|  | /* See COPYRIGHT for copyright information. */ | 
|  |  | 
|  | #ifdef __SHARC__ | 
|  | #pragma nosharc | 
|  | #endif | 
|  |  | 
|  | //#define DEBUG | 
|  | #include <ros/common.h> | 
|  | #include <arch/types.h> | 
|  | #include <arch/arch.h> | 
|  | #include <arch/mmu.h> | 
|  | #include <arch/console.h> | 
|  | #include <time.h> | 
|  | #include <error.h> | 
|  |  | 
|  | #include <elf.h> | 
|  | #include <string.h> | 
|  | #include <assert.h> | 
|  | #include <process.h> | 
|  | #include <schedule.h> | 
|  | #include <pmap.h> | 
|  | #include <umem.h> | 
|  | #include <mm.h> | 
|  | #include <trap.h> | 
|  | #include <syscall.h> | 
|  | #include <kmalloc.h> | 
|  | #include <stdio.h> | 
|  | #include <frontend.h> | 
|  | #include <colored_caches.h> | 
|  | #include <hashtable.h> | 
|  | #include <bitmask.h> | 
|  | #include <vfs.h> | 
|  | #include <devfs.h> | 
|  | #include <smp.h> | 
|  | #include <arsc_server.h> | 
|  | #include <event.h> | 
|  | #include <termios.h> | 
|  | #include <socket.h> | 
|  |  | 
|  | #ifdef CONFIG_NETWORKING | 
|  | #include <net/nic_common.h> | 
|  | extern int (*send_frame)(const char *CT(len) data, size_t len); | 
|  | extern unsigned char device_mac[6]; | 
|  | #endif | 
|  |  | 
|  | /* Tracing Globals */ | 
|  | int systrace_flags = 0; | 
|  | struct systrace_record *systrace_buffer = 0; | 
|  | uint32_t systrace_bufidx = 0; | 
|  | size_t systrace_bufsize = 0; | 
|  | struct proc *systrace_procs[MAX_NUM_TRACED] = {0}; | 
|  | spinlock_t systrace_lock = SPINLOCK_INITIALIZER_IRQSAVE; | 
|  |  | 
|  | /* Not enforcing the packing of systrace_procs yet, but don't rely on that */ | 
|  | static bool proc_is_traced(struct proc *p) | 
|  | { | 
|  | for (int i = 0; i < MAX_NUM_TRACED; i++) | 
|  | if (systrace_procs[i] == p) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* Helper to finish a syscall, signalling if appropriate */ | 
|  | static void finish_sysc(struct syscall *sysc, struct proc *p) | 
|  | { | 
|  | /* Atomically turn on the LOCK and SC_DONE flag.  The lock tells userspace | 
|  | * we're messing with the flags and to not proceed.  We use it instead of | 
|  | * CASing with userspace.  We need the atomics since we're racing with | 
|  | * userspace for the event_queue registration.  The 'lock' tells userspace | 
|  | * to not muck with the flags while we're signalling. */ | 
|  | atomic_or(&sysc->flags, SC_K_LOCK | SC_DONE); | 
|  | __signal_syscall(sysc, p); | 
|  | atomic_and(&sysc->flags, ~SC_K_LOCK); | 
|  | } | 
|  |  | 
|  | /* Helper that "finishes" the current async syscall.  This should be used with | 
|  | * care when we are not using the normal syscall completion path. | 
|  | * | 
|  | * Do *NOT* complete the same syscall twice.  This is catastrophic for _Ms, and | 
|  | * a bad idea for _S. | 
|  | * | 
|  | * It is possible for another user thread to see the syscall being done early - | 
|  | * they just need to be careful with the weird proc management calls (as in, | 
|  | * don't trust an async fork). | 
|  | * | 
|  | * *sysc is in user memory, and should be pinned (TODO: UMEM).  There may be | 
|  | * issues with unpinning this if we never return. */ | 
|  | static void finish_current_sysc(int retval) | 
|  | { | 
|  | struct per_cpu_info *pcpui = &per_cpu_info[core_id()]; | 
|  | assert(pcpui->cur_kthread->sysc); | 
|  | pcpui->cur_kthread->sysc->retval = retval; | 
|  | finish_sysc(pcpui->cur_kthread->sysc, pcpui->cur_proc); | 
|  | } | 
|  |  | 
|  | /* Callable by any function while executing a syscall (or otherwise, actually). | 
|  | */ | 
|  | void set_errno(int errno) | 
|  | { | 
|  | struct per_cpu_info *pcpui = &per_cpu_info[core_id()]; | 
|  | if (pcpui->cur_kthread && pcpui->cur_kthread->sysc) | 
|  | pcpui->cur_kthread->sysc->err = errno; | 
|  | } | 
|  |  | 
|  | void unset_errno(void) | 
|  | { | 
|  | struct per_cpu_info *pcpui = &per_cpu_info[core_id()]; | 
|  | if (!pcpui->cur_kthread || !pcpui->cur_kthread->sysc) | 
|  | return; | 
|  | pcpui->cur_kthread->sysc->err = 0; | 
|  | pcpui->cur_kthread->sysc->errstr[0] = '\0'; | 
|  | } | 
|  |  | 
|  | void set_errstr(char *fmt, ...) | 
|  | { | 
|  | va_list ap; | 
|  | int rc; | 
|  |  | 
|  | struct per_cpu_info *pcpui = &per_cpu_info[core_id()]; | 
|  | if (!pcpui->cur_kthread || !pcpui->cur_kthread->sysc) | 
|  | return; | 
|  |  | 
|  | va_start(ap, fmt); | 
|  | rc = vsnprintf(pcpui->cur_kthread->sysc->errstr, MAX_ERRSTR_LEN, fmt, ap); | 
|  | va_end(ap); | 
|  |  | 
|  | /* TODO: likely not needed */ | 
|  | pcpui->cur_kthread->sysc->errstr[MAX_ERRSTR_LEN - 1] = '\0'; | 
|  | } | 
|  |  | 
|  | char *current_errstr(void) | 
|  | { | 
|  | struct per_cpu_info *pcpui = &per_cpu_info[core_id()]; | 
|  | /* no one should call this that doesn't have a sysc */ | 
|  | assert(pcpui->cur_kthread->sysc); | 
|  | return pcpui->cur_kthread->sysc->errstr; | 
|  | } | 
|  |  | 
|  | struct errbuf *get_cur_errbuf(void) | 
|  | { | 
|  | struct per_cpu_info *pcpui = &per_cpu_info[core_id()]; | 
|  | return (struct errbuf*)pcpui->cur_kthread->errbuf; | 
|  | } | 
|  |  | 
|  | void set_cur_errbuf(struct errbuf *ebuf) | 
|  | { | 
|  | struct per_cpu_info *pcpui = &per_cpu_info[core_id()]; | 
|  | pcpui->cur_kthread->errbuf = ebuf; | 
|  | } | 
|  |  | 
|  | char *get_cur_genbuf(void) | 
|  | { | 
|  | struct per_cpu_info *pcpui = &per_cpu_info[core_id()]; | 
|  | assert(pcpui->cur_kthread); | 
|  | return pcpui->cur_kthread->generic_buf; | 
|  | } | 
|  |  | 
|  | /************** Utility Syscalls **************/ | 
|  |  | 
|  | static int sys_null(void) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Diagnostic function: blocks the kthread/syscall, to help userspace test its | 
|  | * async I/O handling. */ | 
|  | static int sys_block(struct proc *p, unsigned int usec) | 
|  | { | 
|  | struct timer_chain *tchain = &per_cpu_info[core_id()].tchain; | 
|  | struct alarm_waiter a_waiter; | 
|  | init_awaiter(&a_waiter, 0); | 
|  | /* Note printing takes a few ms, so your printds won't be perfect. */ | 
|  | printd("[kernel] sys_block(), sleeping at %llu\n", read_tsc()); | 
|  | set_awaiter_rel(&a_waiter, usec); | 
|  | set_alarm(tchain, &a_waiter); | 
|  | sleep_on_awaiter(&a_waiter); | 
|  | printd("[kernel] sys_block(), waking up at %llu\n", read_tsc()); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Writes 'val' to 'num_writes' entries of the well-known array in the kernel | 
|  | // address space.  It's just #defined to be some random 4MB chunk (which ought | 
|  | // to be boot_alloced or something).  Meant to grab exclusive access to cache | 
|  | // lines, to simulate doing something useful. | 
|  | static int sys_cache_buster(struct proc *p, uint32_t num_writes, | 
|  | uint32_t num_pages, uint32_t flags) | 
|  | { | 
|  | #define BUSTER_ADDR		0xd0000000L  // around 512 MB deep | 
|  | #define MAX_WRITES		1048576*8 | 
|  | #define MAX_PAGES		32 | 
|  | #define INSERT_ADDR 	(UINFO + 2*PGSIZE) // should be free for these tests | 
|  | uint32_t* buster = (uint32_t*)BUSTER_ADDR; | 
|  | static spinlock_t buster_lock = SPINLOCK_INITIALIZER; | 
|  | uint64_t ticks = -1; | 
|  | page_t* a_page[MAX_PAGES]; | 
|  |  | 
|  | /* Strided Accesses or Not (adjust to step by cachelines) */ | 
|  | uint32_t stride = 1; | 
|  | if (flags & BUSTER_STRIDED) { | 
|  | stride = 16; | 
|  | num_writes *= 16; | 
|  | } | 
|  |  | 
|  | /* Shared Accesses or Not (adjust to use per-core regions) | 
|  | * Careful, since this gives 8MB to each core, starting around 512MB. | 
|  | * Also, doesn't separate memory for core 0 if it's an async call. | 
|  | */ | 
|  | if (!(flags & BUSTER_SHARED)) | 
|  | buster = (uint32_t*)(BUSTER_ADDR + core_id() * 0x00800000); | 
|  |  | 
|  | /* Start the timer, if we're asked to print this info*/ | 
|  | if (flags & BUSTER_PRINT_TICKS) | 
|  | ticks = start_timing(); | 
|  |  | 
|  | /* Allocate num_pages (up to MAX_PAGES), to simulate doing some more | 
|  | * realistic work.  Note we don't write to these pages, even if we pick | 
|  | * unshared.  Mostly due to the inconvenience of having to match up the | 
|  | * number of pages with the number of writes.  And it's unnecessary. | 
|  | */ | 
|  | if (num_pages) { | 
|  | spin_lock(&buster_lock); | 
|  | for (int i = 0; i < MIN(num_pages, MAX_PAGES); i++) { | 
|  | upage_alloc(p, &a_page[i],1); | 
|  | page_insert(p->env_pgdir, a_page[i], (void*)INSERT_ADDR + PGSIZE*i, | 
|  | PTE_USER_RW); | 
|  | page_decref(a_page[i]); | 
|  | } | 
|  | spin_unlock(&buster_lock); | 
|  | } | 
|  |  | 
|  | if (flags & BUSTER_LOCKED) | 
|  | spin_lock(&buster_lock); | 
|  | for (int i = 0; i < MIN(num_writes, MAX_WRITES); i=i+stride) | 
|  | buster[i] = 0xdeadbeef; | 
|  | if (flags & BUSTER_LOCKED) | 
|  | spin_unlock(&buster_lock); | 
|  |  | 
|  | if (num_pages) { | 
|  | spin_lock(&buster_lock); | 
|  | for (int i = 0; i < MIN(num_pages, MAX_PAGES); i++) { | 
|  | page_remove(p->env_pgdir, (void*)(INSERT_ADDR + PGSIZE * i)); | 
|  | page_decref(a_page[i]); | 
|  | } | 
|  | spin_unlock(&buster_lock); | 
|  | } | 
|  |  | 
|  | /* Print info */ | 
|  | if (flags & BUSTER_PRINT_TICKS) { | 
|  | ticks = stop_timing(ticks); | 
|  | printk("%llu,", ticks); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int sys_cache_invalidate(void) | 
|  | { | 
|  | #ifdef CONFIG_X86 | 
|  | wbinvd(); | 
|  | #endif | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* sys_reboot(): called directly from dispatch table. */ | 
|  |  | 
|  | /* Print a string to the system console. */ | 
|  | static ssize_t sys_cputs(struct proc *p, const char *DANGEROUS string, | 
|  | size_t strlen) | 
|  | { | 
|  | char *t_string; | 
|  | t_string = user_strdup_errno(p, string, strlen); | 
|  | if (!t_string) | 
|  | return -1; | 
|  | printk("%.*s", strlen, t_string); | 
|  | user_memdup_free(p, t_string); | 
|  | return (ssize_t)strlen; | 
|  | } | 
