|  | /* bnx2x_init.h: Broadcom Everest network driver. | 
|  | *               Structures and macroes needed during the initialization. | 
|  | * | 
|  | * Copyright (c) 2007-2013 Broadcom Corporation | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License as published by | 
|  | * the Free Software Foundation. | 
|  | * | 
|  | * Maintained by: Ariel Elior <ariel.elior@qlogic.com> | 
|  | * Written by: Eliezer Tamir | 
|  | * Modified by: Vladislav Zolotarov | 
|  | */ | 
|  |  | 
|  | #pragma once | 
|  |  | 
|  | /* Init operation types and structures */ | 
|  | enum { | 
|  | OP_RD = 0x1,	/* read a single register */ | 
|  | OP_WR,		/* write a single register */ | 
|  | OP_SW,		/* copy a string to the device */ | 
|  | OP_ZR,		/* clear memory */ | 
|  | OP_ZP,		/* unzip then copy with DMAE */ | 
|  | OP_WR_64,	/* write 64 bit pattern */ | 
|  | OP_WB,		/* copy a string using DMAE */ | 
|  | OP_WB_ZR,	/* Clear a string using DMAE or indirect-wr */ | 
|  | /* Skip the following ops if all of the init modes don't match */ | 
|  | OP_IF_MODE_OR, | 
|  | /* Skip the following ops if any of the init modes don't match */ | 
|  | OP_IF_MODE_AND, | 
|  | OP_MAX | 
|  | }; | 
|  |  | 
|  | enum { | 
|  | STAGE_START, | 
|  | STAGE_END, | 
|  | }; | 
|  |  | 
|  | /* Returns the index of start or end of a specific block stage in ops array*/ | 
|  | #define BLOCK_OPS_IDX(block, stage, end) \ | 
|  | (2*(((block)*NUM_OF_INIT_PHASES) + (stage)) + (end)) | 
|  |  | 
|  |  | 
|  | /* structs for the various opcodes */ | 
|  | struct raw_op { | 
|  | uint32_t op:8; | 
|  | uint32_t offset:24; | 
|  | uint32_t raw_data; | 
|  | }; | 
|  |  | 
|  | struct op_read { | 
|  | uint32_t op:8; | 
|  | uint32_t offset:24; | 
|  | uint32_t val; | 
|  | }; | 
|  |  | 
|  | struct op_write { | 
|  | uint32_t op:8; | 
|  | uint32_t offset:24; | 
|  | uint32_t val; | 
|  | }; | 
|  |  | 
|  | struct op_arr_write { | 
|  | uint32_t op:8; | 
|  | uint32_t offset:24; | 
|  | #ifdef __BIG_ENDIAN | 
|  | uint16_t data_len; | 
|  | uint16_t data_off; | 
|  | #else /* __LITTLE_ENDIAN */ | 
|  | uint16_t data_off; | 
|  | uint16_t data_len; | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | struct op_zero { | 
|  | uint32_t op:8; | 
|  | uint32_t offset:24; | 
|  | uint32_t len; | 
|  | }; | 
|  |  | 
|  | struct op_if_mode { | 
|  | uint32_t op:8; | 
|  | uint32_t cmd_offset:24; | 
|  | uint32_t mode_bit_map; | 
|  | }; | 
|  |  | 
|  |  | 
|  | union init_op { | 
|  | struct op_read		read; | 
|  | struct op_write		write; | 
|  | struct op_arr_write	arr_wr; | 
|  | struct op_zero		zero; | 
|  | struct raw_op		raw; | 
|  | struct op_if_mode	if_mode; | 
|  | }; | 
|  |  | 
|  |  | 
|  | /* Init Phases */ | 
|  | enum { | 
|  | PHASE_COMMON, | 
|  | PHASE_PORT0, | 
|  | PHASE_PORT1, | 
|  | PHASE_PF0, | 
|  | PHASE_PF1, | 
|  | PHASE_PF2, | 
|  | PHASE_PF3, | 
|  | PHASE_PF4, | 
|  | PHASE_PF5, | 
|  | PHASE_PF6, | 
|  | PHASE_PF7, | 
|  | NUM_OF_INIT_PHASES | 
|  | }; | 
|  |  | 
|  | /* Init Modes */ | 
|  | enum { | 
|  | MODE_ASIC                      = 0x00000001, | 
|  | MODE_FPGA                      = 0x00000002, | 
|  | MODE_EMUL                      = 0x00000004, | 
|  | MODE_E2                        = 0x00000008, | 
|  | MODE_E3                        = 0x00000010, | 
|  | MODE_PORT2                     = 0x00000020, | 
|  | MODE_PORT4                     = 0x00000040, | 
|  | MODE_SF                        = 0x00000080, | 
|  | MODE_MF                        = 0x00000100, | 
|  | MODE_MF_SD                     = 0x00000200, | 
