|  | /* Copyright (c) 2009, 2010 The Regents of the University of California | 
|  | * Barret Rhoden <brho@cs.berkeley.edu> | 
|  | * See LICENSE for details. | 
|  | * | 
|  | * Virtual memory management functions.  Creation, modification, etc, of virtual | 
|  | * memory regions (VMRs) as well as mmap(), mprotect(), and munmap(). | 
|  | * | 
|  | * In general, error checking / bounds checks are done in the main function | 
|  | * (e.g. mmap()), and the work is done in a do_ function (e.g. do_mmap()). | 
|  | * Versions of those functions that are called when the vmr lock is already held | 
|  | * begin with __ (e.g. __do_munmap()). | 
|  | * | 
|  | * Note that if we were called from kern/src/syscall.c, we probably don't have | 
|  | * an edible reference to p. */ | 
|  |  | 
|  | #include <ros/common.h> | 
|  | #include <pmap.h> | 
|  | #include <mm.h> | 
|  | #include <process.h> | 
|  | #include <stdio.h> | 
|  | #include <syscall.h> | 
|  | #include <slab.h> | 
|  | #include <kmalloc.h> | 
|  | #include <smp.h> | 
|  | #include <profiler.h> | 
|  | #include <umem.h> | 
|  | #include <ns.h> | 
|  | #include <tree_file.h> | 
|  |  | 
|  | /* These are the only mmap flags that are saved in the VMR.  If we implement | 
|  | * more of the mmap interface, we may need to grow this. */ | 
|  | #define MAP_PERSIST_FLAGS	(MAP_SHARED | MAP_PRIVATE | MAP_ANONYMOUS) | 
|  |  | 
|  | struct kmem_cache *vmr_kcache; | 
|  |  | 
|  | static int __vmr_free_pgs(struct proc *p, pte_t pte, void *va, void *arg); | 
|  | static int populate_pm_va(struct proc *p, uintptr_t va, unsigned long nr_pgs, | 
|  | int pte_prot, struct page_map *pm, size_t offset, | 
|  | int flags, bool exec); | 
|  |  | 
|  | static struct page_map *foc_to_pm(struct file_or_chan *foc) | 
|  | { | 
|  | switch (foc->type) { | 
|  | case F_OR_C_CHAN: | 
|  | assert(foc->fsf); | 
|  | return foc->fsf->pm; | 
|  | } | 
|  | panic("unknown F_OR_C type"); | 
|  | } | 
|  |  | 
|  | static struct page_map *vmr_to_pm(struct vm_region *vmr) | 
|  | { | 
|  | return foc_to_pm(vmr->__vm_foc); | 
|  | } | 
|  |  | 
|  | char *foc_to_name(struct file_or_chan *foc) | 
|  | { | 
|  | switch (foc->type) { | 
|  | case F_OR_C_CHAN: | 
|  | if (foc->fsf) | 
|  | return foc->fsf->dir.name; | 
|  | else | 
|  | return foc->chan->name->s; | 
|  | } | 
|  | panic("unknown F_OR_C type"); | 
|  | } | 
|  |  | 
|  | char *foc_abs_path(struct file_or_chan *foc) | 
|  | { | 
|  | switch (foc->type) { | 
|  | case F_OR_C_CHAN: | 
|  | /* Not sure, but I'd like to know if we have externally visible | 
|  | * chans that have no name. */ | 
|  | assert(foc->chan->name); | 
|  | assert(foc->chan->name->s); | 
|  | return foc->chan->name->s; | 
|  | } | 
|  | panic("unknown F_OR_C type"); | 
|  | } | 
|  |  | 
|  | ssize_t foc_read(struct file_or_chan *foc, void *buf, size_t amt, off64_t off) | 
|  | { | 
|  | ERRSTACK(1); | 
|  | off64_t fake_off = off; | 
|  | ssize_t ret = -1; | 
|  |  | 
|  | switch (foc->type) { | 
|  | case F_OR_C_CHAN: | 
|  | if (!qid_is_file(foc->chan->qid)) | 
|  | return -1; | 
|  | if (!waserror()) | 
|  | ret = devtab[foc->chan->type].read(foc->chan, buf, amt, | 
|  | off); | 
|  | poperror(); | 
|  | return ret; | 
|  | } | 
|  | panic("unknown F_OR_C type"); | 
|  | } | 
|  |  | 
|  | static void __foc_free_rcu(struct rcu_head *head) | 
|  | { | 
|  | struct file_or_chan *foc = container_of(head, struct file_or_chan, rcu); | 
|  |  | 
|  | switch (foc->type) { | 
|  | case F_OR_C_CHAN: | 
|  | cclose(foc->chan); | 
|  | break; | 
|  | default: | 
|  | panic("unknown F_OR_C type, %d", foc->type); | 
|  | } | 
|  | kfree(foc); | 
|  | } | 
|  |  | 
|  | static void foc_release(struct kref *kref) | 
|  | { | 
|  | struct file_or_chan *foc = container_of(kref, struct file_or_chan, | 
|  | kref); | 
|  |  | 
|  | /* A lot of places decref while holding a spinlock, but we can't free | 
|  | * then, since the cclose() might block. */ | 
|  | call_rcu(&foc->rcu, __foc_free_rcu); | 
|  | } | 
|  |  | 
|  | static struct file_or_chan *foc_alloc(void) | 
|  | { | 
|  | struct file_or_chan *foc; | 
|  |  | 
|  | foc = kzmalloc(sizeof(struct file_or_chan), MEM_ATOMIC); | 
|  | if (!foc) | 
|  | return NULL; | 
|  | kref_init(&foc->kref, foc_release, 1); | 
|  | return foc; | 
|  | } | 
|  |  | 
|  | struct file_or_chan *foc_open(char *path, int omode, int perm) | 
|  | { | 
|  | ERRSTACK(1); | 
|  | struct file_or_chan *foc = foc_alloc(); | 
|  |  | 
|  | if (!foc) | 
|  | return NULL; | 
|  | if (waserror()) { | 
|  | kfree(foc); | 
|  | poperror(); | 
|  | return NULL; | 
|  | } | 
|  | foc->chan = namec(path, Aopen, omode, perm, NULL); | 
|  | foc->type = F_OR_C_CHAN; | 
|  | poperror(); | 
|  | return foc; | 
|  | } | 
|  |  | 
|  | struct file_or_chan *fd_to_foc(struct fd_table *fdt, int fd) | 
|  | { | 
|  | ERRSTACK(1); | 
|  | struct file_or_chan *foc = foc_alloc(); | 
|  |  | 
|  | if (!foc) | 
|  | return NULL; | 
|  | if (waserror()) { | 
|  | kfree(foc); | 
|  | poperror(); | 
|  | return NULL; | 
|  | } | 
|  | /* We're not checking mode here (-1).  mm code checks later. */ | 
|  | foc->chan = fdtochan(fdt, fd, -1, true, true); | 
|  | foc->type = F_OR_C_CHAN; | 
|  | poperror(); | 
|  | return foc; | 
|  | } | 
|  |  | 
|  | void foc_incref(struct file_or_chan *foc) | 
|  | { | 
|  | kref_get(&foc->kref, 1); | 
|  | } | 
|  |  | 
|  | void foc_decref(struct file_or_chan *foc) | 
|  | { | 
|  | kref_put(&foc->kref); | 
|  | } | 
|  |  | 
|  | void *foc_pointer(struct file_or_chan *foc) | 
|  | { | 
|  | if (!foc) | 
|  | return NULL; | 
|  | switch (foc->type) { | 
|  | case F_OR_C_CHAN: | 
|  | return foc->chan; | 
|  | default: | 
|  | panic("unknown F_OR_C type, %d", foc->type); | 
|  | } | 
|  | } | 
|  |  | 
|  | size_t foc_get_len(struct file_or_chan *foc) | 
|  | { | 
|  | switch (foc->type) { | 
|  | case F_OR_C_CHAN: | 
|  | assert(foc->fsf); | 
|  | return foc->fsf->dir.length; | 
|  | } | 
|  | panic("unknown F_OR_C type, %d", foc->type); | 
|  | } | 
|  |  | 
|  | static bool check_chan_perms(struct vm_region *vmr, struct chan *chan, int prot) | 
|  | { | 
|  | /* glibc isn't opening its files O_EXEC */ | 
|  | prot &= ~PROT_EXEC; | 
|  | if (!(chan->mode & O_READ)) | 
|  | return false; | 
|  | if (vmr->vm_flags & MAP_PRIVATE) | 
|  | prot &= ~PROT_WRITE; | 
|  | return (chan->mode & prot) == prot; | 
|  | } | 
|  |  | 
|  | static bool check_foc_perms(struct vm_region *vmr, struct file_or_chan *foc, | 
|  | int prot) | 
|  | { | 
|  | switch (foc->type) { | 
|  | case F_OR_C_CHAN: | 
|  | return check_chan_perms(vmr, foc->chan, prot); | 
|  | } | 
|  | panic("unknown F_OR_C type"); | 
|  | } | 
|  |  | 
|  | static int foc_dev_mmap(struct file_or_chan *foc, struct vm_region *vmr, | 
|  | int prot, int flags) | 
|  | { | 
|  | if (!check_foc_perms(vmr, foc, prot)) | 
|  | return -1; | 
|  | switch (foc->type) { | 
|  | case F_OR_C_CHAN: | 
|  | if (!devtab[foc->chan->type].mmap) { | 
|  | set_error(ENODEV, "device does not support mmap"); | 
|  | return -1; | 
|  | } | 
|  | foc->fsf = devtab[foc->chan->type].mmap(foc->chan, vmr, prot, | 
|  | flags); | 
|  | return foc->fsf ? 0 : -1; | 
|  | } | 
|  | panic("unknown F_OR_C type, %d", foc->type); | 
