blob: 210537a55c171c3e01bbc1e2eb8993670dd9035a [file] [log] [blame]
/* See COPYRIGHT for copyright information. */
#ifdef __SHARC__
#pragma nosharc
#endif
//#define DEBUG
#include <ros/common.h>
#include <arch/types.h>
#include <arch/arch.h>
#include <arch/mmu.h>
#include <arch/console.h>
#include <time.h>
#include <error.h>
#include <elf.h>
#include <string.h>
#include <assert.h>
#include <process.h>
#include <schedule.h>
#include <pmap.h>
#include <umem.h>
#include <mm.h>
#include <trap.h>
#include <syscall.h>
#include <kmalloc.h>
#include <stdio.h>
#include <frontend.h>
#include <colored_caches.h>
#include <hashtable.h>
#include <bitmask.h>
#include <vfs.h>
#include <devfs.h>
#include <smp.h>
#include <arsc_server.h>
#include <event.h>
#include <termios.h>
#include <socket.h>
#ifdef CONFIG_NETWORKING
#include <net/nic_common.h>
extern int (*send_frame)(const char *CT(len) data, size_t len);
extern unsigned char device_mac[6];
#endif
/* Tracing Globals */
int systrace_flags = 0;
struct systrace_record *systrace_buffer = 0;
uint32_t systrace_bufidx = 0;
size_t systrace_bufsize = 0;
struct proc *systrace_procs[MAX_NUM_TRACED] = {0};
spinlock_t systrace_lock = SPINLOCK_INITIALIZER_IRQSAVE;
/* Not enforcing the packing of systrace_procs yet, but don't rely on that */
static bool proc_is_traced(struct proc *p)
{
for (int i = 0; i < MAX_NUM_TRACED; i++)
if (systrace_procs[i] == p)
return true;
return false;
}
/* Helper to finish a syscall, signalling if appropriate */
static void finish_sysc(struct syscall *sysc, struct proc *p)
{
/* Atomically turn on the LOCK and SC_DONE flag. The lock tells userspace
* we're messing with the flags and to not proceed. We use it instead of
* CASing with userspace. We need the atomics since we're racing with
* userspace for the event_queue registration. The 'lock' tells userspace
* to not muck with the flags while we're signalling. */
atomic_or(&sysc->flags, SC_K_LOCK | SC_DONE);
__signal_syscall(sysc, p);
atomic_and(&sysc->flags, ~SC_K_LOCK);
}
/* Helper that "finishes" the current async syscall. This should be used with
* care when we are not using the normal syscall completion path.
*
* Do *NOT* complete the same syscall twice. This is catastrophic for _Ms, and
* a bad idea for _S.
*
* It is possible for another user thread to see the syscall being done early -
* they just need to be careful with the weird proc management calls (as in,
* don't trust an async fork).
*
* *sysc is in user memory, and should be pinned (TODO: UMEM). There may be
* issues with unpinning this if we never return. */
static void finish_current_sysc(int retval)
{
struct per_cpu_info *pcpui = &per_cpu_info[core_id()];
assert(pcpui->cur_kthread->sysc);
pcpui->cur_kthread->sysc->retval = retval;
finish_sysc(pcpui->cur_kthread->sysc, pcpui->cur_proc);
}
/* Callable by any function while executing a syscall (or otherwise, actually).
*/
void set_errno(int errno)
{
struct per_cpu_info *pcpui = &per_cpu_info[core_id()];
if (pcpui->cur_kthread && pcpui->cur_kthread->sysc)
pcpui->cur_kthread->sysc->err = errno;
}
void unset_errno(void)
{
struct per_cpu_info *pcpui = &per_cpu_info[core_id()];
if (!pcpui->cur_kthread || !pcpui->cur_kthread->sysc)
return;
pcpui->cur_kthread->sysc->err = 0;
pcpui->cur_kthread->sysc->errstr[0] = '\0';
}
void set_errstr(char *fmt, ...)
{
va_list ap;
int rc;
struct per_cpu_info *pcpui = &per_cpu_info[core_id()];
if (!pcpui->cur_kthread || !pcpui->cur_kthread->sysc)
return;
va_start(ap, fmt);
rc = vsnprintf(pcpui->cur_kthread->sysc->errstr, MAX_ERRSTR_LEN, fmt, ap);
va_end(ap);
/* TODO: likely not needed */
pcpui->cur_kthread->sysc->errstr[MAX_ERRSTR_LEN - 1] = '\0';
}
char *current_errstr(void)
{
struct per_cpu_info *pcpui = &per_cpu_info[core_id()];
/* no one should call this that doesn't have a sysc */
assert(pcpui->cur_kthread->sysc);
return pcpui->cur_kthread->sysc->errstr;
}
struct errbuf *get_cur_errbuf(void)
{
struct per_cpu_info *pcpui = &per_cpu_info[core_id()];
return (struct errbuf*)pcpui->cur_kthread->errbuf;
}
void set_cur_errbuf(struct errbuf *ebuf)
{
struct per_cpu_info *pcpui = &per_cpu_info[core_id()];
pcpui->cur_kthread->errbuf = ebuf;
}
char *get_cur_genbuf(void)
{
struct per_cpu_info *pcpui = &per_cpu_info[core_id()];
assert(pcpui->cur_kthread);
return pcpui->cur_kthread->generic_buf;
}
/************** Utility Syscalls **************/
static int sys_null(void)
{
return 0;
}
/* Diagnostic function: blocks the kthread/syscall, to help userspace test its
* async I/O handling. */
static int sys_block(struct proc *p, unsigned int usec)
{
struct timer_chain *tchain = &per_cpu_info[core_id()].tchain;
struct alarm_waiter a_waiter;
init_awaiter(&a_waiter, 0);
/* Note printing takes a few ms, so your printds won't be perfect. */
printd("[kernel] sys_block(), sleeping at %llu\n", read_tsc());
set_awaiter_rel(&a_waiter, usec);
set_alarm(tchain, &a_waiter);
sleep_on_awaiter(&a_waiter);
printd("[kernel] sys_block(), waking up at %llu\n", read_tsc());
return 0;
}
// Writes 'val' to 'num_writes' entries of the well-known array in the kernel
// address space. It's just #defined to be some random 4MB chunk (which ought
// to be boot_alloced or something). Meant to grab exclusive access to cache
// lines, to simulate doing something useful.
static int sys_cache_buster(struct proc *p, uint32_t num_writes,
uint32_t num_pages, uint32_t flags)
{
#define BUSTER_ADDR 0xd0000000L // around 512 MB deep
#define MAX_WRITES 1048576*8
#define MAX_PAGES 32
#define INSERT_ADDR (UINFO + 2*PGSIZE) // should be free for these tests
uint32_t* buster = (uint32_t*)BUSTER_ADDR;
static spinlock_t buster_lock = SPINLOCK_INITIALIZER;
uint64_t ticks = -1;
page_t* a_page[MAX_PAGES];
/* Strided Accesses or Not (adjust to step by cachelines) */
uint32_t stride = 1;
if (flags & BUSTER_STRIDED) {
stride = 16;
num_writes *= 16;
}
/* Shared Accesses or Not (adjust to use per-core regions)
* Careful, since this gives 8MB to each core, starting around 512MB.
* Also, doesn't separate memory for core 0 if it's an async call.
*/
if (!(flags & BUSTER_SHARED))
buster = (uint32_t*)(BUSTER_ADDR + core_id() * 0x00800000);
/* Start the timer, if we're asked to print this info*/
if (flags & BUSTER_PRINT_TICKS)
ticks = start_timing();
/* Allocate num_pages (up to MAX_PAGES), to simulate doing some more
* realistic work. Note we don't write to these pages, even if we pick
* unshared. Mostly due to the inconvenience of having to match up the
* number of pages with the number of writes. And it's unnecessary.
*/
if (num_pages) {
spin_lock(&buster_lock);
for (int i = 0; i < MIN(num_pages, MAX_PAGES); i++) {
upage_alloc(p, &a_page[i],1);
page_insert(p->env_pgdir, a_page[i], (void*)INSERT_ADDR + PGSIZE*i,
PTE_USER_RW);
page_decref(a_page[i]);
}
spin_unlock(&buster_lock);
}
if (flags & BUSTER_LOCKED)
spin_lock(&buster_lock);
for (int i = 0; i < MIN(num_writes, MAX_WRITES); i=i+stride)
buster[i] = 0xdeadbeef;
if (flags & BUSTER_LOCKED)
spin_unlock(&buster_lock);
if (num_pages) {
spin_lock(&buster_lock);
for (int i = 0; i < MIN(num_pages, MAX_PAGES); i++) {
page_remove(p->env_pgdir, (void*)(INSERT_ADDR + PGSIZE * i));
page_decref(a_page[i]);
}
spin_unlock(&buster_lock);
}
/* Print info */
if (flags & BUSTER_PRINT_TICKS) {
ticks = stop_timing(ticks);
printk("%llu,", ticks);
}
return 0;
}
static int sys_cache_invalidate(void)
{
#ifdef CONFIG_X86
wbinvd();
#endif
return 0;
}
/* sys_reboot(): called directly from dispatch table. */
/* Print a string to the system console. */
static ssize_t sys_cputs(struct proc *p, const char *DANGEROUS string,
size_t strlen)
{
char *t_string;
t_string = user_strdup_errno(p, string, strlen);
if (!t_string)
return -1;
printk("%.*s", strlen, t_string);
user_memdup_free(p, t_string);
return (ssize_t)strlen;
}
// Read a character from the system console.