|  |  | 
|  | // Read a character from the system console. | 
|  | // Returns the character. | 
|  | /* TODO: remove me */ | 
|  | static uint16_t sys_cgetc(struct proc *p) | 
|  | { | 
|  | uint16_t c; | 
|  |  | 
|  | // The cons_get_any_char() primitive doesn't wait for a character, | 
|  | // but the sys_cgetc() system call does. | 
|  | while ((c = cons_get_any_char()) == 0) | 
|  | cpu_relax(); | 
|  |  | 
|  | return c; | 
|  | } | 
|  |  | 
|  | /* Returns the id of the physical core this syscall is executed on. */ | 
|  | static uint32_t sys_getpcoreid(void) | 
|  | { | 
|  | return core_id(); | 
|  | } | 
|  |  | 
|  | // TODO: Temporary hack until thread-local storage is implemented on i386 and | 
|  | // this is removed from the user interface | 
|  | static size_t sys_getvcoreid(struct proc *p) | 
|  | { | 
|  | return proc_get_vcoreid(p); | 
|  | } | 
|  |  | 
|  | /************** Process management syscalls **************/ | 
|  |  | 
|  | /* Returns the calling process's pid */ | 
|  | static pid_t sys_getpid(struct proc *p) | 
|  | { | 
|  | return p->pid; | 
|  | } | 
|  |  | 
|  | /* Creates a process from the file 'path'.  The process is not runnable by | 
|  | * default, so it needs it's status to be changed so that the next call to | 
|  | * schedule() will try to run it.  TODO: take args/envs from userspace. */ | 
|  | static int sys_proc_create(struct proc *p, char *path, size_t path_l, | 
|  | struct procinfo *pi) | 
|  | { | 
|  | int pid = 0; | 
|  | char *t_path; | 
|  | struct file *program; | 
|  | struct proc *new_p; | 
|  |  | 
|  | /* Copy in the path.  Consider putting an upper bound on path_l. */ | 
|  | t_path = user_strdup_errno(p, path, path_l); | 
|  | if (!t_path) | 
|  | return -1; | 
|  | /* TODO: 9ns support */ | 
|  | program = do_file_open(t_path, 0, 0); | 
|  | user_memdup_free(p, t_path); | 
|  | if (!program) | 
|  | return -1;			/* presumably, errno is already set */ | 
|  | /* TODO: need to split the proc creation, since you must load after setting | 
|  | * args/env, since auxp gets set up there. */ | 
|  | //new_p = proc_create(program, 0, 0); | 
|  | if (proc_alloc(&new_p, current)) | 
|  | goto mid_error; | 
|  | /* Set the argument stuff needed by glibc */ | 
|  | if (memcpy_from_user_errno(p, new_p->procinfo->argp, pi->argp, | 
|  | sizeof(pi->argp))) | 
|  | goto late_error; | 
|  | if (memcpy_from_user_errno(p, new_p->procinfo->argbuf, pi->argbuf, | 
|  | sizeof(pi->argbuf))) | 
|  | goto late_error; | 
|  | if (load_elf(new_p, program)) | 
|  | goto late_error; | 
|  | kref_put(&program->f_kref); | 
|  | /* Connect to stdin, stdout, stderr (part of proc_create()) */ | 
|  | assert(insert_file(&new_p->open_files, dev_stdin,  0) == 0); | 
|  | assert(insert_file(&new_p->open_files, dev_stdout, 0) == 1); | 
|  | assert(insert_file(&new_p->open_files, dev_stderr, 0) == 2); | 
|  | __proc_ready(new_p); | 
|  | pid = new_p->pid; | 
|  | proc_decref(new_p);	/* give up the reference created in proc_create() */ | 
|  | return pid; | 
|  | late_error: | 
|  | proc_destroy(new_p); | 
|  | proc_decref(new_p);	/* give up the reference created in proc_create() */ | 
|  | mid_error: | 
|  | kref_put(&program->f_kref); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* Makes process PID runnable.  Consider moving the functionality to process.c */ | 
|  | static error_t sys_proc_run(struct proc *p, unsigned pid) | 
|  | { | 
|  | struct proc *target = pid2proc(pid); | 
|  | error_t retval = 0; | 
|  |  | 
|  | if (!target) { | 
|  | set_errno(ESRCH); | 
|  | return -1; | 
|  | } | 
|  | /* make sure we have access and it's in the right state to be activated */ | 
|  | if (!proc_controls(p, target)) { | 
|  | set_errno(EPERM); | 
|  | goto out_error; | 
|  | } else if (target->state != PROC_CREATED) { | 
|  | set_errno(EINVAL); | 
|  | goto out_error; | 
|  | } | 
|  | /* Note a proc can spam this for someone it controls.  Seems safe - if it | 
|  | * isn't we can change it. */ | 
|  | proc_wakeup(target); | 
|  | proc_decref(target); | 
|  | return 0; | 
|  | out_error: | 
|  | proc_decref(target); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* Destroy proc pid.  If this is called by the dying process, it will never | 
|  | * return.  o/w it will return 0 on success, or an error.  Errors include: | 
|  | * - ESRCH: if there is no such process with pid | 
|  | * - EPERM: if caller does not control pid */ | 
|  | static error_t sys_proc_destroy(struct proc *p, pid_t pid, int exitcode) | 
|  | { | 
|  | error_t r; | 
|  | struct proc *p_to_die = pid2proc(pid); | 
|  |  | 
|  | if (!p_to_die) { | 
|  | set_errno(ESRCH); | 
|  | return -1; | 
|  | } | 
|  | if (!proc_controls(p, p_to_die)) { | 
|  | proc_decref(p_to_die); | 
|  | set_errno(EPERM); | 
|  | return -1; | 
|  | } | 
|  | if (p_to_die == p) { | 
|  | p->exitcode = exitcode; | 
|  | printd("[PID %d] proc exiting gracefully (code %d)\n", p->pid,exitcode); | 
|  | } else { | 
|  | p_to_die->exitcode = exitcode; 	/* so its parent has some clue */ | 
|  | printd("[%d] destroying proc %d\n", p->pid, p_to_die->pid); | 
|  | } | 
|  | proc_destroy(p_to_die); | 
|  | /* we only get here if we weren't the one to die */ | 
|  | proc_decref(p_to_die); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int sys_proc_yield(struct proc *p, bool being_nice) | 
|  | { | 
|  | struct per_cpu_info *pcpui = &per_cpu_info[core_id()]; | 
|  | /* proc_yield() often doesn't return - we need to set the syscall retval | 
|  | * early.  If it doesn't return, it expects to eat our reference (for now). | 
|  | */ | 
|  | finish_sysc(pcpui->cur_kthread->sysc, pcpui->cur_proc); | 
|  | pcpui->cur_kthread->sysc = 0;	/* don't touch sysc again */ | 
|  | proc_incref(p, 1); | 
|  | proc_yield(p, being_nice); | 
|  | proc_decref(p); | 
|  | /* Shouldn't return, to prevent the chance of mucking with cur_sysc. */ | 
|  | smp_idle(); | 
|  | assert(0); | 
|  | } | 
|  |  | 
|  | static int sys_change_vcore(struct proc *p, uint32_t vcoreid, | 
|  | bool enable_my_notif) | 
|  | { | 
|  | /* Note retvals can be negative, but we don't mess with errno in case | 
|  | * callers use this in low-level code and want to extract the 'errno'. */ | 
|  | return proc_change_to_vcore(p, vcoreid, enable_my_notif); | 
|  | } | 
|  |  | 
|  | static ssize_t sys_fork(env_t* e) | 
|  | { | 
|  | struct proc *temp; | 
|  | int8_t state = 0; | 
|  | int ret; | 
|  |  | 
|  | // TODO: right now we only support fork for single-core processes | 
|  | if (e->state != PROC_RUNNING_S) { | 
|  | set_errno(EINVAL); | 
|  | return -1; | 
|  | } | 
|  | env_t* env; | 
|  | assert(!proc_alloc(&env, current)); | 
|  | assert(env != NULL); | 
|  |  | 
|  | env->heap_top = e->heap_top; | 
|  | env->ppid = e->pid; | 
|  | disable_irqsave(&state);	/* protect cur_ctx */ | 
|  | /* Can't really fork if we don't have a current_ctx to fork */ | 
|  | if (!current_ctx) { | 
|  | set_errno(EINVAL); | 
|  | return -1; | 
|  | } | 
|  | env->scp_ctx = *current_ctx; | 
|  | enable_irqsave(&state); | 
|  |  | 
|  | env->cache_colors_map = cache_colors_map_alloc(); | 
|  | for(int i=0; i < llc_cache->num_colors; i++) | 
|  | if(GET_BITMASK_BIT(e->cache_colors_map,i)) | 
|  | cache_color_alloc(llc_cache, env->cache_colors_map); | 
|  |  | 
|  | /* Make the new process have the same VMRs as the older.  This will copy the | 
|  | * contents of non MAP_SHARED pages to the new VMRs. */ | 
|  | if (duplicate_vmrs(e, env)) { | 
|  | proc_destroy(env);	/* this is prob what you want, not decref by 2 */ | 
|  | proc_decref(env); | 
|  | set_errno(ENOMEM); | 
|  | return -1; | 
|  | } | 
|  | /* Switch to the new proc's address space and finish the syscall.  We'll | 
|  | * never naturally finish this syscall for the new proc, since its memory | 
|  | * is cloned before we return for the original process.  If we ever do CoW | 
|  | * for forked memory, this will be the first place that gets CoW'd. */ | 
|  | temp = switch_to(env); | 
|  | finish_current_sysc(0); | 
|  | switch_back(env, temp); | 
|  |  | 
|  | /* In general, a forked process should be a fresh process, and we copy over | 
|  | * whatever stuff is needed between procinfo/procdata. */ | 
|  | /* Copy over the procinfo argument stuff in case they don't exec */ | 
|  | memcpy(env->procinfo->argp, e->procinfo->argp, sizeof(e->procinfo->argp)); | 
|  | memcpy(env->procinfo->argbuf, e->procinfo->argbuf, | 
|  | sizeof(e->procinfo->argbuf)); | 
|  | #ifdef CONFIG_X86 | 
|  | /* new guy needs to know about ldt (everything else in procdata is fresh */ | 
|  | env->procdata->ldt = e->procdata->ldt; | 
|  | #endif | 
|  |  | 
|  | clone_files(&e->open_files, &env->open_files); | 
|  | /* FYI: once we call ready, the proc is open for concurrent usage */ | 
|  | __proc_ready(env); | 
|  | proc_wakeup(env); | 
|  |  | 
|  | // don't decref the new process. | 
|  | // that will happen when the parent waits for it. | 
|  | // TODO: if the parent doesn't wait, we need to change the child's parent | 
|  | // when the parent dies, or at least decref it | 
|  |  | 
|  | printd("[PID %d] fork PID %d\n", e->pid, env->pid); | 
|  | ret = env->pid; | 
|  | proc_decref(env);	/* give up the reference created in proc_alloc() */ | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Load the binary "path" into the current process, and start executing it. | 
|  | * argv and envp are magically bundled in procinfo for now.  Keep in sync with | 
|  | * glibc's sysdeps/ros/execve.c.  Once past a certain point, this function won't | 
|  | * return.  It assumes (and checks) that it is current.  Don't give it an extra | 
|  | * refcnt'd *p (syscall won't do that). | 
|  | * Note: if someone batched syscalls with this call, they could clobber their | 
|  | * old memory (and will likely PF and die).  Don't do it... */ | 
|  | static int sys_exec(struct proc *p, char *path, size_t path_l, | 