|  | MODE_MF_SI                     = 0x00000400, | 
|  | MODE_MF_AFEX                   = 0x00000800, | 
|  | MODE_E3_A0                     = 0x00001000, | 
|  | MODE_E3_B0                     = 0x00002000, | 
|  | MODE_COS3                      = 0x00004000, | 
|  | MODE_COS6                      = 0x00008000, | 
|  | MODE_LITTLE_ENDIAN             = 0x00010000, | 
|  | MODE_BIG_ENDIAN                = 0x00020000, | 
|  | }; | 
|  |  | 
|  | /* Init Blocks */ | 
|  | enum { | 
|  | BLOCK_ATC, | 
|  | BLOCK_BRB1, | 
|  | BLOCK_CCM, | 
|  | BLOCK_CDU, | 
|  | BLOCK_CFC, | 
|  | BLOCK_CSDM, | 
|  | BLOCK_CSEM, | 
|  | BLOCK_DBG, | 
|  | BLOCK_DMAE, | 
|  | BLOCK_DORQ, | 
|  | BLOCK_HC, | 
|  | BLOCK_IGU, | 
|  | BLOCK_MISC, | 
|  | BLOCK_NIG, | 
|  | BLOCK_PBF, | 
|  | BLOCK_PGLUE_B, | 
|  | BLOCK_PRS, | 
|  | BLOCK_PXP2, | 
|  | BLOCK_PXP, | 
|  | BLOCK_QM, | 
|  | BLOCK_SRC, | 
|  | BLOCK_TCM, | 
|  | BLOCK_TM, | 
|  | BLOCK_TSDM, | 
|  | BLOCK_TSEM, | 
|  | BLOCK_UCM, | 
|  | BLOCK_UPB, | 
|  | BLOCK_USDM, | 
|  | BLOCK_USEM, | 
|  | BLOCK_XCM, | 
|  | BLOCK_XPB, | 
|  | BLOCK_XSDM, | 
|  | BLOCK_XSEM, | 
|  | BLOCK_MISC_AEU, | 
|  | NUM_OF_INIT_BLOCKS | 
|  | }; | 
|  |  | 
|  | /* QM queue numbers */ | 
|  | #define BNX2X_ETH_Q		0 | 
|  | #define BNX2X_TOE_Q		3 | 
|  | #define BNX2X_TOE_ACK_Q		6 | 
|  | #define BNX2X_ISCSI_Q		9 | 
|  | #define BNX2X_ISCSI_ACK_Q	11 | 
|  | #define BNX2X_FCOE_Q		10 | 
|  |  | 
|  | /* Vnics per mode */ | 
|  | #define BNX2X_PORT2_MODE_NUM_VNICS 4 | 
|  | #define BNX2X_PORT4_MODE_NUM_VNICS 2 | 
|  |  | 
|  | /* COS offset for port1 in E3 B0 4port mode */ | 
|  | #define BNX2X_E3B0_PORT1_COS_OFFSET 3 | 
|  |  | 
|  | /* QM Register addresses */ | 
|  | #define BNX2X_Q_VOQ_REG_ADDR(pf_q_num)\ | 
|  | (QM_REG_QVOQIDX_0 + 4 * (pf_q_num)) | 
|  | #define BNX2X_VOQ_Q_REG_ADDR(cos, pf_q_num)\ | 
|  | (QM_REG_VOQQMASK_0_LSB + 4 * ((cos) * 2 + ((pf_q_num) >> 5))) | 
|  | #define BNX2X_Q_CMDQ_REG_ADDR(pf_q_num)\ | 
|  | (QM_REG_BYTECRDCMDQ_0 + 4 * ((pf_q_num) >> 4)) | 
|  |  | 
|  | /* extracts the QM queue number for the specified port and vnic */ | 
|  | #define BNX2X_PF_Q_NUM(q_num, port, vnic)\ | 
|  | ((((port) << 1) | (vnic)) * 16 + (q_num)) | 
|  |  | 
|  |  | 
|  | /* Maps the specified queue to the specified COS */ | 
|  | static inline void bnx2x_map_q_cos(struct bnx2x *bp, uint32_t q_num, | 
|  | uint32_t new_cos) | 
|  | { | 
|  | /* find current COS mapping */ | 
|  | uint32_t curr_cos = REG_RD(bp, QM_REG_QVOQIDX_0 + q_num * 4); | 
|  |  | 
|  | /* check if queue->COS mapping has changed */ | 
|  | if (curr_cos != new_cos) { | 
|  | uint32_t num_vnics = BNX2X_PORT2_MODE_NUM_VNICS; | 
|  | uint32_t reg_addr, reg_bit_map, vnic; | 
|  |  | 
|  | /* update parameters for 4port mode */ | 
|  | if (INIT_MODE_FLAGS(bp) & MODE_PORT4) { | 
|  | num_vnics = BNX2X_PORT4_MODE_NUM_VNICS; | 
|  | if (BP_PORT(bp)) { | 
|  | curr_cos += BNX2X_E3B0_PORT1_COS_OFFSET; | 
|  | new_cos += BNX2X_E3B0_PORT1_COS_OFFSET; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* change queue mapping for each VNIC */ | 
|  | for (vnic = 0; vnic < num_vnics; vnic++) { | 
|  | uint32_t pf_q_num = | 
|  | BNX2X_PF_Q_NUM(q_num, BP_PORT(bp), vnic); | 
|  | uint32_t q_bit_map = 1 << (pf_q_num & 0x1f); | 
|  |  | 
|  | /* overwrite queue->VOQ mapping */ | 
|  | REG_WR(bp, BNX2X_Q_VOQ_REG_ADDR(pf_q_num), new_cos); | 
|  |  | 
|  | /* clear queue bit from current COS bit map */ | 
|  | reg_addr = BNX2X_VOQ_Q_REG_ADDR(curr_cos, pf_q_num); | 
|  | reg_bit_map = REG_RD(bp, reg_addr); | 
