_pf_disable(bp); | 
 |  | 
 | 		/* Disable HW interrupts, NAPI */ | 
 | 		bnx2x_netif_stop(bp, 1); | 
 | 		/* Delete all NAPI objects */ | 
 | 		bnx2x_del_all_napi(bp); | 
 | 		if (CNIC_LOADED(bp)) | 
 | 			bnx2x_del_all_napi_cnic(bp); | 
 | 		/* Release IRQs */ | 
 | 		bnx2x_free_irq(bp); | 
 |  | 
 | 		/* Report UNLOAD_DONE to MCP */ | 
 | 		bnx2x_send_unload_done(bp, false); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * At this stage no more interrupts will arrive so we may safely clean | 
 | 	 * the queueable objects here in case they failed to get cleaned so far. | 
 | 	 */ | 
 | 	if (IS_PF(bp)) | 
 | 		bnx2x_squeeze_objects(bp); | 
 |  | 
 | 	/* There should be no more pending SP commands at this stage */ | 
 | 	bp->sp_state = 0; | 
 |  | 
 | 	bp->port.pmf = 0; | 
 |  | 
 | 	/* clear pending work in rtnl task */ | 
 | 	bp->sp_rtnl_state = 0; | 
 | 	mb(); | 
 |  | 
 | 	/* Free SKBs, SGEs, TPA pool and driver internals */ | 
 | 	bnx2x_free_skbs(bp); | 
 | 	if (CNIC_LOADED(bp)) | 
 | 		bnx2x_free_skbs_cnic(bp); | 
 | 	for_each_rx_queue(bp, i) | 
 | 		bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE); | 
 |  | 
 | 	bnx2x_free_fp_mem(bp); | 
 | 	if (CNIC_LOADED(bp)) | 
 | 		bnx2x_free_fp_mem_cnic(bp); | 
 |  | 
 | 	if (IS_PF(bp)) { | 
 | 		if (CNIC_LOADED(bp)) | 
 | 			bnx2x_free_mem_cnic(bp); | 
 | 	} | 
 | 	bnx2x_free_mem(bp); | 
 |  | 
 | 	bp->state = BNX2X_STATE_CLOSED; | 
 | 	bp->cnic_loaded = false; | 
 |  | 
 | 	/* Clear driver version indication in shmem */ | 
 | 	if (IS_PF(bp)) | 
 | 		bnx2x_update_mng_version(bp); | 
 |  | 
 | 	/* Check if there are pending parity attentions. If there are - set | 
 | 	 * RECOVERY_IN_PROGRESS. | 
 | 	 */ | 
 | 	if (IS_PF(bp) && bnx2x_chk_parity_attn(bp, &global, false)) { | 
 | 		bnx2x_set_reset_in_progress(bp); | 
 |  | 
 | 		/* Set RESET_IS_GLOBAL if needed */ | 
 | 		if (global) | 
 | 			bnx2x_set_reset_global(bp); | 
 | 	} | 
 |  | 
 | 	/* The last driver must disable a "close the gate" if there is no | 
 | 	 * parity attention or "process kill" pending. | 
 | 	 */ | 
 | 	if (IS_PF(bp) && | 
 | 	    !bnx2x_clear_pf_load(bp) && | 
 | 	    bnx2x_reset_is_done(bp, BP_PATH(bp))) | 
 | 		bnx2x_disable_close_the_gate(bp); | 
 |  | 
 | 	DP(NETIF_MSG_IFUP, "Ending NIC unload\n"); | 
 |  | 
 | 	return 0; | 
 | #endif | 
 | } | 
 |  | 
 | #if 0 // AKAROS_PORT | 
 | int bnx2x_set_power_state(struct bnx2x *bp, pci_power_t state) | 
 | { | 
 | 	uint16_t pmcsr; | 
 |  | 
 | 	/* If there is no power capability, silently succeed */ | 
 | 	if (!bp->pdev->pm_cap) { | 
 | 		BNX2X_DEV_INFO("No power capability. Breaking.\n"); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	pci_read_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_CTRL, &pmcsr); | 
 |  | 
 | 	switch (state) { | 
 | 	case PCI_D0: | 
 | 		pci_write_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_CTRL, | 
 | 				      ((pmcsr & ~PCI_PM_CTRL_STATE_MASK) | | 
 | 				       PCI_PM_CTRL_PME_STATUS)); | 
 |  | 
 | 		if (pmcsr & PCI_PM_CTRL_STATE_MASK) | 
 | 			/* delay required during transition out of D3hot */ | 
 | 			kthread_usleep(1000 * 20); | 
 | 		break; | 
 |  | 
 | 	case PCI_D3hot: | 
 | 		/* If there are other clients above don't | 
 | 		   shut down the power */ | 
 | 		if (atomic_read(&bp->pdev->enable_cnt) != 1) | 
 | 			return 0; | 
 | 		/* Don't shut down the power for emulation and FPGA */ | 
 | 		if (CHIP_REV_IS_SLOW(bp)) | 
 | 			return 0; | 
 |  | 
 | 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK; | 
 | 		pmcsr |= 3; | 
 |  | 
 | 		if (bp->wol) | 
 | 			pmcsr |= PCI_PM_CTRL_PME_ENABLE; | 
 |  | 
 | 		pci_write_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_CTRL, | 
 | 				      pmcsr); | 
 |  | 
 | 		/* No more memory access after this point until | 
 | 		* device is brought back to D0. | 
 | 		*/ | 
 | 		break; | 
 |  | 
 | 	default: | 
 | 		dev_err(&bp->pdev->dev, "Can't support state = %d\n", state); | 
 | 		return -EINVAL; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 | #endif | 
 |  | 
 | /* | 
 |  * net_device service functions | 
 |  */ | 
 | static void bnx2x_poll(uint32_t srcid, long a0, long a1, long a2) | 
 | { | 
 | 	struct bnx2x_fastpath *fp = (struct bnx2x_fastpath*)a0; | 
 | 	int work_done = 0; | 
 | 	int budget = INT32_MAX;	// AKAROS_PORT  comes from napi; just let it run | 
 | 	uint8_t cos; | 
 | 	struct bnx2x *bp = fp->bp; | 
 |  | 
 | 	while (1) { | 
 | #ifdef BNX2X_STOP_ON_ERROR | 
 | 		if (unlikely(bp->panic)) { | 
 | 			napi_complete(napi); | 
 | 			return 0; | 
 | 		} | 
 | #endif | 
 | 		if (!bnx2x_fp_lock_napi(fp)) | 
 | 			return; | 
 |  | 
 | 		for_each_cos_in_tx_queue(fp, cos) | 
 | 			if (bnx2x_tx_queue_has_work(fp->txdata_ptr[cos])) | 
 | 				bnx2x_tx_int(bp, fp->txdata_ptr[cos]); | 
 |  | 
 | 		if (bnx2x_has_rx_work(fp)) { | 
 | 			work_done += bnx2x_rx_int(fp, budget - work_done); | 
 |  | 
 | 			/* must not complete if we consumed full budget */ | 
 | 			if (work_done >= budget) { | 
 | 				bnx2x_fp_unlock_napi(fp); | 
 | 				break; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		/* Fall out from the NAPI loop if needed */ | 
 | 		if (!bnx2x_fp_unlock_napi(fp) && | 
 | 		    !(bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) { | 
 |  | 
 | 			/* No need to update SB for FCoE L2 ring as long as | 
 | 			 * it's connected to the default SB and the SB | 
 | 			 * has been updated when NAPI was scheduled. | 
 | 			 */ | 
 | 			if (IS_FCOE_FP(fp)) { | 
 | 				napi_complete(napi); | 
 | 				break; | 
 | 			} | 
 | 			bnx2x_update_fpsb_idx(fp); | 
 | 			/* bnx2x_has_rx_work() reads the status block, | 
 | 			 * thus we need to ensure that status block indices | 
 | 			 * have been actually read (bnx2x_update_fpsb_idx) | 
 | 			 * prior to this check (bnx2x_has_rx_work) so that | 
 | 			 * we won't write the "newer" value of the status block | 
 | 			 * to IGU (if there was a DMA right after | 
 | 			 * bnx2x_has_rx_work and if there is no rmb, the memory | 
 | 			 * reading (bnx2x_update_fpsb_idx) may be postponed | 
 | 			 * to right before bnx2x_ack_sb). In this case there | 
 | 			 * will never be another interrupt until there is | 
 | 			 * another update of the status block, while there | 
 | 			 * is still unhandled work. | 
 | 			 */ | 
 | 			rmb(); | 
 |  | 
 | 			if (!(bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) { | 
 | 				napi_complete(napi); | 
 | 				/* Re-enable interrupts */ | 
 | 				DP(NETIF_MSG_RX_STATUS, | 
 | 				   "Update index to %d\n", fp->fp_hc_idx); | 
 | 				bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, | 
 | 					     le16_to_cpu(fp->fp_hc_idx), | 
 | 					     IGU_INT_ENABLE, 1); | 
 | 				break; | 
 | 			} | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | #ifdef CONFIG_NET_RX_BUSY_POLL | 
 | /* must be called with local_bh_disable()d */ | 
 | int bnx2x_low_latency_recv(struct napi_struct *napi) | 
 | { | 
 | 	struct bnx2x_fastpath *fp = container_of(napi, struct bnx2x_fastpath, | 
 | 						 napi); | 
 | 	struct bnx2x *bp = fp->bp; | 
 | 	int found = 0; | 
 |  | 
 | 	if ((bp->state == BNX2X_STATE_CLOSED) || | 
 | 	    (bp->state == BNX2X_STATE_ERROR) || | 
 | 	    (bp->flags & (TPA_ENABLE_FLAG | GRO_ENABLE_FLAG))) | 
 | 		return LL_FLUSH_FAILED; | 
 |  | 
 | 	if (!bnx2x_fp_lock_poll(fp)) | 
 | 		return LL_FLUSH_BUSY; | 
 |  | 
 | 	if (bnx2x_has_rx_work(fp)) | 
 | 		found = bnx2x_rx_int(fp, 4); | 
 |  | 
 | 	bnx2x_fp_unlock_poll(fp); | 
 |  | 
 | 	return found; | 
 | } | 
 | #endif | 
 |  | 
 | /* we split the first BD into headers and data BDs | 
 |  * to ease the pain of our fellow microcode engineers | 
 |  * we use one mapping for both BDs | 
 |  */ | 
 | static uint16_t bnx2x_tx_split(struct bnx2x *bp, | 
 | 			  struct bnx2x_fp_txdata *txdata, | 
 | 			  struct sw_tx_bd *tx_buf, | 
 | 			  struct eth_tx_start_bd **tx_bd, uint16_t hlen, | 
 | 			  uint16_t bd_prod) | 
 | { | 
 | 	struct eth_tx_start_bd *h_tx_bd = *tx_bd; | 
 | 	struct eth_tx_bd *d_tx_bd; | 
 | 	dma_addr_t mapping; | 
 | 	int old_len = le16_to_cpu(h_tx_bd->nbytes); | 
 |  | 
 | 	/* first fix first BD */ | 
 | 	h_tx_bd->nbytes = cpu_to_le16(hlen); | 
 |  | 
 | 	DP(NETIF_MSG_TX_QUEUED,	"TSO split header size is %d (%x:%x)\n", | 
 | 	   h_tx_bd->nbytes, h_tx_bd->addr_hi, h_tx_bd->addr_lo); | 
 |  | 
 | 	/* now get a new data BD | 
 | 	 * (after the pbd) and fill it */ | 
 | 	bd_prod = TX_BD(NEXT_TX_IDX(bd_prod)); | 
 | 	d_tx_bd = &txdata->tx_desc_ring[bd_prod].reg_bd; | 
 |  | 
 | 	mapping = HILO_U64(le32_to_cpu(h_tx_bd->addr_hi), | 