|  | struct procinfo *pi) | 
|  | { | 
|  | int ret = -1; | 
|  | char *t_path; | 
|  | struct file *program; | 
|  | struct per_cpu_info *pcpui = &per_cpu_info[core_id()]; | 
|  | int8_t state = 0; | 
|  |  | 
|  | /* We probably want it to never be allowed to exec if it ever was _M */ | 
|  | if (p->state != PROC_RUNNING_S) { | 
|  | set_errno(EINVAL); | 
|  | return -1; | 
|  | } | 
|  | if (p != pcpui->cur_proc) { | 
|  | set_errno(EINVAL); | 
|  | return -1; | 
|  | } | 
|  | /* Copy in the path.  Consider putting an upper bound on path_l. */ | 
|  | t_path = user_strdup_errno(p, path, path_l); | 
|  | if (!t_path) | 
|  | return -1; | 
|  | disable_irqsave(&state);	/* protect cur_ctx */ | 
|  | /* Can't exec if we don't have a current_ctx to restart (if we fail).  This | 
|  | * isn't 100% true, but I'm okay with it. */ | 
|  | if (!pcpui->cur_ctx) { | 
|  | enable_irqsave(&state); | 
|  | set_errno(EINVAL); | 
|  | return -1; | 
|  | } | 
|  | /* Preemptively copy out the cur_ctx, in case we fail later (easier on | 
|  | * cur_ctx if we do this now) */ | 
|  | p->scp_ctx = *pcpui->cur_ctx; | 
|  | /* Clear the current_ctx.  We won't be returning the 'normal' way.  Even if | 
|  | * we want to return with an error, we need to go back differently in case | 
|  | * we succeed.  This needs to be done before we could possibly block, but | 
|  | * unfortunately happens before the point of no return. */ | 
|  | pcpui->cur_ctx = 0; | 
|  | enable_irqsave(&state); | 
|  | /* This could block: */ | 
|  | /* TODO: 9ns support */ | 
|  | program = do_file_open(t_path, 0, 0); | 
|  | user_memdup_free(p, t_path); | 
|  | if (!program) | 
|  | goto early_error; | 
|  | /* Set the argument stuff needed by glibc */ | 
|  | if (memcpy_from_user_errno(p, p->procinfo->argp, pi->argp, | 
|  | sizeof(pi->argp))) | 
|  | goto mid_error; | 
|  | if (memcpy_from_user_errno(p, p->procinfo->argbuf, pi->argbuf, | 
|  | sizeof(pi->argbuf))) | 
|  | goto mid_error; | 
|  | /* This is the point of no return for the process. */ | 
|  | #ifdef CONFIG_X86 | 
|  | /* clear this, so the new program knows to get an LDT */ | 
|  | p->procdata->ldt = 0; | 
|  | #endif | 
|  | /* When we destroy our memory regions, accessing cur_sysc would PF */ | 
|  | pcpui->cur_kthread->sysc = 0; | 
|  | unmap_and_destroy_vmrs(p); | 
|  | close_9ns_files(p, TRUE); | 
|  | close_all_files(&p->open_files, TRUE); | 
|  | env_user_mem_free(p, 0, UMAPTOP); | 
|  | if (load_elf(p, program)) { | 
|  | kref_put(&program->f_kref); | 
|  | /* Note this is an inedible reference, but proc_destroy now returns */ | 
|  | proc_destroy(p); | 
|  | /* We don't want to do anything else - we just need to not accidentally | 
|  | * return to the user (hence the all_out) */ | 
|  | goto all_out; | 
|  | } | 
|  | printd("[PID %d] exec %s\n", p->pid, file_name(program)); | 
|  | kref_put(&program->f_kref); | 
|  | goto success; | 
|  | /* These error and out paths are so we can handle the async interface, both | 
|  | * for when we want to error/return to the proc, as well as when we succeed | 
|  | * and want to start the newly exec'd _S */ | 
|  | mid_error: | 
|  | /* These two error paths are for when we want to restart the process with an | 
|  | * error value (errno is already set). */ | 
|  | kref_put(&program->f_kref); | 
|  | early_error: | 
|  | finish_current_sysc(-1); | 
|  | success: | 
|  | /* Here's how we restart the new (on success) or old (on failure) proc: */ | 
|  | spin_lock(&p->proc_lock); | 
|  | __unmap_vcore(p, 0);	/* VC# keep in sync with proc_run_s */ | 
|  | __proc_set_state(p, PROC_WAITING);	/* fake a yield */ | 
|  | spin_unlock(&p->proc_lock); | 
|  | proc_wakeup(p); | 
|  | all_out: | 
|  | /* we can't return, since we'd write retvals to the old location of the | 
|  | * syscall struct (which has been freed and is in the old userspace) (or has | 
|  | * already been written to).*/ | 
|  | disable_irq();			/* abandon_core/clear_own wants irqs disabled */ | 
|  | clear_owning_proc(core_id()); | 
|  | abandon_core(); | 
|  | smp_idle();				/* will reenable interrupts */ | 
|  | } | 
|  |  | 
|  | /* Helper, will attempt a particular wait on a proc.  Returns the pid of the | 
|  | * process if we waited on it successfully, and the status will be passed back | 
|  | * in ret_status (kernel memory).  Returns 0 if the wait failed and we should | 
|  | * try again.  Returns -1 if we should abort.  Only handles DYING.  Callers | 
|  | * need to lock to protect the children tailq and reaping bits. */ | 
|  | static pid_t try_wait(struct proc *parent, struct proc *child, int *ret_status, | 
|  | int options) | 
|  | { | 
|  | if (child->state == PROC_DYING) { | 
|  | /* Disown returns -1 if it's already been disowned or we should o/w | 
|  | * abort.  This can happen if we have concurrent waiters, both with | 
|  | * pointers to the child (only one should reap).  Note that if we don't | 
|  | * do this, we could go to sleep and never receive a cv_signal. */ | 
|  | if (__proc_disown_child(parent, child)) | 
|  | return -1; | 
|  | /* despite disowning, the child won't be freed til we drop this ref | 
|  | * held by this function, so it is safe to access the memory. | 
|  | * | 
|  | * Note the exit code one byte in the 0xff00 spot.  Check out glibc's | 
|  | * posix/sys/wait.h and bits/waitstatus.h for more info.  If we ever | 
|  | * deal with signalling and stopping, we'll need to do some more work | 
|  | * here.*/ | 
|  | *ret_status = (child->exitcode & 0xff) << 8; | 
|  | return child->pid; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Helper, like try_wait, but attempts a wait on any of the children, returning | 
|  | * the specific PID we waited on, 0 to try again (a waitable exists), and -1 to | 
|  | * abort (no children/waitables exist).  Callers need to lock to protect the | 
|  | * children tailq and reaping bits.*/ | 
|  | static pid_t try_wait_any(struct proc *parent, int *ret_status, int options) | 
|  | { | 
|  | struct proc *i, *temp; | 
|  | pid_t retval; | 
|  | if (TAILQ_EMPTY(&parent->children)) | 
|  | return -1; | 
|  | /* Could have concurrent waiters mucking with the tailq, caller must lock */ | 
|  | TAILQ_FOREACH_SAFE(i, &parent->children, sibling_link, temp) { | 
|  | retval = try_wait(parent, i, ret_status, options); | 
|  | /* This catches a thread causing a wait to fail but not taking the | 
|  | * child off the list before unlocking.  Should never happen. */ | 
|  | assert(retval != -1); | 
|  | /* Succeeded, return the pid of the child we waited on */ | 
|  | if (retval) | 
|  | return retval; | 
|  | } | 
|  | assert(retval == 0); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Waits on a particular child, returns the pid of the child waited on, and | 
|  | * puts the ret status in *ret_status.  Returns the pid if we succeeded, 0 if | 
|  | * the child was not waitable and WNOHANG, and -1 on error. */ | 
|  | static pid_t wait_one(struct proc *parent, struct proc *child, int *ret_status, | 
|  | int options) | 
|  | { | 
|  | pid_t retval; | 
|  | cv_lock(&parent->child_wait); | 
|  | /* retval == 0 means we should block */ | 
|  | retval = try_wait(parent, child, ret_status, options); | 
|  | if ((retval == 0) && (options & WNOHANG)) | 
|  | goto out_unlock; | 
|  | while (!retval) { | 
|  | cpu_relax(); | 
|  | cv_wait(&parent->child_wait); | 
|  | /* If we're dying, then we don't need to worry about waiting.  We don't | 
|  | * do this yet, but we'll need this outlet when we deal with orphaned | 
|  | * children and having init inherit them. */ | 
|  | if (parent->state == PROC_DYING) | 
|  | goto out_unlock; | 
|  | /* Any child can wake us up, but we check for the particular child we | 
|  | * care about */ | 
|  | retval = try_wait(parent, child, ret_status, options); | 
|  | } | 
|  | if (retval == -1) { | 
|  | /* Child was already waited on by a concurrent syscall. */ | 
|  | set_errno(ECHILD); | 
|  | } | 
|  | /* Fallthrough */ | 
|  | out_unlock: | 
|  | cv_unlock(&parent->child_wait); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | /* Waits on any child, returns the pid of the child waited on, and puts the ret | 
|  | * status in *ret_status.  Is basically a waitpid(-1, ... );  See wait_one for | 
|  | * more details.  Returns -1 if there are no children to wait on, and returns 0 | 
|  | * if there are children and we need to block but WNOHANG was set. */ | 
|  | static pid_t wait_any(struct proc *parent, int *ret_status, int options) | 
|  | { | 
|  | pid_t retval; | 
|  | cv_lock(&parent->child_wait); | 
|  | retval = try_wait_any(parent, ret_status, options); | 
|  | if ((retval == 0) && (options & WNOHANG)) | 
|  | goto out_unlock; | 
|  | while (!retval) { | 
|  | cpu_relax(); | 
|  | cv_wait(&parent->child_wait); | 
|  | if (parent->state == PROC_DYING) | 
|  | goto out_unlock; | 
|  | /* Any child can wake us up from the CV.  This is a linear try_wait | 
|  | * scan.  If we have a lot of children, we could optimize this. */ | 
|  | retval = try_wait_any(parent, ret_status, options); | 
|  | } | 
|  | if (retval == -1) | 
|  | assert(TAILQ_EMPTY(&parent->children)); | 
|  | /* Fallthrough */ | 
|  | out_unlock: | 
|  | cv_unlock(&parent->child_wait); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | /* Note: we only allow waiting on children (no such thing as threads, for | 
|  | * instance).  Right now we only allow waiting on termination (not signals), | 
|  | * and we don't have a way for parents to disown their children (such as | 
|  | * ignoring SIGCHLD, see man 2 waitpid's Notes). | 
|  | * | 
|  | * We don't bother with stop/start signals here, though we can probably build | 
|  | * it in the helper above. | 
|  | * | 
|  | * Returns the pid of who we waited on, or -1 on error, or 0 if we couldn't | 
|  | * wait (WNOHANG). */ | 
|  | static pid_t sys_waitpid(struct proc *parent, pid_t pid, int *status, | 