// Returns the character.
/* TODO: remove me */
static uint16_t sys_cgetc(struct proc *p)
{
uint16_t c;
// The cons_get_any_char() primitive doesn't wait for a character,
// but the sys_cgetc() system call does.
while ((c = cons_get_any_char()) == 0)
cpu_relax();
return c;
}
/* Returns the id of the physical core this syscall is executed on. */
static uint32_t sys_getpcoreid(void)
{
return core_id();
}
// TODO: Temporary hack until thread-local storage is implemented on i386 and
// this is removed from the user interface
static size_t sys_getvcoreid(struct proc *p)
{
return proc_get_vcoreid(p);
}
/************** Process management syscalls **************/
/* Returns the calling process's pid */
static pid_t sys_getpid(struct proc *p)
{
return p->pid;
}
/* Creates a process from the file 'path'. The process is not runnable by
* default, so it needs it's status to be changed so that the next call to
* schedule() will try to run it. TODO: take args/envs from userspace. */
static int sys_proc_create(struct proc *p, char *path, size_t path_l,
struct procinfo *pi)
{
int pid = 0;
char *t_path;
struct file *program;
struct proc *new_p;
/* Copy in the path. Consider putting an upper bound on path_l. */
t_path = user_strdup_errno(p, path, path_l);
if (!t_path)
return -1;
/* TODO: 9ns support */
program = do_file_open(t_path, 0, 0);
user_memdup_free(p, t_path);
if (!program)
return -1; /* presumably, errno is already set */
/* TODO: need to split the proc creation, since you must load after setting
* args/env, since auxp gets set up there. */
//new_p = proc_create(program, 0, 0);
if (proc_alloc(&new_p, current))
goto mid_error;
/* Set the argument stuff needed by glibc */
if (memcpy_from_user_errno(p, new_p->procinfo->argp, pi->argp,
sizeof(pi->argp)))
goto late_error;
if (memcpy_from_user_errno(p, new_p->procinfo->argbuf, pi->argbuf,
sizeof(pi->argbuf)))
goto late_error;
if (load_elf(new_p, program))
goto late_error;
kref_put(&program->f_kref);
/* Connect to stdin, stdout, stderr (part of proc_create()) */
assert(insert_file(&new_p->open_files, dev_stdin, 0) == 0);
assert(insert_file(&new_p->open_files, dev_stdout, 0) == 1);
assert(insert_file(&new_p->open_files, dev_stderr, 0) == 2);
__proc_ready(new_p);
pid = new_p->pid;
proc_decref(new_p); /* give up the reference created in proc_create() */
return pid;
late_error:
proc_destroy(new_p);
proc_decref(new_p); /* give up the reference created in proc_create() */
mid_error:
kref_put(&program->f_kref);
return -1;
}
/* Makes process PID runnable. Consider moving the functionality to process.c */
static error_t sys_proc_run(struct proc *p, unsigned pid)
{
struct proc *target = pid2proc(pid);
error_t retval = 0;
if (!target) {
set_errno(ESRCH);
return -1;
}
/* make sure we have access and it's in the right state to be activated */
if (!proc_controls(p, target)) {
set_errno(EPERM);
goto out_error;
} else if (target->state != PROC_CREATED) {
set_errno(EINVAL);
goto out_error;
}
/* Note a proc can spam this for someone it controls. Seems safe - if it
* isn't we can change it. */
proc_wakeup(target);
proc_decref(target);
return 0;
out_error:
proc_decref(target);
return -1;
}
/* Destroy proc pid. If this is called by the dying process, it will never
* return. o/w it will return 0 on success, or an error. Errors include:
* - ESRCH: if there is no such process with pid
* - EPERM: if caller does not control pid */
static error_t sys_proc_destroy(struct proc *p, pid_t pid, int exitcode)
{
error_t r;
struct proc *p_to_die = pid2proc(pid);
if (!p_to_die) {
set_errno(ESRCH);
return -1;
}
if (!proc_controls(p, p_to_die)) {
proc_decref(p_to_die);
set_errno(EPERM);
return -1;
}
if (p_to_die == p) {
p->exitcode = exitcode;
printd("[PID %d] proc exiting gracefully (code %d)\n", p->pid,exitcode);
} else {
p_to_die->exitcode = exitcode; /* so its parent has some clue */
printd("[%d] destroying proc %d\n", p->pid, p_to_die->pid);
}
proc_destroy(p_to_die);
/* we only get here if we weren't the one to die */
proc_decref(p_to_die);
return 0;
}
static int sys_proc_yield(struct proc *p, bool being_nice)
{
struct per_cpu_info *pcpui = &per_cpu_info[core_id()];
/* proc_yield() often doesn't return - we need to set the syscall retval
* early. If it doesn't return, it expects to eat our reference (for now).
*/
finish_sysc(pcpui->cur_kthread->sysc, pcpui->cur_proc);
pcpui->cur_kthread->sysc = 0; /* don't touch sysc again */
proc_incref(p, 1);
proc_yield(p, being_nice);
proc_decref(p);
/* Shouldn't return, to prevent the chance of mucking with cur_sysc. */
smp_idle();
assert(0);
}
static int sys_change_vcore(struct proc *p, uint32_t vcoreid,
bool enable_my_notif)
{
/* Note retvals can be negative, but we don't mess with errno in case
* callers use this in low-level code and want to extract the 'errno'. */
return proc_change_to_vcore(p, vcoreid, enable_my_notif);
}
static ssize_t sys_fork(env_t* e)
{
struct proc *temp;
int8_t state = 0;
// TODO: right now we only support fork for single-core processes
if (e->state != PROC_RUNNING_S) {
set_errno(EINVAL);
return -1;
}
env_t* env;
assert(!proc_alloc(&env, current));
assert(env != NULL);
env->heap_top = e->heap_top;
env->ppid = e->pid;
disable_irqsave(&state); /* protect cur_ctx */
/* Can't really fork if we don't have a current_ctx to fork */
if (!current_ctx) {
set_errno(EINVAL);
return -1;
}
env->scp_ctx = *current_ctx;
enable_irqsave(&state);
env->cache_colors_map = cache_colors_map_alloc();
for(int i=0; i < llc_cache->num_colors; i++)
if(GET_BITMASK_BIT(e->cache_colors_map,i))
cache_color_alloc(llc_cache, env->cache_colors_map);
/* Make the new process have the same VMRs as the older. This will copy the
* contents of non MAP_SHARED pages to the new VMRs. */
if (duplicate_vmrs(e, env)) {
proc_destroy(env); /* this is prob what you want, not decref by 2 */
proc_decref(env);
set_errno(ENOMEM);
return -1;
}
/* Switch to the new proc's address space and finish the syscall. We'll
* never naturally finish this syscall for the new proc, since its memory
* is cloned before we return for the original process. If we ever do CoW
* for forked memory, this will be the first place that gets CoW'd. */
temp = switch_to(env);
finish_current_sysc(0);
switch_back(env, temp);
/* In general, a forked process should be a fresh process, and we copy over
* whatever stuff is needed between procinfo/procdata. */
/* Copy over the procinfo argument stuff in case they don't exec */
memcpy(env->procinfo->argp, e->procinfo->argp, sizeof(e->procinfo->argp));
memcpy(env->procinfo->argbuf, e->procinfo->argbuf,
sizeof(e->procinfo->argbuf));
#ifdef CONFIG_X86
/* new guy needs to know about ldt (everything else in procdata is fresh */
env->procdata->ldt = e->procdata->ldt;
#endif
clone_files(&e->open_files, &env->open_files);
/* FYI: once we call ready, the proc is open for concurrent usage */
__proc_ready(env);
proc_wakeup(env);
// don't decref the new process.
// that will happen when the parent waits for it.
// TODO: if the parent doesn't wait, we need to change the child's parent
// when the parent dies, or at least decref it
printd("[PID %d] fork PID %d\n", e->pid, env->pid);
return env->pid;
}
/* Load the binary "path" into the current process, and start executing it.
* argv and envp are magically bundled in procinfo for now. Keep in sync with
* glibc's sysdeps/ros/execve.c. Once past a certain point, this function won't
* return. It assumes (and checks) that it is current. Don't give it an extra
* refcnt'd *p (syscall won't do that).