|  | REG_WR(bp, reg_addr, reg_bit_map & (~q_bit_map)); | 
|  |  | 
|  | /* set queue bit in new COS bit map */ | 
|  | reg_addr = BNX2X_VOQ_Q_REG_ADDR(new_cos, pf_q_num); | 
|  | reg_bit_map = REG_RD(bp, reg_addr); | 
|  | REG_WR(bp, reg_addr, reg_bit_map | q_bit_map); | 
|  |  | 
|  | /* set/clear queue bit in command-queue bit map | 
|  | * (E2/E3A0 only, valid COS values are 0/1) | 
|  | */ | 
|  | if (!(INIT_MODE_FLAGS(bp) & MODE_E3_B0)) { | 
|  | reg_addr = BNX2X_Q_CMDQ_REG_ADDR(pf_q_num); | 
|  | reg_bit_map = REG_RD(bp, reg_addr); | 
|  | q_bit_map = 1 << (2 * (pf_q_num & 0xf)); | 
|  | reg_bit_map = new_cos ? | 
|  | (reg_bit_map | q_bit_map) : | 
|  | (reg_bit_map & (~q_bit_map)); | 
|  | REG_WR(bp, reg_addr, reg_bit_map); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Configures the QM according to the specified per-traffic-type COSes */ | 
|  | static inline void bnx2x_dcb_config_qm(struct bnx2x *bp, enum cos_mode mode, | 
|  | struct priority_cos *traffic_cos) | 
|  | { | 
|  | bnx2x_map_q_cos(bp, BNX2X_FCOE_Q, | 
|  | traffic_cos[LLFC_TRAFFIC_TYPE_FCOE].cos); | 
|  | bnx2x_map_q_cos(bp, BNX2X_ISCSI_Q, | 
|  | traffic_cos[LLFC_TRAFFIC_TYPE_ISCSI].cos); | 
|  | bnx2x_map_q_cos(bp, BNX2X_ISCSI_ACK_Q, | 
|  | traffic_cos[LLFC_TRAFFIC_TYPE_ISCSI].cos); | 
|  | if (mode != STATIC_COS) { | 
|  | /* required only in backward compatible COS mode */ | 
|  | bnx2x_map_q_cos(bp, BNX2X_ETH_Q, | 
|  | traffic_cos[LLFC_TRAFFIC_TYPE_NW].cos); | 
|  | bnx2x_map_q_cos(bp, BNX2X_TOE_Q, | 
|  | traffic_cos[LLFC_TRAFFIC_TYPE_NW].cos); | 
|  | bnx2x_map_q_cos(bp, BNX2X_TOE_ACK_Q, | 
|  | traffic_cos[LLFC_TRAFFIC_TYPE_NW].cos); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /* congestion managment port init api description | 
|  | * the api works as follows: | 
|  | * the driver should pass the cmng_init_input struct, the port_init function | 
|  | * will prepare the required internal ram structure which will be passed back | 
|  | * to the driver (cmng_init) that will write it into the internal ram. | 
|  | * | 
|  | * IMPORTANT REMARKS: | 
|  | * 1. the cmng_init struct does not represent the contiguous internal ram | 
|  | *    structure. the driver should use the XSTORM_CMNG_PERPORT_VARS_OFFSET | 
|  | *    offset in order to write the port sub struct and the | 
|  | *    PFID_FROM_PORT_AND_VNIC offset for writing the vnic sub struct (in other | 
|  | *    words - don't use memcpy!). | 
|  | * 2. although the cmng_init struct is filled for the maximal vnic number | 
|  | *    possible, the driver should only write the valid vnics into the internal | 
|  | *    ram according to the appropriate port mode. | 
|  | */ | 
|  | #define BITS_TO_BYTES(x) ((x)/8) | 
|  |  | 
|  | /* CMNG constants, as derived from system spec calculations */ | 
|  |  | 
|  | /* default MIN rate in case VNIC min rate is configured to zero- 100Mbps */ | 
|  | #define DEF_MIN_RATE 100 | 
|  |  | 
|  | /* resolution of the rate shaping timer - 400 usec */ | 
|  | #define RS_PERIODIC_TIMEOUT_USEC 400 | 
|  |  | 
|  | /* number of bytes in single QM arbitration cycle - | 
|  | * coefficient for calculating the fairness timer | 
|  | */ | 
|  | #define QM_ARB_BYTES 160000 | 
|  |  | 
|  | /* resolution of Min algorithm 1:100 */ | 
|  | #define MIN_RES 100 | 
|  |  | 
|  | /* how many bytes above threshold for | 
|  | * the minimal credit of Min algorithm | 
|  | */ | 
|  | #define MIN_ABOVE_THRESH 32768 | 
|  |  | 
|  | /* Fairness algorithm integration time coefficient - | 
|  | * for calculating the actual Tfair | 
|  | */ | 