|  | } | 
|  |  | 
|  | void vmr_init(void) | 
|  | { | 
|  | vmr_kcache = kmem_cache_create("vm_regions", | 
|  | sizeof(struct vm_region), | 
|  | __alignof__(struct vm_region), 0, NULL, | 
|  | 0, 0, NULL); | 
|  | } | 
|  |  | 
|  | static struct vm_region *vmr_zalloc(void) | 
|  | { | 
|  | struct vm_region *vmr; | 
|  |  | 
|  | vmr = kmem_cache_alloc(vmr_kcache, MEM_WAIT); | 
|  | memset(vmr, 0, sizeof(struct vm_region)); | 
|  | return vmr; | 
|  | } | 
|  |  | 
|  | static void vmr_free(struct vm_region *vmr) | 
|  | { | 
|  | kmem_cache_free(vmr_kcache, vmr); | 
|  | } | 
|  |  | 
|  | /* The caller will set the prot, flags, file, and offset.  We find a spot for it | 
|  | * in p's address space, set proc, base, and end.  Caller holds p's vmr_lock. | 
|  | * | 
|  | * TODO: take a look at solari's vmem alloc.  And consider keeping these in a | 
|  | * tree of some sort for easier lookups. */ | 
|  | static bool vmr_insert(struct vm_region *vmr, struct proc *p, uintptr_t va, | 
|  | size_t len) | 
|  | { | 
|  | struct vm_region *vm_i, *vm_next; | 
|  | uintptr_t gap_end; | 
|  | bool ret = false; | 
|  |  | 
|  | assert(!PGOFF(va)); | 
|  | assert(!PGOFF(len)); | 
|  | assert(__is_user_addr((void*)va, len, UMAPTOP)); | 
|  | /* Is there room before the first one: */ | 
|  | vm_i = TAILQ_FIRST(&p->vm_regions); | 
|  | /* This works for now, but if all we have is BRK_END ones, we'll start | 
|  | * growing backwards (TODO) */ | 
|  | if (!vm_i || (va + len <= vm_i->vm_base)) { | 
|  | vmr->vm_base = va; | 
|  | TAILQ_INSERT_HEAD(&p->vm_regions, vmr, vm_link); | 
|  | ret = true; | 
|  | } else { | 
|  | TAILQ_FOREACH(vm_i, &p->vm_regions, vm_link) { | 
|  | vm_next = TAILQ_NEXT(vm_i, vm_link); | 
|  | gap_end = vm_next ? vm_next->vm_base : UMAPTOP; | 
|  | /* skip til we get past the 'hint' va */ | 
|  | if (va >= gap_end) | 
|  | continue; | 
|  | /* Find a gap that is big enough */ | 
|  | if (gap_end - vm_i->vm_end >= len) { | 
|  | /* if we can put it at va, let's do that.  o/w, | 
|  | * put it so it fits */ | 
|  | if ((gap_end >= va + len) && | 
|  | (va >= vm_i->vm_end)) | 
|  | vmr->vm_base = va; | 
|  | else | 
|  | vmr->vm_base = vm_i->vm_end; | 
|  | TAILQ_INSERT_AFTER(&p->vm_regions, vm_i, vmr, | 
|  | vm_link); | 
|  | ret = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | /* Finalize the creation, if we got one */ | 
|  | if (ret) { | 
|  | vmr->vm_proc = p; | 
|  | vmr->vm_end = vmr->vm_base + len; | 
|  | } | 
|  | if (!ret) | 
|  | warn("Not making a VMR, wanted %p, + %p = %p", va, len, va + | 
|  | len); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Split a VMR at va, returning the new VMR.  It is set up the same way, with | 
|  | * file offsets fixed accordingly.  'va' is the beginning of the new one, and | 
|  | * must be page aligned. */ | 
|  | static struct vm_region *split_vmr(struct vm_region *old_vmr, uintptr_t va) | 
|  | { | 
|  | struct vm_region *new_vmr; | 
|  |  | 
|  | assert(!PGOFF(va)); | 
|  | if ((old_vmr->vm_base >= va) || (old_vmr->vm_end <= va)) | 
|  | return 0; | 
|  | new_vmr = kmem_cache_alloc(vmr_kcache, 0); | 
|  | assert(new_vmr); | 
|  | TAILQ_INSERT_AFTER(&old_vmr->vm_proc->vm_regions, old_vmr, new_vmr, | 
|  | vm_link); | 
|  | new_vmr->vm_proc = old_vmr->vm_proc; | 
|  | new_vmr->vm_base = va; | 
|  | new_vmr->vm_end = old_vmr->vm_end; | 
|  | old_vmr->vm_end = va; | 
|  | new_vmr->vm_prot = old_vmr->vm_prot; | 
|  | new_vmr->vm_flags = old_vmr->vm_flags; | 
|  | if (vmr_has_file(old_vmr)) { | 
|  | foc_incref(old_vmr->__vm_foc); | 
|  | new_vmr->__vm_foc = old_vmr->__vm_foc; | 
|  | new_vmr->vm_foff = old_vmr->vm_foff + | 
|  | old_vmr->vm_end - old_vmr->vm_base; | 
|  | pm_add_vmr(vmr_to_pm(old_vmr), new_vmr); | 
|  | } else { | 
|  | new_vmr->__vm_foc = NULL; | 
|  | new_vmr->vm_foff = 0; | 
|  | } | 
|  | return new_vmr; | 
|  | } | 
|  |  | 
|  | /* Called by the unmapper, just cleans up.  Whoever calls this will need to sort | 
|  | * out the page table entries. */ | 
|  | static void destroy_vmr(struct vm_region *vmr) | 
|  | { | 
|  | if (vmr_has_file(vmr)) { | 
|  | pm_remove_vmr(vmr_to_pm(vmr), vmr); | 
|  | foc_decref(vmr->__vm_foc); | 
|  | } | 
|  | TAILQ_REMOVE(&vmr->vm_proc->vm_regions, vmr, vm_link); | 
|  | vmr_free(vmr); | 
|  | } | 
|  |  | 
|  | /* Merges two vm regions.  For now, it will check to make sure they are the | 
|  | * same.  The second one will be destroyed. */ | 
|  | static int merge_vmr(struct vm_region *first, struct vm_region *second) | 
|  | { | 
|  | assert(first->vm_proc == second->vm_proc); | 
|  | if ((first->vm_end != second->vm_base) || | 
|  | (first->vm_prot != second->vm_prot) || | 
|  | (first->vm_flags != second->vm_flags) || | 
|  | (first->__vm_foc != second->__vm_foc)) | 
|  | return -1; | 
|  | if (vmr_has_file(first) && (second->vm_foff != first->vm_foff + | 
|  | first->vm_end - first->vm_base)) | 
|  | return -1; | 
|  | first->vm_end = second->vm_end; | 
|  | destroy_vmr(second); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Attempts to merge vmr with adjacent VMRs, returning a ptr to be used for vmr. | 
|  | * It could be the same struct vmr, or possibly another one (usually lower in | 
|  | * the address space. */ | 
|  | static struct vm_region *merge_me(struct vm_region *vmr) | 
|  | { | 
|  | struct vm_region *vmr_temp; | 
|  |  | 
|  | /* Merge will fail if it cannot do it.  If it succeeds, the second VMR | 
|  | * is destroyed, so we need to be a bit careful. */ | 
|  | vmr_temp = TAILQ_PREV(vmr, vmr_tailq, vm_link); | 
|  | if (vmr_temp) | 
|  | if (!merge_vmr(vmr_temp, vmr)) | 
|  | vmr = vmr_temp; | 
|  | vmr_temp = TAILQ_NEXT(vmr, vm_link); | 
|  | if (vmr_temp) | 
|  | merge_vmr(vmr, vmr_temp); | 
|  | return vmr; | 
|  | } | 
|  |  | 
|  | /* Grows the vm region up to (and not including) va.  Fails if another is in the | 
|  | * way, etc. */ | 
|  | static int grow_vmr(struct vm_region *vmr, uintptr_t va) | 
|  | { | 
|  | assert(!PGOFF(va)); | 
|  | struct vm_region *next = TAILQ_NEXT(vmr, vm_link); | 
|  | if (next && next->vm_base < va) | 
|  | return -1; | 
|  | if (va <= vmr->vm_end) | 
|  | return -1; | 
|  | vmr->vm_end = va; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Shrinks the vm region down to (and not including) va.  Whoever calls this | 
|  | * will need to sort out the page table entries. */ | 
|  | static int shrink_vmr(struct vm_region *vmr, uintptr_t va) | 
|  | { | 
|  | assert(!PGOFF(va)); | 
|  | if ((va < vmr->vm_base) || (va > vmr->vm_end)) | 
|  | return -1; | 
|  | vmr->vm_end = va; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Given a va and a proc (later an mm, possibly), returns the owning vmr, or 0 | 
|  | * if there is none. */ | 
|  | static struct vm_region *find_vmr(struct proc *p, uintptr_t va) | 
|  | { | 
|  | struct vm_region *vmr; | 
|  |  | 
|  | /* ugly linear seach */ | 
|  | TAILQ_FOREACH(vmr, &p->vm_regions, vm_link) { | 
|  | if ((vmr->vm_base <= va) && (vmr->vm_end > va)) | 
|  | return vmr; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Finds the first vmr after va (including the one holding va), or 0 if there is | 
|  | * none. */ | 
|  | static struct vm_region *find_first_vmr(struct proc *p, uintptr_t va) | 