 | 			   le32_to_cpu(h_tx_bd->addr_lo)) + hlen; | 
 |  | 
 | 	d_tx_bd->addr_hi = cpu_to_le32(U64_HI(mapping)); | 
 | 	d_tx_bd->addr_lo = cpu_to_le32(U64_LO(mapping)); | 
 | 	d_tx_bd->nbytes = cpu_to_le16(old_len - hlen); | 
 |  | 
 | 	/* this marks the BD as one that has no individual mapping */ | 
 | 	tx_buf->flags |= BNX2X_TSO_SPLIT_BD; | 
 |  | 
 | 	DP(NETIF_MSG_TX_QUEUED, | 
 | 	   "TSO split data size is %d (%x:%x)\n", | 
 | 	   d_tx_bd->nbytes, d_tx_bd->addr_hi, d_tx_bd->addr_lo); | 
 |  | 
 | 	/* update tx_bd */ | 
 | 	*tx_bd = (struct eth_tx_start_bd *)d_tx_bd; | 
 |  | 
 | 	return bd_prod; | 
 | } | 
 |  | 
 | #define bswab32(b32) ((__force __le32) swab32((__force __u32) (b32))) | 
 | #define bswab16(b16) ((__force __le16) swab16((__force __u16) (b16))) | 
 | static __le16 bnx2x_csum_fix(unsigned char *t_header, uint16_t csum, | 
 | 			     int8_t fix) | 
 | { | 
 | panic("Not implemented"); | 
 | #if 0 // AKAROS_PORT | 
 | 	__sum16 tsum = (__force __sum16) csum; | 
 |  | 
 | 	if (fix > 0) | 
 | 		tsum = ~csum_fold(csum_sub((__force __wsum) csum, | 
 | 				  csum_partial(t_header - fix, fix, 0))); | 
 |  | 
 | 	else if (fix < 0) | 
 | 		tsum = ~csum_fold(csum_add((__force __wsum) csum, | 
 | 				  csum_partial(t_header, -fix, 0))); | 
 |  | 
 | 	return bswab16(tsum); | 
 | #endif | 
 | } | 
 |  | 
 | static uint32_t bnx2x_xmit_type(struct bnx2x *bp, struct block *block) | 
 | { | 
 | 	uint32_t rc; | 
 | 	__u8 prot = 0; | 
 | 	__be16 protocol; | 
 |  | 
 | 	/* TODO: AKAROS_PORT ask for checksums */ | 
 | 	return XMIT_PLAIN; | 
 |  | 
 | #if 0 // AKAROS_PORT | 
 | 	if (skb->ip_summed != CHECKSUM_PARTIAL) | 
 | 		return XMIT_PLAIN; | 
 |  | 
 | 	protocol = vlan_get_protocol(skb); | 
 | 	if (protocol == cpu_to_be16(ETH_P_IPV6)) { | 
 | 		rc = XMIT_CSUM_V6; | 
 | 		prot = ipv6_hdr(skb)->nexthdr; | 
 | 	} else { | 
 | 		rc = XMIT_CSUM_V4; | 
 | 		prot = ip_hdr(skb)->protocol; | 
 | 	} | 
 |  | 
 | 	if (!CHIP_IS_E1x(bp) && skb->encapsulation) { | 
 | 		if (inner_ip_hdr(skb)->version == 6) { | 
 | 			rc |= XMIT_CSUM_ENC_V6; | 
 | 			if (inner_ipv6_hdr(skb)->nexthdr == IPPROTO_TCP) | 
 | 				rc |= XMIT_CSUM_TCP; | 
 | 		} else { | 
 | 			rc |= XMIT_CSUM_ENC_V4; | 
 | 			if (inner_ip_hdr(skb)->protocol == IPPROTO_TCP) | 
 | 				rc |= XMIT_CSUM_TCP; | 
 | 		} | 
 | 	} | 
 | 	if (prot == IPPROTO_TCP) | 
 | 		rc |= XMIT_CSUM_TCP; | 
 |  | 
 | 	if (skb_is_gso(skb)) { | 
 | 		if (skb_is_gso_v6(skb)) { | 
 | 			rc |= (XMIT_GSO_V6 | XMIT_CSUM_TCP); | 
 | 			if (rc & XMIT_CSUM_ENC) | 
 | 				rc |= XMIT_GSO_ENC_V6; | 
 | 		} else { | 
 | 			rc |= (XMIT_GSO_V4 | XMIT_CSUM_TCP); | 
 | 			if (rc & XMIT_CSUM_ENC) | 
 | 				rc |= XMIT_GSO_ENC_V4; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return rc; | 
 | #endif | 
 | } | 
 |  | 
 | #if (MAX_SKB_FRAGS >= MAX_FETCH_BD - 3) | 
 | /* check if packet requires linearization (packet is too fragmented) | 
 |    no need to check fragmentation if page size > 8K (there will be no | 
 |    violation to FW restrictions) */ | 
 | static int bnx2x_pkt_req_lin(struct bnx2x *bp, struct sk_buff *skb, | 
 | 			     uint32_t xmit_type) | 
 | { | 
 | panic("Not implemented"); | 
 | #if 0 // AKAROS_PORT | 
 | 	int to_copy = 0; | 
 | 	int hlen = 0; | 
 | 	int first_bd_sz = 0; | 
 |  | 
 | 	/* 3 = 1 (for linear data BD) + 2 (for PBD and last BD) */ | 
 | 	if (skb_shinfo(skb)->nr_frags >= (MAX_FETCH_BD - 3)) { | 
 |  | 
 | 		if (xmit_type & XMIT_GSO) { | 
 | 			unsigned short lso_mss = skb_shinfo(skb)->gso_size; | 
 | 			/* Check if LSO packet needs to be copied: | 
 | 			   3 = 1 (for headers BD) + 2 (for PBD and last BD) */ | 
 | 			int wnd_size = MAX_FETCH_BD - 3; | 
 | 			/* Number of windows to check */ | 
 | 			int num_wnds = skb_shinfo(skb)->nr_frags - wnd_size; | 
 | 			int wnd_idx = 0; | 
 | 			int frag_idx = 0; | 
 | 			uint32_t wnd_sum = 0; | 
 |  | 
 | 			/* Headers length */ | 
 | 			hlen = (int)(skb_transport_header(skb) - skb->data) + | 
 | 				tcp_hdrlen(skb); | 
 |  | 
 | 			/* Amount of data (w/o headers) on linear part of SKB*/ | 
 | 			first_bd_sz = skb_headlen(skb) - hlen; | 
 |  | 
 | 			wnd_sum  = first_bd_sz; | 
 |  | 
 | 			/* Calculate the first sum - it's special */ | 
 | 			for (frag_idx = 0; frag_idx < wnd_size - 1; frag_idx++) | 
 | 				wnd_sum += | 
 | 					skb_frag_size(&skb_shinfo(skb)->frags[frag_idx]); | 
 |  | 
 | 			/* If there was data on linear skb data - check it */ | 
 | 			if (first_bd_sz > 0) { | 
 | 				if (unlikely(wnd_sum < lso_mss)) { | 
 | 					to_copy = 1; | 
 | 					goto exit_lbl; | 
 | 				} | 
 |  | 
 | 				wnd_sum -= first_bd_sz; | 
 | 			} | 
 |  | 
 | 			/* Others are easier: run through the frag list and | 
 | 			   check all windows */ | 
 | 			for (wnd_idx = 0; wnd_idx <= num_wnds; wnd_idx++) { | 
 | 				wnd_sum += | 
 | 			  skb_frag_size(&skb_shinfo(skb)->frags[wnd_idx + wnd_size - 1]); | 
 |  | 
 | 				if (unlikely(wnd_sum < lso_mss)) { | 
 | 					to_copy = 1; | 
 | 					break; | 
 | 				} | 
 | 				wnd_sum -= | 
 | 					skb_frag_size(&skb_shinfo(skb)->frags[wnd_idx]); | 
 | 			} | 
 | 		} else { | 
 | 			/* in non-LSO too fragmented packet should always | 
 | 			   be linearized */ | 
 | 			to_copy = 1; | 
 | 		} | 
 | 	} | 
 |  | 
 | exit_lbl: | 
 | 	if (unlikely(to_copy)) | 
 | 		DP(NETIF_MSG_TX_QUEUED, | 
 | 		   "Linearization IS REQUIRED for %s packet. num_frags %d  hlen %d  first_bd_sz %d\n", | 
 | 		   (xmit_type & XMIT_GSO) ? "LSO" : "non-LSO", | 
 | 		   skb_shinfo(skb)->nr_frags, hlen, first_bd_sz); | 
 |  | 
 | 	return to_copy; | 
 | #endif | 
 | } | 
 | #endif | 
 |  | 
 | /** | 
 |  * bnx2x_set_pbd_gso - update PBD in GSO case. | 
 |  * | 
 |  * @skb:	packet skb | 
 |  * @pbd:	parse BD | 
 |  * @xmit_type:	xmit flags | 
 |  */ | 
 | static void bnx2x_set_pbd_gso(struct sk_buff *skb, | 
 | 			      struct eth_tx_parse_bd_e1x *pbd, | 
 | 			      uint32_t xmit_type) | 
 | { | 
 | panic("Not implemented"); | 
 | #if 0 // AKAROS_PORT | 
 | 	pbd->lso_mss = cpu_to_le16(skb_shinfo(skb)->gso_size); | 
 | 	pbd->tcp_send_seq = bswab32(tcp_hdr(skb)->seq); | 
 | 	pbd->tcp_flags = pbd_tcp_flags(tcp_hdr(skb)); | 
 |  | 
 | 	if (xmit_type & XMIT_GSO_V4) { | 
 | 		pbd->ip_id = bswab16(ip_hdr(skb)->id); | 
 | 		pbd->tcp_pseudo_csum = | 
 | 			bswab16(~csum_tcpudp_magic(ip_hdr(skb)->saddr, | 
 | 						   ip_hdr(skb)->daddr, | 
 | 						   0, IPPROTO_TCP, 0)); | 
 | 	} else { | 
 | 		pbd->tcp_pseudo_csum = | 
 | 			bswab16(~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, | 
 | 						 &ipv6_hdr(skb)->daddr, | 
 | 						 0, IPPROTO_TCP, 0)); | 
 | 	} | 
 |  | 
 | 	pbd->global_data |= | 
 | 		cpu_to_le16(ETH_TX_PARSE_BD_E1X_PSEUDO_CS_WITHOUT_LEN); | 
 | #endif | 
 | } | 
 |  | 
 | /** | 
 |  * bnx2x_set_pbd_csum_enc - update PBD with checksum and return header length | 
 |  * | 
 |  * @bp:			driver handle | 
 |  * @skb:		packet skb | 
 |  * @parsing_data:	data to be updated | 
 |  * @xmit_type:		xmit flags | 
 |  * | 
 |  * 57712/578xx related, when skb has encapsulation | 
 |  */ | 
 | static uint8_t bnx2x_set_pbd_csum_enc(struct bnx2x *bp, struct sk_buff *skb, | 
 | 				 uint32_t *parsing_data, uint32_t xmit_type) | 
 | { | 
 | panic("Not implemented"); | 
 | #if 0 // AKAROS_PORT | 
 | 	*parsing_data |= | 
 | 		((((uint8_t *)skb_inner_transport_header(skb) - skb->data) >> 1) << | 
 | 		ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) & | 
 | 		ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W; | 
 |  | 
 | 	if (xmit_type & XMIT_CSUM_TCP) { | 
 | 		*parsing_data |= ((inner_tcp_hdrlen(skb) / 4) << | 
 | 			ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) & | 
 | 			ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW; | 
 |  | 
 | 		return skb_inner_transport_header(skb) + | 
 | 			inner_tcp_hdrlen(skb) - skb->data; | 
 | 	} | 
 |  | 
 | 	/* We support checksum offload for TCP and UDP only. | 
 | 	 * No need to pass the UDP header length - it's a constant. | 
 | 	 */ | 
 | 	return skb_inner_transport_header(skb) + | 
 | 		sizeof(struct udphdr) - skb->data; | 
 | #endif | 
 | } | 
 |  | 
 | /** | 
 |  * bnx2x_set_pbd_csum_e2 - update PBD with checksum and return header length | 
 |  * | 
 |  * @bp:			driver handle | 
 |  * @skb:		packet skb | 
 |  * @parsing_data:	data to be updated | 
 |  * @xmit_type:		xmit flags | 
 |  * | 
 |  * 57712/578xx related | 
 |  */ | 
 | static uint8_t bnx2x_set_pbd_csum_e2(struct bnx2x *bp, struct sk_buff *skb, | 
 | 				uint32_t *parsing_data, uint32_t xmit_type) | 
 | { | 
 | panic("Not implemented"); | 
 | #if 0 // AKAROS_PORT | 
 | 	*parsing_data |= | 
