|  |  | 
|  | /*============================================================================ | 
|  |  | 
|  | This C source fragment is part of the SoftFloat IEC/IEEE Floating-point | 
|  | Arithmetic Package, Release 2b. | 
|  |  | 
|  | Written by John R. Hauser.  This work was made possible in part by the | 
|  | International Computer Science Institute, located at Suite 600, 1947 Center | 
|  | Street, Berkeley, California 94704.  Funding was partially provided by the | 
|  | National Science Foundation under grant MIP-9311980.  The original version | 
|  | of this code was written as part of a project to build a fixed-point vector | 
|  | processor in collaboration with the University of California at Berkeley, | 
|  | overseen by Profs. Nelson Morgan and John Wawrzynek.  More information | 
|  | is available through the Web page `http://www.cs.berkeley.edu/~jhauser/ | 
|  | arithmetic/SoftFloat.html'. | 
|  |  | 
|  | THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort has | 
|  | been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES | 
|  | RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS | 
|  | AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES, | 
|  | COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE | 
|  | EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE | 
|  | INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR | 
|  | OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE. | 
|  |  | 
|  | Derivative works are acceptable, even for commercial purposes, so long as | 
|  | (1) the source code for the derivative work includes prominent notice that | 
|  | the work is derivative, and (2) the source code includes prominent notice with | 
|  | these four paragraphs for those parts of this code that are retained. | 
|  |  | 
|  | =============================================================================*/ | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Underflow tininess-detection mode, statically initialized to default value. | 
|  | | (The declaration in `softfloat.h' must match the `int8' type here.) | 
|  | *----------------------------------------------------------------------------*/ | 
|  | //int8 float_detect_tininess = float_tininess_before_rounding; | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Raises the exceptions specified by `flags'.  Floating-point traps can be | 
|  | | defined here if desired.  It is currently not possible for such a trap | 
|  | | to substitute a result value.  If traps are not implemented, this routine | 
|  | | should be simply `float_exception_flags |= flags;'. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | INLINE void float_raise( softfloat_t* sf, int flags ) | 
|  | { | 
|  | sf->float_exception_flags |= flags; | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | The pattern for a default generated single-precision NaN. | 
|  | *----------------------------------------------------------------------------*/ | 
|  | #define float32_default_nan 0x7FFFFFFF | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns 1 if the single-precision floating-point value `a' is a NaN; | 
|  | | otherwise returns 0. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | INLINE flag float32_is_nan( softfloat_t* sf, float32 a ) | 
|  | { | 
|  |  | 
|  | return ( 0xFF000000 < (bits32) ( a<<1 ) ); | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns 1 if the single-precision floating-point value `a' is a signaling | 
|  | | NaN; otherwise returns 0. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | INLINE flag float32_is_signaling_nan( softfloat_t* sf, float32 a ) | 
|  | { | 
|  |  | 
|  | return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF ); | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns the result of converting the single-precision floating-point NaN | 
|  | | `a' to the canonical NaN format.  If `a' is a signaling NaN, the invalid | 
|  | | exception is raised. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | commonNaNT float32ToCommonNaN( softfloat_t* sf, float32 a ) | 
|  | { | 
|  | commonNaNT z; | 
|  |  | 
|  | if ( float32_is_signaling_nan( sf, a ) ) float_raise( sf, float_flag_invalid ); | 
|  | z.sign = a>>31; | 
|  | z.low = 0; | 
|  | z.high = ( (bits64) a )<<41; | 
|  | return z; | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns the result of converting the canonical NaN `a' to the single- | 
|  | | precision floating-point format. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | float32 commonNaNToFloat32( softfloat_t* sf, commonNaNT a ) | 
|  | { | 
|  |  | 
|  | return ( ( (bits32) a.sign )<<31 ) | 0x7FC00000 | ( a.high>>41 ); | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Takes two single-precision floating-point values `a' and `b', one of which | 
|  | | is a NaN, and returns the appropriate NaN result.  If either `a' or `b' is a | 
|  | | signaling NaN, the invalid exception is raised. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | float32 propagateFloat32NaN( softfloat_t* sf, float32 a, float32 b ) | 
|  | { | 
|  | flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN; | 