|  | int options) | 
|  | { | 
|  | struct proc *child; | 
|  | pid_t retval = 0; | 
|  | int ret_status = 0; | 
|  |  | 
|  | /* -1 is the signal for 'any child' */ | 
|  | if (pid == -1) { | 
|  | retval = wait_any(parent, &ret_status, options); | 
|  | goto out; | 
|  | } | 
|  | child = pid2proc(pid); | 
|  | if (!child) { | 
|  | set_errno(ECHILD);	/* ECHILD also used for no proc */ | 
|  | retval = -1; | 
|  | goto out; | 
|  | } | 
|  | if (!(parent->pid == child->ppid)) { | 
|  | set_errno(ECHILD); | 
|  | retval = -1; | 
|  | goto out_decref; | 
|  | } | 
|  | retval = wait_one(parent, child, &ret_status, options); | 
|  | /* fall-through */ | 
|  | out_decref: | 
|  | proc_decref(child); | 
|  | out: | 
|  | /* ignoring / don't care about memcpy's retval here. */ | 
|  | if (status) | 
|  | memcpy_to_user(parent, status, &ret_status, sizeof(ret_status)); | 
|  | printd("[PID %d] waited for PID %d, got retval %d (status 0x%x)\n", | 
|  | parent->pid, pid, retval, ret_status); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | /************** Memory Management Syscalls **************/ | 
|  |  | 
|  | static void *sys_mmap(struct proc *p, uintptr_t addr, size_t len, int prot, | 
|  | int flags, int fd, off_t offset) | 
|  | { | 
|  | return mmap(p, addr, len, prot, flags, fd, offset); | 
|  | } | 
|  |  | 
|  | static intreg_t sys_mprotect(struct proc *p, void *addr, size_t len, int prot) | 
|  | { | 
|  | return mprotect(p, (uintptr_t)addr, len, prot); | 
|  | } | 
|  |  | 
|  | static intreg_t sys_munmap(struct proc *p, void *addr, size_t len) | 
|  | { | 
|  | return munmap(p, (uintptr_t)addr, len); | 
|  | } | 
|  |  | 
|  | static ssize_t sys_shared_page_alloc(env_t* p1, | 
|  | void**DANGEROUS _addr, pid_t p2_id, | 
|  | int p1_flags, int p2_flags | 
|  | ) | 
|  | { | 
|  | printk("[kernel] shared page alloc is deprecated/unimplemented.\n"); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | static int sys_shared_page_free(env_t* p1, void*DANGEROUS addr, pid_t p2) | 
|  | { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* Helper, to do the actual provisioning of a resource to a proc */ | 
|  | static int prov_resource(struct proc *target, unsigned int res_type, | 
|  | long res_val) | 
|  | { | 
|  | switch (res_type) { | 
|  | case (RES_CORES): | 
|  | /* in the off chance we have a kernel scheduler that can't | 
|  | * provision, we'll need to change this. */ | 
|  | return provision_core(target, res_val); | 
|  | default: | 
|  | printk("[kernel] received provisioning for unknown resource %d\n", | 
|  | res_type); | 
|  | set_errno(ENOENT);	/* or EINVAL? */ | 
|  | return -1; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Rough syscall to provision res_val of type res_type to target_pid */ | 
|  | static int sys_provision(struct proc *p, int target_pid, | 
|  | unsigned int res_type, long res_val) | 
|  | { | 
|  | struct proc *target = pid2proc(target_pid); | 
|  | int retval; | 
|  | if (!target) { | 
|  | if (target_pid == 0) | 
|  | return prov_resource(0, res_type, res_val); | 
|  | /* debugging interface */ | 
|  | if (target_pid == -1) | 
|  | print_prov_map(); | 
|  | set_errno(ESRCH); | 
|  | return -1; | 
|  | } | 
|  | retval = prov_resource(target, res_type, res_val); | 
|  | proc_decref(target); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | /* Untested.  Will notify the target on the given vcore, if the caller controls | 
|  | * the target.  Will honor the target's wanted/vcoreid.  u_ne can be NULL. */ | 
|  | static int sys_notify(struct proc *p, int target_pid, unsigned int ev_type, | 
|  | struct event_msg *u_msg) | 
|  | { | 
|  | struct event_msg local_msg = {0}; | 
|  | struct proc *target = pid2proc(target_pid); | 
|  | if (!target) { | 
|  | set_errno(ESRCH); | 
|  | return -1; | 
|  | } | 
|  | if (!proc_controls(p, target)) { | 
|  | proc_decref(target); | 
|  | set_errno(EPERM); | 
|  | return -1; | 
|  | } | 
|  | /* if the user provided an ev_msg, copy it in and use that */ | 
|  | if (u_msg) { | 
|  | if (memcpy_from_user(p, &local_msg, u_msg, sizeof(struct event_msg))) { | 
|  | proc_decref(target); | 
|  | set_errno(EINVAL); | 
|  | return -1; | 
|  | } | 
|  | } else { | 
|  | local_msg.ev_type = ev_type; | 
|  | } | 
|  | send_kernel_event(target, &local_msg, 0); | 
|  | proc_decref(target); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Will notify the calling process on the given vcore, independently of WANTED | 
|  | * or advertised vcoreid.  If you change the parameters, change pop_user_ctx(). | 
|  | */ | 
|  | static int sys_self_notify(struct proc *p, uint32_t vcoreid, | 
|  | unsigned int ev_type, struct event_msg *u_msg, | 
|  | bool priv) | 
|  | { | 
|  | struct event_msg local_msg = {0}; | 
|  | /* if the user provided an ev_msg, copy it in and use that */ | 
|  | if (u_msg) { | 
|  | if (memcpy_from_user(p, &local_msg, u_msg, sizeof(struct event_msg))) { | 
|  | set_errno(EINVAL); | 
|  | return -1; | 
|  | } | 
|  | } else { | 
|  | local_msg.ev_type = ev_type; | 
|  | } | 
|  | if (local_msg.ev_type >= MAX_NR_EVENT) { | 
|  | printk("[kernel] received self-notify for vcoreid %d, ev_type %d, " | 
|  | "u_msg %p, u_msg->type %d\n", vcoreid, ev_type, u_msg, | 
|  | u_msg ? u_msg->ev_type : 0); | 
|  | return -1; | 
|  | } | 
|  | /* this will post a message and IPI, regardless of wants/needs/debutantes.*/ | 
|  | post_vcore_event(p, &local_msg, vcoreid, priv ? EVENT_VCORE_PRIVATE : 0); | 
|  | proc_notify(p, vcoreid); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Puts the calling core into vcore context, if it wasn't already, via a | 
|  | * self-IPI / active notification.  Barring any weird unmappings, we just send | 
|  | * ourselves a __notify. */ | 
|  | static int sys_vc_entry(struct proc *p) | 
|  | { | 
|  | send_kernel_message(core_id(), __notify, (long)p, 0, 0, KMSG_ROUTINE); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* This will set a local timer for usec, then shut down the core.  There's a | 
|  | * slight race between spinner and halt.  For now, the core will wake up for | 
|  | * other interrupts and service them, but will not process routine messages or | 
|  | * do anything other than halt until the alarm goes off.  We could just unset | 
|  | * the alarm and return early.  On hardware, there are a lot of interrupts that | 
|  | * come in.  If we ever use this, we can take a closer look.  */ | 
|  | static int sys_halt_core(struct proc *p, unsigned int usec) | 
|  | { | 
|  | struct timer_chain *tchain = &per_cpu_info[core_id()].tchain; | 
|  | struct alarm_waiter a_waiter; | 
|  | bool spinner = TRUE; | 
|  | void unblock(struct alarm_waiter *waiter) | 
|  | { | 
|  | spinner = FALSE; | 
|  | } | 
|  | init_awaiter(&a_waiter, unblock); | 
|  | set_awaiter_rel(&a_waiter, MAX(usec, 100)); | 
|  | set_alarm(tchain, &a_waiter); | 
|  | enable_irq(); | 
|  | /* Could wake up due to another interrupt, but we want to sleep still. */ | 
|  | while (spinner) { | 
|  | cpu_halt();	/* slight race between spinner and halt */ | 
|  | cpu_relax(); | 
|  | } | 
|  | printd("Returning from halting\n"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Changes a process into _M mode, or -EINVAL if it already is an mcp. | 
|  | * __proc_change_to_m() returns and we'll eventually finish the sysc later.  The | 
|  | * original context may restart on a remote core before we return and finish, | 
|  | * but that's fine thanks to the async kernel interface. */ | 
|  | static int sys_change_to_m(struct proc *p) | 
|  | { | 
|  | int retval = proc_change_to_m(p); | 
|  | /* convert the kernel error code into (-1, errno) */ | 
|  | if (retval) { | 
|  | set_errno(-retval); | 
|  | retval = -1; | 
|  | } | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | /* Pokes the ksched for the given resource for target_pid.  If the target pid | 
|  | * == 0, we just poke for the calling process.  The common case is poking for | 
|  | * self, so we avoid the lookup. | 
|  | * | 
|  | * Not sure if you could harm someone via asking the kernel to look at them, so | 
|  | * we'll do a 'controls' check for now.  In the future, we might have something | 
|  | * in the ksched that limits or penalizes excessive pokes. */ | 
|  | static int sys_poke_ksched(struct proc *p, int target_pid, | 
|  | unsigned int res_type) | 
|  | { | 
|  | struct proc *target; | 
|  | int retval = 0; | 
|  | if (!target_pid) { | 
|  | poke_ksched(p, res_type); | 
|  | return 0; | 
|  | } | 
|  | target = pid2proc(target_pid); | 
|  | if (!target) { | 
|  | set_errno(ESRCH); | 
|  | return -1; | 
|  | } | 
|  | if (!proc_controls(p, target)) { | 
|  | set_errno(EPERM); | 
|  | retval = -1; | 
|  | goto out; | 
|  | } | 
|  | poke_ksched(target, res_type); | 
|  | out: | 
|  | proc_decref(target); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | static int sys_abort_sysc(struct proc *p, struct syscall *sysc) | 
|  | { | 
|  | return abort_sysc(p, sysc); | 
|  | } | 
|  |  | 
|  | /************** Platform Specific Syscalls **************/ | 
|  |  | 
|  | //Read a buffer over the serial port | 
|  | static ssize_t sys_serial_read(env_t* e, char *DANGEROUS _buf, size_t len) | 
|  | { | 
|  | printk("[kernel] serial reading is deprecated.\n"); | 
|  | if (len == 0) | 
|  | return 0; | 
|  |  | 
|  | #ifdef CONFIG_SERIAL_IO | 
|  | char *COUNT(len) buf = user_mem_assert(e, _buf, len, 1, PTE_USER_RO); | 
|  | size_t bytes_read = 0; | 
|  | int c; | 
|  | while((c = serial_read_byte()) != -1) { | 
|  | buf[bytes_read++] = (uint8_t)c; | 
|  | if(bytes_read == len) break; | 
|  | } | 
|  | return (ssize_t)bytes_read; | 
|  | #else | 
|  | return -EINVAL; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | //Write a buffer over the serial port | 
|  | static ssize_t sys_serial_write(env_t* e, const char *DANGEROUS buf, size_t len) | 
|  | { | 
|  | printk("[kernel] serial writing is deprecated.\n"); | 