|  | #define T_FAIR_COEF ((MIN_ABOVE_THRESH + QM_ARB_BYTES) * 8 * MIN_RES) | 
|  |  | 
|  | /* Memory of fairness algorithm - 2 cycles */ | 
|  | #define FAIR_MEM 2 | 
|  | #define SAFC_TIMEOUT_USEC 52 | 
|  |  | 
|  | #define SDM_TICKS 4 | 
|  |  | 
|  |  | 
|  | static inline void bnx2x_init_max(const struct cmng_init_input *input_data, | 
|  | uint32_t r_param, | 
|  | struct cmng_init *ram_data) | 
|  | { | 
|  | uint32_t vnic; | 
|  | struct cmng_vnic *vdata = &ram_data->vnic; | 
|  | struct cmng_struct_per_port *pdata = &ram_data->port; | 
|  | /* rate shaping per-port variables | 
|  | * 100 micro seconds in SDM ticks = 25 | 
|  | * since each tick is 4 microSeconds | 
|  | */ | 
|  |  | 
|  | pdata->rs_vars.rs_periodic_timeout = | 
|  | RS_PERIODIC_TIMEOUT_USEC / SDM_TICKS; | 
|  |  | 
|  | /* this is the threshold below which no timer arming will occur. | 
|  | * 1.25 coefficient is for the threshold to be a little bigger | 
|  | * then the real time to compensate for timer in-accuracy | 
|  | */ | 
|  | pdata->rs_vars.rs_threshold = | 
|  | (5 * RS_PERIODIC_TIMEOUT_USEC * r_param)/4; | 
|  |  | 
|  | /* rate shaping per-vnic variables */ | 
|  | for (vnic = 0; vnic < BNX2X_PORT2_MODE_NUM_VNICS; vnic++) { | 
|  | /* global vnic counter */ | 
|  | vdata->vnic_max_rate[vnic].vn_counter.rate = | 
|  | input_data->vnic_max_rate[vnic]; | 
|  | /* maximal Mbps for this vnic | 
|  | * the quota in each timer period - number of bytes | 
|  | * transmitted in this period | 
|  | */ | 
|  | vdata->vnic_max_rate[vnic].vn_counter.quota = | 
|  | RS_PERIODIC_TIMEOUT_USEC * | 
|  | (uint32_t)vdata->vnic_max_rate[vnic].vn_counter.rate / 8; | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | static inline void bnx2x_init_min(const struct cmng_init_input *input_data, | 
|  | uint32_t r_param, | 
|  | struct cmng_init *ram_data) | 
|  | { | 
|  | uint32_t vnic, fair_periodic_timeout_usec, vnicWeightSum, tFair; | 
|  | struct cmng_vnic *vdata = &ram_data->vnic; | 
|  | struct cmng_struct_per_port *pdata = &ram_data->port; | 
|  |  | 
|  | /* this is the resolution of the fairness timer */ | 
|  | fair_periodic_timeout_usec = QM_ARB_BYTES / r_param; | 
|  |  | 
|  | /* fairness per-port variables | 
|  | * for 10G it is 1000usec. for 1G it is 10000usec. | 
|  | */ | 
|  | tFair = T_FAIR_COEF / input_data->port_rate; | 
|  |  | 
|  | /* this is the threshold below which we won't arm the timer anymore */ | 
|  | pdata->fair_vars.fair_threshold = QM_ARB_BYTES; | 
|  |  | 
|  | /* we multiply by 1e3/8 to get bytes/msec. We don't want the credits | 
|  | * to pass a credit of the T_FAIR*FAIR_MEM (algorithm resolution) | 
|  | */ | 
|  | pdata->fair_vars.upper_bound = r_param * tFair * FAIR_MEM; | 
|  |  | 
|  | /* since each tick is 4 microSeconds */ | 
|  | pdata->fair_vars.fairness_timeout = | 
|  | fair_periodic_timeout_usec / SDM_TICKS; | 
|  |  | 
|  | /* calculate sum of weights */ | 
|  | vnicWeightSum = 0; | 
|  |  | 
|  | for (vnic = 0; vnic < BNX2X_PORT2_MODE_NUM_VNICS; vnic++) | 
|  | vnicWeightSum += input_data->vnic_min_rate[vnic]; | 
|  |  | 
|  | /* global vnic counter */ | 
|  | if (vnicWeightSum > 0) { | 
|  | /* fairness per-vnic variables */ | 
|  | for (vnic = 0; vnic < BNX2X_PORT2_MODE_NUM_VNICS; vnic++) { | 
|  | /* this is the credit for each period of the fairness | 
|  | * algorithm - number of bytes in T_FAIR (this vnic | 
|  | * share of the port rate) | 
|  | */ | 
|  | vdata->vnic_min_rate[vnic].vn_credit_delta = | 
|  | (uint32_t)input_data->vnic_min_rate[vnic] * 100 * | 
|  | (T_FAIR_COEF / (8 * 100 * vnicWeightSum)); | 