* Note: if someone batched syscalls with this call, they could clobber their
* old memory (and will likely PF and die). Don't do it... */
static int sys_exec(struct proc *p, char *path, size_t path_l,
struct procinfo *pi)
{
int ret = -1;
char *t_path;
struct file *program;
struct per_cpu_info *pcpui = &per_cpu_info[core_id()];
int8_t state = 0;
/* We probably want it to never be allowed to exec if it ever was _M */
if (p->state != PROC_RUNNING_S) {
set_errno(EINVAL);
return -1;
}
if (p != pcpui->cur_proc) {
set_errno(EINVAL);
return -1;
}
/* Copy in the path. Consider putting an upper bound on path_l. */
t_path = user_strdup_errno(p, path, path_l);
if (!t_path)
return -1;
disable_irqsave(&state); /* protect cur_ctx */
/* Can't exec if we don't have a current_ctx to restart (if we fail). This
* isn't 100% true, but I'm okay with it. */
if (!pcpui->cur_ctx) {
enable_irqsave(&state);
set_errno(EINVAL);
return -1;
}
/* Preemptively copy out the cur_ctx, in case we fail later (easier on
* cur_ctx if we do this now) */
p->scp_ctx = *pcpui->cur_ctx;
/* Clear the current_ctx. We won't be returning the 'normal' way. Even if
* we want to return with an error, we need to go back differently in case
* we succeed. This needs to be done before we could possibly block, but
* unfortunately happens before the point of no return. */
pcpui->cur_ctx = 0;
enable_irqsave(&state);
/* This could block: */
/* TODO: 9ns support */
program = do_file_open(t_path, 0, 0);
user_memdup_free(p, t_path);
if (!program)
goto early_error;
/* Set the argument stuff needed by glibc */
if (memcpy_from_user_errno(p, p->procinfo->argp, pi->argp,
sizeof(pi->argp)))
goto mid_error;
if (memcpy_from_user_errno(p, p->procinfo->argbuf, pi->argbuf,
sizeof(pi->argbuf)))
goto mid_error;
/* This is the point of no return for the process. */
#ifdef CONFIG_X86
/* clear this, so the new program knows to get an LDT */
p->procdata->ldt = 0;
#endif
/* When we destroy our memory regions, accessing cur_sysc would PF */
pcpui->cur_kthread->sysc = 0;
unmap_and_destroy_vmrs(p);
close_9ns_files(p, TRUE);
close_all_files(&p->open_files, TRUE);
env_user_mem_free(p, 0, UMAPTOP);
if (load_elf(p, program)) {
kref_put(&program->f_kref);
/* Note this is an inedible reference, but proc_destroy now returns */
proc_destroy(p);
/* We don't want to do anything else - we just need to not accidentally
* return to the user (hence the all_out) */
goto all_out;
}
printd("[PID %d] exec %s\n", p->pid, file_name(program));
kref_put(&program->f_kref);
goto success;
/* These error and out paths are so we can handle the async interface, both
* for when we want to error/return to the proc, as well as when we succeed
* and want to start the newly exec'd _S */
mid_error:
/* These two error paths are for when we want to restart the process with an
* error value (errno is already set). */
kref_put(&program->f_kref);
early_error:
finish_current_sysc(-1);
success:
/* Here's how we restart the new (on success) or old (on failure) proc: */
spin_lock(&p->proc_lock);
__unmap_vcore(p, 0); /* VC# keep in sync with proc_run_s */
__proc_set_state(p, PROC_WAITING); /* fake a yield */
spin_unlock(&p->proc_lock);
proc_wakeup(p);
all_out:
/* we can't return, since we'd write retvals to the old location of the
* syscall struct (which has been freed and is in the old userspace) (or has
* already been written to).*/
disable_irq(); /* abandon_core/clear_own wants irqs disabled */
clear_owning_proc(core_id());
abandon_core();
smp_idle(); /* will reenable interrupts */
}
/* Helper, will attempt a particular wait on a proc. Returns the pid of the
* process if we waited on it successfully, and the status will be passed back
* in ret_status (kernel memory). Returns 0 if the wait failed and we should
* try again. Returns -1 if we should abort. Only handles DYING. Callers
* need to lock to protect the children tailq and reaping bits. */
static pid_t try_wait(struct proc *parent, struct proc *child, int *ret_status,
int options)
{
if (child->state == PROC_DYING) {
/* Disown returns -1 if it's already been disowned or we should o/w
* abort. This can happen if we have concurrent waiters, both with
* pointers to the child (only one should reap). Note that if we don't
* do this, we could go to sleep and never receive a cv_signal. */
if (__proc_disown_child(parent, child))
return -1;
/* despite disowning, the child won't be freed til we drop this ref
* held by this function, so it is safe to access the memory.
*
* Note the exit code one byte in the 0xff00 spot. Check out glibc's
* posix/sys/wait.h and bits/waitstatus.h for more info. If we ever
* deal with signalling and stopping, we'll need to do some more work
* here.*/
*ret_status = (child->exitcode & 0xff) << 8;
return child->pid;
}
return 0;
}
/* Helper, like try_wait, but attempts a wait on any of the children, returning
* the specific PID we waited on, 0 to try again (a waitable exists), and -1 to
* abort (no children/waitables exist). Callers need to lock to protect the
* children tailq and reaping bits.*/
static pid_t try_wait_any(struct proc *parent, int *ret_status, int options)
{
struct proc *i, *temp;
pid_t retval;
if (TAILQ_EMPTY(&parent->children))
return -1;
/* Could have concurrent waiters mucking with the tailq, caller must lock */
TAILQ_FOREACH_SAFE(i, &parent->children, sibling_link, temp) {
retval = try_wait(parent, i, ret_status, options);
/* This catches a thread causing a wait to fail but not taking the
* child off the list before unlocking. Should never happen. */
assert(retval != -1);
/* Succeeded, return the pid of the child we waited on */
if (retval)
return retval;
}
assert(retval == 0);
return 0;
}
/* Waits on a particular child, returns the pid of the child waited on, and
* puts the ret status in *ret_status. Returns the pid if we succeeded, 0 if
* the child was not waitable and WNOHANG, and -1 on error. */
static pid_t wait_one(struct proc *parent, struct proc *child, int *ret_status,
int options)
{
pid_t retval;
cv_lock(&parent->child_wait);
/* retval == 0 means we should block */
retval = try_wait(parent, child, ret_status, options);
if ((retval == 0) && (options & WNOHANG))
goto out_unlock;
while (!retval) {
cpu_relax();
cv_wait(&parent->child_wait);
/* If we're dying, then we don't need to worry about waiting. We don't
* do this yet, but we'll need this outlet when we deal with orphaned
* children and having init inherit them. */
if (parent->state == PROC_DYING)
goto out_unlock;
/* Any child can wake us up, but we check for the particular child we
* care about */
retval = try_wait(parent, child, ret_status, options);
}
if (retval == -1) {
/* Child was already waited on by a concurrent syscall. */
set_errno(ECHILD);
}
/* Fallthrough */
out_unlock:
cv_unlock(&parent->child_wait);
return retval;
}
/* Waits on any child, returns the pid of the child waited on, and puts the ret
* status in *ret_status. Is basically a waitpid(-1, ... ); See wait_one for
* more details. Returns -1 if there are no children to wait on, and returns 0
* if there are children and we need to block but WNOHANG was set. */
static pid_t wait_any(struct proc *parent, int *ret_status, int options)
{
pid_t retval;
cv_lock(&parent->child_wait);
retval = try_wait_any(parent, ret_status, options);
if ((retval == 0) && (options & WNOHANG))
goto out_unlock;
while (!retval) {
cpu_relax();
cv_wait(&parent->child_wait);
if (parent->state == PROC_DYING)
goto out_unlock;
/* Any child can wake us up from the CV. This is a linear try_wait
* scan. If we have a lot of children, we could optimize this. */
retval = try_wait_any(parent, ret_status, options);
}
if (retval == -1)
assert(TAILQ_EMPTY(&parent->children));
/* Fallthrough */
out_unlock:
cv_unlock(&parent->child_wait);
return retval;
}
/* Note: we only allow waiting on children (no such thing as threads, for
* instance). Right now we only allow waiting on termination (not signals),
* and we don't have a way for parents to disown their children (such as
* ignoring SIGCHLD, see man 2 waitpid's Notes).
*
* We don't bother with stop/start signals here, though we can probably build
* it in the helper above.
*
* Returns the pid of who we waited on, or -1 on error, or 0 if we couldn't
* wait (WNOHANG). */
static pid_t sys_waitpid(struct proc *parent, pid_t pid, int *status,
int options)
{
struct proc *child;
pid_t retval = 0;
int ret_status = 0;
/* -1 is the signal for 'any child' */
if (pid == -1) {
retval = wait_any(parent, &ret_status, options);
goto out;
}
child = pid2proc(pid);
if (!child) {
set_errno(ECHILD); /* ECHILD also used for no proc */
retval = -1;
goto out;
}
if (!(parent->pid == child->ppid)) {
set_errno(ECHILD);
retval = -1;
goto out_decref;
}
retval = wait_one(parent, child, &ret_status, options);
/* fall-through */
out_decref:
proc_decref(child);
out:
/* ignoring / don't care about memcpy's retval here. */
if (status)
memcpy_to_user(parent, status, &ret_status, sizeof(ret_status));
printd("[PID %d] waited for PID %d, got retval %d (status 0x%x)\n",
parent->pid, pid, retval, ret_status);
return retval;
}
/************** Memory Management Syscalls **************/
static void *sys_mmap(struct proc *p, uintptr_t addr, size_t len, int prot,
int flags, int fd, off_t offset)
{
return mmap(p, addr, len, prot, flags, fd, offset);
}
static intreg_t sys_mprotect(struct proc *p, void *addr, size_t len, int prot)
{
return mprotect(p, (uintptr_t)addr, len, prot);
}
static intreg_t sys_munmap(struct proc *p, void *addr, size_t len)
{
return munmap(p, (uintptr_t)addr, len);
}
static ssize_t sys_shared_page_alloc(env_t* p1,
void**DANGEROUS _addr, pid_t p2_id,
int p1_flags, int p2_flags
)
{
printk("[kernel] shared page alloc is deprecated/unimplemented.\n");
return -1;
}
static int sys_shared_page_free(env_t* p1, void*DANGEROUS addr, pid_t p2)
{
return -1;
}
/* Helper, to do the actual provisioning of a resource to a proc */
static int prov_resource(struct proc *target, unsigned int res_type,
long res_val)
{
switch (res_type) {
case (RES_CORES):
/* in the off chance we have a kernel scheduler that can't
* provision, we'll need to change this. */
return provision_core(target, res_val);
default:
printk("[kernel] received provisioning for unknown resource %d\n",
res_type);
set_errno(ENOENT); /* or EINVAL? */
return -1;
}
}
/* Rough syscall to provision res_val of type res_type to target_pid */
static int sys_provision(struct proc *p, int target_pid,
unsigned int res_type, long res_val)
{
struct proc *target = pid2proc(target_pid);
int retval;
if (!target) {
if (target_pid == 0)
return prov_resource(0, res_type, res_val);
/* debugging interface */
if (target_pid == -1)
print_prov_map();
set_errno(ESRCH);
return -1;
}
retval = prov_resource(target, res_type, res_val);
proc_decref(target);
return retval;
}
/* Untested. Will notify the target on the given vcore, if the caller controls
* the target. Will honor the target's wanted/vcoreid. u_ne can be NULL. */
static int sys_notify(struct proc *p, int target_pid, unsigned int ev_type,
struct event_msg *u_msg)
{
struct event_msg local_msg = {0};
struct proc *target = pid2proc(target_pid);
if (!target) {
set_errno(ESRCH);
return -1;
}
if (!proc_controls(p, target)) {
proc_decref(target);
set_errno(EPERM);
return -1;
}
/* if the user provided an ev_msg, copy it in and use that */
if (u_msg) {
if (memcpy_from_user(p, &local_msg, u_msg, sizeof(struct event_msg))) {
proc_decref(target);
set_errno(EINVAL);
return -1;
}
} else {
local_msg.ev_type = ev_type;
}
send_kernel_event(target, &local_msg, 0);
proc_decref(target);
return 0;
}
/* Will notify the calling process on the given vcore, independently of WANTED
* or advertised vcoreid. If you change the parameters, change pop_user_ctx().