 | 		((((uint8_t *)skb_transport_header(skb) - skb->data) >> 1) << | 
 | 		ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) & | 
 | 		ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W; | 
 |  | 
 | 	if (xmit_type & XMIT_CSUM_TCP) { | 
 | 		*parsing_data |= ((tcp_hdrlen(skb) / 4) << | 
 | 			ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) & | 
 | 			ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW; | 
 |  | 
 | 		return skb_transport_header(skb) + tcp_hdrlen(skb) - skb->data; | 
 | 	} | 
 | 	/* We support checksum offload for TCP and UDP only. | 
 | 	 * No need to pass the UDP header length - it's a constant. | 
 | 	 */ | 
 | 	return skb_transport_header(skb) + sizeof(struct udphdr) - skb->data; | 
 | #endif | 
 | } | 
 |  | 
 | /* set FW indication according to inner or outer protocols if tunneled */ | 
 | static void bnx2x_set_sbd_csum(struct bnx2x *bp, void *ignored_skb, | 
 | 			       struct eth_tx_start_bd *tx_start_bd, | 
 | 			       uint32_t xmit_type) | 
 | { | 
 | 	tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_L4_CSUM; | 
 |  | 
 | 	if (xmit_type & (XMIT_CSUM_ENC_V6 | XMIT_CSUM_V6)) | 
 | 		tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IPV6; | 
 |  | 
 | 	if (!(xmit_type & XMIT_CSUM_TCP)) | 
 | 		tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IS_UDP; | 
 | } | 
 |  | 
 | /** | 
 |  * bnx2x_set_pbd_csum - update PBD with checksum and return header length | 
 |  * | 
 |  * @bp:		driver handle | 
 |  * @skb:	packet skb | 
 |  * @pbd:	parse BD to be updated | 
 |  * @xmit_type:	xmit flags | 
 |  */ | 
 | static uint8_t bnx2x_set_pbd_csum(struct bnx2x *bp, struct block *block, | 
 | 			     struct eth_tx_parse_bd_e1x *pbd, | 
 | 			     uint32_t xmit_type) | 
 | { | 
 | panic("Not implemented"); | 
 | #if 0 // AKAROS_PORT | 
 | 	uint8_t hlen = (skb_network_header(skb) - skb->data) >> 1; | 
 |  | 
 | 	/* for now NS flag is not used in Linux */ | 
 | 	pbd->global_data = | 
 | 		cpu_to_le16(hlen | | 
 | 			    ((skb->protocol == cpu_to_be16(ETH_P_8021Q)) << | 
 | 			     ETH_TX_PARSE_BD_E1X_LLC_SNAP_EN_SHIFT)); | 
 |  | 
 | 	pbd->ip_hlen_w = (skb_transport_header(skb) - | 
 | 			skb_network_header(skb)) >> 1; | 
 |  | 
 | 	hlen += pbd->ip_hlen_w; | 
 |  | 
 | 	/* We support checksum offload for TCP and UDP only */ | 
 | 	if (xmit_type & XMIT_CSUM_TCP) | 
 | 		hlen += tcp_hdrlen(skb) / 2; | 
 | 	else | 
 | 		hlen += sizeof(struct udphdr) / 2; | 
 |  | 
 | 	pbd->total_hlen_w = cpu_to_le16(hlen); | 
 | 	hlen = hlen*2; | 
 |  | 
 | 	if (xmit_type & XMIT_CSUM_TCP) { | 
 | 		pbd->tcp_pseudo_csum = bswab16(tcp_hdr(skb)->check); | 
 |  | 
 | 	} else { | 
 | 		int8_t fix = SKB_CS_OFF(skb); /* signed! */ | 
 |  | 
 | 		DP(NETIF_MSG_TX_QUEUED, | 
 | 		   "hlen %d  fix %d  csum before fix %x\n", | 
 | 		   le16_to_cpu(pbd->total_hlen_w), fix, SKB_CS(skb)); | 
 |  | 
 | 		/* HW bug: fixup the CSUM */ | 
 | 		pbd->tcp_pseudo_csum = | 
 | 			bnx2x_csum_fix(skb_transport_header(skb), | 
 | 				       SKB_CS(skb), fix); | 
 |  | 
 | 		DP(NETIF_MSG_TX_QUEUED, "csum after fix %x\n", | 
 | 		   pbd->tcp_pseudo_csum); | 
 | 	} | 
 |  | 
 | 	return hlen; | 
 | #endif | 
 | } | 
 |  | 
 | static void bnx2x_update_pbds_gso_enc(struct sk_buff *skb, | 
 | 				      struct eth_tx_parse_bd_e2 *pbd_e2, | 
 | 				      struct eth_tx_parse_2nd_bd *pbd2, | 
 | 				      uint16_t *global_data, | 
 | 				      uint32_t xmit_type) | 
 | { | 
 | panic("Not implemented"); | 
 | #if 0 // AKAROS_PORT | 
 | 	uint16_t hlen_w = 0; | 
 | 	uint8_t outerip_off, outerip_len = 0; | 
 |  | 
 | 	/* from outer IP to transport */ | 
 | 	hlen_w = (skb_inner_transport_header(skb) - | 
 | 		  skb_network_header(skb)) >> 1; | 
 |  | 
 | 	/* transport len */ | 
 | 	hlen_w += inner_tcp_hdrlen(skb) >> 1; | 
 |  | 
 | 	pbd2->fw_ip_hdr_to_payload_w = hlen_w; | 
 |  | 
 | 	/* outer IP header info */ | 
 | 	if (xmit_type & XMIT_CSUM_V4) { | 
 | 		struct iphdr *iph = ip_hdr(skb); | 
 | 		uint32_t csum = (__force uint32_t)(~iph->check) - | 
 | 			   (__force uint32_t)iph->tot_len - | 
 | 			   (__force uint32_t)iph->frag_off; | 
 |  | 
 | 		outerip_len = iph->ihl << 1; | 
 |  | 
 | 		pbd2->fw_ip_csum_wo_len_flags_frag = | 
 | 			bswab16(csum_fold((__force __wsum)csum)); | 
 | 	} else { | 
 | 		pbd2->fw_ip_hdr_to_payload_w = | 
 | 			hlen_w - ((sizeof(struct ipv6hdr)) >> 1); | 
 | 		pbd_e2->data.tunnel_data.flags |= | 
 | 			ETH_TUNNEL_DATA_IP_HDR_TYPE_OUTER; | 
 | 	} | 
 |  | 
 | 	pbd2->tcp_send_seq = bswab32(inner_tcp_hdr(skb)->seq); | 
 |  | 
 | 	pbd2->tcp_flags = pbd_tcp_flags(inner_tcp_hdr(skb)); | 
 |  | 
 | 	/* inner IP header info */ | 
 | 	if (xmit_type & XMIT_CSUM_ENC_V4) { | 
 | 		pbd2->hw_ip_id = bswab16(inner_ip_hdr(skb)->id); | 
 |  | 
 | 		pbd_e2->data.tunnel_data.pseudo_csum = | 
 | 			bswab16(~csum_tcpudp_magic( | 
 | 					inner_ip_hdr(skb)->saddr, | 
 | 					inner_ip_hdr(skb)->daddr, | 
 | 					0, IPPROTO_TCP, 0)); | 
 | 	} else { | 
 | 		pbd_e2->data.tunnel_data.pseudo_csum = | 
 | 			bswab16(~csum_ipv6_magic( | 
 | 					&inner_ipv6_hdr(skb)->saddr, | 
 | 					&inner_ipv6_hdr(skb)->daddr, | 
 | 					0, IPPROTO_TCP, 0)); | 
 | 	} | 
 |  | 
 | 	outerip_off = (skb_network_header(skb) - skb->data) >> 1; | 
 |  | 
 | 	*global_data |= | 
 | 		outerip_off | | 
 | 		(outerip_len << | 
 | 			ETH_TX_PARSE_2ND_BD_IP_HDR_LEN_OUTER_W_SHIFT) | | 
 | 		((skb->protocol == cpu_to_be16(ETH_P_8021Q)) << | 
 | 			ETH_TX_PARSE_2ND_BD_LLC_SNAP_EN_SHIFT); | 
 |  | 
 | 	if (ip_hdr(skb)->protocol == IPPROTO_UDP) { | 
 | 		SET_FLAG(*global_data, ETH_TX_PARSE_2ND_BD_TUNNEL_UDP_EXIST, 1); | 
 | 		pbd2->tunnel_udp_hdr_start_w = skb_transport_offset(skb) >> 1; | 
 | 	} | 
 | #endif | 
 | } | 
 |  | 
 | static inline void bnx2x_set_ipv6_ext_e2(struct sk_buff *skb, | 
 | 					 uint32_t *parsing_data, | 
 | 					 uint32_t xmit_type) | 
 | { | 
 | panic("Not implemented"); | 
 | #if 0 // AKAROS_PORT | 
 | 	struct ipv6hdr *ipv6; | 
 |  | 
 | 	if (!(xmit_type & (XMIT_GSO_ENC_V6 | XMIT_GSO_V6))) | 
 | 		return; | 
 |  | 
 | 	if (xmit_type & XMIT_GSO_ENC_V6) | 
 | 		ipv6 = inner_ipv6_hdr(skb); | 
 | 	else /* XMIT_GSO_V6 */ | 
 | 		ipv6 = ipv6_hdr(skb); | 
 |  | 
 | 	if (ipv6->nexthdr == NEXTHDR_IPV6) | 
 | 		*parsing_data |= ETH_TX_PARSE_BD_E2_IPV6_WITH_EXT_HDR; | 
 | #endif | 
 | } | 
 |  | 
 | /* called with netif_tx_lock | 
 |  * bnx2x_tx_int() runs without netif_tx_lock unless it needs to call | 
 |  * netif_wake_queue() | 
 |  */ | 
 | netdev_tx_t bnx2x_start_xmit(struct block *block, | 
 |                              struct bnx2x_fp_txdata *txdata) | 
 | { | 
 | 	struct bnx2x *bp = txdata->parent_fp->bp; | 
 |  | 
 | 	struct sw_tx_bd *tx_buf; | 
 | 	struct eth_tx_start_bd *tx_start_bd, *first_bd; | 
 | 	struct eth_tx_bd *tx_data_bd, *total_pkt_bd = NULL; | 
 | 	struct eth_tx_parse_bd_e1x *pbd_e1x = NULL; | 
 | 	struct eth_tx_parse_bd_e2 *pbd_e2 = NULL; | 
 | 	struct eth_tx_parse_2nd_bd *pbd2 = NULL; | 
 | 	uint32_t pbd_e2_parsing_data = 0; | 
 | 	uint16_t pkt_prod, bd_prod; | 
 | 	int nbd, txq_index; | 
 | 	dma_addr_t mapping; | 
 | 	uint32_t xmit_type = bnx2x_xmit_type(bp, block); | 
 | 	int i; | 
 | 	uint8_t hlen = 0; | 
 | 	__le16 pkt_size = 0; | 
 | 	struct etherpkt *eth; | 
 | 	uint8_t mac_type = UNICAST_ADDRESS; | 
 |  | 
 | #ifdef BNX2X_STOP_ON_ERROR | 
 | 	if (unlikely(bp->panic)) | 
 | 		return NETDEV_TX_BUSY; | 
 | #endif | 
 |  | 
 | 	txq_index = txdata->txq_index; | 
 | 	assert(txq_index == 0);	// AKAROS_PORT til we get multi-queue working | 
 | 	assert(txdata == &bp->bnx2x_txq[txq_index]); | 
 |  | 
 | 	assert(!(txq_index >= MAX_ETH_TXQ_IDX(bp) + (CNIC_LOADED(bp) ? 1 : 0))); | 
 |  | 
 |  | 
 | 	/* enable this debug print to view the transmission queue being used | 
 | 	DP(NETIF_MSG_TX_QUEUED, "indices: txq %d, fp %d, txdata %d\n", | 
 | 	   txq_index, fp_index, txdata_index); */ | 
 |  | 
 | 	/* enable this debug print to view the transmission details | 
 | 	DP(NETIF_MSG_TX_QUEUED, | 
 | 	   "transmitting packet cid %d fp index %d txdata_index %d tx_data ptr %p fp pointer %p\n", | 
 | 	   txdata->cid, fp_index, txdata_index, txdata, fp); */ | 
 |  | 
 | 	if (unlikely(bnx2x_tx_avail(bp, txdata) < | 
 | #if 0 // AKAROS_PORT TODO: block extra | 
 | 			skb_shinfo(skb)->nr_frags + | 
 | #else | 
 | 			1 + | 
 | #endif | 
 | 			BDS_PER_TX_PKT + | 
 | 			NEXT_CNT_PER_TX_PKT(MAX_BDS_PER_TX_PKT))) { | 
 | 		/* Handle special storage cases separately */ | 
 | 		if (txdata->tx_ring_size == 0) { | 
 | 			struct bnx2x_eth_q_stats *q_stats = | 
 | 				bnx2x_fp_qstats(bp, txdata->parent_fp); | 