|  | if (vdata->vnic_min_rate[vnic].vn_credit_delta < | 
|  | pdata->fair_vars.fair_threshold + | 
|  | MIN_ABOVE_THRESH) { | 
|  | vdata->vnic_min_rate[vnic].vn_credit_delta = | 
|  | pdata->fair_vars.fair_threshold + | 
|  | MIN_ABOVE_THRESH; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline void bnx2x_init_fw_wrr(const struct cmng_init_input *input_data, | 
|  | uint32_t r_param, | 
|  | struct cmng_init *ram_data) | 
|  | { | 
|  | uint32_t vnic, cos; | 
|  | uint32_t cosWeightSum = 0; | 
|  | struct cmng_vnic *vdata = &ram_data->vnic; | 
|  | struct cmng_struct_per_port *pdata = &ram_data->port; | 
|  |  | 
|  | for (cos = 0; cos < MAX_COS_NUMBER; cos++) | 
|  | cosWeightSum += input_data->cos_min_rate[cos]; | 
|  |  | 
|  | if (cosWeightSum > 0) { | 
|  |  | 
|  | for (vnic = 0; vnic < BNX2X_PORT2_MODE_NUM_VNICS; vnic++) { | 
|  | /* Since cos and vnic shouldn't work together the rate | 
|  | * to divide between the coses is the port rate. | 
|  | */ | 
|  | uint32_t *ccd = vdata->vnic_min_rate[vnic].cos_credit_delta; | 
|  | for (cos = 0; cos < MAX_COS_NUMBER; cos++) { | 
|  | /* this is the credit for each period of | 
|  | * the fairness algorithm - number of bytes | 
|  | * in T_FAIR (this cos share of the vnic rate) | 
|  | */ | 
|  | ccd[cos] = | 
|  | (uint32_t)input_data->cos_min_rate[cos] * 100 * | 
|  | (T_FAIR_COEF / (8 * 100 * cosWeightSum)); | 
|  | if (ccd[cos] < pdata->fair_vars.fair_threshold | 
|  | + MIN_ABOVE_THRESH) { | 
|  | ccd[cos] = | 
|  | pdata->fair_vars.fair_threshold + | 
|  | MIN_ABOVE_THRESH; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline void bnx2x_init_safc(const struct cmng_init_input *input_data, | 
|  | struct cmng_init *ram_data) | 
|  | { | 
|  | /* in microSeconds */ | 
|  | ram_data->port.safc_vars.safc_timeout_usec = SAFC_TIMEOUT_USEC; | 
|  | } | 
|  |  | 
|  | /* Congestion management port init */ | 
|  | static inline void bnx2x_init_cmng(const struct cmng_init_input *input_data, | 
|  | struct cmng_init *ram_data) | 
|  | { | 
|  | uint32_t r_param; | 
|  | memset(ram_data, 0, sizeof(struct cmng_init)); | 
|  |  | 
|  | ram_data->port.flags = input_data->flags; | 
|  |  | 
|  | /* number of bytes transmitted in a rate of 10Gbps | 
|  | * in one usec = 1.25KB. | 
|  | */ | 
|  | r_param = BITS_TO_BYTES(input_data->port_rate); | 
|  | bnx2x_init_max(input_data, r_param, ram_data); | 
|  | bnx2x_init_min(input_data, r_param, ram_data); | 
|  | bnx2x_init_fw_wrr(input_data, r_param, ram_data); | 
|  | bnx2x_init_safc(input_data, ram_data); | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | /* Returns the index of start or end of a specific block stage in ops array */ | 
|  | #define BLOCK_OPS_IDX(block, stage, end) \ | 
|  | (2*(((block)*NUM_OF_INIT_PHASES) + (stage)) + (end)) | 
|  |  | 
|  |  | 
|  | #define INITOP_SET		0	/* set the HW directly */ | 
|  | #define INITOP_CLEAR		1	/* clear the HW directly */ | 
|  | #define INITOP_INIT		2	/* set the init-value array */ | 
|  |  | 
|  | /**************************************************************************** | 
|  | * ILT management | 
|  | ****************************************************************************/ | 
|  | struct ilt_line { | 
|  | dma_addr_t page_mapping; | 
|  | void *page; | 
|  | uint32_t size; | 
|  | }; | 
|  |  | 
|  | struct ilt_client_info { | 
|  | uint32_t page_size; | 
|  | uint16_t start; | 
|  | uint16_t end; | 
|  | uint16_t client_num; | 
|  | uint16_t flags; | 
|  | #define ILT_CLIENT_SKIP_INIT	0x1 | 
|  | #define ILT_CLIENT_SKIP_MEM	0x2 | 
|  | }; | 
|  |  | 