|  | { | 
|  | struct vm_region *vmr; | 
|  |  | 
|  | /* ugly linear seach */ | 
|  | TAILQ_FOREACH(vmr, &p->vm_regions, vm_link) { | 
|  | if ((vmr->vm_base <= va) && (vmr->vm_end > va)) | 
|  | return vmr; | 
|  | if (vmr->vm_base > va) | 
|  | return vmr; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Makes sure that no VMRs cross either the start or end of the given region | 
|  | * [va, va + len), splitting any VMRs that are on the endpoints. */ | 
|  | static void isolate_vmrs(struct proc *p, uintptr_t va, size_t len) | 
|  | { | 
|  | struct vm_region *vmr; | 
|  | if ((vmr = find_vmr(p, va))) | 
|  | split_vmr(vmr, va); | 
|  | /* TODO: don't want to do another find (linear search) */ | 
|  | if ((vmr = find_vmr(p, va + len))) | 
|  | split_vmr(vmr, va + len); | 
|  | } | 
|  |  | 
|  | void unmap_and_destroy_vmrs(struct proc *p) | 
|  | { | 
|  | struct vm_region *vmr_i, *vmr_temp; | 
|  |  | 
|  | /* this only gets called from __proc_free, so there should be no sync | 
|  | * concerns.  still, better safe than sorry. */ | 
|  | spin_lock(&p->vmr_lock); | 
|  | p->vmr_history++; | 
|  | spin_lock(&p->pte_lock); | 
|  | TAILQ_FOREACH(vmr_i, &p->vm_regions, vm_link) { | 
|  | /* note this CB sets the PTE = 0, regardless of if it was P or | 
|  | * not */ | 
|  | env_user_mem_walk(p, (void*)vmr_i->vm_base, | 
|  | vmr_i->vm_end - vmr_i->vm_base, | 
|  | __vmr_free_pgs, 0); | 
|  | } | 
|  | spin_unlock(&p->pte_lock); | 
|  | /* need the safe style, since destroy_vmr modifies the list.  also, we | 
|  | * want to do this outside the pte lock, since it grabs the pm lock. */ | 
|  | TAILQ_FOREACH_SAFE(vmr_i, &p->vm_regions, vm_link, vmr_temp) | 
|  | destroy_vmr(vmr_i); | 
|  | spin_unlock(&p->vmr_lock); | 
|  | } | 
|  |  | 
|  | /* Helper: copies the contents of pages from p to new p.  For pages that aren't | 
|  | * present, once we support swapping or CoW, we can do something more | 
|  | * intelligent.  0 on success, -ERROR on failure.  Can't handle jumbos. */ | 
|  | static int copy_pages(struct proc *p, struct proc *new_p, uintptr_t va_start, | 
|  | uintptr_t va_end) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | /* Sanity checks.  If these fail, we had a screwed up VMR. | 
|  | * Check for: alignment, wraparound, or userspace addresses */ | 
|  | if ((PGOFF(va_start)) || | 
|  | (PGOFF(va_end)) || | 
|  | (va_end < va_start) ||/* now, start > UMAPTOP -> end > UMAPTOP */ | 
|  | (va_end > UMAPTOP)) { | 
|  | warn("VMR mapping is probably screwed up (%p - %p)", va_start, | 
|  | va_end); | 
|  | return -EINVAL; | 
|  | } | 
|  | int copy_page(struct proc *p, pte_t pte, void *va, void *arg) { | 
|  | struct proc *new_p = (struct proc*)arg; | 
|  | struct page *pp; | 
|  |  | 
|  | if (pte_is_unmapped(pte)) | 
|  | return 0; | 
|  | /* pages could be !P, but right now that's only for file backed | 
|  | * VMRs undergoing page removal, which isn't the caller of | 
|  | * copy_pages. */ | 
|  | if (pte_is_mapped(pte)) { | 
|  | /* TODO: check for jumbos */ | 
|  | if (upage_alloc(new_p, &pp, 0)) | 
|  | return -ENOMEM; | 
|  | memcpy(page2kva(pp), KADDR(pte_get_paddr(pte)), PGSIZE); | 
|  | if (page_insert(new_p->env_pgdir, pp, va, | 
|  | pte_get_settings(pte))) { | 
|  | page_decref(pp); | 
|  | return -ENOMEM; | 
|  | } | 
|  | } else if (pte_is_paged_out(pte)) { | 
|  | /* TODO: (SWAP) will need to either make a copy or | 
|  | * CoW/refcnt the backend store.  For now, this PTE will | 
|  | * be the same as the original PTE */ | 
|  | panic("Swapping not supported!"); | 
|  | } else { | 
|  | panic("Weird PTE %p in %s!", pte_print(pte), | 
|  | __FUNCTION__); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | spin_lock(&p->pte_lock);	/* walking and changing PTEs */ | 
|  | ret = env_user_mem_walk(p, (void*)va_start, va_end - va_start, | 
|  | ©_page, new_p); | 
|  | spin_unlock(&p->pte_lock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int fill_vmr(struct proc *p, struct proc *new_p, struct vm_region *vmr) | 
|  | { | 
|  | int ret = 0; | 
|  |  | 
|  | if (!vmr_has_file(vmr) || (vmr->vm_flags & MAP_PRIVATE)) { | 
|  | /* We don't support ANON + SHARED yet */ | 
|  | assert(!(vmr->vm_flags & MAP_SHARED)); | 
|  | ret = copy_pages(p, new_p, vmr->vm_base, vmr->vm_end); | 
|  | } else { | 
|  | /* non-private file, i.e. page cacheable.  we have to honor | 
|  | * MAP_LOCKED, (but we might be able to ignore MAP_POPULATE). */ | 
|  | if (vmr->vm_flags & MAP_LOCKED) { | 
|  | /* need to keep the file alive in case we unlock/block | 
|  | */ | 
|  | foc_incref(vmr->__vm_foc); | 
|  | /* math is a bit nasty if vm_base isn't page aligned */ | 
|  | assert(!PGOFF(vmr->vm_base)); | 
|  | ret = populate_pm_va(new_p, vmr->vm_base, | 
|  | (vmr->vm_end - vmr->vm_base) >> | 
|  | PGSHIFT, | 
|  | vmr->vm_prot, vmr_to_pm(vmr), | 
|  | vmr->vm_foff, vmr->vm_flags, | 
|  | vmr->vm_prot & PROT_EXEC); | 
|  | foc_decref(vmr->__vm_foc); | 
|  | } | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* This will make new_p have the same VMRs as p, and it will make sure all | 
|  | * physical pages are copied over, with the exception of MAP_SHARED files. | 
|  | * MAP_SHARED files that are also MAP_LOCKED will be attached to the process - | 
|  | * presumably they are in the page cache since the parent locked them.  This is | 
|  | * all pretty nasty. | 
|  | * | 
|  | * This is used by fork(). | 
|  | * | 
|  | * Note that if you are working on a VMR that is a file, you'll want to be | 
|  | * careful about how it is mapped (SHARED, PRIVATE, etc). */ | 
|  | int duplicate_vmrs(struct proc *p, struct proc *new_p) | 
|  | { | 
|  | int ret = 0; | 
|  | struct vm_region *vmr, *vm_i; | 
|  |  | 
|  | TAILQ_FOREACH(vm_i, &p->vm_regions, vm_link) { | 
|  | vmr = kmem_cache_alloc(vmr_kcache, 0); | 
|  | if (!vmr) | 
|  | return -ENOMEM; | 
|  | vmr->vm_proc = new_p; | 
|  | vmr->vm_base = vm_i->vm_base; | 
|  | vmr->vm_end = vm_i->vm_end; | 
|  | vmr->vm_prot = vm_i->vm_prot; | 
|  | vmr->vm_flags = vm_i->vm_flags; | 
|  | vmr->__vm_foc = vm_i->__vm_foc; | 
|  | vmr->vm_foff = vm_i->vm_foff; | 
|  | if (vmr_has_file(vm_i)) { | 
|  | foc_incref(vm_i->__vm_foc); | 
|  | pm_add_vmr(vmr_to_pm(vm_i), vmr); | 
|  | } | 
|  | ret = fill_vmr(p, new_p, vmr); | 
|  | if (ret) { | 
|  | if (vmr_has_file(vm_i)) { | 
|  | pm_remove_vmr(vmr_to_pm(vm_i), vmr); | 
|  | foc_decref(vm_i->__vm_foc); | 
|  | } | 
|  | vmr_free(vmr); | 
|  | return ret; | 
|  | } | 
|  | TAILQ_INSERT_TAIL(&new_p->vm_regions, vmr, vm_link); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void print_vmrs(struct proc *p) | 
|  | { | 
|  | int count = 0; | 
|  | struct vm_region *vmr; | 
|  |  | 
|  | print_lock(); | 
|  | printk("VM Regions for proc %d\n", p->pid); | 
|  | printk("NR:" | 
|  | "                                     Range:" | 
|  | "       Prot," | 
|  | "      Flags," | 
|  | "               File," | 
|  | "                Off\n"); | 
|  | TAILQ_FOREACH(vmr, &p->vm_regions, vm_link) | 
|  | printk("%02d: (%p - %p): 0x%08x, 0x%08x, %p, %p\n", count++, | 
|  | vmr->vm_base, vmr->vm_end, vmr->vm_prot, vmr->vm_flags, | 
|  | foc_pointer(vmr->__vm_foc), vmr->vm_foff); | 
|  | print_unlock(); | 
|  | } | 
|  |  | 