 | 			q_stats->driver_filtered_tx_pkt++; | 
 | 			freeb(block); | 
 | 			return NETDEV_TX_OK; | 
 | 		} | 
 | 		bnx2x_fp_qstats(bp, txdata->parent_fp)->driver_xoff++; | 
 | 		netif_tx_stop_queue(txq); | 
 | 		BNX2X_ERR("BUG! Tx ring full when queue awake!\n"); | 
 |  | 
 | 		return NETDEV_TX_BUSY; | 
 | 	} | 
 |  | 
 | #if 0 // AKAROS_PORT | 
 | 	DP(NETIF_MSG_TX_QUEUED, | 
 | 	   "queue[%d]: SKB: summed %x  protocol %x protocol(%x,%x) gso type %x  xmit_type %x len %d\n", | 
 | 	   txq_index, skb->ip_summed, skb->protocol, ipv6_hdr(skb)->nexthdr, | 
 | 	   ip_hdr(skb)->protocol, skb_shinfo(skb)->gso_type, xmit_type, | 
 | 	   skb->len); | 
 | #endif | 
 |  | 
 | 	eth = (struct etherpkt *)block->rp; | 
 |  | 
 | 	/* set flag according to packet type (UNICAST_ADDRESS is default)*/ | 
 | 	if (unlikely(is_multicast_ether_addr(eth->d))) { | 
 | 		if (eaddrcmp(eth->d, bp->edev->bcast)) | 
 | 			mac_type = BROADCAST_ADDRESS; | 
 | 		else | 
 | 			mac_type = MULTICAST_ADDRESS; | 
 | 	} | 
 |  | 
 | #if 0 // AKAROS_PORT TODO block extra | 
 | #if (MAX_SKB_FRAGS >= MAX_FETCH_BD - BDS_PER_TX_PKT) | 
 | 	/* First, check if we need to linearize the skb (due to FW | 
 | 	   restrictions). No need to check fragmentation if page size > 8K | 
 | 	   (there will be no violation to FW restrictions) */ | 
 | 	if (bnx2x_pkt_req_lin(bp, skb, xmit_type)) { | 
 | 		/* Statistics of linearization */ | 
 | 		bp->lin_cnt++; | 
 | 		if (skb_linearize(skb) != 0) { | 
 | 			DP(NETIF_MSG_TX_QUEUED, | 
 | 			   "SKB linearization failed - silently dropping this SKB\n"); | 
 | 			dev_kfree_skb_any(skb); | 
 | 			return NETDEV_TX_OK; | 
 | 		} | 
 | 	} | 
 | #endif | 
 | #endif | 
 | 	/* Map skb linear data for DMA */ | 
 | 	mapping = dma_map_single(&bp->pdev->dev, block->rp, | 
 | 				 BLEN(block), DMA_TO_DEVICE); | 
 | 	if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) { | 
 | 		DP(NETIF_MSG_TX_QUEUED, | 
 | 		   "SKB mapping failed - silently dropping this SKB\n"); | 
 | 		freeb(block); | 
 | 		return NETDEV_TX_OK; | 
 | 	} | 
 | 	/* | 
 | 	Please read carefully. First we use one BD which we mark as start, | 
 | 	then we have a parsing info BD (used for TSO or xsum), | 
 | 	and only then we have the rest of the TSO BDs. | 
 | 	(don't forget to mark the last one as last, | 
 | 	and to unmap only AFTER you write to the BD ...) | 
 | 	And above all, all pdb sizes are in words - NOT DWORDS! | 
 | 	*/ | 
 |  | 
 | 	/* get current pkt produced now - advance it just before sending packet | 
 | 	 * since mapping of pages may fail and cause packet to be dropped | 
 | 	 */ | 
 | 	pkt_prod = txdata->tx_pkt_prod; | 
 | 	bd_prod = TX_BD(txdata->tx_bd_prod); | 
 |  | 
 | 	/* get a tx_buf and first BD | 
 | 	 * tx_start_bd may be changed during SPLIT, | 
 | 	 * but first_bd will always stay first | 
 | 	 */ | 
 | 	tx_buf = &txdata->tx_buf_ring[TX_BD(pkt_prod)]; | 
 | 	tx_start_bd = &txdata->tx_desc_ring[bd_prod].start_bd; | 
 | 	first_bd = tx_start_bd; | 
 |  | 
 | 	tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD; | 
 |  | 
 | 	/* header nbd: indirectly zero other flags! */ | 
 | 	tx_start_bd->general_data = 1 << ETH_TX_START_BD_HDR_NBDS_SHIFT; | 
 |  | 
 | 	/* remember the first BD of the packet */ | 
 | 	tx_buf->first_bd = txdata->tx_bd_prod; | 
 | 	tx_buf->block = block; | 
 | 	tx_buf->flags = 0; | 
 |  | 
 | 	DP(NETIF_MSG_TX_QUEUED, | 
 | 	   "sending pkt %u @%p  next_idx %u  bd %u @%p\n", | 
 | 	   pkt_prod, tx_buf, txdata->tx_pkt_prod, bd_prod, tx_start_bd); | 
 |  | 
 | #if 0 // AKAROS_PORT skipping vlan stuff | 
 | 	if (vlan_tx_tag_present(skb)) { | 
 | 		tx_start_bd->vlan_or_ethertype = | 
 | 		    cpu_to_le16(vlan_tx_tag_get(skb)); | 
 | 		tx_start_bd->bd_flags.as_bitfield |= | 
 | 		    (X_ETH_OUTBAND_VLAN << ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT); | 
 | 	} else { | 
 | #else | 
 | 	{ | 
 | #endif | 
 | 		/* when transmitting in a vf, start bd must hold the ethertype | 
 | 		 * for fw to enforce it | 
 | 		 */ | 
 | 		// AKAROS_PORT | 
 | 		uint16_t type_le16 = (eth->type[0] << 8) | eth->type[1]; | 
 | #ifndef BNX2X_STOP_ON_ERROR | 
 | 		if (IS_VF(bp)) | 
 | #endif | 
 | 			tx_start_bd->vlan_or_ethertype = | 
 | 				cpu_to_le16(type_le16); | 
 | #ifndef BNX2X_STOP_ON_ERROR | 
 | 		else | 
 | 			/* used by FW for packet accounting */ | 
 | 			tx_start_bd->vlan_or_ethertype = cpu_to_le16(pkt_prod); | 
 | #endif | 
 | 	} | 
 |  | 
 | 	nbd = 2; /* start_bd + pbd + frags (updated when pages are mapped) */ | 
 |  | 
 | 	/* turn on parsing and get a BD */ | 
 | 	bd_prod = TX_BD(NEXT_TX_IDX(bd_prod)); | 
 |  | 
 | 	if (xmit_type & XMIT_CSUM) | 
 | 		bnx2x_set_sbd_csum(bp, block, tx_start_bd, xmit_type); | 
 |  | 
 | 	if (!CHIP_IS_E1x(bp)) { | 
 | 		panic("Not implemented"); | 
 | 		#if 0 // AKAROS_PORT | 
 | 		pbd_e2 = &txdata->tx_desc_ring[bd_prod].parse_bd_e2; | 
 | 		memset(pbd_e2, 0, sizeof(struct eth_tx_parse_bd_e2)); | 
 |  | 
 | 		if (xmit_type & XMIT_CSUM_ENC) { | 
 | 			uint16_t global_data = 0; | 
 |  | 
 | 			/* Set PBD in enc checksum offload case */ | 
 | 			hlen = bnx2x_set_pbd_csum_enc(bp, skb, | 
 | 						      &pbd_e2_parsing_data, | 
 | 						      xmit_type); | 
 |  | 
 | 			/* turn on 2nd parsing and get a BD */ | 
 | 			bd_prod = TX_BD(NEXT_TX_IDX(bd_prod)); | 
 |  | 
 | 			pbd2 = &txdata->tx_desc_ring[bd_prod].parse_2nd_bd; | 
 |  | 
 | 			memset(pbd2, 0, sizeof(*pbd2)); | 
 |  | 
 | 			pbd_e2->data.tunnel_data.ip_hdr_start_inner_w = | 
 | 				(skb_inner_network_header(skb) - | 
 | 				 skb->data) >> 1; | 
 |  | 
 | 			if (xmit_type & XMIT_GSO_ENC) | 
 | 				bnx2x_update_pbds_gso_enc(skb, pbd_e2, pbd2, | 
 | 							  &global_data, | 
 | 							  xmit_type); | 
 |  | 
 | 			pbd2->global_data = cpu_to_le16(global_data); | 
 |  | 
 | 			/* add addition parse BD indication to start BD */ | 
 | 			SET_FLAG(tx_start_bd->general_data, | 
 | 				 ETH_TX_START_BD_PARSE_NBDS, 1); | 
 | 			/* set encapsulation flag in start BD */ | 
 | 			SET_FLAG(tx_start_bd->general_data, | 
 | 				 ETH_TX_START_BD_TUNNEL_EXIST, 1); | 
 |  | 
 | 			tx_buf->flags |= BNX2X_HAS_SECOND_PBD; | 
 |  | 
 | 			nbd++; | 
 | 		} else if (xmit_type & XMIT_CSUM) { | 
 | 			/* Set PBD in checksum offload case w/o encapsulation */ | 
 | 			hlen = bnx2x_set_pbd_csum_e2(bp, skb, | 
 | 						     &pbd_e2_parsing_data, | 
 | 						     xmit_type); | 
 | 		} | 
 |  | 
 | 		bnx2x_set_ipv6_ext_e2(skb, &pbd_e2_parsing_data, xmit_type); | 
 | 		/* Add the macs to the parsing BD if this is a vf or if | 
 | 		 * Tx Switching is enabled. | 
 | 		 */ | 
 | 		if (IS_VF(bp)) { | 
 | 			/* override GRE parameters in BD */ | 
 | 			bnx2x_set_fw_mac_addr(&pbd_e2->data.mac_addr.src_hi, | 
 | 					      &pbd_e2->data.mac_addr.src_mid, | 
 | 					      &pbd_e2->data.mac_addr.src_lo, | 
 | 					      eth->h_source); | 
 |  | 
 | 			bnx2x_set_fw_mac_addr(&pbd_e2->data.mac_addr.dst_hi, | 
 | 					      &pbd_e2->data.mac_addr.dst_mid, | 
 | 					      &pbd_e2->data.mac_addr.dst_lo, | 
 | 					      eth->h_dest); | 
 | 		} else { | 
 | 			if (bp->flags & TX_SWITCHING) | 
 | 				bnx2x_set_fw_mac_addr( | 
 | 						&pbd_e2->data.mac_addr.dst_hi, | 
 | 						&pbd_e2->data.mac_addr.dst_mid, | 
 | 						&pbd_e2->data.mac_addr.dst_lo, | 
 | 						eth->h_dest); | 
 | #ifdef BNX2X_STOP_ON_ERROR | 
 | 			/* Enforce security is always set in Stop on Error - | 
 | 			 * source mac should be present in the parsing BD | 
 | 			 */ | 
 | 			bnx2x_set_fw_mac_addr(&pbd_e2->data.mac_addr.src_hi, | 
 | 					      &pbd_e2->data.mac_addr.src_mid, | 
 | 					      &pbd_e2->data.mac_addr.src_lo, | 
 | 					      eth->h_source); | 
 | #endif | 
 | 		} | 
 |  | 
 | 		SET_FLAG(pbd_e2_parsing_data, | 
 | 			 ETH_TX_PARSE_BD_E2_ETH_ADDR_TYPE, mac_type); | 
 | 		#endif | 
 | 	} else { | 
 | 		uint16_t global_data = 0; | 
 | 		pbd_e1x = &txdata->tx_desc_ring[bd_prod].parse_bd_e1x; | 
 | 		memset(pbd_e1x, 0, sizeof(struct eth_tx_parse_bd_e1x)); | 
 | 		/* Set PBD in checksum offload case */ | 
 | 		if (xmit_type & XMIT_CSUM) { | 
 | 			panic("Not implemented"); | 
 | 			#if 0 // AKAROS_PORT (xsum offload) | 
 | 			hlen = bnx2x_set_pbd_csum(bp, block, pbd_e1x, xmit_type); | 
 | 			#endif | 
 | 		} | 
 |  | 
 | 		SET_FLAG(global_data, | 
 | 			 ETH_TX_PARSE_BD_E1X_ETH_ADDR_TYPE, mac_type); | 
 | 		pbd_e1x->global_data |= cpu_to_le16(global_data); | 
 | 	} | 
 |  | 
 | 	/* Setup the data pointer of the first BD of the packet */ | 
 | 	tx_start_bd->addr_hi = cpu_to_le32(U64_HI(mapping)); | 
 | 	tx_start_bd->addr_lo = cpu_to_le32(U64_LO(mapping)); | 
