| /* | 
 |  * We need the mmu code to access both 32-bit and 64-bit guest ptes, | 
 |  * so the code in this file is compiled twice, once per pte size. | 
 |  */ | 
 |  | 
 | #if PTTYPE == 64 | 
 | 	#define pt_element_t uint64_t | 
 | 	#define guest_walker guest_walker64 | 
 | 	#define FNAME(name) paging##64_##name | 
 | 	#define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK | 
 | 	#define PT_DIR_BASE_ADDR_MASK PT64_DIR_BASE_ADDR_MASK | 
 | 	#define PT_INDEX(addr, level) PT64_INDEX(addr, level) | 
 | 	#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level) | 
 | 	#define PT_LEVEL_MASK(level) PT64_LEVEL_MASK(level) | 
 | 	#define PT_PTE_COPY_MASK PT64_PTE_COPY_MASK | 
 | 	#define PT_NON_PTE_COPY_MASK PT64_NON_PTE_COPY_MASK | 
 | #elif PTTYPE == 32 | 
 | 	#define pt_element_t uint32_t | 
 | 	#define guest_walker guest_walker32 | 
 | 	#define FNAME(name) paging##32_##name | 
 | 	#define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK | 
 | 	#define PT_DIR_BASE_ADDR_MASK PT32_DIR_BASE_ADDR_MASK | 
 | 	#define PT_INDEX(addr, level) PT32_INDEX(addr, level) | 
 | 	#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level) | 
 | 	#define PT_LEVEL_MASK(level) PT32_LEVEL_MASK(level) | 
 | 	#define PT_PTE_COPY_MASK PT32_PTE_COPY_MASK | 
 | 	#define PT_NON_PTE_COPY_MASK PT32_NON_PTE_COPY_MASK | 
 | #else | 
 | 	#error Invalid PTTYPE value | 
 | #endif | 
 |  | 
 | /* | 
 |  * The guest_walker structure emulates the behavior of the hardware page | 
 |  * table walker. | 
 |  */ | 
 | struct guest_walker { | 
 | 	int level; | 
 | 	pt_element_t *table; | 
 | 	pt_element_t inherited_ar; | 
 | }; | 
 |  | 
 | static void FNAME(init_walker)(struct guest_walker *walker, | 
 | 			       struct litevm_vcpu *vcpu) | 
 | { | 
 | 	hpa_t hpa; | 
 | 	struct litevm_memory_slot *slot; | 
 |  | 
 | 	walker->level = vcpu->mmu.root_level; | 
 | 	slot = gfn_to_memslot(vcpu->litevm, | 
 | 			      (vcpu->cr3 & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT); | 
 | 	hpa = safe_gpa_to_hpa(vcpu, vcpu->cr3 & PT64_BASE_ADDR_MASK); | 
 | 	// well, it seems that stuff is always addressable in akaros. I hope. | 
 | 	//walker->table = vmap_pmem(ppn2page(hpa >> PAGE_SHIFT), PAGE_SIZE); | 
 | 	walker->table = KADDR(hpa); | 
 |  | 
 | 	ASSERT((!is_long_mode() && is_pae()) || | 
 | 	       (vcpu->cr3 & ~(PAGE_MASK | CR3_FLAGS_MASK)) == 0); | 
 |  | 
 | 	walker->table = (pt_element_t *)( (unsigned long)walker->table | | 
 | 		(unsigned long)(vcpu->cr3 & ~(PAGE_MASK | CR3_FLAGS_MASK)) ); | 
 | 	walker->inherited_ar = PT_USER_MASK | PT_WRITABLE_MASK; | 
 | } | 
 |  | 
 | static void FNAME(release_walker)(struct guest_walker *walker) | 
 | { | 
 | 	//vunmap_pmem(walker->table, PAGE_SIZE); | 
 | } | 
 |  | 
 | static void FNAME(set_pte)(struct litevm_vcpu *vcpu, uint64_t guest_pte, | 
 | 			   uint64_t *shadow_pte, uint64_t access_bits) | 
 | { | 
 | 	ASSERT(*shadow_pte == 0); | 
 | 	access_bits &= guest_pte; | 
 | 	*shadow_pte = (guest_pte & PT_PTE_COPY_MASK); | 
 | 	set_pte_common(vcpu, shadow_pte, guest_pte & PT_BASE_ADDR_MASK, | 
 | 		       guest_pte & PT_DIRTY_MASK, access_bits); | 
 | } | 
 |  | 
 | static void FNAME(set_pde)(struct litevm_vcpu *vcpu, uint64_t guest_pde, | 
 | 			   uint64_t *shadow_pte, uint64_t access_bits, | 
 | 			   int index) | 