|  | struct bnx2x_ilt { | 
|  | uint32_t start_line; | 
|  | struct ilt_line		*lines; | 
|  | struct ilt_client_info	clients[4]; | 
|  | #define ILT_CLIENT_CDU	0 | 
|  | #define ILT_CLIENT_QM	1 | 
|  | #define ILT_CLIENT_SRC	2 | 
|  | #define ILT_CLIENT_TM	3 | 
|  | }; | 
|  |  | 
|  | /**************************************************************************** | 
|  | * SRC configuration | 
|  | ****************************************************************************/ | 
|  | struct src_ent { | 
|  | uint8_t opaque[56]; | 
|  | uint64_t next; | 
|  | }; | 
|  |  | 
|  | /**************************************************************************** | 
|  | * Parity configuration | 
|  | ****************************************************************************/ | 
|  | #define BLOCK_PRTY_INFO(block, en_mask, m1, m1h, m2, m3) \ | 
|  | { \ | 
|  | block##_REG_##block##_PRTY_MASK, \ | 
|  | block##_REG_##block##_PRTY_STS_CLR, \ | 
|  | en_mask, {m1, m1h, m2, m3}, #block \ | 
|  | } | 
|  |  | 
|  | #define BLOCK_PRTY_INFO_0(block, en_mask, m1, m1h, m2, m3) \ | 
|  | { \ | 
|  | block##_REG_##block##_PRTY_MASK_0, \ | 
|  | block##_REG_##block##_PRTY_STS_CLR_0, \ | 
|  | en_mask, {m1, m1h, m2, m3}, #block"_0" \ | 
|  | } | 
|  |  | 
|  | #define BLOCK_PRTY_INFO_1(block, en_mask, m1, m1h, m2, m3) \ | 
|  | { \ | 
|  | block##_REG_##block##_PRTY_MASK_1, \ | 
|  | block##_REG_##block##_PRTY_STS_CLR_1, \ | 
|  | en_mask, {m1, m1h, m2, m3}, #block"_1" \ | 
|  | } | 
|  |  | 
|  | static const struct { | 
|  | uint32_t mask_addr; | 
|  | uint32_t sts_clr_addr; | 
|  | uint32_t en_mask;		/* Mask to enable parity attentions */ | 
|  | struct { | 
|  | uint32_t e1;		/* 57710 */ | 
|  | uint32_t e1h;	/* 57711 */ | 
|  | uint32_t e2;		/* 57712 */ | 
|  | uint32_t e3;		/* 578xx */ | 
|  | } reg_mask;		/* Register mask (all valid bits) */ | 
|  | char name[8];		/* Block's longest name is 7 characters long | 
|  | * (name + suffix) | 
|  | */ | 
|  | } bnx2x_blocks_parity_data[] = { | 
|  | /* bit 19 masked */ | 
|  | /* REG_WR(bp, PXP_REG_PXP_PRTY_MASK, 0x80000); */ | 
|  | /* bit 5,18,20-31 */ | 
|  | /* REG_WR(bp, PXP2_REG_PXP2_PRTY_MASK_0, 0xfff40020); */ | 
|  | /* bit 5 */ | 
|  | /* REG_WR(bp, PXP2_REG_PXP2_PRTY_MASK_1, 0x20);	*/ | 
|  | /* REG_WR(bp, HC_REG_HC_PRTY_MASK, 0x0); */ | 
|  | /* REG_WR(bp, MISC_REG_MISC_PRTY_MASK, 0x0); */ | 
|  |  | 
|  | /* Block IGU, MISC, PXP and PXP2 parity errors as long as we don't | 
|  | * want to handle "system kill" flow at the moment. | 
|  | */ | 
|  | BLOCK_PRTY_INFO(PXP, 0x7ffffff, 0x3ffffff, 0x3ffffff, 0x7ffffff, | 
|  | 0x7ffffff), | 
|  | BLOCK_PRTY_INFO_0(PXP2,	0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, | 
|  | 0xffffffff), | 
|  | BLOCK_PRTY_INFO_1(PXP2,	0x1ffffff, 0x7f, 0x7f, 0x7ff, 0x1ffffff), | 
|  | BLOCK_PRTY_INFO(HC, 0x7, 0x7, 0x7, 0, 0), | 
|  | BLOCK_PRTY_INFO(NIG, 0xffffffff, 0x3fffffff, 0xffffffff, 0, 0), | 
|  | BLOCK_PRTY_INFO_0(NIG,	0xffffffff, 0, 0, 0xffffffff, 0xffffffff), | 
|  | BLOCK_PRTY_INFO_1(NIG,	0xffff, 0, 0, 0xff, 0xffff), | 
|  | BLOCK_PRTY_INFO(IGU, 0x7ff, 0, 0, 0x7ff, 0x7ff), | 
|  | BLOCK_PRTY_INFO(MISC, 0x1, 0x1, 0x1, 0x1, 0x1), | 
|  | BLOCK_PRTY_INFO(QM, 0, 0x1ff, 0xfff, 0xfff, 0xfff), | 
|  | BLOCK_PRTY_INFO(ATC, 0x1f, 0, 0, 0x1f, 0x1f), | 
|  | BLOCK_PRTY_INFO(PGLUE_B, 0x3, 0, 0, 0x3, 0x3), | 
|  | BLOCK_PRTY_INFO(DORQ, 0, 0x3, 0x3, 0x3, 0x3), | 
|  | {GRCBASE_UPB + PB_REG_PB_PRTY_MASK, | 
|  | GRCBASE_UPB + PB_REG_PB_PRTY_STS_CLR, 0xf, | 
|  | {0xf, 0xf, 0xf, 0xf}, "UPB"}, | 
|  | {GRCBASE_XPB + PB_REG_PB_PRTY_MASK, | 