*/
static int sys_self_notify(struct proc *p, uint32_t vcoreid,
unsigned int ev_type, struct event_msg *u_msg,
bool priv)
{
struct event_msg local_msg = {0};
/* if the user provided an ev_msg, copy it in and use that */
if (u_msg) {
if (memcpy_from_user(p, &local_msg, u_msg, sizeof(struct event_msg))) {
set_errno(EINVAL);
return -1;
}
} else {
local_msg.ev_type = ev_type;
}
if (local_msg.ev_type >= MAX_NR_EVENT) {
printk("[kernel] received self-notify for vcoreid %d, ev_type %d, "
"u_msg %p, u_msg->type %d\n", vcoreid, ev_type, u_msg,
u_msg ? u_msg->ev_type : 0);
return -1;
}
/* this will post a message and IPI, regardless of wants/needs/debutantes.*/
post_vcore_event(p, &local_msg, vcoreid, priv ? EVENT_VCORE_PRIVATE : 0);
proc_notify(p, vcoreid);
return 0;
}
/* Puts the calling core into vcore context, if it wasn't already, via a
* self-IPI / active notification. Barring any weird unmappings, we just send
* ourselves a __notify. */
static int sys_vc_entry(struct proc *p)
{
send_kernel_message(core_id(), __notify, (long)p, 0, 0, KMSG_ROUTINE);
return 0;
}
/* This will set a local timer for usec, then shut down the core. There's a
* slight race between spinner and halt. For now, the core will wake up for
* other interrupts and service them, but will not process routine messages or
* do anything other than halt until the alarm goes off. We could just unset
* the alarm and return early. On hardware, there are a lot of interrupts that
* come in. If we ever use this, we can take a closer look. */
static int sys_halt_core(struct proc *p, unsigned int usec)
{
struct timer_chain *tchain = &per_cpu_info[core_id()].tchain;
struct alarm_waiter a_waiter;
bool spinner = TRUE;
void unblock(struct alarm_waiter *waiter)
{
spinner = FALSE;
}
init_awaiter(&a_waiter, unblock);
set_awaiter_rel(&a_waiter, MAX(usec, 100));
set_alarm(tchain, &a_waiter);
enable_irq();
/* Could wake up due to another interrupt, but we want to sleep still. */
while (spinner) {
cpu_halt(); /* slight race between spinner and halt */
cpu_relax();
}
printd("Returning from halting\n");
return 0;
}
/* Changes a process into _M mode, or -EINVAL if it already is an mcp.
* __proc_change_to_m() returns and we'll eventually finish the sysc later. The
* original context may restart on a remote core before we return and finish,
* but that's fine thanks to the async kernel interface. */
static int sys_change_to_m(struct proc *p)
{
int retval = proc_change_to_m(p);
/* convert the kernel error code into (-1, errno) */
if (retval) {
set_errno(-retval);
retval = -1;
}
return retval;
}
/* Pokes the ksched for the given resource for target_pid. If the target pid
* == 0, we just poke for the calling process. The common case is poking for
* self, so we avoid the lookup.
*
* Not sure if you could harm someone via asking the kernel to look at them, so
* we'll do a 'controls' check for now. In the future, we might have something
* in the ksched that limits or penalizes excessive pokes. */
static int sys_poke_ksched(struct proc *p, int target_pid,
unsigned int res_type)
{
struct proc *target;
int retval = 0;
if (!target_pid) {
poke_ksched(p, res_type);
return 0;
}
target = pid2proc(target_pid);
if (!target) {
set_errno(ESRCH);
return -1;
}
if (!proc_controls(p, target)) {
set_errno(EPERM);
retval = -1;
goto out;
}
poke_ksched(target, res_type);
out:
proc_decref(target);
return retval;
}
static int sys_abort_sysc(struct proc *p, struct syscall *sysc)
{
return abort_sysc(p, sysc);
}
/************** Platform Specific Syscalls **************/
//Read a buffer over the serial port
static ssize_t sys_serial_read(env_t* e, char *DANGEROUS _buf, size_t len)
{
printk("[kernel] serial reading is deprecated.\n");
if (len == 0)
return 0;
#ifdef CONFIG_SERIAL_IO
char *COUNT(len) buf = user_mem_assert(e, _buf, len, 1, PTE_USER_RO);
size_t bytes_read = 0;
int c;
while((c = serial_read_byte()) != -1) {
buf[bytes_read++] = (uint8_t)c;
if(bytes_read == len) break;
}
return (ssize_t)bytes_read;
#else
return -EINVAL;
#endif
}
//Write a buffer over the serial port
static ssize_t sys_serial_write(env_t* e, const char *DANGEROUS buf, size_t len)
{
printk("[kernel] serial writing is deprecated.\n");
if (len == 0)
return 0;
#ifdef CONFIG_SERIAL_IO
char *COUNT(len) _buf = user_mem_assert(e, buf, len, 1, PTE_USER_RO);
for(int i =0; i<len; i++)
serial_send_byte(buf[i]);
return (ssize_t)len;
#else
return -EINVAL;
#endif
}
#ifdef CONFIG_NETWORKING
// This is not a syscall we want. Its hacky. Here just for syscall stuff until get a stack.
static ssize_t sys_eth_read(env_t* e, char *DANGEROUS buf)
{
if (eth_up) {
uint32_t len;
char *ptr;
spin_lock(&packet_buffers_lock);
if (num_packet_buffers == 0) {
spin_unlock(&packet_buffers_lock);
return 0;
}
ptr = packet_buffers[packet_buffers_head];
len = packet_buffers_sizes[packet_buffers_head];
num_packet_buffers--;
packet_buffers_head = (packet_buffers_head + 1) % MAX_PACKET_BUFFERS;
spin_unlock(&packet_buffers_lock);
char* _buf = user_mem_assert(e, buf, len, 1, PTE_U);
memcpy(_buf, ptr, len);
kfree(ptr);
return len;
}
else
return -EINVAL;
}
// This is not a syscall we want. Its hacky. Here just for syscall stuff until get a stack.