 | { | 
 | 	gpa_t gaddr; | 
 |  | 
 | 	ASSERT(*shadow_pte == 0); | 
 | 	access_bits &= guest_pde; | 
 | 	gaddr = (guest_pde & PT_DIR_BASE_ADDR_MASK) + PAGE_SIZE * index; | 
 | 	if (PTTYPE == 32 && is_cpuid_PSE36()) | 
 | 		gaddr |= (guest_pde & PT32_DIR_PSE36_MASK) << | 
 | 			(32 - PT32_DIR_PSE36_SHIFT); | 
 | 	*shadow_pte = (guest_pde & PT_NON_PTE_COPY_MASK) | | 
 | 		          ((guest_pde & PT_DIR_PAT_MASK) >> | 
 | 			            (PT_DIR_PAT_SHIFT - PT_PAT_SHIFT)); | 
 | 	set_pte_common(vcpu, shadow_pte, gaddr, | 
 | 		       guest_pde & PT_DIRTY_MASK, access_bits); | 
 | } | 
 |  | 
 | /* | 
 |  * Fetch a guest pte from a specific level in the paging hierarchy. | 
 |  */ | 
 | static pt_element_t *FNAME(fetch_guest)(struct litevm_vcpu *vcpu, | 
 | 					struct guest_walker *walker, | 
 | 					int level, | 
 | 					gva_t addr) | 
 | { | 
 |  | 
 | 	ASSERT(level > 0  && level <= walker->level); | 
 |  | 
 | 	for (;;) { | 
 | 		int index = PT_INDEX(addr, walker->level); | 
 | 		hpa_t paddr; | 
 |  | 
 | 		ASSERT(((unsigned long)walker->table & PAGE_MASK) == | 
 | 		       ((unsigned long)&walker->table[index] & PAGE_MASK)); | 
 | 		if (level == walker->level || | 
 | 		    !is_present_pte(walker->table[index]) || | 
 | 		    (walker->level == PT_DIRECTORY_LEVEL && | 
 | 		     (walker->table[index] & PT_PAGE_SIZE_MASK) && | 
 | 		     (PTTYPE == 64 || is_pse()))) | 
 | 			return &walker->table[index]; | 
 | 		if (walker->level != 3 || is_long_mode()) | 
 | 			walker->inherited_ar &= walker->table[index]; | 
 | 		paddr = safe_gpa_to_hpa(vcpu, walker->table[index] & PT_BASE_ADDR_MASK); | 
 | 		//kunmap_atomic(walker->table); | 
 | 		//walker->table = vmap_pmem(ppn2page(paddr >> PAGE_SHIFT), PAGE_SIZE); | 
 | 		walker->table = KADDR(paddr >> PAGE_SHIFT); | 
 | 		--walker->level; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Fetch a shadow pte for a specific level in the paging hierarchy. | 
 |  */ | 
 | static uint64_t *FNAME(fetch)(struct litevm_vcpu *vcpu, gva_t addr, | 
 | 			      struct guest_walker *walker) | 
 | { | 
 | 	hpa_t shadow_addr; | 
 | 	int level; | 
 | 	uint64_t *prev_shadow_ent = NULL; | 
 |  | 
 | 	shadow_addr = vcpu->mmu.root_hpa; | 
 | 	level = vcpu->mmu.shadow_root_level; | 
 |  | 
 | 	for (; ; level--) { | 
 | 		uint32_t index = SHADOW_PT_INDEX(addr, level); | 
 | 		uint64_t *shadow_ent = ((uint64_t *)KADDR(shadow_addr)) + index; | 
 | 		pt_element_t *guest_ent; | 
 |  | 
 | 		if (is_present_pte(*shadow_ent) || is_io_pte(*shadow_ent)) { | 
 | 			if (level == PT_PAGE_TABLE_LEVEL) | 
 | 				return shadow_ent; | 
 | 			shadow_addr = *shadow_ent & PT64_BASE_ADDR_MASK; | 
 | 			prev_shadow_ent = shadow_ent; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		if (PTTYPE == 32 && level > PT32_ROOT_LEVEL) { | 
 | 			ASSERT(level == PT32E_ROOT_LEVEL); | 
 | 			guest_ent = FNAME(fetch_guest)(vcpu, walker, | 
 | 						       PT32_ROOT_LEVEL, addr); | 
 | 		} else | 
 | 			guest_ent = FNAME(fetch_guest)(vcpu, walker, | 
 | 						       level, addr); | 
 |  | 
 | 		if (!is_present_pte(*guest_ent)) | 
 | 			return NULL; | 
 |  | 
 | 		/* Don't set accessed bit on PAE PDPTRs */ | 
 | 		if (vcpu->mmu.root_level != 3 || walker->level != 3) | 
 | 			*guest_ent |= PT_ACCESSED_MASK; | 
 |  | 
 | 		if (level == PT_PAGE_TABLE_LEVEL) { | 