|  | void enumerate_vmrs(struct proc *p, void (*func)(struct vm_region *vmr, | 
|  | void *opaque), void *opaque) | 
|  | { | 
|  | struct vm_region *vmr; | 
|  |  | 
|  | spin_lock(&p->vmr_lock); | 
|  | TAILQ_FOREACH(vmr, &p->vm_regions, vm_link) | 
|  | func(vmr, opaque); | 
|  | spin_unlock(&p->vmr_lock); | 
|  | } | 
|  |  | 
|  | static bool mmap_flags_priv_ok(int flags) | 
|  | { | 
|  | return (flags & (MAP_PRIVATE | MAP_SHARED)) == MAP_PRIVATE || | 
|  | (flags & (MAP_PRIVATE | MAP_SHARED)) == MAP_SHARED; | 
|  | } | 
|  |  | 
|  | static bool prot_is_valid(int prot) | 
|  | { | 
|  | /* Remember PROT_NONE (0) is valid. */ | 
|  | return !(prot & ~PROT_VALID_PROTS); | 
|  | } | 
|  |  | 
|  | static bool prot_has_access(int prot) | 
|  | { | 
|  | return prot & (PROT_READ | PROT_WRITE | PROT_EXEC); | 
|  | } | 
|  |  | 
|  | /* Error values aren't quite comprehensive - check man mmap() once we do better | 
|  | * with the FS. | 
|  | * | 
|  | * The mmap call's offset is in units of PGSIZE (like Linux's mmap2()), but | 
|  | * internally, the offset is tracked in bytes.  The reason for the PGSIZE is for | 
|  | * 32bit apps to enumerate large files, but a full 64bit system won't need that. | 
|  | * We track things internally in bytes since that is how file pointers work, vmr | 
|  | * bases and ends, and similar math.  While it's not a hard change, there's no | 
|  | * need for it, and ideally we'll be a fully 64bit system before we deal with | 
|  | * files that large. */ | 
|  | void *mmap(struct proc *p, uintptr_t addr, size_t len, int prot, int flags, | 
|  | int fd, size_t offset) | 
|  | { | 
|  | struct file_or_chan *file = NULL; | 
|  | void *result; | 
|  |  | 
|  | offset <<= PGSHIFT; | 
|  | printd("mmap(addr %x, len %x, prot %x, flags %x, fd %x, off %x)\n", | 
|  | addr, len, prot, flags, fd, offset); | 
|  | if (!mmap_flags_priv_ok(flags)) { | 
|  | set_errno(EINVAL); | 
|  | return MAP_FAILED; | 
|  | } | 
|  | if (!prot_is_valid(prot)) { | 
|  | set_error(EINVAL, "invalid prot 0x%x (%x)", prot, | 
|  | PROT_VALID_PROTS); | 
|  | return MAP_FAILED; | 
|  | } | 
|  | if (!len) { | 
|  | set_errno(EINVAL); | 
|  | return MAP_FAILED; | 
|  | } | 
|  | if (!(flags & MAP_ANON) && (fd >= 0)) { | 
|  | file = fd_to_foc(&p->open_files, fd); | 
|  | if (!file) { | 
|  | set_errno(EBADF); | 
|  | result = MAP_FAILED; | 
|  | goto out_ref; | 
|  | } | 
|  | } | 
|  | /* Check for overflow.  This helps do_mmap and populate_va, among | 
|  | * others. */ | 
|  | if (offset + len < offset) { | 
|  | set_errno(EINVAL); | 
|  | result = MAP_FAILED; | 
|  | goto out_ref; | 
|  | } | 
|  | /* If they don't care where to put it, we'll start looking after the | 
|  | * break.  We could just have userspace handle this (in glibc's mmap), | 
|  | * so we don't need to know about BRK_END, but this will work for now | 
|  | * (and may avoid bugs).  Note that this limits mmap(0) a bit.  Keep | 
|  | * this in sync with do_mmap()'s check.  (Both are necessary).  */ | 
|  | if (addr == 0) | 
|  | addr = BRK_END; | 
|  | /* Still need to enforce this: */ | 
|  | addr = MAX(addr, MMAP_LOWEST_VA); | 
|  | /* Need to check addr + len, after we do our addr adjustments */ | 
|  | if (!__is_user_addr((void*)addr, len, UMAPTOP)) { | 
|  | set_errno(EINVAL); | 
|  | result = MAP_FAILED; | 
|  | goto out_ref; | 
|  | } | 
|  | if (PGOFF(addr)) { | 
|  | set_errno(EINVAL); | 
|  | result = MAP_FAILED; | 
|  | goto out_ref; | 
|  | } | 
|  | result = do_mmap(p, addr, len, prot, flags, file, offset); | 
|  | out_ref: | 
|  | if (file) | 
|  | foc_decref(file); | 
|  | return result; | 
|  | } | 
|  |  | 
|  | /* Helper, maps in page at addr, but only if nothing is mapped there.  Returns | 
|  | * 0 on success.  Will take ownership of non-pagemap pages, including on error | 
|  | * cases.  This just means we free it on error, and notionally store it in the | 
|  | * PTE on success, which will get freed later. | 
|  | * | 
|  | * It's possible that a page has already been mapped here, in which case we'll | 
|  | * treat as success.  So when we return 0, *a* page is mapped here, but not | 
|  | * necessarily the one you passed in. */ | 
|  | static int map_page_at_addr(struct proc *p, struct page *page, uintptr_t addr, | 
|  | int pte_prot) | 
|  | { | 
|  | pte_t pte; | 
|  |  | 
|  | spin_lock(&p->pte_lock);	/* walking and changing PTEs */ | 
|  | /* find offending PTE (prob don't read this in).  This might alloc an | 
|  | * intermediate page table page. */ | 
|  | pte = pgdir_walk(p->env_pgdir, (void*)addr, TRUE); | 
|  | if (!pte_walk_okay(pte)) { | 
|  | spin_unlock(&p->pte_lock); | 
|  | if (!page_is_pagemap(page)) | 
|  | page_decref(page); | 
|  | return -ENOMEM; | 
|  | } | 
|  | /* a spurious, valid PF is possible due to a legit race: the page might | 
|  | * have been faulted in by another core already (and raced on the memory | 
|  | * lock), in which case we should just return. */ | 
|  | if (pte_is_present(pte)) { | 
|  | spin_unlock(&p->pte_lock); | 
|  | if (!page_is_pagemap(page)) | 
|  | page_decref(page); | 
|  | return 0; | 
|  | } | 
|  | /* I used to allow clobbering an old entry (contrary to the | 
|  | * documentation), but it's probably a sign of another bug. */ | 
|  | assert(!pte_is_mapped(pte)); | 
|  | /* preserve the dirty bit - pm removal could be looking concurrently */ | 
|  | pte_prot |= (pte_is_dirty(pte) ? PTE_D : 0); | 
|  | /* We have a ref to page (for non PMs), which we are storing in the PTE | 
|  | */ | 
|  | pte_write(pte, page2pa(page), pte_prot); | 
|  | spin_unlock(&p->pte_lock); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Helper: copies *pp's contents to a new page, replacing your page pointer.  If | 
|  | * this succeeds, you'll have a non-PM page, which matters for how you put it.*/ | 
|  | static int __copy_and_swap_pmpg(struct proc *p, struct page **pp) | 
|  | { | 
|  | struct page *new_page, *old_page = *pp; | 
|  |  | 
|  | if (upage_alloc(p, &new_page, FALSE)) | 
|  | return -ENOMEM; | 
|  | memcpy(page2kva(new_page), page2kva(old_page), PGSIZE); | 
|  | pm_put_page(old_page); | 
|  | *pp = new_page; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Hold the VMR lock when you call this - it'll assume the entire VA range is | 
|  | * mappable, which isn't true if there are concurrent changes to the VMRs. */ | 
|  | static int populate_anon_va(struct proc *p, uintptr_t va, unsigned long nr_pgs, | 
|  | int pte_prot) | 
|  | { | 
|  | struct page *page; | 
|  | int ret; | 
|  |  | 
|  | for (long i = 0; i < nr_pgs; i++) { | 
|  | if (upage_alloc(p, &page, TRUE)) | 
|  | return -ENOMEM; | 
|  | /* could imagine doing a memwalk instead of a for loop */ | 
|  | ret = map_page_at_addr(p, page, va + i * PGSIZE, pte_prot); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* This will periodically unlock the vmr lock. */ | 
|  | static int populate_pm_va(struct proc *p, uintptr_t va, unsigned long nr_pgs, | 
|  | int pte_prot, struct page_map *pm, size_t offset, | 
|  | int flags, bool exec) | 
|  | { | 
|  | int ret = 0; | 
|  | unsigned long pm_idx0 = offset >> PGSHIFT; | 
|  | int vmr_history = ACCESS_ONCE(p->vmr_history); | 
|  | struct page *page; | 
|  |  | 