 | 	tx_start_bd->nbytes = cpu_to_le16(BLEN(block)); | 
 | 	pkt_size = tx_start_bd->nbytes; | 
 |  | 
 | 	DP(NETIF_MSG_TX_QUEUED, | 
 | 	   "first bd @%p  addr (%x:%x)  nbytes %d  flags %x  vlan %x\n", | 
 | 	   tx_start_bd, tx_start_bd->addr_hi, tx_start_bd->addr_lo, | 
 | 	   le16_to_cpu(tx_start_bd->nbytes), | 
 | 	   tx_start_bd->bd_flags.as_bitfield, | 
 | 	   le16_to_cpu(tx_start_bd->vlan_or_ethertype)); | 
 |  | 
 | 	if (xmit_type & XMIT_GSO) { | 
 | 		panic("Not implemented"); | 
 | 		#if 0 // AKAROS_PORT | 
 |  | 
 | 		DP(NETIF_MSG_TX_QUEUED, | 
 | 		   "TSO packet len %d  hlen %d  total len %d  tso size %d\n", | 
 | 		   skb->len, hlen, skb_headlen(skb), | 
 | 		   skb_shinfo(skb)->gso_size); | 
 |  | 
 | 		tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_SW_LSO; | 
 |  | 
 | 		if (unlikely(skb_headlen(skb) > hlen)) { | 
 | 			nbd++; | 
 | 			bd_prod = bnx2x_tx_split(bp, txdata, tx_buf, | 
 | 						 &tx_start_bd, hlen, | 
 | 						 bd_prod); | 
 | 		} | 
 | 		if (!CHIP_IS_E1x(bp)) | 
 | 			pbd_e2_parsing_data |= | 
 | 				(skb_shinfo(skb)->gso_size << | 
 | 				 ETH_TX_PARSE_BD_E2_LSO_MSS_SHIFT) & | 
 | 				 ETH_TX_PARSE_BD_E2_LSO_MSS; | 
 | 		else | 
 | 			bnx2x_set_pbd_gso(skb, pbd_e1x, xmit_type); | 
 | 		#endif | 
 | 	} | 
 |  | 
 | 	/* Set the PBD's parsing_data field if not zero | 
 | 	 * (for the chips newer than 57711). | 
 | 	 */ | 
 | 	if (pbd_e2_parsing_data) | 
 | 		pbd_e2->parsing_data = cpu_to_le32(pbd_e2_parsing_data); | 
 |  | 
 | 	tx_data_bd = (struct eth_tx_bd *)tx_start_bd; | 
 |  | 
 | #if 0 // AKAROS_PORT TODO block extra | 
 | 	/* Handle fragmented skb */ | 
 | 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { | 
 | 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; | 
 |  | 
 | 		mapping = skb_frag_dma_map(&bp->pdev->dev, frag, 0, | 
 | 					   skb_frag_size(frag), DMA_TO_DEVICE); | 
 | 		if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) { | 
 | 			unsigned int pkts_compl = 0, bytes_compl = 0; | 
 |  | 
 | 			DP(NETIF_MSG_TX_QUEUED, | 
 | 			   "Unable to map page - dropping packet...\n"); | 
 |  | 
 | 			/* we need unmap all buffers already mapped | 
 | 			 * for this SKB; | 
 | 			 * first_bd->nbd need to be properly updated | 
 | 			 * before call to bnx2x_free_tx_pkt | 
 | 			 */ | 
 | 			first_bd->nbd = cpu_to_le16(nbd); | 
 | 			bnx2x_free_tx_pkt(bp, txdata, | 
 | 					  TX_BD(txdata->tx_pkt_prod), | 
 | 					  &pkts_compl, &bytes_compl); | 
 | 			return NETDEV_TX_OK; | 
 | 		} | 
 |  | 
 | 		bd_prod = TX_BD(NEXT_TX_IDX(bd_prod)); | 
 | 		tx_data_bd = &txdata->tx_desc_ring[bd_prod].reg_bd; | 
 | 		if (total_pkt_bd == NULL) | 
 | 			total_pkt_bd = &txdata->tx_desc_ring[bd_prod].reg_bd; | 
 |  | 
 | 		tx_data_bd->addr_hi = cpu_to_le32(U64_HI(mapping)); | 
 | 		tx_data_bd->addr_lo = cpu_to_le32(U64_LO(mapping)); | 
 | 		tx_data_bd->nbytes = cpu_to_le16(skb_frag_size(frag)); | 
 | 		le16_add_cpu(&pkt_size, skb_frag_size(frag)); | 
 | 		nbd++; | 
 |  | 
 | 		DP(NETIF_MSG_TX_QUEUED, | 
 | 		   "frag %d  bd @%p  addr (%x:%x)  nbytes %d\n", | 
 | 		   i, tx_data_bd, tx_data_bd->addr_hi, tx_data_bd->addr_lo, | 
 | 		   le16_to_cpu(tx_data_bd->nbytes)); | 
 | 	} | 
 | #endif | 
 |  | 
 | 	DP(NETIF_MSG_TX_QUEUED, "last bd @%p\n", tx_data_bd); | 
 |  | 
 | 	/* update with actual num BDs */ | 
 | 	first_bd->nbd = cpu_to_le16(nbd); | 
 |  | 
 | 	bd_prod = TX_BD(NEXT_TX_IDX(bd_prod)); | 
 |  | 
 | 	/* now send a tx doorbell, counting the next BD | 
 | 	 * if the packet contains or ends with it | 
 | 	 */ | 
 | 	if (TX_BD_POFF(bd_prod) < nbd) | 
 | 		nbd++; | 
 |  | 
 | 	/* total_pkt_bytes should be set on the first data BD if | 
 | 	 * it's not an LSO packet and there is more than one | 
 | 	 * data BD. In this case pkt_size is limited by an MTU value. | 
 | 	 * However we prefer to set it for an LSO packet (while we don't | 
 | 	 * have to) in order to save some CPU cycles in a none-LSO | 
 | 	 * case, when we much more care about them. | 
 | 	 */ | 
 | 	if (total_pkt_bd != NULL) | 
 | 		total_pkt_bd->total_pkt_bytes = pkt_size; | 
 |  | 
 | 	if (pbd_e1x) | 
 | 		DP(NETIF_MSG_TX_QUEUED, | 
 | 		   "PBD (E1X) @%p  ip_data %x  ip_hlen %u  ip_id %u  lso_mss %u  tcp_flags %x  xsum %x  seq %u  hlen %u\n", | 
 | 		   pbd_e1x, pbd_e1x->global_data, pbd_e1x->ip_hlen_w, | 
 | 		   pbd_e1x->ip_id, pbd_e1x->lso_mss, pbd_e1x->tcp_flags, | 
 | 		   pbd_e1x->tcp_pseudo_csum, pbd_e1x->tcp_send_seq, | 
 | 		    le16_to_cpu(pbd_e1x->total_hlen_w)); | 
 | 	if (pbd_e2) | 
 | 		DP(NETIF_MSG_TX_QUEUED, | 
 | 		   "PBD (E2) @%p  dst %x %x %x src %x %x %x parsing_data %x\n", | 
 | 		   pbd_e2, | 
 | 		   pbd_e2->data.mac_addr.dst_hi, | 
 | 		   pbd_e2->data.mac_addr.dst_mid, | 
 | 		   pbd_e2->data.mac_addr.dst_lo, | 
 | 		   pbd_e2->data.mac_addr.src_hi, | 
 | 		   pbd_e2->data.mac_addr.src_mid, | 
 | 		   pbd_e2->data.mac_addr.src_lo, | 
 | 		   pbd_e2->parsing_data); | 
 | 	DP(NETIF_MSG_TX_QUEUED, "doorbell: nbd %d  bd %u\n", nbd, bd_prod); | 
 |  | 
 | 	netdev_tx_sent_queue(txq, skb->len); | 
 |  | 
 | 	skb_tx_timestamp(skb); | 
 |  | 
 | 	txdata->tx_pkt_prod++; | 
 | 	/* | 
 | 	 * Make sure that the BD data is updated before updating the producer | 
 | 	 * since FW might read the BD right after the producer is updated. | 
 | 	 * This is only applicable for weak-ordered memory model archs such | 
 | 	 * as IA-64. The following barrier is also mandatory since FW will | 
 | 	 * assumes packets must have BDs. | 
 | 	 */ | 
 | 	wmb(); | 
 |  | 
 | 	txdata->tx_db.data.prod += nbd; | 
 | 	cmb(); | 
 |  | 
 | 	DOORBELL(bp, txdata->cid, txdata->tx_db.raw); | 
 |  | 
 | 	bus_wmb(); | 
 |  | 
 | 	txdata->tx_bd_prod += nbd; | 
 |  | 
 | 	txdata->tx_pkt++; | 
 |  | 
 | 	return NETDEV_TX_OK; | 
 | } | 
 |  | 
 | /** | 
 |  * bnx2x_setup_tc - routine to configure net_device for multi tc | 
 |  * | 
 |  * @netdev: net device to configure | 
 |  * @tc: number of traffic classes to enable | 
 |  * | 
 |  * callback connected to the ndo_setup_tc function pointer | 
 |  */ | 
 | int bnx2x_setup_tc(struct ether *dev, uint8_t num_tc) | 
 | { | 
 | 	/* XME skipping traffic classes */ | 
 | 	return 0; | 
 | #if 0 // AKAROS_PORT | 
 | 	int cos, prio, count, offset; | 
 | 	struct bnx2x *bp = netdev_priv(dev); | 
 |  | 
 | 	/* setup tc must be called under rtnl lock */ | 
 | 	ASSERT_RTNL(); | 
 |  | 
 | 	/* no traffic classes requested. Aborting */ | 
 | 	if (!num_tc) { | 
 | 		netdev_reset_tc(dev); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* requested to support too many traffic classes */ | 
 | 	if (num_tc > bp->max_cos) { | 
 | 		BNX2X_ERR("support for too many traffic classes requested: %d. Max supported is %d\n", | 
 | 			  num_tc, bp->max_cos); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	/* declare amount of supported traffic classes */ | 
 | 	if (netdev_set_num_tc(dev, num_tc)) { | 
 | 		BNX2X_ERR("failed to declare %d traffic classes\n", num_tc); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	/* configure priority to traffic class mapping */ | 
 | 	for (prio = 0; prio < BNX2X_MAX_PRIORITY; prio++) { | 
 | 		netdev_set_prio_tc_map(dev, prio, bp->prio_to_cos[prio]); | 
 | 		DP(BNX2X_MSG_SP | NETIF_MSG_IFUP, | 
 | 		   "mapping priority %d to tc %d\n", | 
 | 		   prio, bp->prio_to_cos[prio]); | 
 | 	} | 
 |  | 
 | 	/* Use this configuration to differentiate tc0 from other COSes | 
 | 	   This can be used for ets or pfc, and save the effort of setting | 
 | 	   up a multio class queue disc or negotiating DCBX with a switch | 
 | 	netdev_set_prio_tc_map(dev, 0, 0); | 
 | 	DP(BNX2X_MSG_SP, "mapping priority %d to tc %d\n", 0, 0); | 
 | 	for (prio = 1; prio < 16; prio++) { | 
 | 		netdev_set_prio_tc_map(dev, prio, 1); | 
 | 		DP(BNX2X_MSG_SP, "mapping priority %d to tc %d\n", prio, 1); | 
 | 	} */ | 
 |  | 
 | 	/* configure traffic class to transmission queue mapping */ | 
 | 	for (cos = 0; cos < bp->max_cos; cos++) { | 
 | 		count = BNX2X_NUM_ETH_QUEUES(bp); | 
 | 		offset = cos * BNX2X_NUM_NON_CNIC_QUEUES(bp); | 
 | 		netdev_set_tc_queue(dev, cos, count, offset); | 
 | 		DP(BNX2X_MSG_SP | NETIF_MSG_IFUP, | 
 | 		   "mapping tc %d to offset %d count %d\n", | 
 | 		   cos, offset, count); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | #endif | 
 | } | 
 |  | 
 | /* called with rtnl_lock */ | 
 | int bnx2x_change_mac_addr(struct ether *dev, void *p) | 
 | { | 
 | panic("Not implemented"); | 
 | #if 0 // AKAROS_PORT | 
 | 	struct sockaddr *addr = p; | 
 | 	struct bnx2x *bp = netdev_priv(dev); | 
 | 	int rc = 0; | 
 |  | 
 | 	if (!is_valid_ether_addr(addr->sa_data)) { | 