|  | if (len == 0) | 
|  | return 0; | 
|  | #ifdef CONFIG_SERIAL_IO | 
|  | char *COUNT(len) _buf = user_mem_assert(e, buf, len, 1, PTE_USER_RO); | 
|  | for(int i =0; i<len; i++) | 
|  | serial_send_byte(buf[i]); | 
|  | return (ssize_t)len; | 
|  | #else | 
|  | return -EINVAL; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_NETWORKING | 
|  | // This is not a syscall we want. Its hacky. Here just for syscall stuff until get a stack. | 
|  | static ssize_t sys_eth_read(env_t* e, char *DANGEROUS buf) | 
|  | { | 
|  | if (eth_up) { | 
|  |  | 
|  | uint32_t len; | 
|  | char *ptr; | 
|  |  | 
|  | spin_lock(&packet_buffers_lock); | 
|  |  | 
|  | if (num_packet_buffers == 0) { | 
|  | spin_unlock(&packet_buffers_lock); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | ptr = packet_buffers[packet_buffers_head]; | 
|  | len = packet_buffers_sizes[packet_buffers_head]; | 
|  |  | 
|  | num_packet_buffers--; | 
|  | packet_buffers_head = (packet_buffers_head + 1) % MAX_PACKET_BUFFERS; | 
|  |  | 
|  | spin_unlock(&packet_buffers_lock); | 
|  |  | 
|  | char* _buf = user_mem_assert(e, buf, len, 1, PTE_U); | 
|  |  | 
|  | memcpy(_buf, ptr, len); | 
|  |  | 
|  | kfree(ptr); | 
|  |  | 
|  | return len; | 
|  | } | 
|  | else | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | // This is not a syscall we want. Its hacky. Here just for syscall stuff until get a stack. | 
|  | static ssize_t sys_eth_write(env_t* e, const char *DANGEROUS buf, size_t len) | 
|  | { | 
|  | if (eth_up) { | 
|  |  | 
|  | if (len == 0) | 
|  | return 0; | 
|  |  | 
|  | // HACK TO BYPASS HACK | 
|  | int just_sent = send_frame(buf, len); | 
|  |  | 
|  | if (just_sent < 0) { | 
|  | printk("Packet send fail\n"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return just_sent; | 
|  |  | 
|  | // END OF RECURSIVE HACK | 
|  | /* | 
|  | char *COUNT(len) _buf = user_mem_assert(e, buf, len, PTE_U); | 
|  | int total_sent = 0; | 
|  | int just_sent = 0; | 
|  | int cur_packet_len = 0; | 
|  | while (total_sent != len) { | 
|  | cur_packet_len = ((len - total_sent) > MTU) ? MTU : (len - total_sent); | 
|  | char dest_mac[6] = APPSERVER_MAC_ADDRESS; | 
|  | char* wrap_buffer = eth_wrap(_buf + total_sent, cur_packet_len, device_mac, dest_mac, APPSERVER_PORT); | 
|  | just_sent = send_frame(wrap_buffer, cur_packet_len + sizeof(struct ETH_Header)); | 
|  |  | 
|  | if (just_sent < 0) | 
|  | return 0; // This should be an error code of its own | 
|  |  | 
|  | if (wrap_buffer) | 
|  | kfree(wrap_buffer); | 
|  |  | 
|  | total_sent += cur_packet_len; | 
|  | } | 
|  |  | 
|  | return (ssize_t)len; | 
|  | */ | 
|  | } | 
|  | else | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | static ssize_t sys_eth_get_mac_addr(env_t* e, char *DANGEROUS buf) | 
|  | { | 
|  | if (eth_up) { | 
|  | for (int i = 0; i < 6; i++) | 
|  | buf[i] = device_mac[i]; | 
|  | return 0; | 
|  | } | 
|  | else | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | static int sys_eth_recv_check(env_t* e) | 
|  | { | 
|  | if (num_packet_buffers != 0) | 
|  | return 1; | 
|  | else | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #endif // Network | 
|  |  | 
|  | static intreg_t sys_read(struct proc *p, int fd, void *buf, int len) | 
|  | { | 
|  | ssize_t ret; | 
|  | struct file *file = get_file_from_fd(&p->open_files, fd); | 
|  | /* VFS */ | 
|  | if (file) { | 
|  | if (!file->f_op->read) { | 
|  | kref_put(&file->f_kref); | 
|  | set_errno(EINVAL); | 
|  | return -1; | 
|  | } | 
|  | /* TODO: (UMEM) currently, read() handles user memcpy | 
|  | * issues, but we probably should user_mem_check and | 
|  | * pin the region here, so read doesn't worry about | 
|  | * it */ | 
|  | ret = file->f_op->read(file, buf, len, &file->f_pos); | 
|  | kref_put(&file->f_kref); | 
|  | return ret; | 
|  | } | 
|  | /* plan9, should also handle errors (EBADF) */ | 
|  | ret = sysread(fd, buf, len, ~0LL); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static intreg_t sys_write(struct proc *p, int fd, const void *buf, int len) | 
|  | { | 
|  | ssize_t ret; | 
|  | struct file *file = get_file_from_fd(&p->open_files, fd); | 
|  | /* VFS */ | 
|  | if (file) { | 
|  | if (!file->f_op->write) { | 
|  | kref_put(&file->f_kref); | 
|  | set_errno(EINVAL); | 
|  | return -1; | 
|  | } | 
|  | /* TODO: (UMEM) */ | 
|  | ret = file->f_op->write(file, buf, len, &file->f_pos); | 
|  | kref_put(&file->f_kref); | 
|  | return ret; | 
|  | } | 
|  | /* plan9, should also handle errors */ | 
|  | ret = syswrite(fd, (void*)buf, len, (off_t) -1); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Checks args/reads in the path, opens the file, and inserts it into the | 
|  | * process's open file list. */ | 
|  | static intreg_t sys_open(struct proc *p, const char *path, size_t path_l, | 
|  | int oflag, int mode) | 
|  | { | 
|  | int fd; | 
|  | struct file *file; | 
|  |  | 
|  | printd("File %s Open attempt oflag %x mode %x\n", path, oflag, mode); | 
|  | char *t_path = user_strdup_errno(p, path, path_l); | 
|  | if (!t_path) | 
|  | return -1; | 
|  | mode &= ~p->fs_env.umask; | 
|  | file = do_file_open(t_path, oflag, mode); | 
|  | /* VFS */ | 
|  | if (file) { | 
|  | fd = insert_file(&p->open_files, file, 0);	/* stores the ref to file */ | 
|  | kref_put(&file->f_kref);	/* drop our ref */ | 
|  | if (fd < 0) | 
|  | warn("File insertion failed"); | 
|  | } else { | 
|  | unset_errno();	/* Go can't handle extra errnos */ | 
|  | fd = sysopen(t_path, oflag); | 
|  | } | 
|  | user_memdup_free(p, t_path); | 
|  | printd("File %s Open, fd=%d\n", path, fd); | 
|  | return fd; | 
|  | } | 
|  |  | 
|  | static intreg_t sys_close(struct proc *p, int fd) | 
|  | { | 
|  | struct file *file = get_file_from_fd(&p->open_files, fd); | 
|  | int retval = 0; | 
|  | printd("sys_close %d\n", fd); | 
|  | /* VFS */ | 
|  | if (file) { | 
|  | put_file_from_fd(&p->open_files, fd); | 
|  | kref_put(&file->f_kref);	/* Drop the ref from get_file */ | 
|  | return 0; | 
|  | } | 
|  | /* 9ns, should also handle errors (bad FD, etc) */ | 
|  | retval = sysclose(fd); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | /* kept around til we remove the last ufe */ | 
|  | #define ufe(which,a0,a1,a2,a3) \ | 
|  | frontend_syscall_errno(p,APPSERVER_SYSCALL_##which,\ | 
|  | (int)(a0),(int)(a1),(int)(a2),(int)(a3)) | 
|  |  | 
|  | static intreg_t sys_fstat(struct proc *p, int fd, struct kstat *u_stat) | 
|  | { | 
|  | struct kstat *kbuf; | 
|  | struct file *file; | 
|  | kbuf = kmalloc(sizeof(struct kstat), 0); | 
|  | if (!kbuf) { | 
|  | set_errno(ENOMEM); | 
|  | return -1; | 
|  | } | 
|  | file = get_file_from_fd(&p->open_files, fd); | 
|  | /* VFS */ | 
|  | if (file) { | 
|  | stat_inode(file->f_dentry->d_inode, kbuf); | 
|  | kref_put(&file->f_kref); | 
|  | } else { | 
|  | if (sysfstat(fd, (uint8_t*)kbuf, sizeof(*kbuf)) < 0) { | 
|  | kfree(kbuf); | 
|  | return -1; | 
|  | } | 
|  | } | 
|  | /* TODO: UMEM: pin the memory, copy directly, and skip the kernel buffer */ | 
|  | if (memcpy_to_user_errno(p, u_stat, kbuf, sizeof(struct kstat))) { | 
|  | kfree(kbuf); | 
|  | return -1; | 
|  | } | 
|  | kfree(kbuf); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* sys_stat() and sys_lstat() do nearly the same thing, differing in how they | 
|  | * treat a symlink for the final item, which (probably) will be controlled by | 
|  | * the lookup flags */ | 
|  | static intreg_t stat_helper(struct proc *p, const char *path, size_t path_l, | 
|  | struct kstat *u_stat, int flags) | 
|  | { | 
|  | struct kstat *kbuf; | 
|  | struct dentry *path_d; | 
|  | char *t_path = user_strdup_errno(p, path, path_l); | 
|  | int retval = 0; | 
|  | if (!t_path) | 
|  | return -1; | 
|  | kbuf = kmalloc(sizeof(struct kstat), 0); | 
|  | if (!kbuf) { | 
|  | set_errno(ENOMEM); | 
|  | retval = -1; | 
|  | goto out_with_path; | 
|  | } | 
|  | /* Check VFS for path */ | 
|  | path_d = lookup_dentry(t_path, flags); | 
|  | if (path_d) { | 
|  | stat_inode(path_d->d_inode, kbuf); | 
|  | kref_put(&path_d->d_kref); | 
|  | } else { | 
|  | /* VFS failed, checking 9ns */ | 
|  | unset_errno();	/* Go can't handle extra errnos */ | 
|  | retval = sysstat(t_path, (uint8_t*)kbuf, sizeof(*kbuf)); | 
|  | printd("sysstat returns %d\n", retval); | 
|  | /* both VFS and 9ns failed, bail out */ | 
|  | if (retval < 0) | 
|  | goto out_with_kbuf; | 
|  | } | 
|  | /* TODO: UMEM: pin the memory, copy directly, and skip the kernel buffer */ | 
|  | if (memcpy_to_user_errno(p, u_stat, kbuf, sizeof(struct kstat))) | 
|  | retval = -1; | 
|  | /* Fall-through */ | 
|  | out_with_kbuf: | 
|  | kfree(kbuf); | 
|  | out_with_path: | 
|  | user_memdup_free(p, t_path); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | /* Follow a final symlink */ | 
|  | static intreg_t sys_stat(struct proc *p, const char *path, size_t path_l, | 
|  | struct kstat *u_stat) | 
|  | { | 
|  | return stat_helper(p, path, path_l, u_stat, LOOKUP_FOLLOW); | 
|  | } | 
|  |  | 
|  | /* Don't follow a final symlink */ | 
|  | static intreg_t sys_lstat(struct proc *p, const char *path, size_t path_l, | 
|  | struct kstat *u_stat) | 
|  | { | 
|  | return stat_helper(p, path, path_l, u_stat, 0); | 
|  | } | 
|  |  | 
|  | intreg_t sys_fcntl(struct proc *p, int fd, int cmd, int arg) | 
|  | { | 
|  | int retval = 0; | 
|  | int newfd; | 
|  | struct file *file = get_file_from_fd(&p->open_files, fd); | 
|  |  | 
|  | if (!file) { | 
|  | /* 9ns hack */ | 
|  | switch (cmd) { | 
|  | case (F_DUPFD): | 
|  | return sysdup(fd, -1); | 
|  | case (F_GETFD): | 
|  | case (F_SETFD): | 
|  | case (F_GETFL): | 
|  | case (F_SETFL): | 
|  | return 0; | 
|  | default: | 
|  | warn("Unsupported fcntl cmd %d\n", cmd); | 
|  | } | 
|  | /* not really ever calling this, even for badf, due to the switch */ | 