static ssize_t sys_eth_write(env_t* e, const char *DANGEROUS buf, size_t len)
{
if (eth_up) {
if (len == 0)
return 0;
// HACK TO BYPASS HACK
int just_sent = send_frame(buf, len);
if (just_sent < 0) {
printk("Packet send fail\n");
return 0;
}
return just_sent;
// END OF RECURSIVE HACK
/*
char *COUNT(len) _buf = user_mem_assert(e, buf, len, PTE_U);
int total_sent = 0;
int just_sent = 0;
int cur_packet_len = 0;
while (total_sent != len) {
cur_packet_len = ((len - total_sent) > MTU) ? MTU : (len - total_sent);
char dest_mac[6] = APPSERVER_MAC_ADDRESS;
char* wrap_buffer = eth_wrap(_buf + total_sent, cur_packet_len, device_mac, dest_mac, APPSERVER_PORT);
just_sent = send_frame(wrap_buffer, cur_packet_len + sizeof(struct ETH_Header));
if (just_sent < 0)
return 0; // This should be an error code of its own
if (wrap_buffer)
kfree(wrap_buffer);
total_sent += cur_packet_len;
}
return (ssize_t)len;
*/
}
else
return -EINVAL;
}
static ssize_t sys_eth_get_mac_addr(env_t* e, char *DANGEROUS buf)
{
if (eth_up) {
for (int i = 0; i < 6; i++)
buf[i] = device_mac[i];
return 0;
}
else
return -EINVAL;
}
static int sys_eth_recv_check(env_t* e)
{
if (num_packet_buffers != 0)
return 1;
else
return 0;
}
#endif // Network
static intreg_t sys_read(struct proc *p, int fd, void *buf, int len)
{
ssize_t ret;
struct file *file = get_file_from_fd(&p->open_files, fd);
/* VFS */
if (file) {
if (!file->f_op->read) {
kref_put(&file->f_kref);
set_errno(EINVAL);
return -1;
}
/* TODO: (UMEM) currently, read() handles user memcpy
* issues, but we probably should user_mem_check and
* pin the region here, so read doesn't worry about
* it */
ret = file->f_op->read(file, buf, len, &file->f_pos);
kref_put(&file->f_kref);
return ret;
}
/* plan9, should also handle errors (EBADF) */
ret = sysread(fd, buf, len, ~0LL);
return ret;
}
static intreg_t sys_write(struct proc *p, int fd, const void *buf, int len)
{
ssize_t ret;
struct file *file = get_file_from_fd(&p->open_files, fd);
/* VFS */
if (file) {
if (!file->f_op->write) {
kref_put(&file->f_kref);
set_errno(EINVAL);
return -1;
}
/* TODO: (UMEM) */
ret = file->f_op->write(file, buf, len, &file->f_pos);
kref_put(&file->f_kref);
return ret;
}
/* plan9, should also handle errors */
ret = syswrite(fd, (void*)buf, len, (off_t) -1);
return ret;
}
/* Checks args/reads in the path, opens the file, and inserts it into the
* process's open file list. */
static intreg_t sys_open(struct proc *p, const char *path, size_t path_l,
int oflag, int mode)
{
int fd;
struct file *file;
printd("File %s Open attempt oflag %x mode %x\n", path, oflag, mode);
char *t_path = user_strdup_errno(p, path, path_l);
if (!t_path)
return -1;
mode &= ~p->fs_env.umask;
file = do_file_open(t_path, oflag, mode);
/* VFS */
if (file) {
fd = insert_file(&p->open_files, file, 0); /* stores the ref to file */
kref_put(&file->f_kref); /* drop our ref */
if (fd < 0)
warn("File insertion failed");
} else {
unset_errno(); /* Go can't handle extra errnos */
fd = sysopen(t_path, oflag);
}
user_memdup_free(p, t_path);
printd("File %s Open, fd=%d\n", path, fd);
return fd;
}
static intreg_t sys_close(struct proc *p, int fd)
{
struct file *file = get_file_from_fd(&p->open_files, fd);
int retval = 0;
printd("sys_close %d\n", fd);
/* VFS */
if (file) {
put_file_from_fd(&p->open_files, fd);
kref_put(&file->f_kref); /* Drop the ref from get_file */
return 0;
}
/* 9ns, should also handle errors (bad FD, etc) */
retval = sysclose(fd);
return retval;
}
/* kept around til we remove the last ufe */
#define ufe(which,a0,a1,a2,a3) \
frontend_syscall_errno(p,APPSERVER_SYSCALL_##which,\
(int)(a0),(int)(a1),(int)(a2),(int)(a3))
static intreg_t sys_fstat(struct proc *p, int fd, struct kstat *u_stat)
{
struct kstat *kbuf;
struct file *file;
kbuf = kmalloc(sizeof(struct kstat), 0);
if (!kbuf) {
set_errno(ENOMEM);
return -1;
}
file = get_file_from_fd(&p->open_files, fd);
/* VFS */
if (file) {
stat_inode(file->f_dentry->d_inode, kbuf);
kref_put(&file->f_kref);
} else {
if (sysfstat(fd, (uint8_t*)kbuf, sizeof(*kbuf)) < 0) {
kfree(kbuf);
return -1;
}
}
/* TODO: UMEM: pin the memory, copy directly, and skip the kernel buffer */
if (memcpy_to_user_errno(p, u_stat, kbuf, sizeof(struct kstat))) {
kfree(kbuf);
return -1;
}
kfree(kbuf);
return 0;
}
/* sys_stat() and sys_lstat() do nearly the same thing, differing in how they
* treat a symlink for the final item, which (probably) will be controlled by
* the lookup flags */
static intreg_t stat_helper(struct proc *p, const char *path, size_t path_l,
struct kstat *u_stat, int flags)
{
struct kstat *kbuf;
struct dentry *path_d;
char *t_path = user_strdup_errno(p, path, path_l);
int retval = 0;
if (!t_path)
return -1;
kbuf = kmalloc(sizeof(struct kstat), 0);
if (!kbuf) {
set_errno(ENOMEM);
retval = -1;
goto out_with_path;
}
/* Check VFS for path */
path_d = lookup_dentry(t_path, flags);
if (path_d) {
stat_inode(path_d->d_inode, kbuf);
kref_put(&path_d->d_kref);
} else {
/* VFS failed, checking 9ns */
unset_errno(); /* Go can't handle extra errnos */
retval = sysstat(t_path, (uint8_t*)kbuf, sizeof(*kbuf));
printd("sysstat returns %d\n", retval);
/* both VFS and 9ns failed, bail out */
if (retval < 0)
goto out_with_kbuf;
}
/* TODO: UMEM: pin the memory, copy directly, and skip the kernel buffer */
if (memcpy_to_user_errno(p, u_stat, kbuf, sizeof(struct kstat)))
retval = -1;
/* Fall-through */
out_with_kbuf:
kfree(kbuf);
out_with_path:
user_memdup_free(p, t_path);
return retval;
}
/* Follow a final symlink */
static intreg_t sys_stat(struct proc *p, const char *path, size_t path_l,
struct kstat *u_stat)
{
return stat_helper(p, path, path_l, u_stat, LOOKUP_FOLLOW);
}
/* Don't follow a final symlink */
static intreg_t sys_lstat(struct proc *p, const char *path, size_t path_l,
struct kstat *u_stat)
{
return stat_helper(p, path, path_l, u_stat, 0);
}
intreg_t sys_fcntl(struct proc *p, int fd, int cmd, int arg)
{
int retval = 0;
int newfd;
struct file *file = get_file_from_fd(&p->open_files, fd);
if (!file) {
/* 9ns hack */
switch (cmd) {
case (F_DUPFD):
return sysdup(fd, -1);
case (F_GETFD):
case (F_SETFD):
case (F_GETFL):
case (F_SETFL):
return 0;
default:
warn("Unsupported fcntl cmd %d\n", cmd);
}
/* not really ever calling this, even for badf, due to the switch */
set_errno(EBADF);
return -1;
}
switch (cmd) {
case (F_DUPFD):
retval = insert_file(&p->open_files, file, arg);
if (retval < 0) {
set_errno(-retval);
retval = -1;
}
break;
case (F_GETFD):
retval = p->open_files.fd[fd].fd_flags;
break;
case (F_SETFD):
if (arg == FD_CLOEXEC)
file->f_flags |= O_CLOEXEC;
break;
case (F_GETFL):
retval = file->f_flags;
break;
case (F_SETFL):
/* only allowed to set certain flags. */
arg &= O_FCNTL_FLAGS;
file->f_flags = (file->f_flags & ~O_FCNTL_FLAGS) | arg;
break;
default:
warn("Unsupported fcntl cmd %d\n", cmd);
}
kref_put(&file->f_kref);
return retval;
}
static intreg_t sys_access(struct proc *p, const char *path, size_t path_l,
int mode)
{
int retval;
char *t_path = user_strdup_errno(p, path, path_l);
if (!t_path)
return -1;
/* TODO: 9ns support */
retval = do_access(t_path, mode);
user_memdup_free(p, t_path);
printd("Access for path: %s retval: %d\n", path, retval);
if (retval < 0) {
set_errno(-retval);
return -1;
}
return retval;
}
intreg_t sys_umask(struct proc *p, int mask)
{
int old_mask = p->fs_env.umask;
p->fs_env.umask = mask & S_PMASK;
return old_mask;
}
intreg_t sys_chmod(struct proc *p, const char *path, size_t path_l, int mode)
{
int retval;
char *t_path = user_strdup_errno(p, path, path_l);
if (!t_path)
return -1;
/* TODO: 9ns support */
retval = do_chmod(t_path, mode);
user_memdup_free(p, t_path);
if (retval < 0) {
set_errno(-retval);
return -1;
}
return retval;
}
/* 64 bit seek, with the off64_t passed in via two (potentially 32 bit) off_ts.