 |  | 
 | 			if (walker->level == PT_DIRECTORY_LEVEL) { | 
 | 				if (prev_shadow_ent) | 
 | 					*prev_shadow_ent |= PT_SHADOW_PS_MARK; | 
 | 				FNAME(set_pde)(vcpu, *guest_ent, shadow_ent, | 
 | 					       walker->inherited_ar, | 
 | 				          PT_INDEX(addr, PT_PAGE_TABLE_LEVEL)); | 
 | 			} else { | 
 | 				ASSERT(walker->level == PT_PAGE_TABLE_LEVEL); | 
 | 				FNAME(set_pte)(vcpu, *guest_ent, shadow_ent, walker->inherited_ar); | 
 | 			} | 
 | 			return shadow_ent; | 
 | 		} | 
 |  | 
 | 		shadow_addr = litevm_mmu_alloc_page(vcpu, shadow_ent); | 
 | 		if (!VALID_PAGE(shadow_addr)) | 
 | 			return ERR_PTR(-ENOMEM); | 
 | 		if (!is_long_mode() && level == 3) | 
 | 			*shadow_ent = shadow_addr | | 
 | 				(*guest_ent & (PT_PRESENT_MASK | PT_PWT_MASK | PT_PCD_MASK)); | 
 | 		else { | 
 | 			*shadow_ent = shadow_addr | | 
 | 				(*guest_ent & PT_NON_PTE_COPY_MASK); | 
 | 			*shadow_ent |= (PT_WRITABLE_MASK | PT_USER_MASK); | 
 | 		} | 
 | 		prev_shadow_ent = shadow_ent; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * The guest faulted for write.  We need to | 
 |  * | 
 |  * - check write permissions | 
 |  * - update the guest pte dirty bit | 
 |  * - update our own dirty page tracking structures | 
 |  */ | 
 | static int FNAME(fix_write_pf)(struct litevm_vcpu *vcpu, | 
 | 			       uint64_t *shadow_ent, | 
 | 			       struct guest_walker *walker, | 
 | 			       gva_t addr, | 
 | 			       int user) | 
 | { | 
 | 	pt_element_t *guest_ent; | 
 | 	int writable_shadow; | 
 | 	gfn_t gfn; | 
 |  | 
 | 	if (is_writeble_pte(*shadow_ent)) | 
 | 		return 0; | 
 |  | 
 | 	writable_shadow = *shadow_ent & PT_SHADOW_WRITABLE_MASK; | 
 | 	if (user) { | 
 | 		/* | 
 | 		 * User mode access.  Fail if it's a kernel page or a read-only | 
 | 		 * page. | 
 | 		 */ | 
 | 		if (!(*shadow_ent & PT_SHADOW_USER_MASK) || !writable_shadow) | 
 | 			return 0; | 
 | 		ASSERT(*shadow_ent & PT_USER_MASK); | 
 | 	} else | 
 | 		/* | 
 | 		 * Kernel mode access.  Fail if it's a read-only page and | 
 | 		 * supervisor write protection is enabled. | 
 | 		 */ | 
 | 		if (!writable_shadow) { | 
 | 			if (is_write_protection()) | 
 | 				return 0; | 
 | 			*shadow_ent &= ~PT_USER_MASK; | 
 | 		} | 
 |  | 
 | 	guest_ent = FNAME(fetch_guest)(vcpu, walker, PT_PAGE_TABLE_LEVEL, addr); | 
 |  | 
 | 	if (!is_present_pte(*guest_ent)) { | 
 | 		*shadow_ent = 0; | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	gfn = (*guest_ent & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT; | 
 | 	mark_page_dirty(vcpu->litevm, gfn); | 
 | 	*shadow_ent |= PT_WRITABLE_MASK; | 
 | 	*guest_ent |= PT_DIRTY_MASK; | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | /* | 
 |  * Page fault handler.  There are several causes for a page fault: | 
 |  *   - there is no shadow pte for the guest pte | 
 |  *   - write access through a shadow pte marked read only so that we can set | 
 |  *     the dirty bit | 
 |  *   - write access to a shadow pte marked read only so we can update the page | 
 |  *     dirty bitmap, when userspace requests it | 
 |  *   - mmio access; in this case we will never install a present shadow pte | 
 |  *   - normal guest page fault due to the guest pte marked not present, not | 
 |  *     writable, or not executable | 
 |  * | 