|  | set_errno(EBADF); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | switch (cmd) { | 
|  | case (F_DUPFD): | 
|  | retval = insert_file(&p->open_files, file, arg); | 
|  | if (retval < 0) { | 
|  | set_errno(-retval); | 
|  | retval = -1; | 
|  | } | 
|  | break; | 
|  | case (F_GETFD): | 
|  | retval = p->open_files.fd[fd].fd_flags; | 
|  | break; | 
|  | case (F_SETFD): | 
|  | if (arg == FD_CLOEXEC) | 
|  | file->f_flags |= O_CLOEXEC; | 
|  | break; | 
|  | case (F_GETFL): | 
|  | retval = file->f_flags; | 
|  | break; | 
|  | case (F_SETFL): | 
|  | /* only allowed to set certain flags. */ | 
|  | arg &= O_FCNTL_FLAGS; | 
|  | file->f_flags = (file->f_flags & ~O_FCNTL_FLAGS) | arg; | 
|  | break; | 
|  | default: | 
|  | warn("Unsupported fcntl cmd %d\n", cmd); | 
|  | } | 
|  | kref_put(&file->f_kref); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | static intreg_t sys_access(struct proc *p, const char *path, size_t path_l, | 
|  | int mode) | 
|  | { | 
|  | int retval; | 
|  | char *t_path = user_strdup_errno(p, path, path_l); | 
|  | if (!t_path) | 
|  | return -1; | 
|  | /* TODO: 9ns support */ | 
|  | retval = do_access(t_path, mode); | 
|  | user_memdup_free(p, t_path); | 
|  | printd("Access for path: %s retval: %d\n", path, retval); | 
|  | if (retval < 0) { | 
|  | set_errno(-retval); | 
|  | return -1; | 
|  | } | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | intreg_t sys_umask(struct proc *p, int mask) | 
|  | { | 
|  | int old_mask = p->fs_env.umask; | 
|  | p->fs_env.umask = mask & S_PMASK; | 
|  | return old_mask; | 
|  | } | 
|  |  | 
|  | intreg_t sys_chmod(struct proc *p, const char *path, size_t path_l, int mode) | 
|  | { | 
|  | int retval; | 
|  | char *t_path = user_strdup_errno(p, path, path_l); | 
|  | if (!t_path) | 
|  | return -1; | 
|  | /* TODO: 9ns support */ | 
|  | retval = do_chmod(t_path, mode); | 
|  | user_memdup_free(p, t_path); | 
|  | if (retval < 0) { | 
|  | set_errno(-retval); | 
|  | return -1; | 
|  | } | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | /* 64 bit seek, with the off64_t passed in via two (potentially 32 bit) off_ts. | 
|  | * We're supporting both 32 and 64 bit kernels/userspaces, but both use the | 
|  | * llseek syscall with 64 bit parameters. */ | 
|  | static intreg_t sys_llseek(struct proc *p, int fd, off_t offset_hi, | 
|  | off_t offset_lo, off64_t *result, int whence) | 
|  | { | 
|  | off64_t retoff = 0; | 
|  | off64_t tempoff = 0; | 
|  | int ret = 0; | 
|  | struct file *file = get_file_from_fd(&p->open_files, fd); | 
|  | if (!file) { | 
|  | set_errno(EBADF); | 
|  | return -1; | 
|  | } | 
|  | tempoff = offset_hi; | 
|  | tempoff <<= 32; | 
|  | tempoff |= offset_lo; | 
|  | ret = file->f_op->llseek(file, tempoff, &retoff, whence); | 
|  | kref_put(&file->f_kref); | 
|  | if (ret) | 
|  | return -1; | 
|  | if (memcpy_to_user_errno(p, result, &retoff, sizeof(off64_t))) | 
|  | return -1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | intreg_t sys_link(struct proc *p, char *old_path, size_t old_l, | 
|  | char *new_path, size_t new_l) | 
|  | { | 
|  | int ret; | 
|  | char *t_oldpath = user_strdup_errno(p, old_path, old_l); | 
|  | if (t_oldpath == NULL) | 
|  | return -1; | 
|  | char *t_newpath = user_strdup_errno(p, new_path, new_l); | 
|  | if (t_newpath == NULL) { | 
|  | user_memdup_free(p, t_oldpath); | 
|  | return -1; | 
|  | } | 
|  | ret = do_link(t_oldpath, t_newpath); | 
|  | user_memdup_free(p, t_oldpath); | 
|  | user_memdup_free(p, t_newpath); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | intreg_t sys_unlink(struct proc *p, const char *path, size_t path_l) | 
|  | { | 
|  | int retval; | 
|  | char *t_path = user_strdup_errno(p, path, path_l); | 
|  | if (!t_path) | 
|  | return -1; | 
|  | /* TODO: 9ns support */ | 
|  | retval = do_unlink(t_path); | 
|  | user_memdup_free(p, t_path); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | intreg_t sys_symlink(struct proc *p, char *old_path, size_t old_l, | 
|  | char *new_path, size_t new_l) | 
|  | { | 
|  | int ret; | 
|  | char *t_oldpath = user_strdup_errno(p, old_path, old_l); | 
|  | if (t_oldpath == NULL) | 
|  | return -1; | 
|  | char *t_newpath = user_strdup_errno(p, new_path, new_l); | 
|  | if (t_newpath == NULL) { | 
|  | user_memdup_free(p, t_oldpath); | 
|  | return -1; | 
|  | } | 
|  | ret = do_symlink(t_newpath, t_oldpath, S_IRWXU | S_IRWXG | S_IRWXO); | 
|  | user_memdup_free(p, t_oldpath); | 
|  | user_memdup_free(p, t_newpath); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | intreg_t sys_readlink(struct proc *p, char *path, size_t path_l, | 
|  | char *u_buf, size_t buf_l) | 
|  | { | 
|  | char *symname; | 
|  | ssize_t copy_amt; | 
|  | struct dentry *path_d; | 
|  | char *t_path = user_strdup_errno(p, path, path_l); | 
|  | if (t_path == NULL) | 
|  | return -1; | 
|  | /* TODO: 9ns support */ | 
|  | path_d = lookup_dentry(t_path, 0); | 
|  | user_memdup_free(p, t_path); | 
|  | if (!path_d) | 
|  | return -1; | 
|  | symname = path_d->d_inode->i_op->readlink(path_d); | 
|  | copy_amt = strnlen(symname, buf_l - 1) + 1; | 
|  | if (memcpy_to_user_errno(p, u_buf, symname, copy_amt)) { | 
|  | kref_put(&path_d->d_kref); | 
|  | return -1; | 
|  | } | 
|  | kref_put(&path_d->d_kref); | 
|  | printd("READLINK returning %s\n", u_buf); | 
|  | return copy_amt; | 
|  | } | 
|  |  | 
|  | intreg_t sys_chdir(struct proc *p, const char *path, size_t path_l) | 
|  | { | 
|  | int retval; | 
|  | char *t_path = user_strdup_errno(p, path, path_l); | 
|  | if (!t_path) | 
|  | return -1; | 
|  | /* TODO: 9ns support */ | 
|  | retval = do_chdir(&p->fs_env, t_path); | 
|  | user_memdup_free(p, t_path); | 
|  | if (retval) { | 
|  | set_errno(-retval); | 
|  | return -1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Note cwd_l is not a strlen, it's an absolute size */ | 
|  | intreg_t sys_getcwd(struct proc *p, char *u_cwd, size_t cwd_l) | 
|  | { | 
|  | int retval = 0; | 
|  | char *kfree_this; | 
|  | char *k_cwd = do_getcwd(&p->fs_env, &kfree_this, cwd_l); | 
|  | if (!k_cwd) | 
|  | return -1;		/* errno set by do_getcwd */ | 
|  | if (memcpy_to_user_errno(p, u_cwd, k_cwd, strnlen(k_cwd, cwd_l - 1) + 1)) | 
|  | retval = -1; | 
|  | kfree(kfree_this); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | intreg_t sys_mkdir(struct proc *p, const char *path, size_t path_l, int mode) | 
|  | { | 
|  | int retval; | 
|  | char *t_path = user_strdup_errno(p, path, path_l); | 
|  | if (!t_path) | 
|  | return -1; | 
|  | mode &= ~p->fs_env.umask; | 
|  | /* TODO: 9ns support */ | 
|  | retval = do_mkdir(t_path, mode); | 
|  | user_memdup_free(p, t_path); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | intreg_t sys_rmdir(struct proc *p, const char *path, size_t path_l) | 
|  | { | 
|  | int retval; | 
|  | char *t_path = user_strdup_errno(p, path, path_l); | 
|  | if (!t_path) | 
|  | return -1; | 
|  | /* TODO: 9ns support */ | 
|  | retval = do_rmdir(t_path); | 
|  | user_memdup_free(p, t_path); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | intreg_t sys_pipe(struct proc *p, int *u_pipefd, int flags) | 
|  | { | 
|  | int pipefd[2] = {0}; | 
|  | int fd; | 
|  | int retval = 0; | 
|  | struct file *pipe_files[2] = {0}; | 
|  |  | 
|  | if (do_pipe(pipe_files, flags)) | 
|  | return -1; | 
|  | fd = insert_file(&p->open_files, pipe_files[0], 0); | 
|  | if (!fd) { | 
|  | set_errno(ENFILE); | 
|  | goto failed_first; | 
|  | } | 
|  | pipefd[0] = fd; | 
|  | fd = insert_file(&p->open_files, pipe_files[1], 0); | 
|  | if (!fd) { | 
|  | set_errno(ENFILE); | 
|  | goto failed_second; | 
|  | } | 
|  | pipefd[1] = fd; | 
|  | if (memcpy_to_user_errno(p, u_pipefd, pipefd, sizeof(pipefd))) { | 
|  | set_errno(EFAULT); | 
|  | goto failed_memcpy; | 
|  | } | 
|  | goto all_out; | 
|  |  | 
|  | failed_memcpy: | 
|  | put_file_from_fd(&p->open_files, pipefd[1]); | 
|  | failed_second: | 
|  | put_file_from_fd(&p->open_files, pipefd[0]); | 
|  | failed_first: | 
|  | retval = -1; | 
|  | all_out: | 
|  | kref_put(&pipe_files[0]->f_kref); | 
|  | kref_put(&pipe_files[1]->f_kref); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | intreg_t sys_gettimeofday(struct proc *p, int *buf) | 
|  | { | 
|  | static spinlock_t gtod_lock = SPINLOCK_INITIALIZER; | 
|  | static int t0 = 0; | 
|  |  | 
|  | spin_lock(>od_lock); | 
|  | if(t0 == 0) | 
|  |  | 
|  | #if (defined CONFIG_APPSERVER) | 
|  | t0 = ufe(time,0,0,0,0); | 
|  | #else | 
|  | // Nanwan's birthday, bitches!! | 
|  | t0 = 1242129600; | 
|  | #endif | 
|  | spin_unlock(>od_lock); | 
|  |  | 
|  | long long dt = read_tsc(); | 
|  | /* TODO: This probably wants its own function, using a struct timeval */ | 
|  | long kbuf[2] = {t0+dt/system_timing.tsc_freq, | 
|  | (dt%system_timing.tsc_freq)*1000000/system_timing.tsc_freq}; | 
|  |  | 
|  | return memcpy_to_user_errno(p,buf,kbuf,sizeof(kbuf)); | 
|  | } | 
|  |  | 
|  | intreg_t sys_tcgetattr(struct proc *p, int fd, void *termios_p) | 
|  | { | 
|  | int retval = 0; | 
|  | /* TODO: actually support this call on tty FDs.  Right now, we just fake | 
|  | * what my linux box reports for a bash pty. */ | 
|  | struct termios *kbuf = kmalloc(sizeof(struct termios), 0); | 
|  | kbuf->c_iflag = 0x2d02; | 
|  | kbuf->c_oflag = 0x0005; | 
|  | kbuf->c_cflag = 0x04bf; | 
|  | kbuf->c_lflag = 0x8a3b; | 
|  | kbuf->c_line = 0x0; | 
|  | kbuf->c_ispeed = 0xf; | 
|  | kbuf->c_ospeed = 0xf; | 
|  | kbuf->c_cc[0] = 0x03; | 
|  | kbuf->c_cc[1] = 0x1c; | 
|  | kbuf->c_cc[2] = 0x7f; | 
|  | kbuf->c_cc[3] = 0x15; | 
|  | kbuf->c_cc[4] = 0x04; | 
|  | kbuf->c_cc[5] = 0x00; | 
|  | kbuf->c_cc[6] = 0x01; | 
|  | kbuf->c_cc[7] = 0xff; | 
|  | kbuf->c_cc[8] = 0x11; | 
|  | kbuf->c_cc[9] = 0x13; | 
|  | kbuf->c_cc[10] = 0x1a; | 
|  | kbuf->c_cc[11] = 0xff; | 
|  | kbuf->c_cc[12] = 0x12; | 
|  | kbuf->c_cc[13] = 0x0f; | 
|  | kbuf->c_cc[14] = 0x17; | 
|  | kbuf->c_cc[15] = 0x16; | 