|  | /* This is a racy check - see the comments in fs_file.c.  Also, we're | 
|  | * not even attempting to populate the va, though we could do a partial | 
|  | * if necessary. */ | 
|  | if (pm_idx0 + nr_pgs > nr_pages(fs_file_get_length(pm->pm_file))) | 
|  | return -ESPIPE; | 
|  | /* locking rules: start the loop holding the vmr lock, enter and exit | 
|  | * the entire func holding the lock. */ | 
|  | for (long i = 0; i < nr_pgs; i++) { | 
|  | ret = pm_load_page_nowait(pm, pm_idx0 + i, &page); | 
|  | if (ret) { | 
|  | if (ret != -EAGAIN) | 
|  | break; | 
|  | spin_unlock(&p->vmr_lock); | 
|  | /* might block here, can't hold the spinlock */ | 
|  | ret = pm_load_page(pm, pm_idx0 + i, &page); | 
|  | spin_lock(&p->vmr_lock); | 
|  | if (ret) | 
|  | break; | 
|  | /* while we were sleeping, the VMRs could have changed | 
|  | * on us. */ | 
|  | if (vmr_history != ACCESS_ONCE(p->vmr_history)) { | 
|  | pm_put_page(page); | 
|  | printk("[kernel] " | 
|  | "FYI: VMR changed during populate\n"); | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (flags & MAP_PRIVATE) { | 
|  | ret = __copy_and_swap_pmpg(p, &page); | 
|  | if (ret) { | 
|  | pm_put_page(page); | 
|  | break; | 
|  | } | 
|  | } | 
|  | /* if this is an executable page, we might have to flush the | 
|  | * instruction cache if our HW requires it. | 
|  | * TODO: is this still needed?  andrew put this in a while ago*/ | 
|  | if (exec) | 
|  | icache_flush_page(0, page2kva(page)); | 
|  | /* The page could be either in the PM, or a private, now-anon | 
|  | * page. */ | 
|  | ret = map_page_at_addr(p, page, va + i * PGSIZE, pte_prot); | 
|  | if (page_is_pagemap(page)) | 
|  | pm_put_page(page); | 
|  | if (ret) | 
|  | break; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void *do_mmap(struct proc *p, uintptr_t addr, size_t len, int prot, int flags, | 
|  | struct file_or_chan *file, size_t offset) | 
|  | { | 
|  | len = ROUNDUP(len, PGSIZE); | 
|  | struct vm_region *vmr, *vmr_temp; | 
|  |  | 
|  | assert(mmap_flags_priv_ok(flags)); | 
|  | assert(prot_is_valid(prot)); | 
|  |  | 
|  | vmr = vmr_zalloc(); | 
|  |  | 
|  | /* Sanity check, for callers that bypass mmap().  We want addr for anon | 
|  | * memory to start above the break limit (BRK_END), but not 0.  Keep | 
|  | * this in sync with BRK_END in mmap(). */ | 
|  | if (addr == 0) | 
|  | addr = BRK_END; | 
|  | assert(!PGOFF(offset)); | 
|  | /* MCPs will need their code and data pinned.  This check will start to | 
|  | * fail after uthread_slim_init(), at which point userspace should have | 
|  | * enough control over its mmaps (i.e. no longer done by LD or load_elf) | 
|  | * that it can ask for pinned and populated pages.  Except for | 
|  | * dl_opens(). */ | 
|  | struct preempt_data *vcpd = &p->procdata->vcore_preempt_data[0]; | 
|  |  | 
|  | if (file && (atomic_read(&vcpd->flags) & VC_SCP_NOVCCTX)) | 
|  | flags |= MAP_POPULATE | MAP_LOCKED; | 
|  | vmr->vm_prot = prot; | 
|  | vmr->vm_foff = offset; | 
|  | vmr->vm_flags = flags & MAP_PERSIST_FLAGS; | 
|  | /* We grab the file early, so we can block.  This is all hokey.  The VMR | 
|  | * isn't ready yet, so the PM code will ignore it. */ | 
|  | if (file) { | 
|  | /* Prep the FS and make sure it can mmap the file.  The | 
|  | * device/FS checks perms, and does whatever else it needs to | 
|  | * make the mmap work. */ | 
|  | if (foc_dev_mmap(file, vmr, prot, flags & MAP_PERSIST_FLAGS)) { | 
|  | vmr_free(vmr); | 
|  | set_errno(EACCES);	/* not quite */ | 
|  | return MAP_FAILED; | 
|  | } | 
|  | /* TODO: push the PM stuff into the chan/fs_file. */ | 
|  | pm_add_vmr(foc_to_pm(file), vmr); | 
|  | foc_incref(file); | 
|  | vmr->__vm_foc = file; | 
|  | /* TODO: consider locking the file while checking (not as | 
|  | * manadatory as in handle_page_fault() */ | 
|  | if (nr_pages(offset + len) > nr_pages(foc_get_len(file))) { | 
|  | /* We're allowing them to set up the VMR, though if they | 
|  | * attempt to fault in any pages beyond the file's | 
|  | * limit, they'll fail.  Since they might not access the | 
|  | * region, we need to make sure POPULATE is off.  FYI, | 
|  | * 64 bit glibc shared libs map in an extra 2MB of | 
|  | * unaligned space between their RO and RW sections, but | 
|  | * then immediately mprotect it to PROT_NONE. */ | 
|  | flags &= ~MAP_POPULATE; | 
|  | } | 
|  | } | 
|  | /* read/write vmr lock (will change the tree) */ | 
|  | spin_lock(&p->vmr_lock); | 
|  | p->vmr_history++; | 
|  | /* Need to make sure nothing is in our way when we want a FIXED | 
|  | * location.  We just need to split on the end points (if they exist), | 
|  | * and then remove everything in between.  __do_munmap() will do this. | 
|  | * Careful, this means an mmap can be an implied munmap() (not my | 
|  | * call...). */ | 
|  | if (flags & MAP_FIXED) | 
|  | __do_munmap(p, addr, len); | 
|  | if (!vmr_insert(vmr, p, addr, len)) { | 
|  | spin_unlock(&p->vmr_lock); | 
|  | if (vmr_has_file(vmr)) { | 
|  | pm_remove_vmr(vmr_to_pm(vmr), vmr); | 
|  | foc_decref(vmr->__vm_foc); | 
|  | } | 
|  | vmr_free(vmr); | 
|  | set_error(ENOMEM, "probably tried to mmap beyond UMAPTOP"); | 
|  | /* Slightly weird semantics: if we fail and had munmapped the | 
|  | * space, they will have a hole in their VM now. */ | 
|  | return MAP_FAILED; | 
|  | } | 
|  | addr = vmr->vm_base; | 
|  | vmr->vm_ready = true; | 
|  |  | 
|  | vmr = merge_me(vmr);		/* attempts to merge with neighbors */ | 
|  |  | 
|  | if (flags & MAP_POPULATE && prot_has_access(prot)) { | 
|  | int pte_prot = (prot & PROT_WRITE) ? PTE_USER_RW : | 
|  | (prot & (PROT_READ|PROT_EXEC)) ? PTE_USER_RO : 0; | 
|  | unsigned long nr_pgs = len >> PGSHIFT; | 
|  | int ret = 0; | 
|  | if (!file) { | 
|  | ret = populate_anon_va(p, addr, nr_pgs, pte_prot); | 
|  | } else { | 
|  | /* Note: this will unlock if it blocks.  our refcnt on | 
|  | * the file keeps the pm alive when we unlock */ | 
|  | ret = populate_pm_va(p, addr, nr_pgs, pte_prot, | 
|  | foc_to_pm(file), offset, flags, | 
|  | prot & PROT_EXEC); | 
|  | } | 
|  | if (ret == -ENOMEM) { | 
|  | spin_unlock(&p->vmr_lock); | 
|  | printk("[kernel] ENOMEM, killing %d\n", p->pid); | 
|  | proc_destroy(p); | 
|  | /* this will never make it back to userspace */ | 
|  | return MAP_FAILED; | 
|  | } | 
|  | } | 
|  | spin_unlock(&p->vmr_lock); | 
|  |  | 
|  | profiler_notify_mmap(p, addr, len, prot, flags, file, offset); | 
|  |  | 
|  | return (void*)addr; | 
|  | } | 
|  |  | 
|  | int mprotect(struct proc *p, uintptr_t addr, size_t len, int prot) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | printd("mprotect: (addr %p, len %p, prot 0x%x)\n", addr, len, prot); | 
|  | if (!prot_is_valid(prot)) { | 
|  | set_error(EINVAL, "invalid prot 0x%x (%x)", prot, | 
|  | PROT_VALID_PROTS); | 
|  | return -1; | 
|  | } | 
|  | if (!len) | 
|  | return 0; | 
|  | len = ROUNDUP(len, PGSIZE); | 
|  | if (PGOFF(addr)) { | 
|  | set_errno(EINVAL); | 
|  | return -1; | 
|  | } | 
|  | if (!__is_user_addr((void*)addr, len, UMAPTOP)) { | 
|  | set_errno(ENOMEM); | 
|  | return -1; | 
|  | } | 
|  | /* read/write lock, will probably change the tree and settings */ | 
|  | spin_lock(&p->vmr_lock); | 
|  | p->vmr_history++; | 
|  | ret = __do_mprotect(p, addr, len, prot); | 