 |  *  Returns: 1 if we need to emulate the instruction, 0 otherwise | 
 |  */ | 
 | static int FNAME(page_fault)(struct litevm_vcpu *vcpu, gva_t addr, | 
 | 			       uint32_t error_code) | 
 | { | 
 | 	int write_fault = error_code & PFERR_WRITE_MASK; | 
 | 	int pte_present = error_code & PFERR_PRESENT_MASK; | 
 | 	int user_fault = error_code & PFERR_USER_MASK; | 
 | 	struct guest_walker walker; | 
 | 	uint64_t *shadow_pte; | 
 | 	int fixed; | 
 |  | 
 | 	/* | 
 | 	 * Look up the shadow pte for the faulting address. | 
 | 	 */ | 
 | 	for (;;) { | 
 | 		FNAME(init_walker)(&walker, vcpu); | 
 | 		shadow_pte = FNAME(fetch)(vcpu, addr, &walker); | 
 | 		if (IS_ERR(shadow_pte)) {  /* must be -ENOMEM */ | 
 | 			nonpaging_flush(vcpu); | 
 | 			FNAME(release_walker)(&walker); | 
 | 			continue; | 
 | 		} | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * The page is not mapped by the guest.  Let the guest handle it. | 
 | 	 */ | 
 | 	if (!shadow_pte) { | 
 | 		inject_page_fault(vcpu, addr, error_code); | 
 | 		FNAME(release_walker)(&walker); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Update the shadow pte. | 
 | 	 */ | 
 | 	if (write_fault) | 
 | 		fixed = FNAME(fix_write_pf)(vcpu, shadow_pte, &walker, addr, | 
 | 					    user_fault); | 
 | 	else | 
 | 		fixed = fix_read_pf(shadow_pte); | 
 |  | 
 | 	FNAME(release_walker)(&walker); | 
 |  | 
 | 	/* | 
 | 	 * mmio: emulate if accessible, otherwise its a guest fault. | 
 | 	 */ | 
 | 	if (is_io_pte(*shadow_pte)) { | 
 | 		if (may_access(*shadow_pte, write_fault, user_fault)) | 
 | 			return 1; | 
 | 		pgprintk("%s: io work, no access\n", __FUNCTION__); | 
 | 		inject_page_fault(vcpu, addr, | 
 | 				  error_code | PFERR_PRESENT_MASK); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * pte not present, guest page fault. | 
 | 	 */ | 
 | 	if (pte_present && !fixed) { | 
 | 		inject_page_fault(vcpu, addr, error_code); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	++litevm_stat.pf_fixed; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static gpa_t FNAME(gva_to_gpa)(struct litevm_vcpu *vcpu, gva_t vaddr) | 
 | { | 
 | 	struct guest_walker walker; | 
 | 	pt_element_t guest_pte; | 
 | 	gpa_t gpa; | 
 |  | 
 | 	FNAME(init_walker)(&walker, vcpu); | 
 | 	guest_pte = *FNAME(fetch_guest)(vcpu, &walker, PT_PAGE_TABLE_LEVEL, | 
 | 					vaddr); | 
 | 	FNAME(release_walker)(&walker); | 
 |  | 
 | 	if (!is_present_pte(guest_pte)) | 
 | 		return UNMAPPED_GVA; | 
 |  | 
 | 	if (walker.level == PT_DIRECTORY_LEVEL) { | 
 | 		ASSERT((guest_pte & PT_PAGE_SIZE_MASK)); | 
 | 		ASSERT(PTTYPE == 64 || is_pse()); | 
 |  | 
 | 		gpa = (guest_pte & PT_DIR_BASE_ADDR_MASK) | (vaddr & | 
 | 			(PT_LEVEL_MASK(PT_PAGE_TABLE_LEVEL) | ~PAGE_MASK)); | 
 |  | 
 | 		if (PTTYPE == 32 && is_cpuid_PSE36()) | 
 | 			gpa |= (guest_pte & PT32_DIR_PSE36_MASK) << | 
 | 					(32 - PT32_DIR_PSE36_SHIFT); | 
 | 	} else { | 
 | 		gpa = (guest_pte & PT_BASE_ADDR_MASK); | 
 | 		gpa |= (vaddr & ~PAGE_MASK); | 
 | 	} | 
 |  | 
 | 	return gpa; | 
 | } | 
 |  | 
 | #undef pt_element_t | 
 | #undef guest_walker | 
 | #undef FNAME | 
 | #undef PT_BASE_ADDR_MASK | 
 | #undef PT_INDEX | 
 | #undef SHADOW_PT_INDEX | 
 | #undef PT_LEVEL_MASK | 
 | #undef PT_PTE_COPY_MASK | 
 | #undef PT_NON_PTE_COPY_MASK | 
 | #undef PT_DIR_BASE_ADDR_MASK |