|  | kbuf->c_cc[16] = 0xff; | 
|  | kbuf->c_cc[17] = 0x00; | 
|  | kbuf->c_cc[18] = 0x00; | 
|  | kbuf->c_cc[19] = 0x00; | 
|  | kbuf->c_cc[20] = 0x00; | 
|  | kbuf->c_cc[21] = 0x00; | 
|  | kbuf->c_cc[22] = 0x00; | 
|  | kbuf->c_cc[23] = 0x00; | 
|  | kbuf->c_cc[24] = 0x00; | 
|  | kbuf->c_cc[25] = 0x00; | 
|  | kbuf->c_cc[26] = 0x00; | 
|  | kbuf->c_cc[27] = 0x00; | 
|  | kbuf->c_cc[28] = 0x00; | 
|  | kbuf->c_cc[29] = 0x00; | 
|  | kbuf->c_cc[30] = 0x00; | 
|  | kbuf->c_cc[31] = 0x00; | 
|  |  | 
|  | if (memcpy_to_user_errno(p, termios_p, kbuf, sizeof(struct termios))) | 
|  | retval = -1; | 
|  | kfree(kbuf); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | intreg_t sys_tcsetattr(struct proc *p, int fd, int optional_actions, | 
|  | const void *termios_p) | 
|  | { | 
|  | /* TODO: do this properly too.  For now, we just say 'it worked' */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* TODO: we don't have any notion of UIDs or GIDs yet, but don't let that stop a | 
|  | * process from thinking it can do these.  The other alternative is to have | 
|  | * glibc return 0 right away, though someone might want to do something with | 
|  | * these calls.  Someday. */ | 
|  | intreg_t sys_setuid(struct proc *p, uid_t uid) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | intreg_t sys_setgid(struct proc *p, gid_t gid) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* long bind(char* src_path, char* onto_path, int flag); | 
|  | * | 
|  | * The naming for the args in bind is messy historically.  We do: | 
|  | * 		bind src_path onto_path | 
|  | * plan9 says bind NEW OLD, where new is *src*, and old is *onto*. | 
|  | * Linux says mount --bind OLD NEW, where OLD is *src* and NEW is *onto*. */ | 
|  | intreg_t sys_nbind(struct proc *p, | 
|  | char *src_path, size_t src_l, | 
|  | char *onto_path, size_t onto_l, | 
|  | unsigned int flag) | 
|  |  | 
|  | { | 
|  | int ret; | 
|  | char *t_srcpath = user_strdup_errno(p, src_path, src_l); | 
|  | if (t_srcpath == NULL) { | 
|  | printd("srcpath dup failed ptr %p size %d\n", src_path, src_l); | 
|  | return -1; | 
|  | } | 
|  | char *t_ontopath = user_strdup_errno(p, onto_path, onto_l); | 
|  | if (t_ontopath == NULL) { | 
|  | user_memdup_free(p, t_srcpath); | 
|  | printd("ontopath dup failed ptr %p size %d\n", onto_path, onto_l); | 
|  | return -1; | 
|  | } | 
|  | printd("sys_nbind: %s -> %s flag %d\n", t_srcpath, t_ontopath, flag); | 
|  | ret = bindmount(0, -1, -1, t_srcpath, t_ontopath, flag, NULL); | 
|  | user_memdup_free(p, t_srcpath); | 
|  | user_memdup_free(p, t_ontopath); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* int npipe(int *fd) */ | 
|  | intreg_t sys_npipe(struct proc *p, int *retfd) | 
|  |  | 
|  | { | 
|  | /* TODO: validate addresses of retfd (UMEM) */ | 
|  | return syspipe(retfd); | 
|  | } | 
|  |  | 
|  | /* int mount(int fd, int afd, char* onto_path, int flag, char* aname); */ | 
|  | intreg_t sys_nmount(struct proc *p, | 
|  | int fd, | 
|  | char *onto_path, size_t onto_l, | 
|  | unsigned int flag | 
|  | /* we ignore these */ | 
|  | /* no easy way to pass this many args anyway. * | 
|  | int afd, | 
|  | char *auth, size_t auth_l*/) | 
|  | { | 
|  | int ret; | 
|  | int afd; | 
|  |  | 
|  | afd = -1; | 
|  | char *t_ontopath = user_strdup_errno(p, onto_path, onto_l); | 
|  | if (t_ontopath == NULL) | 
|  | return -1; | 
|  | ret = bindmount(1, fd, afd, NULL, t_ontopath, flag, /* spec or auth */""); | 
|  | user_memdup_free(p, t_ontopath); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* int mount(int fd, int afd, char* old, int flag, char* aname); */ | 
|  | intreg_t sys_nunmount(struct proc *p, char *name, int name_l, char *old_path, int old_l) | 
|  | { | 
|  | int ret; | 
|  | char *t_oldpath = user_strdup_errno(p, old_path, old_l); | 
|  | if (t_oldpath == NULL) | 
|  | return -1; | 
|  | char *t_name = user_strdup_errno(p, name, name_l); | 
|  | if (t_name == NULL) { | 
|  | user_memdup_free(p, t_oldpath); | 
|  | return -1; | 
|  | } | 
|  | ret = sysunmount(t_name, t_oldpath); | 
|  | printd("go do it\n"); | 
|  | user_memdup_free(p, t_oldpath); | 
|  | user_memdup_free(p, t_name); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int sys_fd2path(struct proc *p, int fd, void *u_buf, size_t len) | 
|  | { | 
|  | int ret; | 
|  | struct chan *ch; | 
|  | ERRSTACK(1); | 
|  | /* UMEM: Check the range, can PF later and kill if the page isn't present */ | 
|  | if (!is_user_rwaddr(u_buf, len)) { | 
|  | printk("[kernel] bad user addr %p (+%p) in %s (user bug)\n", u_buf, | 
|  | len, __FUNCTION__); | 
|  | return -1; | 
|  | } | 
|  | /* fdtochan throws */ | 
|  | if (waserror()) { | 
|  | poperror(); | 
|  | return -1; | 
|  | } | 
|  | ch = fdtochan(fd, -1, FALSE, TRUE); | 
|  | ret = snprintf(u_buf, len, "%s", chanpath(ch)); | 
|  | cclose(ch); | 
|  | poperror(); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /************** Syscall Invokation **************/ | 
|  |  | 
|  | const static struct sys_table_entry syscall_table[] = { | 
|  | [SYS_null] = {(syscall_t)sys_null, "null"}, | 
|  | [SYS_block] = {(syscall_t)sys_block, "block"}, | 
|  | [SYS_cache_buster] = {(syscall_t)sys_cache_buster, "buster"}, | 
|  | [SYS_cache_invalidate] = {(syscall_t)sys_cache_invalidate, "wbinv"}, | 
|  | [SYS_reboot] = {(syscall_t)reboot, "reboot!"}, | 
|  | [SYS_cputs] = {(syscall_t)sys_cputs, "cputs"}, | 
|  | [SYS_cgetc] = {(syscall_t)sys_cgetc, "cgetc"}, | 
|  | [SYS_getpcoreid] = {(syscall_t)sys_getpcoreid, "getpcoreid"}, | 
|  | [SYS_getvcoreid] = {(syscall_t)sys_getvcoreid, "getvcoreid"}, | 
|  | [SYS_getpid] = {(syscall_t)sys_getpid, "getpid"}, | 
|  | [SYS_proc_create] = {(syscall_t)sys_proc_create, "proc_create"}, | 
|  | [SYS_proc_run] = {(syscall_t)sys_proc_run, "proc_run"}, | 
|  | [SYS_proc_destroy] = {(syscall_t)sys_proc_destroy, "proc_destroy"}, | 
|  | [SYS_yield] = {(syscall_t)sys_proc_yield, "proc_yield"}, | 
|  | [SYS_change_vcore] = {(syscall_t)sys_change_vcore, "change_vcore"}, | 
|  | [SYS_fork] = {(syscall_t)sys_fork, "fork"}, | 
|  | [SYS_exec] = {(syscall_t)sys_exec, "exec"}, | 
|  | [SYS_waitpid] = {(syscall_t)sys_waitpid, "waitpid"}, | 
|  | [SYS_mmap] = {(syscall_t)sys_mmap, "mmap"}, | 
|  | [SYS_munmap] = {(syscall_t)sys_munmap, "munmap"}, | 
|  | [SYS_mprotect] = {(syscall_t)sys_mprotect, "mprotect"}, | 
|  | [SYS_shared_page_alloc] = {(syscall_t)sys_shared_page_alloc, "pa"}, | 
|  | [SYS_shared_page_free] = {(syscall_t)sys_shared_page_free, "pf"}, | 
|  | [SYS_provision] = {(syscall_t)sys_provision, "provision"}, | 
|  | [SYS_notify] = {(syscall_t)sys_notify, "notify"}, | 
|  | [SYS_self_notify] = {(syscall_t)sys_self_notify, "self_notify"}, | 
|  | [SYS_vc_entry] = {(syscall_t)sys_vc_entry, "vc_entry"}, | 
|  | [SYS_halt_core] = {(syscall_t)sys_halt_core, "halt_core"}, | 
|  | #ifdef CONFIG_SERIAL_IO | 
|  | [SYS_serial_read] = {(syscall_t)sys_serial_read, "ser_read"}, | 
|  | [SYS_serial_write] = {(syscall_t)sys_serial_write, "ser_write"}, | 
|  | #endif | 
|  | #ifdef CONFIG_NETWORKING | 
|  | [SYS_eth_read] = {(syscall_t)sys_eth_read, "eth_read"}, | 
|  | [SYS_eth_write] = {(syscall_t)sys_eth_write, "eth_write"}, | 
|  | [SYS_eth_get_mac_addr] = {(syscall_t)sys_eth_get_mac_addr, "get_mac"}, | 
|  | [SYS_eth_recv_check] = {(syscall_t)sys_eth_recv_check, "recv_check"}, | 
|  | #endif | 
|  | #ifdef CONFIG_ARSC_SERVER | 
|  | [SYS_init_arsc] = {(syscall_t)sys_init_arsc, "init_arsc"}, | 
|  | #endif | 
|  | [SYS_change_to_m] = {(syscall_t)sys_change_to_m, "change_to_m"}, | 
|  | [SYS_poke_ksched] = {(syscall_t)sys_poke_ksched, "poke_ksched"}, | 
|  | [SYS_abort_sysc] = {(syscall_t)sys_abort_sysc, "abort_sysc"}, | 
|  |  | 
|  | // socket related syscalls | 
|  | [SYS_socket] ={(syscall_t)sys_socket, "socket"}, | 
|  | [SYS_sendto] ={(syscall_t)sys_sendto, "sendto"}, | 
|  | [SYS_recvfrom] ={(syscall_t)sys_recvfrom, "recvfrom"}, | 
|  | [SYS_select] ={(syscall_t)sys_select, "select"}, | 
|  | [SYS_connect] = {(syscall_t)sys_connect, "connect"}, | 
|  | [SYS_send] ={(syscall_t)sys_send, "send"}, | 
|  | [SYS_recv] ={(syscall_t)sys_recv, "recvfrom"}, | 
|  | [SYS_bind] ={(syscall_t)sys_bind, "bind"}, | 
|  | [SYS_accept] ={(syscall_t)sys_accept, "accept"}, | 
|  | [SYS_listen] ={(syscall_t)sys_listen, "listen"}, | 
|  |  | 
|  |  | 
|  | [SYS_read] = {(syscall_t)sys_read, "read"}, | 
|  | [SYS_write] = {(syscall_t)sys_write, "write"}, | 
|  | [SYS_open] = {(syscall_t)sys_open, "open"}, | 
|  | [SYS_close] = {(syscall_t)sys_close, "close"}, | 
|  | [SYS_fstat] = {(syscall_t)sys_fstat, "fstat"}, | 
|  | [SYS_stat] = {(syscall_t)sys_stat, "stat"}, | 
|  | [SYS_lstat] = {(syscall_t)sys_lstat, "lstat"}, | 
|  | [SYS_fcntl] = {(syscall_t)sys_fcntl, "fcntl"}, | 
|  | [SYS_access] = {(syscall_t)sys_access, "access"}, | 
|  | [SYS_umask] = {(syscall_t)sys_umask, "umask"}, | 
|  | [SYS_chmod] = {(syscall_t)sys_chmod, "chmod"}, | 
|  | [SYS_llseek] = {(syscall_t)sys_llseek, "llseek"}, | 
|  | [SYS_link] = {(syscall_t)sys_link, "link"}, | 
|  | [SYS_unlink] = {(syscall_t)sys_unlink, "unlink"}, | 
|  | [SYS_symlink] = {(syscall_t)sys_symlink, "symlink"}, | 
|  | [SYS_readlink] = {(syscall_t)sys_readlink, "readlink"}, | 
|  | [SYS_chdir] = {(syscall_t)sys_chdir, "chdir"}, | 
|  | [SYS_getcwd] = {(syscall_t)sys_getcwd, "getcwd"}, | 
|  | [SYS_mkdir] = {(syscall_t)sys_mkdir, "mkdri"}, | 
|  | [SYS_rmdir] = {(syscall_t)sys_rmdir, "rmdir"}, | 
|  | [SYS_pipe] = {(syscall_t)sys_pipe, "pipe"}, | 
|  | [SYS_gettimeofday] = {(syscall_t)sys_gettimeofday, "gettime"}, | 
|  | [SYS_tcgetattr] = {(syscall_t)sys_tcgetattr, "tcgetattr"}, | 
|  | [SYS_tcsetattr] = {(syscall_t)sys_tcsetattr, "tcsetattr"}, | 
|  | [SYS_setuid] = {(syscall_t)sys_setuid, "setuid"}, | 
|  | [SYS_setgid] = {(syscall_t)sys_setgid, "setgid"}, | 
|  | /* special! */ | 
|  | [SYS_nbind] ={(syscall_t)sys_nbind, "nbind"}, | 
|  | [SYS_nmount] ={(syscall_t)sys_nmount, "nmount"}, | 