|  | spin_unlock(&p->vmr_lock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* This does not care if the region is not mapped.  POSIX says you should return | 
|  | * ENOMEM if any part of it is unmapped.  Can do this later if we care, based on | 
|  | * the VMRs, not the actual page residency. */ | 
|  | int __do_mprotect(struct proc *p, uintptr_t addr, size_t len, int prot) | 
|  | { | 
|  | struct vm_region *vmr, *next_vmr; | 
|  | pte_t pte; | 
|  | bool shootdown_needed = FALSE; | 
|  | bool file_access_failure = FALSE; | 
|  | int pte_prot = (prot & PROT_WRITE) ? PTE_USER_RW : | 
|  | (prot & (PROT_READ|PROT_EXEC)) ? PTE_USER_RO : PTE_NONE; | 
|  |  | 
|  | assert(prot_is_valid(prot)); | 
|  | /* TODO: this is aggressively splitting, when we might not need to if | 
|  | * the prots are the same as the previous.  Plus, there are three | 
|  | * excessive scans. */ | 
|  | isolate_vmrs(p, addr, len); | 
|  | vmr = find_first_vmr(p, addr); | 
|  | while (vmr && vmr->vm_base < addr + len) { | 
|  | if (vmr->vm_prot == prot) | 
|  | goto next_vmr; | 
|  | if (vmr_has_file(vmr) && | 
|  | !check_foc_perms(vmr, vmr->__vm_foc, prot)) { | 
|  | file_access_failure = TRUE; | 
|  | goto next_vmr; | 
|  | } | 
|  | vmr->vm_prot = prot; | 
|  | spin_lock(&p->pte_lock);	/* walking and changing PTEs */ | 
|  | /* TODO: use a memwalk.  At a minimum, we need to change every | 
|  | * existing PTE that won't trigger a PF (meaning, present PTEs) | 
|  | * to have the new prot.  The others will fault on access, and | 
|  | * we'll change the PTE then.  In the off chance we have a | 
|  | * mapped but not present PTE, we might as well change it too, | 
|  | * since we're already here. */ | 
|  | for (uintptr_t va = vmr->vm_base; va < vmr->vm_end; | 
|  | va += PGSIZE) { | 
|  | pte = pgdir_walk(p->env_pgdir, (void*)va, 0); | 
|  | if (pte_walk_okay(pte) && pte_is_mapped(pte)) { | 
|  | pte_replace_perm(pte, pte_prot); | 
|  | shootdown_needed = TRUE; | 
|  | } | 
|  | } | 
|  | spin_unlock(&p->pte_lock); | 
|  | next_vmr: | 
|  | /* Note that this merger could cause us to not look at the next | 
|  | * one, since we merged with it.  That's ok, since in that case, | 
|  | * the next one already has the right prots.  Also note that | 
|  | * every VMR in the region, including the ones at the endpoints, | 
|  | * attempted to merge left and right. */ | 
|  | vmr = merge_me(vmr); | 
|  | next_vmr = TAILQ_NEXT(vmr, vm_link); | 
|  | vmr = next_vmr; | 
|  | } | 
|  | if (shootdown_needed) | 
|  | proc_tlbshootdown(p, addr, addr + len); | 
|  | if (file_access_failure) { | 
|  | set_errno(EACCES); | 
|  | return -1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int munmap(struct proc *p, uintptr_t addr, size_t len) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | printd("munmap(addr %x, len %x)\n", addr, len); | 
|  | if (!len) | 
|  | return 0; | 
|  | len = ROUNDUP(len, PGSIZE); | 
|  | if (PGOFF(addr)) { | 
|  | set_errno(EINVAL); | 
|  | return -1; | 
|  | } | 
|  | if (!__is_user_addr((void*)addr, len, UMAPTOP)) { | 
|  | set_errno(EINVAL); | 
|  | return -1; | 
|  | } | 
|  | /* read/write: changing the vmrs (trees, properties, and whatnot) */ | 
|  | spin_lock(&p->vmr_lock); | 
|  | p->vmr_history++; | 
|  | ret = __do_munmap(p, addr, len); | 
|  | spin_unlock(&p->vmr_lock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int __munmap_pte(struct proc *p, pte_t pte, void *va, void *arg) | 
|  | { | 
|  | bool *shootdown_needed = (bool*)arg; | 
|  | struct page *page; | 
|  |  | 
|  | /* could put in some checks here for !P and also !0 */ | 
|  | if (!pte_is_present(pte)) /* unmapped (== 0) *ptes are also not PTE_P */ | 
|  | return 0; | 
|  | if (pte_is_dirty(pte)) { | 
|  | page = pa2page(pte_get_paddr(pte)); | 
|  | atomic_or(&page->pg_flags, PG_DIRTY); | 
|  | } | 
|  | pte_clear_present(pte); | 
|  | *shootdown_needed = TRUE; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* If our page is actually in the PM, we don't do anything.  All a page map | 
|  | * really needs is for our VMR to no longer track it (vmr being in the pm's | 
|  | * list) and to not point at its pages (mark it 0, dude). | 
|  | * | 
|  | * But private mappings mess with that a bit.  Luckily, we can tell by looking | 
|  | * at a page whether the specific page is in the PM or not.  If it isn't, we | 
|  | * still need to free our "VMR local" copy. | 
|  | * | 
|  | * For pages in a PM, we're racing with PM removers.  Both of us sync with the | 
|  | * mm lock, so once we hold the lock, it's a matter of whether or not the PTE is | 
|  | * 0 or not.  If it isn't, then we're still okay to look at the page.  Consider | 
|  | * the PTE a weak ref on the page.  So long as you hold the mm lock, you can | 
|  | * look at the PTE and know the page isn't being freed. */ | 
|  | static int __vmr_free_pgs(struct proc *p, pte_t pte, void *va, void *arg) | 
|  | { | 
|  | struct page *page; | 
|  | if (pte_is_unmapped(pte)) | 
|  | return 0; | 
|  | page = pa2page(pte_get_paddr(pte)); | 
|  | pte_clear(pte); | 
|  | if (!page_is_pagemap(page)) | 
|  | page_decref(page); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int __do_munmap(struct proc *p, uintptr_t addr, size_t len) | 
|  | { | 
|  | struct vm_region *vmr, *next_vmr, *first_vmr; | 
|  | bool shootdown_needed = FALSE; | 
|  |  | 
|  | /* TODO: this will be a bit slow, since we end up doing three linear | 
|  | * searches (two in isolate, one in find_first). */ | 
|  | isolate_vmrs(p, addr, len); | 
|  | first_vmr = find_first_vmr(p, addr); | 
|  | vmr = first_vmr; | 
|  | spin_lock(&p->pte_lock);	/* changing PTEs */ | 
|  | while (vmr && vmr->vm_base < addr + len) { | 
|  | /* It's important that we call __munmap_pte and sync the | 
|  | * PG_DIRTY bit before we unhook the VMR from the PM (in | 
|  | * destroy_vmr). */ | 
|  | env_user_mem_walk(p, (void*)vmr->vm_base, | 
|  | vmr->vm_end - vmr->vm_base, __munmap_pte, | 
|  | &shootdown_needed); | 
|  | vmr = TAILQ_NEXT(vmr, vm_link); | 
|  | } | 
|  | spin_unlock(&p->pte_lock); | 
|  | /* we haven't freed the pages yet; still using the PTEs to store the | 
|  | * them.  There should be no races with inserts/faults, since we still | 
|  | * hold the mm lock since the previous CB. */ | 
|  | if (shootdown_needed) | 
|  | proc_tlbshootdown(p, addr, addr + len); | 
|  | vmr = first_vmr; | 
|  | while (vmr && vmr->vm_base < addr + len) { | 
|  | /* there is rarely more than one VMR in this loop.  o/w, we'll | 
|  | * need to gather up the vmrs and destroy outside the pte_lock. | 
|  | */ | 
|  | spin_lock(&p->pte_lock);	/* changing PTEs */ | 
|  | env_user_mem_walk(p, (void*)vmr->vm_base, | 
|  | vmr->vm_end - vmr->vm_base, __vmr_free_pgs, | 
|  | 0); | 
|  | spin_unlock(&p->pte_lock); | 
|  | next_vmr = TAILQ_NEXT(vmr, vm_link); | 
|  | destroy_vmr(vmr); | 
|  | vmr = next_vmr; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Helper - drop the page differently based on where it is from */ | 
|  | static void __put_page(struct page *page) | 
|  | { | 
|  | if (page_is_pagemap(page)) | 
|  | pm_put_page(page); | 
|  | else | 
|  | page_decref(page); | 
|  | } | 
|  |  | 
|  | static int __hpf_load_page(struct proc *p, struct page_map *pm, | 