|  |  | 
|  | aIsNaN = float32_is_nan( sf, a ); | 
|  | aIsSignalingNaN = float32_is_signaling_nan( sf, a ); | 
|  | bIsNaN = float32_is_nan( sf, b ); | 
|  | bIsSignalingNaN = float32_is_signaling_nan( sf, b ); | 
|  | a |= 0x00400000; | 
|  | b |= 0x00400000; | 
|  | if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( sf, float_flag_invalid ); | 
|  | return bIsSignalingNaN ? b : aIsSignalingNaN ? a : bIsNaN ? b : a; | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | The pattern for a default generated double-precision NaN. | 
|  | *----------------------------------------------------------------------------*/ | 
|  | #define float64_default_nan LIT64( 0x7FFFFFFFFFFFFFFF ) | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns 1 if the double-precision floating-point value `a' is a NaN; | 
|  | | otherwise returns 0. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | flag float64_is_nan( softfloat_t* sf, float64 a ) | 
|  | { | 
|  |  | 
|  | return ( LIT64( 0xFFE0000000000000 ) < (bits64) ( a<<1 ) ); | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns 1 if the double-precision floating-point value `a' is a signaling | 
|  | | NaN; otherwise returns 0. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | flag float64_is_signaling_nan( softfloat_t* sf, float64 a ) | 
|  | { | 
|  |  | 
|  | return | 
|  | ( ( ( a>>51 ) & 0xFFF ) == 0xFFE ) | 
|  | && ( a & LIT64( 0x0007FFFFFFFFFFFF ) ); | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns the result of converting the double-precision floating-point NaN | 
|  | | `a' to the canonical NaN format.  If `a' is a signaling NaN, the invalid | 
|  | | exception is raised. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | commonNaNT float64ToCommonNaN( softfloat_t* sf, float64 a ) | 
|  | { | 
|  | commonNaNT z; | 
|  |  | 
|  | if ( float64_is_signaling_nan( sf, a ) ) float_raise( sf, float_flag_invalid ); | 
|  | z.sign = a>>63; | 
|  | z.low = 0; | 
|  | z.high = a<<12; | 
|  | return z; | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns the result of converting the canonical NaN `a' to the double- | 
|  | | precision floating-point format. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | float64 commonNaNToFloat64( softfloat_t* sf, commonNaNT a ) | 
|  | { | 
|  |  | 
|  | return | 
|  | ( ( (bits64) a.sign )<<63 ) | 
|  | | LIT64( 0x7FF8000000000000 ) | 
|  | | ( a.high>>12 ); | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Takes two double-precision floating-point values `a' and `b', one of which | 
|  | | is a NaN, and returns the appropriate NaN result.  If either `a' or `b' is a | 
|  | | signaling NaN, the invalid exception is raised. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | float64 propagateFloat64NaN( softfloat_t* sf, float64 a, float64 b ) | 
|  | { | 
|  | flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN; | 
|  |  | 
|  | aIsNaN = float64_is_nan( sf, a ); | 
|  | aIsSignalingNaN = float64_is_signaling_nan( sf, a ); | 
|  | bIsNaN = float64_is_nan( sf, b ); | 
|  | bIsSignalingNaN = float64_is_signaling_nan( sf, b ); | 
|  | a |= LIT64( 0x0008000000000000 ); | 
|  | b |= LIT64( 0x0008000000000000 ); | 
|  | if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( sf, float_flag_invalid ); | 
|  | return bIsSignalingNaN ? b : aIsSignalingNaN ? a : bIsNaN ? b : a; | 
|  |  | 
|  | } | 
|  |  | 
|  | #ifdef FLOATX80 | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | The pattern for a default generated extended double-precision NaN.  The | 
|  | | `high' and `low' values hold the most- and least-significant bits, | 
|  | | respectively. | 
|  | *----------------------------------------------------------------------------*/ | 
|  | #define floatx80_default_nan_high 0x7FFF | 
|  | #define floatx80_default_nan_low  LIT64( 0xFFFFFFFFFFFFFFFF ) | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns 1 if the extended double-precision floating-point value `a' is a | 
|  | | NaN; otherwise returns 0. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | flag floatx80_is_nan( softfloat_t* sf, floatx80 a ) | 
|  | { | 
|  |  | 
|  | return ( ( a.high & 0x7FFF ) == 0x7FFF ) && (bits64) ( a.low<<1 ); | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns 1 if the extended double-precision floating-point value `a' is a | 
|  | | signaling NaN; otherwise returns 0. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | flag floatx80_is_signaling_nan( softfloat_t* sf, floatx80 a ) | 
|  | { | 
|  | bits64 aLow; | 
|  |  | 
|  | aLow = a.low & ~ LIT64( 0x4000000000000000 ); | 
|  | return | 
|  | ( ( a.high & 0x7FFF ) == 0x7FFF ) | 
|  | && (bits64) ( aLow<<1 ) | 
|  | && ( a.low == aLow ); | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns the result of converting the extended double-precision floating- | 
|  | | point NaN `a' to the canonical NaN format.  If `a' is a signaling NaN, the | 
|  | | invalid exception is raised. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | commonNaNT floatx80ToCommonNaN( softfloat_t* sf, floatx80 a ) | 
|  | { | 
|  | commonNaNT z; | 
|  |  | 
|  | if ( floatx80_is_signaling_nan( sf, a ) ) float_raise( sf, float_flag_invalid ); | 