* We're supporting both 32 and 64 bit kernels/userspaces, but both use the
* llseek syscall with 64 bit parameters. */
static intreg_t sys_llseek(struct proc *p, int fd, off_t offset_hi,
off_t offset_lo, off64_t *result, int whence)
{
off64_t retoff = 0;
off64_t tempoff = 0;
int ret = 0;
struct file *file = get_file_from_fd(&p->open_files, fd);
if (!file) {
set_errno(EBADF);
return -1;
}
tempoff = offset_hi;
tempoff <<= 32;
tempoff |= offset_lo;
ret = file->f_op->llseek(file, tempoff, &retoff, whence);
kref_put(&file->f_kref);
if (ret)
return -1;
if (memcpy_to_user_errno(p, result, &retoff, sizeof(off64_t)))
return -1;
return 0;
}
intreg_t sys_link(struct proc *p, char *old_path, size_t old_l,
char *new_path, size_t new_l)
{
int ret;
char *t_oldpath = user_strdup_errno(p, old_path, old_l);
if (t_oldpath == NULL)
return -1;
char *t_newpath = user_strdup_errno(p, new_path, new_l);
if (t_newpath == NULL) {
user_memdup_free(p, t_oldpath);
return -1;
}
ret = do_link(t_oldpath, t_newpath);
user_memdup_free(p, t_oldpath);
user_memdup_free(p, t_newpath);
return ret;
}
intreg_t sys_unlink(struct proc *p, const char *path, size_t path_l)
{
int retval;
char *t_path = user_strdup_errno(p, path, path_l);
if (!t_path)
return -1;
/* TODO: 9ns support */
retval = do_unlink(t_path);
user_memdup_free(p, t_path);
return retval;
}
intreg_t sys_symlink(struct proc *p, char *old_path, size_t old_l,
char *new_path, size_t new_l)
{
int ret;
char *t_oldpath = user_strdup_errno(p, old_path, old_l);
if (t_oldpath == NULL)
return -1;
char *t_newpath = user_strdup_errno(p, new_path, new_l);
if (t_newpath == NULL) {
user_memdup_free(p, t_oldpath);
return -1;
}
ret = do_symlink(t_newpath, t_oldpath, S_IRWXU | S_IRWXG | S_IRWXO);
user_memdup_free(p, t_oldpath);
user_memdup_free(p, t_newpath);
return ret;
}
intreg_t sys_readlink(struct proc *p, char *path, size_t path_l,
char *u_buf, size_t buf_l)
{
char *symname;
ssize_t copy_amt;
struct dentry *path_d;
char *t_path = user_strdup_errno(p, path, path_l);
if (t_path == NULL)
return -1;
/* TODO: 9ns support */
path_d = lookup_dentry(t_path, 0);
user_memdup_free(p, t_path);
if (!path_d)
return -1;
symname = path_d->d_inode->i_op->readlink(path_d);
copy_amt = strnlen(symname, buf_l - 1) + 1;
if (memcpy_to_user_errno(p, u_buf, symname, copy_amt)) {
kref_put(&path_d->d_kref);
return -1;
}
kref_put(&path_d->d_kref);
printd("READLINK returning %s\n", u_buf);
return copy_amt;
}
intreg_t sys_chdir(struct proc *p, const char *path, size_t path_l)
{
int retval;
char *t_path = user_strdup_errno(p, path, path_l);
if (!t_path)
return -1;
/* TODO: 9ns support */
retval = do_chdir(&p->fs_env, t_path);
user_memdup_free(p, t_path);
if (retval) {
set_errno(-retval);
return -1;
}
return 0;
}
/* Note cwd_l is not a strlen, it's an absolute size */
intreg_t sys_getcwd(struct proc *p, char *u_cwd, size_t cwd_l)
{
int retval = 0;
char *kfree_this;
char *k_cwd = do_getcwd(&p->fs_env, &kfree_this, cwd_l);
if (!k_cwd)
return -1; /* errno set by do_getcwd */
if (memcpy_to_user_errno(p, u_cwd, k_cwd, strnlen(k_cwd, cwd_l - 1) + 1))
retval = -1;
kfree(kfree_this);
return retval;
}
intreg_t sys_mkdir(struct proc *p, const char *path, size_t path_l, int mode)
{
int retval;
char *t_path = user_strdup_errno(p, path, path_l);
if (!t_path)
return -1;
mode &= ~p->fs_env.umask;
/* TODO: 9ns support */
retval = do_mkdir(t_path, mode);
user_memdup_free(p, t_path);
return retval;
}
intreg_t sys_rmdir(struct proc *p, const char *path, size_t path_l)
{
int retval;
char *t_path = user_strdup_errno(p, path, path_l);
if (!t_path)
return -1;
/* TODO: 9ns support */
retval = do_rmdir(t_path);
user_memdup_free(p, t_path);
return retval;
}
intreg_t sys_pipe(struct proc *p, int *u_pipefd, int flags)
{
int pipefd[2] = {0};
int fd;
int retval = 0;
struct file *pipe_files[2] = {0};
if (do_pipe(pipe_files, flags))
return -1;
fd = insert_file(&p->open_files, pipe_files[0], 0);
if (!fd) {
set_errno(ENFILE);
goto failed_first;
}
pipefd[0] = fd;
fd = insert_file(&p->open_files, pipe_files[1], 0);
if (!fd) {
set_errno(ENFILE);
goto failed_second;
}
pipefd[1] = fd;
if (memcpy_to_user_errno(p, u_pipefd, pipefd, sizeof(pipefd))) {
set_errno(EFAULT);
goto failed_memcpy;
}
goto all_out;
failed_memcpy:
put_file_from_fd(&p->open_files, pipefd[1]);
failed_second:
put_file_from_fd(&p->open_files, pipefd[0]);
failed_first:
retval = -1;
all_out:
kref_put(&pipe_files[0]->f_kref);
kref_put(&pipe_files[1]->f_kref);
return retval;
}
intreg_t sys_gettimeofday(struct proc *p, int *buf)
{
static spinlock_t gtod_lock = SPINLOCK_INITIALIZER;
static int t0 = 0;
spin_lock(&gtod_lock);
if(t0 == 0)
#if (defined CONFIG_APPSERVER)
t0 = ufe(time,0,0,0,0);
#else
// Nanwan's birthday, bitches!!
t0 = 1242129600;
#endif
spin_unlock(&gtod_lock);
long long dt = read_tsc();
/* TODO: This probably wants its own function, using a struct timeval */
long kbuf[2] = {t0+dt/system_timing.tsc_freq,
(dt%system_timing.tsc_freq)*1000000/system_timing.tsc_freq};
return memcpy_to_user_errno(p,buf,kbuf,sizeof(kbuf));
}
intreg_t sys_tcgetattr(struct proc *p, int fd, void *termios_p)
{
int retval = 0;
/* TODO: actually support this call on tty FDs. Right now, we just fake
* what my linux box reports for a bash pty. */
struct termios *kbuf = kmalloc(sizeof(struct termios), 0);
kbuf->c_iflag = 0x2d02;
kbuf->c_oflag = 0x0005;
kbuf->c_cflag = 0x04bf;
kbuf->c_lflag = 0x8a3b;
kbuf->c_line = 0x0;
kbuf->c_ispeed = 0xf;
kbuf->c_ospeed = 0xf;
kbuf->c_cc[0] = 0x03;
kbuf->c_cc[1] = 0x1c;
kbuf->c_cc[2] = 0x7f;
kbuf->c_cc[3] = 0x15;
kbuf->c_cc[4] = 0x04;
kbuf->c_cc[5] = 0x00;
kbuf->c_cc[6] = 0x01;
kbuf->c_cc[7] = 0xff;
kbuf->c_cc[8] = 0x11;
kbuf->c_cc[9] = 0x13;
kbuf->c_cc[10] = 0x1a;
kbuf->c_cc[11] = 0xff;
kbuf->c_cc[12] = 0x12;
kbuf->c_cc[13] = 0x0f;
kbuf->c_cc[14] = 0x17;
kbuf->c_cc[15] = 0x16;
kbuf->c_cc[16] = 0xff;
kbuf->c_cc[17] = 0x00;
kbuf->c_cc[18] = 0x00;
kbuf->c_cc[19] = 0x00;
kbuf->c_cc[20] = 0x00;
kbuf->c_cc[21] = 0x00;
kbuf->c_cc[22] = 0x00;
kbuf->c_cc[23] = 0x00;
kbuf->c_cc[24] = 0x00;
kbuf->c_cc[25] = 0x00;
kbuf->c_cc[26] = 0x00;
kbuf->c_cc[27] = 0x00;
kbuf->c_cc[28] = 0x00;
kbuf->c_cc[29] = 0x00;
kbuf->c_cc[30] = 0x00;
kbuf->c_cc[31] = 0x00;
if (memcpy_to_user_errno(p, termios_p, kbuf, sizeof(struct termios)))
retval = -1;
kfree(kbuf);
return retval;
}
intreg_t sys_tcsetattr(struct proc *p, int fd, int optional_actions,
const void *termios_p)
{
/* TODO: do this properly too. For now, we just say 'it worked' */
return 0;
}
/* TODO: we don't have any notion of UIDs or GIDs yet, but don't let that stop a
* process from thinking it can do these. The other alternative is to have
* glibc return 0 right away, though someone might want to do something with
* these calls. Someday. */
intreg_t sys_setuid(struct proc *p, uid_t uid)
{
return 0;
}
intreg_t sys_setgid(struct proc *p, gid_t gid)
{
return 0;
}
/* long bind(char* src_path, char* onto_path, int flag);
*
* The naming for the args in bind is messy historically. We do:
* bind src_path onto_path
* plan9 says bind NEW OLD, where new is *src*, and old is *onto*.