|  | [SYS_nunmount] ={(syscall_t)sys_nunmount, "nunmount"}, | 
|  | [SYS_npipe] ={(syscall_t)sys_npipe, "npipe"}, | 
|  | [SYS_fd2path] ={(syscall_t)sys_fd2path, "fd2path"}, | 
|  |  | 
|  | }; | 
|  |  | 
|  | /* Executes the given syscall. | 
|  | * | 
|  | * Note tf is passed in, which points to the tf of the context on the kernel | 
|  | * stack.  If any syscall needs to block, it needs to save this info, as well as | 
|  | * any silly state. | 
|  | * | 
|  | * This syscall function is used by both local syscall and arsc, and should | 
|  | * remain oblivious of the caller. */ | 
|  | intreg_t syscall(struct proc *p, uintreg_t sc_num, uintreg_t a0, uintreg_t a1, | 
|  | uintreg_t a2, uintreg_t a3, uintreg_t a4, uintreg_t a5) | 
|  | { | 
|  | intreg_t ret = -1; | 
|  | ERRSTACK(1); | 
|  | const int max_syscall = sizeof(syscall_table)/sizeof(syscall_table[0]); | 
|  |  | 
|  | uint32_t coreid, vcoreid; | 
|  | if (systrace_flags & SYSTRACE_ON) { | 
|  | if ((systrace_flags & SYSTRACE_ALLPROC) || (proc_is_traced(p))) { | 
|  | coreid = core_id(); | 
|  | vcoreid = proc_get_vcoreid(p); | 
|  | if (systrace_flags & SYSTRACE_LOUD) { | 
|  | printk("[%16llu] Syscall %3d (%12s):(%p, %p, %p, %p, " | 
|  | "%p, %p) proc: %d core: %d vcore: %d\n", read_tsc(), | 
|  | sc_num, syscall_table[sc_num].name, a0, a1, a2, a3, | 
|  | a4, a5, p->pid, coreid, vcoreid); | 
|  | } else { | 
|  | struct systrace_record *trace; | 
|  | uintptr_t idx, new_idx; | 
|  | do { | 
|  | idx = systrace_bufidx; | 
|  | new_idx = (idx + 1) % systrace_bufsize; | 
|  | } while (!atomic_cas_u32(&systrace_bufidx, idx, new_idx)); | 
|  | trace = &systrace_buffer[idx]; | 
|  | trace->timestamp = read_tsc(); | 
|  | trace->syscallno = sc_num; | 
|  | trace->arg0 = a0; | 
|  | trace->arg1 = a1; | 
|  | trace->arg2 = a2; | 
|  | trace->arg3 = a3; | 
|  | trace->arg4 = a4; | 
|  | trace->arg5 = a5; | 
|  | trace->pid = p->pid; | 
|  | trace->coreid = coreid; | 
|  | trace->vcoreid = vcoreid; | 
|  | } | 
|  | } | 
|  | } | 
|  | if (sc_num > max_syscall || syscall_table[sc_num].call == NULL) | 
|  | panic("Invalid syscall number %d for proc %x!", sc_num, p); | 
|  |  | 
|  | /* N.B. This is going away. */ | 
|  | if (waserror()){ | 
|  | printk("Plan 9 system call returned via waserror()\n"); | 
|  | printk("String: '%s'\n", current_errstr()); | 
|  | /* if we got here, then the errbuf was right. | 
|  | * no need to check! | 
|  | */ | 
|  | return -1; | 
|  | } | 
|  | //printd("before syscall errstack %p\n", errstack); | 
|  | //printd("before syscall errstack base %p\n", get_cur_errbuf()); | 
|  | ret = syscall_table[sc_num].call(p, a0, a1, a2, a3, a4, a5); | 
|  | //printd("after syscall errstack base %p\n", get_cur_errbuf()); | 
|  | if (get_cur_errbuf() != &errstack[0]) { | 
|  | coreid = core_id(); | 
|  | vcoreid = proc_get_vcoreid(p); | 
|  | printk("[%16llu] Syscall %3d (%12s):(%p, %p, %p, %p, " | 
|  | "%p, %p) proc: %d core: %d vcore: %d\n", read_tsc(), | 
|  | sc_num, syscall_table[sc_num].name, a0, a1, a2, a3, | 
|  | a4, a5, p->pid, coreid, vcoreid); | 
|  | if (sc_num != SYS_fork) | 
|  | printk("YOU SHOULD PANIC: errstack mismatch"); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Execute the syscall on the local core */ | 
|  | void run_local_syscall(struct syscall *sysc) | 
|  | { | 
|  | struct per_cpu_info *pcpui = &per_cpu_info[core_id()]; | 
|  |  | 
|  | /* TODO: (UMEM) assert / pin the memory for the sysc */ | 
|  | assert(irq_is_enabled());	/* in case we proc destroy */ | 
|  | /* Abort on mem check failure, for now */ | 
|  | if (!user_mem_check(pcpui->cur_proc, sysc, sizeof(struct syscall), | 
|  | sizeof(uintptr_t), PTE_USER_RW)) | 
|  | return; | 
|  | pcpui->cur_kthread->sysc = sysc;	/* let the core know which sysc it is */ | 
|  | sysc->retval = syscall(pcpui->cur_proc, sysc->num, sysc->arg0, sysc->arg1, | 
|  | sysc->arg2, sysc->arg3, sysc->arg4, sysc->arg5); | 
|  | /* Need to re-load pcpui, in case we migrated */ | 
|  | pcpui = &per_cpu_info[core_id()]; | 
|  | /* Some 9ns paths set errstr, but not errno.  glibc will ignore errstr. | 
|  | * this is somewhat hacky, since errno might get set unnecessarily */ | 
|  | if ((current_errstr()[0] != 0) && (!sysc->err)) | 
|  | sysc->err = EUNSPECIFIED; | 
|  | finish_sysc(sysc, pcpui->cur_proc); | 
|  | /* Can unpin (UMEM) at this point */ | 
|  | pcpui->cur_kthread->sysc = 0;	/* no longer working on sysc */ | 
|  | } | 
|  |  | 
|  | /* A process can trap and call this function, which will set up the core to | 
|  | * handle all the syscalls.  a.k.a. "sys_debutante(needs, wants)".  If there is | 
|  | * at least one, it will run it directly. */ | 
|  | void prep_syscalls(struct proc *p, struct syscall *sysc, unsigned int nr_syscs) | 
|  | { | 
|  | int retval; | 
|  | /* Careful with pcpui here, we could have migrated */ | 
|  | if (!nr_syscs) | 
|  | return; | 
|  | /* For all after the first call, send ourselves a KMSG (TODO). */ | 
|  | if (nr_syscs != 1) | 
|  | warn("Only one supported (Debutante calls: %d)\n", nr_syscs); | 
|  | /* Call the first one directly.  (we already checked to make sure there is | 
|  | * 1) */ | 
|  | run_local_syscall(sysc); | 
|  | } | 
|  |  | 
|  | /* Call this when something happens on the syscall where userspace might want to | 
|  | * get signaled.  Passing p, since the caller should know who the syscall | 
|  | * belongs to (probably is current). | 
|  | * | 
|  | * You need to have SC_K_LOCK set when you call this. */ | 
|  | void __signal_syscall(struct syscall *sysc, struct proc *p) | 
|  | { | 
|  | struct event_queue *ev_q; | 
|  | struct event_msg local_msg; | 
|  | /* User sets the ev_q then atomically sets the flag (races with SC_DONE) */ | 
|  | if (atomic_read(&sysc->flags) & SC_UEVENT) { | 
|  | rmb();	/* read the ev_q after reading the flag */ | 
|  | ev_q = sysc->ev_q; | 
|  | if (ev_q) { | 
|  | memset(&local_msg, 0, sizeof(struct event_msg)); | 
|  | local_msg.ev_type = EV_SYSCALL; | 
|  | local_msg.ev_arg3 = sysc; | 
|  | send_event(p, ev_q, &local_msg, 0); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Syscall tracing */ | 
|  | static void __init_systrace(void) | 
|  | { | 
|  | systrace_buffer = kmalloc(MAX_SYSTRACES*sizeof(struct systrace_record), 0); | 
|  | if (!systrace_buffer) | 
|  | panic("Unable to alloc a trace buffer\n"); | 
|  | systrace_bufidx = 0; | 
|  | systrace_bufsize = MAX_SYSTRACES; | 
|  | /* Note we never free the buffer - it's around forever.  Feel free to change | 
|  | * this if you want to change the size or something dynamically. */ | 
|  | } | 
|  |  | 
|  | /* If you call this while it is running, it will change the mode */ | 
|  | void systrace_start(bool silent) | 
|  | { | 
|  | static bool init = FALSE; | 
|  | spin_lock_irqsave(&systrace_lock); | 
|  | if (!init) { | 
|  | __init_systrace(); | 
|  | init = TRUE; | 
|  | } | 
|  | systrace_flags = silent ? SYSTRACE_ON : SYSTRACE_ON | SYSTRACE_LOUD; | 
|  | spin_unlock_irqsave(&systrace_lock); | 
|  | } | 
|  |  | 
|  | int systrace_reg(bool all, struct proc *p) | 
|  | { | 
|  | int retval = 0; | 
|  | spin_lock_irqsave(&systrace_lock); | 
|  | if (all) { | 
|  | printk("Tracing syscalls for all processes\n"); | 
|  | systrace_flags |= SYSTRACE_ALLPROC; | 
|  | retval = 0; | 
|  | } else { | 
|  | for (int i = 0; i < MAX_NUM_TRACED; i++) { | 
|  | if (!systrace_procs[i]) { | 
|  | printk("Tracing syscalls for process %d\n", p->pid); | 
|  | systrace_procs[i] = p; | 
|  | retval = 0; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | spin_unlock_irqsave(&systrace_lock); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | void systrace_stop(void) | 
|  | { | 
|  | spin_lock_irqsave(&systrace_lock); | 
|  | systrace_flags = 0; | 
|  | for (int i = 0; i < MAX_NUM_TRACED; i++) | 
|  | systrace_procs[i] = 0; | 
|  | spin_unlock_irqsave(&systrace_lock); | 
|  | } | 
|  |  | 
|  | /* If you registered a process specifically, then you need to dereg it | 
|  | * specifically.  Or just fully stop, which will do it for all. */ | 
|  | int systrace_dereg(bool all, struct proc *p) | 
|  | { | 
|  | spin_lock_irqsave(&systrace_lock); | 
|  | if (all) { | 
|  | printk("No longer tracing syscalls for all processes.\n"); | 
|  | systrace_flags &= ~SYSTRACE_ALLPROC; | 
|  | } else { | 
|  | for (int i = 0; i < MAX_NUM_TRACED; i++) { | 
|  | if (systrace_procs[i] == p) { | 
|  | systrace_procs[i] = 0; | 
|  | printk("No longer tracing syscalls for process %d\n", p->pid); | 
|  | } | 
|  | } | 
|  | } | 
|  | spin_unlock_irqsave(&systrace_lock); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Regardless of locking, someone could be writing into the buffer */ | 
|  | void systrace_print(bool all, struct proc *p) | 
|  | { | 
|  | spin_lock_irqsave(&systrace_lock); | 
|  | /* if you want to be clever, you could make this start from the earliest | 
|  | * timestamp and loop around.  Careful of concurrent writes. */ | 
|  | for (int i = 0; i < systrace_bufsize; i++) | 
|  | if (systrace_buffer[i].timestamp) | 
|  | printk("[%16llu] Syscall %3d (%12s):(%p, %p, %p, %p, %p," | 
|  | "%p) proc: %d core: %d vcore: %d\n", | 
|  | systrace_buffer[i].timestamp, | 
|  | systrace_buffer[i].syscallno, | 
|  | syscall_table[systrace_buffer[i].syscallno].name, | 
|  | systrace_buffer[i].arg0, | 
|  | systrace_buffer[i].arg1, | 
|  | systrace_buffer[i].arg2, | 
|  | systrace_buffer[i].arg3, | 
|  | systrace_buffer[i].arg4, | 
|  | systrace_buffer[i].arg5, | 
|  | systrace_buffer[i].pid, | 
|  | systrace_buffer[i].coreid, | 
|  | systrace_buffer[i].vcoreid); | 
|  | spin_unlock_irqsave(&systrace_lock); | 
|  | } | 
|  |  | 
|  | void systrace_clear_buffer(void) | 
|  | { | 
|  | spin_lock_irqsave(&systrace_lock); | 
|  | memset(systrace_buffer, 0, sizeof(struct systrace_record) * MAX_SYSTRACES); | 
|  | spin_unlock_irqsave(&systrace_lock); | 
|  | } |