|  | GRCBASE_XPB + PB_REG_PB_PRTY_STS_CLR, 0, | 
|  | {0xf, 0xf, 0xf, 0xf}, "XPB"}, | 
|  | BLOCK_PRTY_INFO(SRC, 0x4, 0x7, 0x7, 0x7, 0x7), | 
|  | BLOCK_PRTY_INFO(CDU, 0, 0x1f, 0x1f, 0x1f, 0x1f), | 
|  | BLOCK_PRTY_INFO(CFC, 0, 0xf, 0xf, 0xf, 0x3f), | 
|  | BLOCK_PRTY_INFO(DBG, 0, 0x1, 0x1, 0x1, 0x1), | 
|  | BLOCK_PRTY_INFO(DMAE, 0, 0xf, 0xf, 0xf, 0xf), | 
|  | BLOCK_PRTY_INFO(BRB1, 0, 0xf, 0xf, 0xf, 0xf), | 
|  | BLOCK_PRTY_INFO(PRS, (1<<6), 0xff, 0xff, 0xff, 0xff), | 
|  | BLOCK_PRTY_INFO(PBF, 0, 0, 0x3ffff, 0xfffff, 0xfffffff), | 
|  | BLOCK_PRTY_INFO(TM, 0, 0, 0x7f, 0x7f, 0x7f), | 
|  | BLOCK_PRTY_INFO(TSDM, 0x18, 0x7ff, 0x7ff, 0x7ff, 0x7ff), | 
|  | BLOCK_PRTY_INFO(CSDM, 0x8, 0x7ff, 0x7ff, 0x7ff, 0x7ff), | 
|  | BLOCK_PRTY_INFO(USDM, 0x38, 0x7ff, 0x7ff, 0x7ff, 0x7ff), | 
|  | BLOCK_PRTY_INFO(XSDM, 0x8, 0x7ff, 0x7ff, 0x7ff, 0x7ff), | 
|  | BLOCK_PRTY_INFO(TCM, 0, 0, 0x7ffffff, 0x7ffffff, 0x7ffffff), | 
|  | BLOCK_PRTY_INFO(CCM, 0, 0, 0x7ffffff, 0x7ffffff, 0x7ffffff), | 
|  | BLOCK_PRTY_INFO(UCM, 0, 0, 0x7ffffff, 0x7ffffff, 0x7ffffff), | 
|  | BLOCK_PRTY_INFO(XCM, 0, 0, 0x3fffffff, 0x3fffffff, 0x3fffffff), | 
|  | BLOCK_PRTY_INFO_0(TSEM, 0, 0xffffffff, 0xffffffff, 0xffffffff, | 
|  | 0xffffffff), | 
|  | BLOCK_PRTY_INFO_1(TSEM, 0, 0x3, 0x1f, 0x3f, 0x3f), | 
|  | BLOCK_PRTY_INFO_0(USEM, 0, 0xffffffff, 0xffffffff, 0xffffffff, | 
|  | 0xffffffff), | 
|  | BLOCK_PRTY_INFO_1(USEM, 0, 0x3, 0x1f, 0x1f, 0x1f), | 
|  | BLOCK_PRTY_INFO_0(CSEM, 0, 0xffffffff, 0xffffffff, 0xffffffff, | 
|  | 0xffffffff), | 
|  | BLOCK_PRTY_INFO_1(CSEM, 0, 0x3, 0x1f, 0x1f, 0x1f), | 
|  | BLOCK_PRTY_INFO_0(XSEM, 0, 0xffffffff, 0xffffffff, 0xffffffff, | 
|  | 0xffffffff), | 
|  | BLOCK_PRTY_INFO_1(XSEM, 0, 0x3, 0x1f, 0x3f, 0x3f), | 
|  | }; | 
|  |  | 
|  |  | 
|  | /* [28] MCP Latched rom_parity | 
|  | * [29] MCP Latched ump_rx_parity | 
|  | * [30] MCP Latched ump_tx_parity | 
|  | * [31] MCP Latched scpad_parity | 
|  | */ | 
|  | #define MISC_AEU_ENABLE_MCP_PRTY_SUB_BITS	\ | 
|  | (AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY | \ | 
|  | AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY | \ | 
|  | AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY) | 
|  |  | 
|  | #define MISC_AEU_ENABLE_MCP_PRTY_BITS	\ | 
|  | (MISC_AEU_ENABLE_MCP_PRTY_SUB_BITS | \ | 
|  | AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY) | 
|  |  | 
|  | /* Below registers control the MCP parity attention output. When | 
|  | * MISC_AEU_ENABLE_MCP_PRTY_BITS are set - attentions are | 
|  | * enabled, when cleared - disabled. | 
|  | */ | 
|  | static const struct { | 
|  | uint32_t addr; | 
|  | uint32_t bits; | 
|  | } mcp_attn_ctl_regs[] = { | 
|  | { MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0, | 
|  | MISC_AEU_ENABLE_MCP_PRTY_BITS }, | 
|  | { MISC_REG_AEU_ENABLE4_NIG_0, | 
|  | MISC_AEU_ENABLE_MCP_PRTY_SUB_BITS }, | 
|  | { MISC_REG_AEU_ENABLE4_PXP_0, | 
|  | MISC_AEU_ENABLE_MCP_PRTY_SUB_BITS }, | 
|  | { MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0, | 
|  | MISC_AEU_ENABLE_MCP_PRTY_BITS }, | 
|  | { MISC_REG_AEU_ENABLE4_NIG_1, | 
|  | MISC_AEU_ENABLE_MCP_PRTY_SUB_BITS }, | 
|  | { MISC_REG_AEU_ENABLE4_PXP_1, | 
|  | MISC_AEU_ENABLE_MCP_PRTY_SUB_BITS } | 
|  | }; | 
|  |  | 
|  | static inline void bnx2x_set_mcp_parity(struct bnx2x *bp, uint8_t enable) | 
|  | { | 
|  | int i; | 
|  | uint32_t reg_val; | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(mcp_attn_ctl_regs); i++) { | 
|  | reg_val = REG_RD(bp, mcp_attn_ctl_regs[i].addr); | 
|  |  | 
|  | if (enable) | 
|  | reg_val |= mcp_attn_ctl_regs[i].bits; | 