* Linux says mount --bind OLD NEW, where OLD is *src* and NEW is *onto*. */
intreg_t sys_nbind(struct proc *p,
char *src_path, size_t src_l,
char *onto_path, size_t onto_l,
unsigned int flag)
{
int ret;
char *t_srcpath = user_strdup_errno(p, src_path, src_l);
if (t_srcpath == NULL) {
printd("srcpath dup failed ptr %p size %d\n", src_path, src_l);
return -1;
}
char *t_ontopath = user_strdup_errno(p, onto_path, onto_l);
if (t_ontopath == NULL) {
user_memdup_free(p, t_srcpath);
printd("ontopath dup failed ptr %p size %d\n", onto_path, onto_l);
return -1;
}
printd("sys_nbind: %s -> %s flag %d\n", t_srcpath, t_ontopath, flag);
ret = bindmount(0, -1, -1, t_srcpath, t_ontopath, flag, NULL);
user_memdup_free(p, t_srcpath);
user_memdup_free(p, t_ontopath);
return ret;
}
/* int npipe(int *fd) */
intreg_t sys_npipe(struct proc *p, int *retfd)
{
/* TODO: validate addresses of retfd (UMEM) */
return syspipe(retfd);
}
/* int mount(int fd, int afd, char* onto_path, int flag, char* aname); */
intreg_t sys_nmount(struct proc *p,
int fd,
char *onto_path, size_t onto_l,
unsigned int flag
/* we ignore these */
/* no easy way to pass this many args anyway. *
int afd,
char *auth, size_t auth_l*/)
{
int ret;
int afd;
afd = -1;
char *t_ontopath = user_strdup_errno(p, onto_path, onto_l);
if (t_ontopath == NULL)
return -1;
ret = bindmount(1, fd, afd, NULL, t_ontopath, flag, /* spec or auth */"");
user_memdup_free(p, t_ontopath);
return ret;
}
/* int mount(int fd, int afd, char* old, int flag, char* aname); */
intreg_t sys_nunmount(struct proc *p, char *name, int name_l, char *old_path, int old_l)
{
int ret;
char *t_oldpath = user_strdup_errno(p, old_path, old_l);
if (t_oldpath == NULL)
return -1;
char *t_name = user_strdup_errno(p, name, name_l);
if (t_name == NULL) {
user_memdup_free(p, t_oldpath);
return -1;
}
ret = sysunmount(t_name, t_oldpath);
printd("go do it\n");
user_memdup_free(p, t_oldpath);
user_memdup_free(p, t_name);
return ret;
}
static int sys_fd2path(struct proc *p, int fd, void *u_buf, size_t len)
{
int ret;
struct chan *ch;
ERRSTACK(1);
/* UMEM: Check the range, can PF later and kill if the page isn't present */
if (!is_user_rwaddr(u_buf, len)) {
printk("[kernel] bad user addr %p (+%p) in %s (user bug)\n", u_buf,
len, __FUNCTION__);
return -1;
}
/* fdtochan throws */
if (waserror()) {
poperror();
return -1;
}
ch = fdtochan(fd, -1, FALSE, TRUE);
ret = snprintf(u_buf, len, "%s", chanpath(ch));
cclose(ch);
poperror();
return ret;
}
/************** Syscall Invokation **************/
const static struct sys_table_entry syscall_table[] = {
[SYS_null] = {(syscall_t)sys_null, "null"},
[SYS_block] = {(syscall_t)sys_block, "block"},
[SYS_cache_buster] = {(syscall_t)sys_cache_buster, "buster"},
[SYS_cache_invalidate] = {(syscall_t)sys_cache_invalidate, "wbinv"},
[SYS_reboot] = {(syscall_t)reboot, "reboot!"},
[SYS_cputs] = {(syscall_t)sys_cputs, "cputs"},
[SYS_cgetc] = {(syscall_t)sys_cgetc, "cgetc"},
[SYS_getpcoreid] = {(syscall_t)sys_getpcoreid, "getpcoreid"},
[SYS_getvcoreid] = {(syscall_t)sys_getvcoreid, "getvcoreid"},
[SYS_getpid] = {(syscall_t)sys_getpid, "getpid"},
[SYS_proc_create] = {(syscall_t)sys_proc_create, "proc_create"},
[SYS_proc_run] = {(syscall_t)sys_proc_run, "proc_run"},
[SYS_proc_destroy] = {(syscall_t)sys_proc_destroy, "proc_destroy"},
[SYS_yield] = {(syscall_t)sys_proc_yield, "proc_yield"},
[SYS_change_vcore] = {(syscall_t)sys_change_vcore, "change_vcore"},
[SYS_fork] = {(syscall_t)sys_fork, "fork"},
[SYS_exec] = {(syscall_t)sys_exec, "exec"},
[SYS_waitpid] = {(syscall_t)sys_waitpid, "waitpid"},
[SYS_mmap] = {(syscall_t)sys_mmap, "mmap"},
[SYS_munmap] = {(syscall_t)sys_munmap, "munmap"},
[SYS_mprotect] = {(syscall_t)sys_mprotect, "mprotect"},
[SYS_shared_page_alloc] = {(syscall_t)sys_shared_page_alloc, "pa"},
[SYS_shared_page_free] = {(syscall_t)sys_shared_page_free, "pf"},
[SYS_provision] = {(syscall_t)sys_provision, "provision"},
[SYS_notify] = {(syscall_t)sys_notify, "notify"},
[SYS_self_notify] = {(syscall_t)sys_self_notify, "self_notify"},
[SYS_vc_entry] = {(syscall_t)sys_vc_entry, "vc_entry"},
[SYS_halt_core] = {(syscall_t)sys_halt_core, "halt_core"},
#ifdef CONFIG_SERIAL_IO
[SYS_serial_read] = {(syscall_t)sys_serial_read, "ser_read"},
[SYS_serial_write] = {(syscall_t)sys_serial_write, "ser_write"},
#endif
#ifdef CONFIG_NETWORKING
[SYS_eth_read] = {(syscall_t)sys_eth_read, "eth_read"},
[SYS_eth_write] = {(syscall_t)sys_eth_write, "eth_write"},
[SYS_eth_get_mac_addr] = {(syscall_t)sys_eth_get_mac_addr, "get_mac"},
[SYS_eth_recv_check] = {(syscall_t)sys_eth_recv_check, "recv_check"},
#endif
#ifdef CONFIG_ARSC_SERVER
[SYS_init_arsc] = {(syscall_t)sys_init_arsc, "init_arsc"},
#endif
[SYS_change_to_m] = {(syscall_t)sys_change_to_m, "change_to_m"},
[SYS_poke_ksched] = {(syscall_t)sys_poke_ksched, "poke_ksched"},
[SYS_abort_sysc] = {(syscall_t)sys_abort_sysc, "abort_sysc"},
// socket related syscalls
[SYS_socket] ={(syscall_t)sys_socket, "socket"},
[SYS_sendto] ={(syscall_t)sys_sendto, "sendto"},
[SYS_recvfrom] ={(syscall_t)sys_recvfrom, "recvfrom"},
[SYS_select] ={(syscall_t)sys_select, "select"},
[SYS_connect] = {(syscall_t)sys_connect, "connect"},
[SYS_send] ={(syscall_t)sys_send, "send"},
[SYS_recv] ={(syscall_t)sys_recv, "recvfrom"},
[SYS_bind] ={(syscall_t)sys_bind, "bind"},
[SYS_accept] ={(syscall_t)sys_accept, "accept"},
[SYS_listen] ={(syscall_t)sys_listen, "listen"},
[SYS_read] = {(syscall_t)sys_read, "read"},
[SYS_write] = {(syscall_t)sys_write, "write"},
[SYS_open] = {(syscall_t)sys_open, "open"},
[SYS_close] = {(syscall_t)sys_close, "close"},
[SYS_fstat] = {(syscall_t)sys_fstat, "fstat"},
[SYS_stat] = {(syscall_t)sys_stat, "stat"},
[SYS_lstat] = {(syscall_t)sys_lstat, "lstat"},
[SYS_fcntl] = {(syscall_t)sys_fcntl, "fcntl"},
[SYS_access] = {(syscall_t)sys_access, "access"},
[SYS_umask] = {(syscall_t)sys_umask, "umask"},
[SYS_chmod] = {(syscall_t)sys_chmod, "chmod"},
[SYS_llseek] = {(syscall_t)sys_llseek, "llseek"},
[SYS_link] = {(syscall_t)sys_link, "link"},
[SYS_unlink] = {(syscall_t)sys_unlink, "unlink"},
[SYS_symlink] = {(syscall_t)sys_symlink, "symlink"},
[SYS_readlink] = {(syscall_t)sys_readlink, "readlink"},
[SYS_chdir] = {(syscall_t)sys_chdir, "chdir"},
[SYS_getcwd] = {(syscall_t)sys_getcwd, "getcwd"},
[SYS_mkdir] = {(syscall_t)sys_mkdir, "mkdri"},
[SYS_rmdir] = {(syscall_t)sys_rmdir, "rmdir"},
[SYS_pipe] = {(syscall_t)sys_pipe, "pipe"},
[SYS_gettimeofday] = {(syscall_t)sys_gettimeofday, "gettime"},
[SYS_tcgetattr] = {(syscall_t)sys_tcgetattr, "tcgetattr"},
[SYS_tcsetattr] = {(syscall_t)sys_tcsetattr, "tcsetattr"},
[SYS_setuid] = {(syscall_t)sys_setuid, "setuid"},
[SYS_setgid] = {(syscall_t)sys_setgid, "setgid"},
/* special! */
[SYS_nbind] ={(syscall_t)sys_nbind, "nbind"},
[SYS_nmount] ={(syscall_t)sys_nmount, "nmount"},
[SYS_nunmount] ={(syscall_t)sys_nunmount, "nunmount"},
[SYS_npipe] ={(syscall_t)sys_npipe, "npipe"},
[SYS_fd2path] ={(syscall_t)sys_fd2path, "fd2path"},
};
/* Executes the given syscall.
*
* Note tf is passed in, which points to the tf of the context on the kernel
* stack. If any syscall needs to block, it needs to save this info, as well as
* any silly state.