 | 		BNX2X_ERR("Requested MAC address is not valid\n"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (IS_MF_STORAGE_ONLY(bp)) { | 
 | 		BNX2X_ERR("Can't change address on STORAGE ONLY function\n"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (netif_running(dev))  { | 
 | 		rc = bnx2x_set_eth_mac(bp, false); | 
 | 		if (rc) | 
 | 			return rc; | 
 | 	} | 
 |  | 
 | 	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); | 
 |  | 
 | 	if (netif_running(dev)) | 
 | 		rc = bnx2x_set_eth_mac(bp, true); | 
 |  | 
 | 	return rc; | 
 | #endif | 
 | } | 
 |  | 
 | static void bnx2x_free_fp_mem_at(struct bnx2x *bp, int fp_index) | 
 | { | 
 | 	union host_hc_status_block *sb = &bnx2x_fp(bp, fp_index, status_blk); | 
 | 	struct bnx2x_fastpath *fp = &bp->fp[fp_index]; | 
 | 	uint8_t cos; | 
 |  | 
 | 	/* Common */ | 
 |  | 
 | 	if (IS_FCOE_IDX(fp_index)) { | 
 | 		memset(sb, 0, sizeof(union host_hc_status_block)); | 
 | 		fp->status_blk_mapping = 0; | 
 | 	} else { | 
 | 		/* status blocks */ | 
 | 		if (!CHIP_IS_E1x(bp)) | 
 | 			BNX2X_PCI_FREE(sb->e2_sb, | 
 | 				       bnx2x_fp(bp, fp_index, | 
 | 						status_blk_mapping), | 
 | 				       sizeof(struct host_hc_status_block_e2)); | 
 | 		else | 
 | 			BNX2X_PCI_FREE(sb->e1x_sb, | 
 | 				       bnx2x_fp(bp, fp_index, | 
 | 						status_blk_mapping), | 
 | 				       sizeof(struct host_hc_status_block_e1x)); | 
 | 	} | 
 |  | 
 | 	/* Rx */ | 
 | 	if (!skip_rx_queue(bp, fp_index)) { | 
 | 		bnx2x_free_rx_bds(fp); | 
 |  | 
 | 		/* fastpath rx rings: rx_buf rx_desc rx_comp */ | 
 | 		BNX2X_FREE(bnx2x_fp(bp, fp_index, rx_buf_ring)); | 
 | 		BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_desc_ring), | 
 | 			       bnx2x_fp(bp, fp_index, rx_desc_mapping), | 
 | 			       sizeof(struct eth_rx_bd) * NUM_RX_BD); | 
 |  | 
 | 		BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_comp_ring), | 
 | 			       bnx2x_fp(bp, fp_index, rx_comp_mapping), | 
 | 			       sizeof(struct eth_fast_path_rx_cqe) * | 
 | 			       NUM_RCQ_BD); | 
 |  | 
 | 		/* SGE ring */ | 
 | 		BNX2X_FREE(bnx2x_fp(bp, fp_index, rx_page_ring)); | 
 | 		BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_sge_ring), | 
 | 			       bnx2x_fp(bp, fp_index, rx_sge_mapping), | 
 | 			       BCM_PAGE_SIZE * NUM_RX_SGE_PAGES); | 
 | 	} | 
 |  | 
 | 	/* Tx */ | 
 | 	if (!skip_tx_queue(bp, fp_index)) { | 
 | 		/* fastpath tx rings: tx_buf tx_desc */ | 
 | 		for_each_cos_in_tx_queue(fp, cos) { | 
 | 			struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos]; | 
 |  | 
 | 			DP(NETIF_MSG_IFDOWN, | 
 | 			   "freeing tx memory of fp %d cos %d cid %d\n", | 
 | 			   fp_index, cos, txdata->cid); | 
 |  | 
 | 			BNX2X_FREE(txdata->tx_buf_ring); | 
 | 			BNX2X_PCI_FREE(txdata->tx_desc_ring, | 
 | 				txdata->tx_desc_mapping, | 
 | 				sizeof(union eth_tx_bd_types) * NUM_TX_BD); | 
 | 		} | 
 | 	} | 
 | 	/* end of fastpath */ | 
 | } | 
 |  | 
 | static void bnx2x_free_fp_mem_cnic(struct bnx2x *bp) | 
 | { | 
 | 	int i; | 
 | 	for_each_cnic_queue(bp, i) | 
 | 		bnx2x_free_fp_mem_at(bp, i); | 
 | } | 
 |  | 
 | void bnx2x_free_fp_mem(struct bnx2x *bp) | 
 | { | 
 | 	int i; | 
 | 	for_each_eth_queue(bp, i) | 
 | 		bnx2x_free_fp_mem_at(bp, i); | 
 | } | 
 |  | 
 | static void set_sb_shortcuts(struct bnx2x *bp, int index) | 
 | { | 
 | 	union host_hc_status_block status_blk = bnx2x_fp(bp, index, status_blk); | 
 | 	if (!CHIP_IS_E1x(bp)) { | 
 | 		bnx2x_fp(bp, index, sb_index_values) = | 
 | 			(__le16 *)status_blk.e2_sb->sb.index_values; | 
 | 		bnx2x_fp(bp, index, sb_running_index) = | 
 | 			(__le16 *)status_blk.e2_sb->sb.running_index; | 
 | 	} else { | 
 | 		bnx2x_fp(bp, index, sb_index_values) = | 
 | 			(__le16 *)status_blk.e1x_sb->sb.index_values; | 
 | 		bnx2x_fp(bp, index, sb_running_index) = | 
 | 			(__le16 *)status_blk.e1x_sb->sb.running_index; | 
 | 	} | 
 | } | 
 |  | 
 | /* Returns the number of actually allocated BDs */ | 
 | static int bnx2x_alloc_rx_bds(struct bnx2x_fastpath *fp, | 
 | 			      int rx_ring_size) | 
 | { | 
 | 	struct bnx2x *bp = fp->bp; | 
 | 	uint16_t ring_prod, cqe_ring_prod; | 
 | 	int i, failure_cnt = 0; | 
 |  | 
 | 	fp->rx_comp_cons = 0; | 
 | 	cqe_ring_prod = ring_prod = 0; | 
 |  | 
 | 	/* This routine is called only during fo init so | 
 | 	 * fp->eth_q_stats.rx_skb_alloc_failed = 0 | 
 | 	 */ | 
 | 	for (i = 0; i < rx_ring_size; i++) { | 
 | 		if (bnx2x_alloc_rx_data(bp, fp, ring_prod, MEM_WAIT) < 0) { | 
 | 			failure_cnt++; | 
 | 			continue; | 
 | 		} | 
 | 		ring_prod = NEXT_RX_IDX(ring_prod); | 
 | 		cqe_ring_prod = NEXT_RCQ_IDX(cqe_ring_prod); | 
 | 		warn_on(ring_prod <= (i - failure_cnt)); | 
 | 	} | 
 |  | 
 | 	if (failure_cnt) | 
 | 		BNX2X_ERR("was only able to allocate %d rx skbs on queue[%d]\n", | 
 | 			  i - failure_cnt, fp->index); | 
 |  | 
 | 	fp->rx_bd_prod = ring_prod; | 
 | 	/* Limit the CQE producer by the CQE ring size */ | 
 | 	fp->rx_comp_prod = MIN_T(uint16_t, NUM_RCQ_RINGS * RCQ_DESC_CNT, | 
 | 				 cqe_ring_prod); | 
 | 	fp->rx_pkt = fp->rx_calls = 0; | 
 |  | 
 | 	bnx2x_fp_stats(bp, fp)->eth_q_stats.rx_skb_alloc_failed += failure_cnt; | 
 |  | 
 | 	return i - failure_cnt; | 
 | } | 
 |  | 
 | static void bnx2x_set_next_page_rx_cq(struct bnx2x_fastpath *fp) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 1; i <= NUM_RCQ_RINGS; i++) { | 
 | 		struct eth_rx_cqe_next_page *nextpg; | 
 |  | 
 | 		nextpg = (struct eth_rx_cqe_next_page *) | 
 | 			&fp->rx_comp_ring[RCQ_DESC_CNT * i - 1]; | 
 | 		nextpg->addr_hi = | 
 | 			cpu_to_le32(U64_HI(fp->rx_comp_mapping + | 
 | 				   BCM_PAGE_SIZE*(i % NUM_RCQ_RINGS))); | 
 | 		nextpg->addr_lo = | 
 | 			cpu_to_le32(U64_LO(fp->rx_comp_mapping + | 
 | 				   BCM_PAGE_SIZE*(i % NUM_RCQ_RINGS))); | 
 | 	} | 
 | } | 
 |  | 
 | static int bnx2x_alloc_fp_mem_at(struct bnx2x *bp, int index) | 
 | { | 
 | 	union host_hc_status_block *sb; | 
 | 	struct bnx2x_fastpath *fp = &bp->fp[index]; | 
 | 	int ring_size = 0; | 
 | 	uint8_t cos; | 
 | 	int rx_ring_size = 0; | 
 |  | 
 | 	if (!bp->rx_ring_size && IS_MF_STORAGE_ONLY(bp)) { | 
 | 		rx_ring_size = MIN_RX_SIZE_NONTPA; | 
 | 		bp->rx_ring_size = rx_ring_size; | 
 | 	} else if (!bp->rx_ring_size) { | 
 | 		rx_ring_size = MAX_RX_AVAIL/BNX2X_NUM_RX_QUEUES(bp); | 
 |  | 
 | 		if (CHIP_IS_E3(bp)) { | 
 | 			uint32_t cfg = SHMEM_RD(bp, | 
 | 					   dev_info.port_hw_config[BP_PORT(bp)]. | 
 | 					   default_cfg); | 
 |  | 
 | 			/* Decrease ring size for 1G functions */ | 
 | 			if ((cfg & PORT_HW_CFG_NET_SERDES_IF_MASK) == | 
 | 			    PORT_HW_CFG_NET_SERDES_IF_SGMII) | 
 | 				rx_ring_size /= 10; | 
 | 		} | 
 |  | 
 | 		/* allocate at least number of buffers required by FW */ | 
 | 		rx_ring_size = MAX_T(int, | 
 | 				     bp->disable_tpa ? MIN_RX_SIZE_NONTPA : MIN_RX_SIZE_TPA, | 
 | 				     rx_ring_size); | 
 |  | 
 | 		bp->rx_ring_size = rx_ring_size; | 
 | 	} else /* if rx_ring_size specified - use it */ | 
 | 		rx_ring_size = bp->rx_ring_size; | 
 |  | 
 | 	DP(BNX2X_MSG_SP, "calculated rx_ring_size %d\n", rx_ring_size); | 
 |  | 
 | 	/* Common */ | 
 | 	sb = &bnx2x_fp(bp, index, status_blk); | 
 |  | 
 | 	if (!IS_FCOE_IDX(index)) { | 
 | 		/* status blocks */ | 
 | 		if (!CHIP_IS_E1x(bp)) { | 
 | 			sb->e2_sb = BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, status_blk_mapping), | 
 | 						    sizeof(struct host_hc_status_block_e2)); | 
 | 			if (!sb->e2_sb) | 
 | 				goto alloc_mem_err; | 
 | 		} else { | 
 | 			sb->e1x_sb = BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, status_blk_mapping), | 
 | 						     sizeof(struct host_hc_status_block_e1x)); | 
 | 			if (!sb->e1x_sb) | 
 | 				goto alloc_mem_err; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* FCoE Queue uses Default SB and doesn't ACK the SB, thus no need to | 
 | 	 * set shortcuts for it. | 
 | 	 */ | 
 | 	if (!IS_FCOE_IDX(index)) | 
 | 		set_sb_shortcuts(bp, index); | 
 |  | 
 | 	/* Tx */ | 
 | 	if (!skip_tx_queue(bp, index)) { | 
 | 		/* fastpath tx rings: tx_buf tx_desc */ | 
 | 		for_each_cos_in_tx_queue(fp, cos) { | 
 | 			struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos]; | 
 |  | 
 | 			DP(NETIF_MSG_IFUP, | 
 | 			   "allocating tx memory of fp %d cos %d\n", | 
 | 			   index, cos); | 
 |  | 
 | 			txdata->tx_buf_ring = kzmalloc((NUM_TX_BD) * (sizeof(struct sw_tx_bd)), | 
 | 						       MEM_WAIT); | 
 | 			if (!txdata->tx_buf_ring) | 
 | 				goto alloc_mem_err; | 
 | 			txdata->tx_desc_ring = BNX2X_PCI_ALLOC(&txdata->tx_desc_mapping, | 
 | 							       sizeof(union eth_tx_bd_types) * NUM_TX_BD); | 