|  | else | 
|  | reg_val &= ~mcp_attn_ctl_regs[i].bits; | 
|  |  | 
|  | REG_WR(bp, mcp_attn_ctl_regs[i].addr, reg_val); | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline uint32_t bnx2x_parity_reg_mask(struct bnx2x *bp, int idx) | 
|  | { | 
|  | if (CHIP_IS_E1(bp)) | 
|  | return bnx2x_blocks_parity_data[idx].reg_mask.e1; | 
|  | else if (CHIP_IS_E1H(bp)) | 
|  | return bnx2x_blocks_parity_data[idx].reg_mask.e1h; | 
|  | else if (CHIP_IS_E2(bp)) | 
|  | return bnx2x_blocks_parity_data[idx].reg_mask.e2; | 
|  | else /* CHIP_IS_E3 */ | 
|  | return bnx2x_blocks_parity_data[idx].reg_mask.e3; | 
|  | } | 
|  |  | 
|  | static inline void bnx2x_disable_blocks_parity(struct bnx2x *bp) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(bnx2x_blocks_parity_data); i++) { | 
|  | uint32_t dis_mask = bnx2x_parity_reg_mask(bp, i); | 
|  |  | 
|  | if (dis_mask) { | 
|  | REG_WR(bp, bnx2x_blocks_parity_data[i].mask_addr, | 
|  | dis_mask); | 
|  | DP(NETIF_MSG_HW, "Setting parity mask " | 
|  | "for %s to\t\t0x%x\n", | 
|  | bnx2x_blocks_parity_data[i].name, dis_mask); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Disable MCP parity attentions */ | 
|  | bnx2x_set_mcp_parity(bp, false); | 
|  | } | 
|  |  | 
|  | /* Clear the parity error status registers. */ | 
|  | static inline void bnx2x_clear_blocks_parity(struct bnx2x *bp) | 
|  | { | 
|  | int i; | 
|  | uint32_t reg_val, mcp_aeu_bits = | 
|  | AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY | | 
|  | AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY | | 
|  | AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY | | 
|  | AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY; | 
|  |  | 
|  | /* Clear SEM_FAST parities */ | 
|  | REG_WR(bp, XSEM_REG_FAST_MEMORY + SEM_FAST_REG_PARITY_RST, 0x1); | 
|  | REG_WR(bp, TSEM_REG_FAST_MEMORY + SEM_FAST_REG_PARITY_RST, 0x1); | 
|  | REG_WR(bp, USEM_REG_FAST_MEMORY + SEM_FAST_REG_PARITY_RST, 0x1); | 
|  | REG_WR(bp, CSEM_REG_FAST_MEMORY + SEM_FAST_REG_PARITY_RST, 0x1); | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(bnx2x_blocks_parity_data); i++) { | 
|  | uint32_t reg_mask = bnx2x_parity_reg_mask(bp, i); | 
|  |  | 
|  | if (reg_mask) { | 
|  | reg_val = REG_RD(bp, bnx2x_blocks_parity_data[i]. | 
|  | sts_clr_addr); | 
|  | if (reg_val & reg_mask) | 
|  | DP(NETIF_MSG_HW, | 
|  | "Parity errors in %s: 0x%x\n", | 
|  | bnx2x_blocks_parity_data[i].name, | 
|  | reg_val & reg_mask); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Check if there were parity attentions in MCP */ | 
|  | reg_val = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_MCP); | 
|  | if (reg_val & mcp_aeu_bits) | 
|  | DP(NETIF_MSG_HW, "Parity error in MCP: 0x%x\n", | 
|  | reg_val & mcp_aeu_bits); | 
|  |  | 
|  | /* Clear parity attentions in MCP: | 
|  | * [7]  clears Latched rom_parity | 
|  | * [8]  clears Latched ump_rx_parity | 
|  | * [9]  clears Latched ump_tx_parity | 
|  | * [10] clears Latched scpad_parity (both ports) | 
|  | */ | 
|  | REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x780); | 
|  | } | 
|  |  | 
|  | static inline void bnx2x_enable_blocks_parity(struct bnx2x *bp) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(bnx2x_blocks_parity_data); i++) { | 
|  | uint32_t reg_mask = bnx2x_parity_reg_mask(bp, i); | 
|  |  | 
|  | if (reg_mask) | 
|  | REG_WR(bp, bnx2x_blocks_parity_data[i].mask_addr, | 
|  | bnx2x_blocks_parity_data[i].en_mask & reg_mask); | 
|  | } | 
|  |  | 
|  | /* Enable MCP parity attentions */ | 
|  | bnx2x_set_mcp_parity(bp, true); | 
|  | } |