|  | unsigned long idx, struct page **page, bool first) | 
|  | { | 
|  | int ret = 0; | 
|  | int coreid = core_id(); | 
|  | struct per_cpu_info *pcpui = &per_cpu_info[coreid]; | 
|  | bool wake_scp = FALSE; | 
|  | spin_lock(&p->proc_lock); | 
|  | switch (p->state) { | 
|  | case (PROC_RUNNING_S): | 
|  | wake_scp = TRUE; | 
|  | __proc_set_state(p, PROC_WAITING); | 
|  | /* it's possible for HPF to loop a few times; we can only save | 
|  | * the first time, o/w we could clobber. */ | 
|  | if (first) { | 
|  | __proc_save_context_s(p); | 
|  | __proc_save_fpu_s(p); | 
|  | /* We clear the owner, since userspace doesn't run here | 
|  | * anymore, but we won't abandon since the fault handler | 
|  | * still runs in our process. */ | 
|  | clear_owning_proc(coreid); | 
|  | } | 
|  | /* other notes: we don't currently need to tell the ksched | 
|  | * we switched from running to waiting, though we probably | 
|  | * will later for more generic scheds. */ | 
|  | break; | 
|  | case (PROC_RUNNABLE_M): | 
|  | case (PROC_RUNNING_M): | 
|  | spin_unlock(&p->proc_lock); | 
|  | return -EAGAIN;	/* will get reflected back to userspace */ | 
|  | case (PROC_DYING): | 
|  | case (PROC_DYING_ABORT): | 
|  | spin_unlock(&p->proc_lock); | 
|  | return -EINVAL; | 
|  | default: | 
|  | /* shouldn't have any waitings, under the current yield style. | 
|  | * if this becomes an issue, we can branch on is_mcp(). */ | 
|  | printk("HPF unexpectecd state(%s)", procstate2str(p->state)); | 
|  | spin_unlock(&p->proc_lock); | 
|  | return -EINVAL; | 
|  | } | 
|  | spin_unlock(&p->proc_lock); | 
|  | ret = pm_load_page(pm, idx, page); | 
|  | if (wake_scp) | 
|  | proc_wakeup(p); | 
|  | if (ret) { | 
|  | printk("load failed with ret %d\n", ret); | 
|  | return ret; | 
|  | } | 
|  | /* need to put our old ref, next time around HPF will get another. */ | 
|  | pm_put_page(*page); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Returns 0 on success, or an appropriate -error code. | 
|  | * | 
|  | * Notes: if your TLB caches negative results, you'll need to flush the | 
|  | * appropriate tlb entry.  Also, you could have a weird race where a present PTE | 
|  | * faulted for a different reason (was mprotected on another core), and the | 
|  | * shootdown is on its way.  Userspace should have waited for the mprotect to | 
|  | * return before trying to write (or whatever), so we don't care and will fault | 
|  | * them. */ | 
|  | static int __hpf(struct proc *p, uintptr_t va, int prot, bool file_ok) | 
|  | { | 
|  | struct vm_region *vmr; | 
|  | struct file_or_chan *file; | 
|  | struct page *a_page; | 
|  | unsigned int f_idx;	/* index of the missing page in the file */ | 
|  | int ret = 0; | 
|  | bool first = TRUE; | 
|  | va = ROUNDDOWN(va,PGSIZE); | 
|  |  | 
|  | refault: | 
|  | /* read access to the VMRs TODO: RCU */ | 
|  | spin_lock(&p->vmr_lock); | 
|  | /* Check the vmr's protection */ | 
|  | vmr = find_vmr(p, va); | 
|  | if (!vmr) {			/* not mapped at all */ | 
|  | printd("fault: %p not mapped\n", va); | 
|  | ret = -EFAULT; | 
|  | goto out; | 
|  | } | 
|  | if (!(vmr->vm_prot & prot)) {	/* wrong prots for this vmr */ | 
|  | ret = -EPERM; | 
|  | goto out; | 
|  | } | 
|  | if (!vmr_has_file(vmr)) { | 
|  | /* No file - just want anonymous memory */ | 
|  | if (upage_alloc(p, &a_page, TRUE)) { | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  | } else { | 
|  | if (!file_ok) { | 
|  | ret = -EACCES; | 
|  | goto out; | 
|  | } | 
|  | file = vmr->__vm_foc; | 
|  | /* If this fails, either something got screwed up with the VMR, | 
|  | * or the permissions changed after mmap/mprotect.  Either way, | 
|  | * I want to know (though it's not critical). */ | 
|  | if (!check_foc_perms(vmr, file, prot)) | 
|  | printk("[kernel] " | 
|  | "possible issue with VMR prots on file %s!\n", | 
|  | foc_to_name(file)); | 
|  | /* Load the file's page in the page cache. | 
|  | * TODO: (BLK) Note, we are holding the mem lock!  We need to | 
|  | * rewrite this stuff so we aren't hold the lock as excessively | 
|  | * as we are, and such that we can block and resume later. */ | 
|  | assert(!PGOFF(va - vmr->vm_base + vmr->vm_foff)); | 
|  | f_idx = (va - vmr->vm_base + vmr->vm_foff) >> PGSHIFT; | 
|  | /* This is a racy check - see the comments in fs_file.c */ | 
|  | if (f_idx + 1 > nr_pages(foc_get_len(file))) { | 
|  | ret = -ESPIPE; /* linux sends a SIGBUS at access time */ | 
|  | goto out; | 
|  | } | 
|  | ret = pm_load_page_nowait(foc_to_pm(file), f_idx, &a_page); | 
|  | if (ret) { | 
|  | if (ret != -EAGAIN) | 
|  | goto out; | 
|  | /* keep the file alive after we unlock */ | 
|  | foc_incref(file); | 
|  | spin_unlock(&p->vmr_lock); | 
|  | ret = __hpf_load_page(p, foc_to_pm(file), f_idx, | 
|  | &a_page, first); | 
|  | first = FALSE; | 
|  | foc_decref(file); | 
|  | if (ret) | 
|  | return ret; | 
|  | goto refault; | 
|  | } | 
|  | /* If we want a private map, we'll preemptively give you a new | 
|  | * page.  We used to just care if it was private and writable, | 
|  | * but were running into issues with libc changing its mapping | 
|  | * (map private, then mprotect to writable...)  In the future, | 
|  | * we want to CoW this anyway, so it's not a big deal. */ | 
|  | if ((vmr->vm_flags & MAP_PRIVATE)) { | 
|  | ret = __copy_and_swap_pmpg(p, &a_page); | 
|  | if (ret) | 
|  | goto out_put_pg; | 
|  | } | 
|  | /* if this is an executable page, we might have to flush the | 
|  | * instruction cache if our HW requires it. */ | 
|  | if (vmr->vm_prot & PROT_EXEC) | 
|  | icache_flush_page((void*)va, page2kva(a_page)); | 
|  | } | 
|  | /* update the page table TODO: careful with MAP_PRIVATE etc.  might do | 
|  | * this separately (file, no file) */ | 
|  | int pte_prot = (vmr->vm_prot & PROT_WRITE) ? PTE_USER_RW : | 
|  | (vmr->vm_prot & (PROT_READ|PROT_EXEC)) ? PTE_USER_RO : 0; | 
|  | ret = map_page_at_addr(p, a_page, va, pte_prot); | 
|  | /* fall through, even for errors */ | 
|  | out_put_pg: | 
|  | /* the VMR's existence in the PM (via the mmap) allows us to have PTE | 
|  | * point to a_page without it magically being reallocated.  For non-PM | 
|  | * memory (anon memory or private pages) we transferred the ref to the | 
|  | * PTE. */ | 
|  | if (page_is_pagemap(a_page)) | 
|  | pm_put_page(a_page); | 
|  | out: | 
|  | spin_unlock(&p->vmr_lock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int handle_page_fault(struct proc *p, uintptr_t va, int prot) | 
|  | { | 
|  | return __hpf(p, va, prot, TRUE); | 
|  | } | 
|  |  | 
|  | int handle_page_fault_nofile(struct proc *p, uintptr_t va, int prot) | 
|  | { | 
|  | return __hpf(p, va, prot, FALSE); | 
|  | } | 
|  |  | 
|  | /* Attempts to populate the pages, as if there was a page faults.  Bails on | 
|  | * errors, and returns the number of pages populated.  */ | 
|  | unsigned long populate_va(struct proc *p, uintptr_t va, unsigned long nr_pgs) | 
|  | { | 
|  | struct vm_region *vmr, vmr_copy; | 
|  | struct file_or_chan *file; | 
|  | unsigned long nr_pgs_this_vmr; | 
|  | unsigned long nr_filled = 0; | 
|  | struct page *page; | 
|  | int pte_prot; | 
|  | int ret; | 
|  |  | 