 | 			if (!txdata->tx_desc_ring) | 
 | 				goto alloc_mem_err; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Rx */ | 
 | 	if (!skip_rx_queue(bp, index)) { | 
 | 		/* fastpath rx rings: rx_buf rx_desc rx_comp */ | 
 | 		bnx2x_fp(bp, index, rx_buf_ring) = | 
 | 			kzmalloc((NUM_RX_BD) * (sizeof(struct sw_rx_bd)), | 
 | 				 MEM_WAIT); | 
 | 		if (!bnx2x_fp(bp, index, rx_buf_ring)) | 
 | 			goto alloc_mem_err; | 
 | 		bnx2x_fp(bp, index, rx_desc_ring) = | 
 | 			BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, rx_desc_mapping), | 
 | 					sizeof(struct eth_rx_bd) * NUM_RX_BD); | 
 | 		if (!bnx2x_fp(bp, index, rx_desc_ring)) | 
 | 			goto alloc_mem_err; | 
 |  | 
 | 		/* Seed all CQEs by 1s */ | 
 | 		bnx2x_fp(bp, index, rx_comp_ring) = | 
 | 			BNX2X_PCI_FALLOC(&bnx2x_fp(bp, index, rx_comp_mapping), | 
 | 					 sizeof(struct eth_fast_path_rx_cqe) * NUM_RCQ_BD); | 
 | 		if (!bnx2x_fp(bp, index, rx_comp_ring)) | 
 | 			goto alloc_mem_err; | 
 |  | 
 | 		/* SGE ring */ | 
 | 		bnx2x_fp(bp, index, rx_page_ring) = | 
 | 			kzmalloc((NUM_RX_SGE) * (sizeof(struct sw_rx_page)), | 
 | 				 MEM_WAIT); | 
 | 		if (!bnx2x_fp(bp, index, rx_page_ring)) | 
 | 			goto alloc_mem_err; | 
 | 		bnx2x_fp(bp, index, rx_sge_ring) = | 
 | 			BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, rx_sge_mapping), | 
 | 					BCM_PAGE_SIZE * NUM_RX_SGE_PAGES); | 
 | 		if (!bnx2x_fp(bp, index, rx_sge_ring)) | 
 | 			goto alloc_mem_err; | 
 | 		/* RX BD ring */ | 
 | 		bnx2x_set_next_page_rx_bd(fp); | 
 |  | 
 | 		/* CQ ring */ | 
 | 		bnx2x_set_next_page_rx_cq(fp); | 
 |  | 
 | 		/* BDs */ | 
 | 		ring_size = bnx2x_alloc_rx_bds(fp, rx_ring_size); | 
 | 		if (ring_size < rx_ring_size) | 
 | 			goto alloc_mem_err; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 |  | 
 | /* handles low memory cases */ | 
 | alloc_mem_err: | 
 | 	BNX2X_ERR("Unable to allocate full memory for queue %d (size %d)\n", | 
 | 						index, ring_size); | 
 | 	/* FW will drop all packets if queue is not big enough, | 
 | 	 * In these cases we disable the queue | 
 | 	 * Min size is different for OOO, TPA and non-TPA queues | 
 | 	 */ | 
 | 	if (ring_size < (fp->disable_tpa ? | 
 | 				MIN_RX_SIZE_NONTPA : MIN_RX_SIZE_TPA)) { | 
 | 			/* release memory allocated for this queue */ | 
 | 			bnx2x_free_fp_mem_at(bp, index); | 
 | 			return -ENOMEM; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int bnx2x_alloc_fp_mem_cnic(struct bnx2x *bp) | 
 | { | 
 | 	if (!NO_FCOE(bp)) | 
 | 		/* FCoE */ | 
 | 		if (bnx2x_alloc_fp_mem_at(bp, FCOE_IDX(bp))) | 
 | 			/* we will fail load process instead of mark | 
 | 			 * NO_FCOE_FLAG | 
 | 			 */ | 
 | 			return -ENOMEM; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int bnx2x_alloc_fp_mem(struct bnx2x *bp) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	/* 1. Allocate FP for leading - fatal if error | 
 | 	 * 2. Allocate RSS - fix number of queues if error | 
 | 	 */ | 
 |  | 
 | 	/* leading */ | 
 | 	if (bnx2x_alloc_fp_mem_at(bp, 0)) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	/* RSS */ | 
 | 	for_each_nondefault_eth_queue(bp, i) | 
 | 		if (bnx2x_alloc_fp_mem_at(bp, i)) | 
 | 			break; | 
 |  | 
 | 	/* handle memory failures */ | 
 | 	if (i != BNX2X_NUM_ETH_QUEUES(bp)) { | 
 | 		int delta = BNX2X_NUM_ETH_QUEUES(bp) - i; | 
 |  | 
 | 		warn_on(delta < 0); | 
 | 		bnx2x_shrink_eth_fp(bp, delta); | 
 | 		if (CNIC_SUPPORT(bp)) | 
 | 			/* move non eth FPs next to last eth FP | 
 | 			 * must be done in that order | 
 | 			 * FCOE_IDX < FWD_IDX < OOO_IDX | 
 | 			 */ | 
 |  | 
 | 			/* move FCoE fp even NO_FCOE_FLAG is on */ | 
 | 			bnx2x_move_fp(bp, FCOE_IDX(bp), FCOE_IDX(bp) - delta); | 
 | 		bp->num_ethernet_queues -= delta; | 
 | 		bp->num_queues = bp->num_ethernet_queues + | 
 | 				 bp->num_cnic_queues; | 
 | 		BNX2X_ERR("Adjusted num of queues from %d to %d\n", | 
 | 			  bp->num_queues + delta, bp->num_queues); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | void bnx2x_free_mem_bp(struct bnx2x *bp) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < bp->fp_array_size; i++) | 
 | 		kfree(bp->fp[i].tpa_info); | 
 | 	kfree(bp->fp); | 
 | 	kfree(bp->sp_objs); | 
 | 	kfree(bp->fp_stats); | 
 | 	kfree(bp->bnx2x_txq); | 
 | 	kfree(bp->msix_table); | 
 | 	kfree(bp->ilt); | 
 | } | 
 |  | 
 | int bnx2x_alloc_mem_bp(struct bnx2x *bp) | 
 | { | 
 | 	struct bnx2x_fastpath *fp; | 
 | 	struct msix_entry *tbl; | 
 | 	struct bnx2x_ilt *ilt; | 
 | 	int msix_table_size = 0; | 
 | 	int fp_array_size, txq_array_size; | 
 | 	int i; | 
 |  | 
 | 	/* | 
 | 	 * The biggest MSI-X table we might need is as a maximum number of fast | 
 | 	 * path IGU SBs plus default SB (for PF only). | 
 | 	 */ | 
 | 	msix_table_size = bp->igu_sb_cnt; | 
 | 	if (IS_PF(bp)) | 
 | 		msix_table_size++; | 
 | 	BNX2X_DEV_INFO("msix_table_size %d\n", msix_table_size); | 
 |  | 
 | 	/* fp array: RSS plus CNIC related L2 queues */ | 
 | 	fp_array_size = BNX2X_MAX_RSS_COUNT(bp) + CNIC_SUPPORT(bp); | 
 | 	bp->fp_array_size = fp_array_size; | 
 | 	BNX2X_DEV_INFO("fp_array_size %d\n", bp->fp_array_size); | 
 |  | 
 | 	fp = kzmalloc((bp->fp_array_size) * (sizeof(*fp)), MEM_WAIT); | 
 | 	if (!fp) | 
 | 		goto alloc_err; | 
 | 	for (i = 0; i < bp->fp_array_size; i++) { | 
 | 		fp[i].tpa_info = | 
 | 			kzmalloc((ETH_MAX_AGGREGATION_QUEUES_E1H_E2) * (sizeof(struct bnx2x_agg_info)), | 
 | 				 MEM_WAIT); | 
 | 		if (!(fp[i].tpa_info)) | 
 | 			goto alloc_err; | 
 | 	} | 
 |  | 
 | 	bp->fp = fp; | 
 |  | 
 | 	/* allocate sp objs */ | 
 | 	bp->sp_objs = kzmalloc((bp->fp_array_size) * (sizeof(struct bnx2x_sp_objs)), | 
 | 			       MEM_WAIT); | 
 | 	if (!bp->sp_objs) | 
 | 		goto alloc_err; | 
 |  | 
 | 	/* allocate fp_stats */ | 
 | 	bp->fp_stats = kzmalloc((bp->fp_array_size) * (sizeof(struct bnx2x_fp_stats)), | 
 | 				MEM_WAIT); | 
 | 	if (!bp->fp_stats) | 
 | 		goto alloc_err; | 
 |  | 
 | 	/* Allocate memory for the transmission queues array */ | 
 | 	txq_array_size = | 
 | 		BNX2X_MAX_RSS_COUNT(bp) * BNX2X_MULTI_TX_COS + CNIC_SUPPORT(bp); | 
 | 	BNX2X_DEV_INFO("txq_array_size %d", txq_array_size); | 
 |  | 
 | 	bp->bnx2x_txq = kzmalloc((txq_array_size) * (sizeof(struct bnx2x_fp_txdata)), | 
 | 				 MEM_WAIT); | 
 | 	if (!bp->bnx2x_txq) | 
 | 		goto alloc_err; | 
 |  | 
 | 	// AKAROS_PORT: we probably won't use this table */ | 
 | 	/* msix table */ | 
 | 	tbl = kzmalloc((msix_table_size) * (sizeof(*tbl)), MEM_WAIT); | 
 | 	if (!tbl) | 
 | 		goto alloc_err; | 
 | 	bp->msix_table = tbl; | 
 |  | 
 | 	/* ilt */ | 
 | 	ilt = kzmalloc(sizeof(*ilt), MEM_WAIT); | 
 | 	if (!ilt) | 
 | 		goto alloc_err; | 
 | 	bp->ilt = ilt; | 
 |  | 
 | 	return 0; | 
 | alloc_err: | 
 | 	bnx2x_free_mem_bp(bp); | 
 | 	return -ENOMEM; | 
 | } | 
 |  | 
 | int bnx2x_reload_if_running(struct ether *dev) | 
 | { | 
 | panic("Not implemented"); | 
 | #if 0 // AKAROS_PORT | 
 | 	struct bnx2x *bp = netdev_priv(dev); | 
 |  | 
 | 	if (unlikely(!netif_running(dev))) | 
 | 		return 0; | 
 |  | 
 | 	bnx2x_nic_unload(bp, UNLOAD_NORMAL, true); | 
 | 	return bnx2x_nic_load(bp, LOAD_NORMAL); | 
 | #endif | 
 | } | 
 |  | 
 | int bnx2x_get_cur_phy_idx(struct bnx2x *bp) | 
 | { | 
 | 	uint32_t sel_phy_idx = 0; | 
 | 	if (bp->link_params.num_phys <= 1) | 
 | 		return INT_PHY; | 
 |  | 
 | 	if (bp->link_vars.link_up) { | 
 | 		sel_phy_idx = EXT_PHY1; | 
 | 		/* In case link is SERDES, check if the EXT_PHY2 is the one */ | 
 | 		if ((bp->link_vars.link_status & LINK_STATUS_SERDES_LINK) && | 
 | 		    (bp->link_params.phy[EXT_PHY2].supported & SUPPORTED_FIBRE)) | 
 | 			sel_phy_idx = EXT_PHY2; | 
 | 	} else { | 
 |  | 
 | 		switch (bnx2x_phy_selection(&bp->link_params)) { | 
 | 		case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT: | 
 | 		case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY: | 
 | 		case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY: | 
 | 		       sel_phy_idx = EXT_PHY1; | 
 | 		       break; | 
 | 		case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY: | 
 | 		case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY: | 
 | 		       sel_phy_idx = EXT_PHY2; | 
 | 		       break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return sel_phy_idx; | 
 | } | 
 |  | 
 | int bnx2x_get_link_cfg_idx(struct bnx2x *bp) | 
 | { | 
 | 	uint32_t sel_phy_idx = bnx2x_get_cur_phy_idx(bp); | 
 | 	/* | 
 | 	 * The selected activated PHY is always after swapping (in case PHY | 
 | 	 * swapping is enabled). So when swapping is enabled, we need to reverse | 
 | 	 * the configuration | 
 | 	 */ | 