|  | z.sign = a.high>>15; | 
|  | z.low = 0; | 
|  | z.high = a.low<<1; | 
|  | return z; | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns the result of converting the canonical NaN `a' to the extended | 
|  | | double-precision floating-point format. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | floatx80 commonNaNToFloatx80( softfloat_t* sf, commonNaNT a ) | 
|  | { | 
|  | floatx80 z; | 
|  |  | 
|  | z.low = LIT64( 0xC000000000000000 ) | ( a.high>>1 ); | 
|  | z.high = ( ( (bits16) a.sign )<<15 ) | 0x7FFF; | 
|  | return z; | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Takes two extended double-precision floating-point values `a' and `b', one | 
|  | | of which is a NaN, and returns the appropriate NaN result.  If either `a' or | 
|  | | `b' is a signaling NaN, the invalid exception is raised. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | floatx80 propagateFloatx80NaN( softfloat_t* sf, floatx80 a, floatx80 b ) | 
|  | { | 
|  | flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN; | 
|  |  | 
|  | aIsNaN = floatx80_is_nan( sf, a ); | 
|  | aIsSignalingNaN = floatx80_is_signaling_nan( sf, a ); | 
|  | bIsNaN = floatx80_is_nan( sf, b ); | 
|  | bIsSignalingNaN = floatx80_is_signaling_nan( sf, b ); | 
|  | a.low |= LIT64( 0xC000000000000000 ); | 
|  | b.low |= LIT64( 0xC000000000000000 ); | 
|  | if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( sf, float_flag_invalid ); | 
|  | return bIsSignalingNaN ? b : aIsSignalingNaN ? a : bIsNaN ? b : a; | 
|  |  | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | #ifdef FLOAT128 | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | The pattern for a default generated quadruple-precision NaN.  The `high' and | 
|  | | `low' values hold the most- and least-significant bits, respectively. | 
|  | *----------------------------------------------------------------------------*/ | 
|  | #define float128_default_nan_high LIT64( 0x7FFFFFFFFFFFFFFF ) | 
|  | #define float128_default_nan_low  LIT64( 0xFFFFFFFFFFFFFFFF ) | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns 1 if the quadruple-precision floating-point value `a' is a NaN; | 
|  | | otherwise returns 0. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | flag float128_is_nan( softfloat_t* sf, float128 a ) | 
|  | { | 
|  |  | 
|  | return | 
|  | ( LIT64( 0xFFFE000000000000 ) <= (bits64) ( a.high<<1 ) ) | 
|  | && ( a.low || ( a.high & LIT64( 0x0000FFFFFFFFFFFF ) ) ); | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns 1 if the quadruple-precision floating-point value `a' is a | 
|  | | signaling NaN; otherwise returns 0. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | flag float128_is_signaling_nan( softfloat_t* sf, float128 a ) | 
|  | { | 
|  |  | 
|  | return | 
|  | ( ( ( a.high>>47 ) & 0xFFFF ) == 0xFFFE ) | 
|  | && ( a.low || ( a.high & LIT64( 0x00007FFFFFFFFFFF ) ) ); | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns the result of converting the quadruple-precision floating-point NaN | 
|  | | `a' to the canonical NaN format.  If `a' is a signaling NaN, the invalid | 
|  | | exception is raised. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | commonNaNT float128ToCommonNaN( softfloat_t* sf, float128 a ) | 
|  | { | 
|  | commonNaNT z; | 
|  |  | 
|  | if ( float128_is_signaling_nan( sf, a ) ) float_raise( sf, float_flag_invalid ); | 
|  | z.sign = a.high>>63; | 
|  | shortShift128Left( a.high, a.low, 16, &z.high, &z.low ); | 
|  | return z; | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Returns the result of converting the canonical NaN `a' to the quadruple- | 
|  | | precision floating-point format. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | float128 commonNaNToFloat128( softfloat_t* sf, commonNaNT a ) | 
|  | { | 
|  | float128 z; | 
|  |  | 
|  | shift128Right( a.high, a.low, 16, &z.high, &z.low ); | 
|  | z.high |= ( ( (bits64) a.sign )<<63 ) | LIT64( 0x7FFF800000000000 ); | 
|  | return z; | 
|  |  | 
|  | } | 
|  |  | 
|  | /*---------------------------------------------------------------------------- | 
|  | | Takes two quadruple-precision floating-point values `a' and `b', one of | 
|  | | which is a NaN, and returns the appropriate NaN result.  If either `a' or | 
|  | | `b' is a signaling NaN, the invalid exception is raised. | 
|  | *----------------------------------------------------------------------------*/ | 
|  |  | 
|  | float128 propagateFloat128NaN( softfloat_t* sf, float128 a, float128 b ) | 
|  | { | 
|  | flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN; | 
|  |  | 
|  | aIsNaN = float128_is_nan( sf, a ); | 
|  | aIsSignalingNaN = float128_is_signaling_nan( sf, a ); | 
|  | bIsNaN = float128_is_nan( sf, b ); | 
|  | bIsSignalingNaN = float128_is_signaling_nan( sf, b ); | 
|  | a.high |= LIT64( 0x0000800000000000 ); | 
|  | b.high |= LIT64( 0x0000800000000000 ); | 
|  | if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( sf, float_flag_invalid ); | 
|  | return bIsSignalingNaN ? b : aIsSignalingNaN ? a : bIsNaN ? b : a; | 
|  |  | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  |