*
* This syscall function is used by both local syscall and arsc, and should
* remain oblivious of the caller. */
intreg_t syscall(struct proc *p, uintreg_t sc_num, uintreg_t a0, uintreg_t a1,
uintreg_t a2, uintreg_t a3, uintreg_t a4, uintreg_t a5)
{
intreg_t ret = -1;
ERRSTACK(1);
const int max_syscall = sizeof(syscall_table)/sizeof(syscall_table[0]);
uint32_t coreid, vcoreid;
if (systrace_flags & SYSTRACE_ON) {
if ((systrace_flags & SYSTRACE_ALLPROC) || (proc_is_traced(p))) {
coreid = core_id();
vcoreid = proc_get_vcoreid(p);
if (systrace_flags & SYSTRACE_LOUD) {
printk("[%16llu] Syscall %3d (%12s):(%p, %p, %p, %p, "
"%p, %p) proc: %d core: %d vcore: %d\n", read_tsc(),
sc_num, syscall_table[sc_num].name, a0, a1, a2, a3,
a4, a5, p->pid, coreid, vcoreid);
} else {
struct systrace_record *trace;
uintptr_t idx, new_idx;
do {
idx = systrace_bufidx;
new_idx = (idx + 1) % systrace_bufsize;
} while (!atomic_cas_u32(&systrace_bufidx, idx, new_idx));
trace = &systrace_buffer[idx];
trace->timestamp = read_tsc();
trace->syscallno = sc_num;
trace->arg0 = a0;
trace->arg1 = a1;
trace->arg2 = a2;
trace->arg3 = a3;
trace->arg4 = a4;
trace->arg5 = a5;
trace->pid = p->pid;
trace->coreid = coreid;
trace->vcoreid = vcoreid;
}
}
}
if (sc_num > max_syscall || syscall_table[sc_num].call == NULL)
panic("Invalid syscall number %d for proc %x!", sc_num, p);
/* N.B. This is going away. */
if (waserror()){
printk("Plan 9 system call returned via waserror()\n");
printk("String: '%s'\n", current_errstr());
/* if we got here, then the errbuf was right.
* no need to check!
*/
return -1;
}
//printd("before syscall errstack %p\n", errstack);
//printd("before syscall errstack base %p\n", get_cur_errbuf());
ret = syscall_table[sc_num].call(p, a0, a1, a2, a3, a4, a5);
//printd("after syscall errstack base %p\n", get_cur_errbuf());
if (get_cur_errbuf() != &errstack[0]) {
coreid = core_id();
vcoreid = proc_get_vcoreid(p);
printk("[%16llu] Syscall %3d (%12s):(%p, %p, %p, %p, "
"%p, %p) proc: %d core: %d vcore: %d\n", read_tsc(),
sc_num, syscall_table[sc_num].name, a0, a1, a2, a3,
a4, a5, p->pid, coreid, vcoreid);
if (sc_num != SYS_fork)
printk("YOU SHOULD PANIC: errstack mismatch");
}
return ret;
}
/* Execute the syscall on the local core */
void run_local_syscall(struct syscall *sysc)
{
struct per_cpu_info *pcpui = &per_cpu_info[core_id()];
/* TODO: (UMEM) assert / pin the memory for the sysc */
assert(irq_is_enabled()); /* in case we proc destroy */
/* Abort on mem check failure, for now */
if (!user_mem_check(pcpui->cur_proc, sysc, sizeof(struct syscall),
sizeof(uintptr_t), PTE_USER_RW))
return;
pcpui->cur_kthread->sysc = sysc; /* let the core know which sysc it is */
sysc->retval = syscall(pcpui->cur_proc, sysc->num, sysc->arg0, sysc->arg1,
sysc->arg2, sysc->arg3, sysc->arg4, sysc->arg5);
/* Need to re-load pcpui, in case we migrated */
pcpui = &per_cpu_info[core_id()];
/* Some 9ns paths set errstr, but not errno. glibc will ignore errstr.
* this is somewhat hacky, since errno might get set unnecessarily */
if ((current_errstr()[0] != 0) && (!sysc->err))
sysc->err = EUNSPECIFIED;
finish_sysc(sysc, pcpui->cur_proc);
/* Can unpin (UMEM) at this point */
pcpui->cur_kthread->sysc = 0; /* no longer working on sysc */
}
/* A process can trap and call this function, which will set up the core to
* handle all the syscalls. a.k.a. "sys_debutante(needs, wants)". If there is
* at least one, it will run it directly. */
void prep_syscalls(struct proc *p, struct syscall *sysc, unsigned int nr_syscs)
{
int retval;
/* Careful with pcpui here, we could have migrated */
if (!nr_syscs)
return;
/* For all after the first call, send ourselves a KMSG (TODO). */
if (nr_syscs != 1)
warn("Only one supported (Debutante calls: %d)\n", nr_syscs);
/* Call the first one directly. (we already checked to make sure there is
* 1) */
run_local_syscall(sysc);
}
/* Call this when something happens on the syscall where userspace might want to
* get signaled. Passing p, since the caller should know who the syscall
* belongs to (probably is current).
*
* You need to have SC_K_LOCK set when you call this. */
void __signal_syscall(struct syscall *sysc, struct proc *p)
{
struct event_queue *ev_q;
struct event_msg local_msg;
/* User sets the ev_q then atomically sets the flag (races with SC_DONE) */
if (atomic_read(&sysc->flags) & SC_UEVENT) {
rmb(); /* read the ev_q after reading the flag */
ev_q = sysc->ev_q;
if (ev_q) {
memset(&local_msg, 0, sizeof(struct event_msg));
local_msg.ev_type = EV_SYSCALL;
local_msg.ev_arg3 = sysc;
send_event(p, ev_q, &local_msg, 0);
}
}
}
/* Syscall tracing */
static void __init_systrace(void)
{
systrace_buffer = kmalloc(MAX_SYSTRACES*sizeof(struct systrace_record), 0);
if (!systrace_buffer)
panic("Unable to alloc a trace buffer\n");
systrace_bufidx = 0;
systrace_bufsize = MAX_SYSTRACES;
/* Note we never free the buffer - it's around forever. Feel free to change
* this if you want to change the size or something dynamically. */
}
/* If you call this while it is running, it will change the mode */
void systrace_start(bool silent)
{
static bool init = FALSE;
spin_lock_irqsave(&systrace_lock);
if (!init) {
__init_systrace();
init = TRUE;
}
systrace_flags = silent ? SYSTRACE_ON : SYSTRACE_ON | SYSTRACE_LOUD;
spin_unlock_irqsave(&systrace_lock);
}
int systrace_reg(bool all, struct proc *p)
{
int retval = 0;
spin_lock_irqsave(&systrace_lock);
if (all) {
printk("Tracing syscalls for all processes\n");
systrace_flags |= SYSTRACE_ALLPROC;
retval = 0;
} else {
for (int i = 0; i < MAX_NUM_TRACED; i++) {
if (!systrace_procs[i]) {
printk("Tracing syscalls for process %d\n", p->pid);
systrace_procs[i] = p;
retval = 0;
break;
}
}
}
spin_unlock_irqsave(&systrace_lock);
return retval;
}
void systrace_stop(void)
{
spin_lock_irqsave(&systrace_lock);
systrace_flags = 0;
for (int i = 0; i < MAX_NUM_TRACED; i++)
systrace_procs[i] = 0;
spin_unlock_irqsave(&systrace_lock);
}
/* If you registered a process specifically, then you need to dereg it
* specifically. Or just fully stop, which will do it for all. */
int systrace_dereg(bool all, struct proc *p)
{
spin_lock_irqsave(&systrace_lock);
if (all) {
printk("No longer tracing syscalls for all processes.\n");
systrace_flags &= ~SYSTRACE_ALLPROC;
} else {
for (int i = 0; i < MAX_NUM_TRACED; i++) {
if (systrace_procs[i] == p) {
systrace_procs[i] = 0;
printk("No longer tracing syscalls for process %d\n", p->pid);
}
}
}
spin_unlock_irqsave(&systrace_lock);
return 0;
}
/* Regardless of locking, someone could be writing into the buffer */
void systrace_print(bool all, struct proc *p)
{
spin_lock_irqsave(&systrace_lock);
/* if you want to be clever, you could make this start from the earliest
* timestamp and loop around. Careful of concurrent writes. */
for (int i = 0; i < systrace_bufsize; i++)
if (systrace_buffer[i].timestamp)
printk("[%16llu] Syscall %3d (%12s):(%p, %p, %p, %p, %p,"
"%p) proc: %d core: %d vcore: %d\n",
systrace_buffer[i].timestamp,
systrace_buffer[i].syscallno,
syscall_table[systrace_buffer[i].syscallno].name,
systrace_buffer[i].arg0,
systrace_buffer[i].arg1,
systrace_buffer[i].arg2,
systrace_buffer[i].arg3,
systrace_buffer[i].arg4,
systrace_buffer[i].arg5,
systrace_buffer[i].pid,
systrace_buffer[i].coreid,
systrace_buffer[i].vcoreid);
spin_unlock_irqsave(&systrace_lock);
}
void systrace_clear_buffer(void)
{
spin_lock_irqsave(&systrace_lock);
memset(systrace_buffer, 0, sizeof(struct systrace_record) * MAX_SYSTRACES);
spin_unlock_irqsave(&systrace_lock);
}