|  | /* we can screw around with ways to limit the find_vmr calls (can do the | 
|  | * next in line if we didn't unlock, etc., but i don't expect us to do | 
|  | * this for more than a single VMR in most cases. */ | 
|  | spin_lock(&p->vmr_lock); | 
|  | while (nr_pgs) { | 
|  | vmr = find_vmr(p, va); | 
|  | if (!vmr) | 
|  | break; | 
|  | if (!prot_has_access(vmr->vm_prot)) | 
|  | break; | 
|  | pte_prot = (vmr->vm_prot & PROT_WRITE) ? PTE_USER_RW : | 
|  | (vmr->vm_prot & (PROT_READ|PROT_EXEC)) ? PTE_USER_RO | 
|  | : 0; | 
|  | nr_pgs_this_vmr = MIN(nr_pgs, (vmr->vm_end - va) >> PGSHIFT); | 
|  | if (!vmr_has_file(vmr)) { | 
|  | if (populate_anon_va(p, va, nr_pgs_this_vmr, pte_prot)) | 
|  | { | 
|  | /* on any error, we can just bail.  we might be | 
|  | * underestimating nr_filled. */ | 
|  | break; | 
|  | } | 
|  | } else { | 
|  | file = vmr->__vm_foc; | 
|  | /* need to keep the file alive in case we unlock/block | 
|  | */ | 
|  | foc_incref(file); | 
|  | /* Regarding foff + (va - base): va - base < len, and | 
|  | * foff + len does not over flow */ | 
|  | ret = populate_pm_va(p, va, nr_pgs_this_vmr, pte_prot, | 
|  | foc_to_pm(file), | 
|  | vmr->vm_foff + (va - vmr->vm_base), | 
|  | vmr->vm_flags, | 
|  | vmr->vm_prot & PROT_EXEC); | 
|  | foc_decref(file); | 
|  | if (ret) { | 
|  | /* we might have failed if the underlying file | 
|  | * doesn't cover the mmap window, depending on | 
|  | * how we'll deal with truncation. */ | 
|  | break; | 
|  | } | 
|  | } | 
|  | nr_filled += nr_pgs_this_vmr; | 
|  | va += nr_pgs_this_vmr << PGSHIFT; | 
|  | nr_pgs -= nr_pgs_this_vmr; | 
|  | } | 
|  | spin_unlock(&p->vmr_lock); | 
|  | return nr_filled; | 
|  | } | 
|  |  | 
|  | /* Kernel Dynamic Memory Mappings */ | 
|  |  | 
|  | static struct arena *vmap_addr_arena; | 
|  | struct arena *vmap_arena; | 
|  | static spinlock_t vmap_lock = SPINLOCK_INITIALIZER; | 
|  | struct vmap_free_tracker { | 
|  | void				*addr; | 
|  | size_t				nr_bytes; | 
|  | }; | 
|  | static struct vmap_free_tracker *vmap_to_free; | 
|  | static size_t vmap_nr_to_free; | 
|  | /* This value tunes the ratio of global TLB shootdowns to __vmap_free()s. */ | 
|  | #define VMAP_MAX_TO_FREE 1000 | 
|  |  | 
|  | /* We don't immediately return the addrs to their source (vmap_addr_arena). | 
|  | * Instead, we hold on to them until we have a suitable amount, then free them | 
|  | * in a batch.  This amoritizes the cost of the TLB global shootdown.  We can | 
|  | * explore other tricks in the future too (like RCU for a certain index in the | 
|  | * vmap_to_free array). */ | 
|  | static void __vmap_free(struct arena *source, void *obj, size_t size) | 
|  | { | 
|  | struct vmap_free_tracker *vft; | 
|  |  | 
|  | spin_lock(&vmap_lock); | 
|  | /* All objs get *unmapped* immediately, but we'll shootdown later.  Note | 
|  | * that it is OK (but slightly dangerous) for the kernel to reuse the | 
|  | * paddrs pointed to by the vaddrs before a TLB shootdown. */ | 
|  | unmap_segment(boot_pgdir, (uintptr_t)obj, size); | 
|  | if (vmap_nr_to_free < VMAP_MAX_TO_FREE) { | 
|  | vft = &vmap_to_free[vmap_nr_to_free++]; | 
|  | vft->addr = obj; | 
|  | vft->nr_bytes = size; | 
|  | spin_unlock(&vmap_lock); | 
|  | return; | 
|  | } | 
|  | tlb_shootdown_global(); | 
|  | for (int i = 0; i < vmap_nr_to_free; i++) { | 
|  | vft = &vmap_to_free[i]; | 
|  | arena_free(source, vft->addr, vft->nr_bytes); | 
|  | } | 
|  | /* don't forget to free the one passed in */ | 
|  | arena_free(source, obj, size); | 
|  | vmap_nr_to_free = 0; | 
|  | spin_unlock(&vmap_lock); | 
|  | } | 
|  |  | 
|  | void vmap_init(void) | 
|  | { | 
|  | vmap_addr_arena = arena_create("vmap_addr", (void*)KERN_DYN_BOT, | 
|  | KERN_DYN_TOP - KERN_DYN_BOT, | 
|  | PGSIZE, NULL, NULL, NULL, 0, MEM_WAIT); | 
|  | vmap_arena = arena_create("vmap", NULL, 0, PGSIZE, arena_alloc, | 
|  | __vmap_free, vmap_addr_arena, 0, MEM_WAIT); | 
|  | vmap_to_free = kmalloc(sizeof(struct vmap_free_tracker) | 
|  | * VMAP_MAX_TO_FREE, MEM_WAIT); | 
|  | /* This ensures the boot_pgdir's top-most PML (PML4) has entries | 
|  | * pointing to PML3s that cover the dynamic mapping range.  Now, it's | 
|  | * safe to create processes that copy from boot_pgdir and still | 
|  | * dynamically change the kernel mappings. */ | 
|  | arch_add_intermediate_pts(boot_pgdir, KERN_DYN_BOT, | 
|  | KERN_DYN_TOP - KERN_DYN_BOT); | 
|  | } | 
|  |  | 
|  | uintptr_t get_vmap_segment(size_t nr_bytes) | 
|  | { | 
|  | uintptr_t ret; | 
|  |  | 
|  | ret = (uintptr_t)arena_alloc(vmap_arena, nr_bytes, MEM_ATOMIC); | 
|  | assert(ret); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void put_vmap_segment(uintptr_t vaddr, size_t nr_bytes) | 
|  | { | 
|  | arena_free(vmap_arena, (void*)vaddr, nr_bytes); | 
|  | } | 
|  |  | 
|  | /* Map a virtual address chunk to physical addresses.  Make sure you got a vmap | 
|  | * segment before actually trying to do the mapping. | 
|  | * | 
|  | * Careful with more than one 'page', since it will assume your physical pages | 
|  | * are also contiguous.  Most callers will only use one page. | 
|  | * | 
|  | * Finally, note that this does not care whether or not there are real pages | 
|  | * being mapped, and will not attempt to incref your page (if there is such a | 
|  | * thing).  Handle your own refcnting for pages. */ | 
|  | int map_vmap_segment(uintptr_t vaddr, uintptr_t paddr, unsigned long num_pages, | 
|  | int perm) | 
|  | { | 
|  | #ifdef CONFIG_X86 | 
|  | perm |= PTE_G; | 
|  | #endif | 
|  | spin_lock(&vmap_lock); | 
|  | map_segment(boot_pgdir, vaddr, num_pages * PGSIZE, paddr, perm, | 
|  | arch_max_jumbo_page_shift()); | 
|  | spin_unlock(&vmap_lock); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* This can handle unaligned paddrs */ | 
|  | static uintptr_t vmap_pmem_flags(uintptr_t paddr, size_t nr_bytes, int flags) | 
|  | { | 
|  | uintptr_t vaddr; | 
|  | unsigned long nr_pages; | 
|  |  | 
|  | assert(nr_bytes && paddr); | 
|  | nr_bytes += PGOFF(paddr); | 
|  | nr_pages = ROUNDUP(nr_bytes, PGSIZE) >> PGSHIFT; | 
|  | vaddr = get_vmap_segment(nr_bytes); | 
|  | if (!vaddr) { | 
|  | warn("Unable to get a vmap segment");	/* probably a bug */ | 
|  | return 0; | 
|  | } | 
|  | /* it's not strictly necessary to drop paddr's pgoff, but it might save | 
|  | * some vmap heartache in the future. */ | 
|  | if (map_vmap_segment(vaddr, PG_ADDR(paddr), nr_pages, | 
|  | PTE_KERN_RW | flags)) { | 
|  | warn("Unable to map a vmap segment");	/* probably a bug */ | 
|  | return 0; | 
|  | } | 
|  | return vaddr + PGOFF(paddr); | 
|  | } | 
|  |  | 
|  | uintptr_t vmap_pmem(uintptr_t paddr, size_t nr_bytes) | 
|  | { | 
|  | return vmap_pmem_flags(paddr, nr_bytes, 0); | 
|  | } | 
|  |  | 
|  | uintptr_t vmap_pmem_nocache(uintptr_t paddr, size_t nr_bytes) | 
|  | { | 
|  | return vmap_pmem_flags(paddr, nr_bytes, PTE_NOCACHE); | 
|  | } | 
|  |  | 
|  | uintptr_t vmap_pmem_writecomb(uintptr_t paddr, size_t nr_bytes) | 
|  | { | 
|  | return vmap_pmem_flags(paddr, nr_bytes, PTE_WRITECOMB); | 
|  | } | 
|  |  | 
|  | int vunmap_vmem(uintptr_t vaddr, size_t nr_bytes) | 
|  | { | 
|  | nr_bytes += PGOFF(vaddr); | 
|  | put_vmap_segment(PG_ADDR(vaddr), nr_bytes); | 
|  | return 0; | 
|  | } |