 |  | 
 | 	if (bp->link_params.multi_phy_config & | 
 | 	    PORT_HW_CFG_PHY_SWAPPED_ENABLED) { | 
 | 		if (sel_phy_idx == EXT_PHY1) | 
 | 			sel_phy_idx = EXT_PHY2; | 
 | 		else if (sel_phy_idx == EXT_PHY2) | 
 | 			sel_phy_idx = EXT_PHY1; | 
 | 	} | 
 | 	return LINK_CONFIG_IDX(sel_phy_idx); | 
 | } | 
 |  | 
 | #ifdef NETDEV_FCOE_WWNN | 
 | int bnx2x_fcoe_get_wwn(struct ether *dev, uint64_t *wwn, int type) | 
 | { | 
 | 	struct bnx2x *bp = netdev_priv(dev); | 
 | 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev; | 
 |  | 
 | 	switch (type) { | 
 | 	case NETDEV_FCOE_WWNN: | 
 | 		*wwn = HILO_U64(cp->fcoe_wwn_node_name_hi, | 
 | 				cp->fcoe_wwn_node_name_lo); | 
 | 		break; | 
 | 	case NETDEV_FCOE_WWPN: | 
 | 		*wwn = HILO_U64(cp->fcoe_wwn_port_name_hi, | 
 | 				cp->fcoe_wwn_port_name_lo); | 
 | 		break; | 
 | 	default: | 
 | 		BNX2X_ERR("Wrong WWN type requested - %d\n", type); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 | #endif | 
 |  | 
 | /* called with rtnl_lock */ | 
 | int bnx2x_change_mtu(struct ether *dev, int new_mtu) | 
 | { | 
 | 	struct bnx2x *bp = netdev_priv(dev); | 
 |  | 
 | 	if (bp->recovery_state != BNX2X_RECOVERY_DONE) { | 
 | 		BNX2X_ERR("Can't perform change MTU during parity recovery\n"); | 
 | 		return -EAGAIN; | 
 | 	} | 
 |  | 
 | 	if ((new_mtu > ETH_MAX_JUMBO_PACKET_SIZE) || | 
 | 	    ((new_mtu + ETHERHDRSIZE) < ETH_MIN_PACKET_SIZE)) { | 
 | 		BNX2X_ERR("Can't support requested MTU size\n"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	/* This does not race with packet allocation | 
 | 	 * because the actual alloc size is | 
 | 	 * only updated as part of load | 
 | 	 */ | 
 | 	dev->mtu = new_mtu; | 
 |  | 
 | 	return bnx2x_reload_if_running(dev); | 
 | } | 
 |  | 
 | netdev_features_t bnx2x_fix_features(struct ether *dev, | 
 | 				     netdev_features_t features) | 
 | { | 
 | 	struct bnx2x *bp = netdev_priv(dev); | 
 |  | 
 | 	/* TPA requires Rx CSUM offloading */ | 
 | 	if (!(features & NETIF_F_RXCSUM)) { | 
 | 		features &= ~NETIF_F_LRO; | 
 | 		features &= ~NETIF_F_GRO; | 
 | 	} | 
 |  | 
 | 	/* Note: do not disable SW GRO in kernel when HW GRO is off */ | 
 | 	if (bp->disable_tpa) | 
 | 		features &= ~NETIF_F_LRO; | 
 |  | 
 | 	return features; | 
 | } | 
 |  | 
 | int bnx2x_set_features(struct ether *dev, netdev_features_t features) | 
 | { | 
 | 	struct bnx2x *bp = netdev_priv(dev); | 
 | 	uint32_t flags = bp->flags; | 
 | 	uint32_t changes; | 
 | 	bool bnx2x_reload = false; | 
 |  | 
 | 	if (features & NETIF_F_LRO) | 
 | 		flags |= TPA_ENABLE_FLAG; | 
 | 	else | 
 | 		flags &= ~TPA_ENABLE_FLAG; | 
 |  | 
 | 	if (features & NETIF_F_GRO) | 
 | 		flags |= GRO_ENABLE_FLAG; | 
 | 	else | 
 | 		flags &= ~GRO_ENABLE_FLAG; | 
 |  | 
 | 	if (features & NETIF_F_LOOPBACK) { | 
 | 		if (bp->link_params.loopback_mode != LOOPBACK_BMAC) { | 
 | 			bp->link_params.loopback_mode = LOOPBACK_BMAC; | 
 | 			bnx2x_reload = true; | 
 | 		} | 
 | 	} else { | 
 | 		if (bp->link_params.loopback_mode != LOOPBACK_NONE) { | 
 | 			bp->link_params.loopback_mode = LOOPBACK_NONE; | 
 | 			bnx2x_reload = true; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	changes = flags ^ bp->flags; | 
 |  | 
 | 	/* if GRO is changed while LRO is enabled, don't force a reload */ | 
 | 	if ((changes & GRO_ENABLE_FLAG) && (flags & TPA_ENABLE_FLAG)) | 
 | 		changes &= ~GRO_ENABLE_FLAG; | 
 |  | 
 | 	/* if GRO is changed while HW TPA is off, don't force a reload */ | 
 | 	if ((changes & GRO_ENABLE_FLAG) && bp->disable_tpa) | 
 | 		changes &= ~GRO_ENABLE_FLAG; | 
 |  | 
 | 	if (changes) | 
 | 		bnx2x_reload = true; | 
 |  | 
 | 	bp->flags = flags; | 
 |  | 
 | 	if (bnx2x_reload) { | 
 | 		if (bp->recovery_state == BNX2X_RECOVERY_DONE) | 
 | 			return bnx2x_reload_if_running(dev); | 
 | 		/* else: bnx2x_nic_load() will be called at end of recovery */ | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | void bnx2x_tx_timeout(struct ether *dev) | 
 | { | 
 | 	struct bnx2x *bp = netdev_priv(dev); | 
 |  | 
 | #ifdef BNX2X_STOP_ON_ERROR | 
 | 	if (!bp->panic) | 
 | 		bnx2x_panic(); | 
 | #endif | 
 |  | 
 | 	/* This allows the netif to be shutdown gracefully before resetting */ | 
 | 	bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_TX_TIMEOUT, 0); | 
 | } | 
 |  | 
 | int bnx2x_suspend(struct pci_device *pdev, pm_message_t state) | 
 | { | 
 | panic("Not implemented"); | 
 | #if 0 // AKAROS_PORT | 
 | 	struct ether *dev = pci_get_drvdata(pdev); | 
 | 	struct bnx2x *bp; | 
 |  | 
 | 	if (!dev) { | 
 | 		dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n"); | 
 | 		return -ENODEV; | 
 | 	} | 
 | 	bp = netdev_priv(dev); | 
 |  | 
 | 	rtnl_lock(); | 
 |  | 
 | 	pci_save_state(pdev); | 
 |  | 
 | 	if (!netif_running(dev)) { | 
 | 		rtnl_unlock(); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	netif_device_detach(dev); | 
 |  | 
 | 	bnx2x_nic_unload(bp, UNLOAD_CLOSE, false); | 
 |  | 
 | 	bnx2x_set_power_state(bp, pci_choose_state(pdev, state)); | 
 |  | 
 | 	rtnl_unlock(); | 
 |  | 
 | 	return 0; | 
 | #endif | 
 | } | 
 |  | 
 | int bnx2x_resume(struct pci_device *pdev) | 
 | { | 
 | panic("Not implemented"); | 
 | #if 0 // AKAROS_PORT | 
 | 	struct ether *dev = pci_get_drvdata(pdev); | 
 | 	struct bnx2x *bp; | 
 | 	int rc; | 
 |  | 
 | 	if (!dev) { | 
 | 		dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n"); | 
 | 		return -ENODEV; | 
 | 	} | 
 | 	bp = netdev_priv(dev); | 
 |  | 
 | 	if (bp->recovery_state != BNX2X_RECOVERY_DONE) { | 
 | 		BNX2X_ERR("Handling parity error recovery. Try again later\n"); | 
 | 		return -EAGAIN; | 
 | 	} | 
 |  | 
 | 	rtnl_lock(); | 
 |  | 
 | 	pci_restore_state(pdev); | 
 |  | 
 | 	if (!netif_running(dev)) { | 
 | 		rtnl_unlock(); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	bnx2x_set_power_state(bp, PCI_D0); | 
 | 	netif_device_attach(dev); | 
 |  | 
 | 	rc = bnx2x_nic_load(bp, LOAD_OPEN); | 
 |  | 
 | 	rtnl_unlock(); | 
 |  | 
 | 	return rc; | 
 | #endif | 
 | } | 
 |  | 
 | void bnx2x_set_ctx_validation(struct bnx2x *bp, struct eth_context *cxt, | 
 | 			      uint32_t cid) | 
 | { | 
 | 	if (!cxt) { | 
 | 		BNX2X_ERR("bad context pointer %p\n", cxt); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* ustorm cxt validation */ | 
 | 	cxt->ustorm_ag_context.cdu_usage = | 
 | 		CDU_RSRVD_VALUE_TYPE_A(HW_CID(bp, cid), | 
 | 			CDU_REGION_NUMBER_UCM_AG, ETH_CONNECTION_TYPE); | 
 | 	/* xcontext validation */ | 
 | 	cxt->xstorm_ag_context.cdu_reserved = | 
 | 		CDU_RSRVD_VALUE_TYPE_A(HW_CID(bp, cid), | 
 | 			CDU_REGION_NUMBER_XCM_AG, ETH_CONNECTION_TYPE); | 
 | } | 
 |  | 
 | static void storm_memset_hc_timeout(struct bnx2x *bp, uint8_t port, | 
 | 				    uint8_t fw_sb_id, uint8_t sb_index, | 
 | 				    uint8_t ticks) | 
 | { | 
 | 	uint32_t addr = BAR_CSTRORM_INTMEM + | 
 | 		   CSTORM_STATUS_BLOCK_DATA_TIMEOUT_OFFSET(fw_sb_id, sb_index); | 
 | 	REG_WR8(bp, addr, ticks); | 
 | 	DP(NETIF_MSG_IFUP, | 
 | 	   "port %x fw_sb_id %d sb_index %d ticks %d\n", | 
 | 	   port, fw_sb_id, sb_index, ticks); | 
 | } | 
 |  | 
 | static void storm_memset_hc_disable(struct bnx2x *bp, uint8_t port, | 
 | 				    uint16_t fw_sb_id, uint8_t sb_index, | 
 | 				    uint8_t disable) | 
 | { | 
 | 	uint32_t enable_flag = disable ? 0 : (1 << HC_INDEX_DATA_HC_ENABLED_SHIFT); | 
 | 	uint32_t addr = BAR_CSTRORM_INTMEM + | 
 | 		   CSTORM_STATUS_BLOCK_DATA_FLAGS_OFFSET(fw_sb_id, sb_index); | 
 | 	uint8_t flags = REG_RD8(bp, addr); | 
 | 	/* clear and set */ | 
 | 	flags &= ~HC_INDEX_DATA_HC_ENABLED; | 
 | 	flags |= enable_flag; | 
 | 	REG_WR8(bp, addr, flags); | 
 | 	DP(NETIF_MSG_IFUP, | 
 | 	   "port %x fw_sb_id %d sb_index %d disable %d\n", | 
 | 	   port, fw_sb_id, sb_index, disable); | 
 | } | 
 |  | 
 | void bnx2x_update_coalesce_sb_index(struct bnx2x *bp, uint8_t fw_sb_id, | 
 | 				    uint8_t sb_index, uint8_t disable, | 
 | 				    uint16_t usec) | 
 | { | 
 | 	int port = BP_PORT(bp); | 
 | 	uint8_t ticks = usec / BNX2X_BTR; | 
 |  | 
 | 	storm_memset_hc_timeout(bp, port, fw_sb_id, sb_index, ticks); | 
 |  | 
 | 	disable = disable ? 1 : (usec ? 0 : 1); | 
 | 	storm_memset_hc_disable(bp, port, fw_sb_id, sb_index, disable); | 
 | } | 
 |  | 
 | void bnx2x_schedule_sp_rtnl(struct bnx2x *bp, enum sp_rtnl_flag flag, | 
 | 			    uint32_t verbose) | 
 | { | 
 | 	cmb(); | 
 | 	set_bit(flag, &bp->sp_rtnl_state); | 
 | 	cmb(); | 
 | 	DP((BNX2X_MSG_SP | verbose), "Scheduling sp_rtnl task [Flag: %d]\n", | 
 | 	   flag); | 
 | 	schedule_delayed_work(&bp->sp_rtnl_task, 0); | 
 | } | 
 | EXPORT_SYMBOL(bnx2x_schedule_sp_rtnl); |