blob: 8dbc0b69fff02f78522f79f842980c14b2251e7b [file] [log] [blame]
/* Copyright (c) 2010-13 The Regents of the University of California
* Barret Rhoden <brho@cs.berkeley.edu>
* See LICENSE for details.
*
* Kernel threading. These are for blocking within the kernel for whatever
* reason, usually during blocking IO operations. */
#include <kthread.h>
#include <slab.h>
#include <page_alloc.h>
#include <pmap.h>
#include <smp.h>
#include <schedule.h>
#include <kstack.h>
uintptr_t get_kstack(void)
{
uintptr_t stackbot;
if (KSTKSIZE == PGSIZE)
stackbot = (uintptr_t)kpage_alloc_addr();
else
stackbot = (uintptr_t)get_cont_pages(KSTKSHIFT - PGSHIFT, 0);
assert(stackbot);
return stackbot + KSTKSIZE;
}
void put_kstack(uintptr_t stacktop)
{
uintptr_t stackbot = stacktop - KSTKSIZE;
if (KSTKSIZE == PGSIZE)
page_decref(kva2page((void*)stackbot));
else
free_cont_pages((void*)stackbot, KSTKSHIFT - PGSHIFT);
}
uintptr_t *kstack_bottom_addr(uintptr_t stacktop)
{
/* canary at the bottom of the stack */
assert(!PGOFF(stacktop));
return (uintptr_t*)(stacktop - KSTKSIZE);
}
struct kmem_cache *kthread_kcache;
void kthread_init(void)
{
kthread_kcache = kmem_cache_create("kthread", sizeof(struct kthread),
__alignof__(struct kthread), 0, 0, 0);
}
/* Used by early init routines (smp_boot, etc) */
struct kthread *__kthread_zalloc(void)
{
struct kthread *kthread;
kthread = kmem_cache_alloc(kthread_kcache, 0);
assert(kthread);
memset(kthread, 0, sizeof(struct kthread));
return kthread;
}
/* Starts kthread on the calling core. This does not return, and will handle
* the details of cleaning up whatever is currently running (freeing its stack,
* etc). Pairs with sem_down(). */
void restart_kthread(struct kthread *kthread)
{
struct per_cpu_info *pcpui = &per_cpu_info[core_id()];
uintptr_t current_stacktop;
struct kthread *current_kthread;
/* Avoid messy complications. The kthread will enable_irqsave() when it
* comes back up. */
disable_irq();
/* Free any spare, since we need the current to become the spare. Without
* the spare, we can't free our current kthread/stack (we could free the
* kthread, but not the stack, since we're still on it). And we can't free
* anything after popping kthread, since we never return. */
if (pcpui->spare) {
put_kstack(pcpui->spare->stacktop);
kmem_cache_free(kthread_kcache, pcpui->spare);
}
current_kthread = pcpui->cur_kthread;
current_stacktop = current_kthread->stacktop;
assert(!current_kthread->sysc); /* catch bugs, prev user should clear */
/* Set the spare stuff (current kthread, which includes its stacktop) */
pcpui->spare = current_kthread;
/* When a kthread runs, its stack is the default kernel stack */
set_stack_top(kthread->stacktop);
pcpui->cur_kthread = kthread;
#ifdef CONFIG_KTHREAD_POISON
/* Assert and switch to cur stack not in use, kthr stack in use */
uintptr_t *cur_stack_poison, *kth_stack_poison;
cur_stack_poison = kstack_bottom_addr(current_stacktop);
assert(*cur_stack_poison == 0xdeadbeef);
*cur_stack_poison = 0;
kth_stack_poison = kstack_bottom_addr(kthread->stacktop);
assert(!*kth_stack_poison);
*kth_stack_poison = 0xdeadbeef;
#endif /* CONFIG_KTHREAD_POISON */
/* Only change current if we need to (the kthread was in process context) */
if (kthread->proc) {
/* Load our page tables before potentially decreffing cur_proc */
lcr3(kthread->proc->env_cr3);
/* Might have to clear out an existing current. If they need to be set
* later (like in restartcore), it'll be done on demand. */
if (pcpui->cur_proc)
proc_decref(pcpui->cur_proc);
/* We also transfer our counted ref from kthread->proc to cur_proc */
pcpui->cur_proc = kthread->proc;
}
/* Finally, restart our thread */
longjmp(&kthread->context, 1);
}
/* Kmsg handler to launch/run a kthread. This must be a routine message, since
* it does not return. */
static void __launch_kthread(uint32_t srcid, long a0, long a1, long a2)
{
struct kthread *kthread = (struct kthread*)a0;
struct per_cpu_info *pcpui = &per_cpu_info[core_id()];
struct proc *cur_proc = pcpui->cur_proc;
/* Make sure we are a routine kmsg */
assert(in_early_rkmsg_ctx(pcpui));
if (pcpui->owning_proc && pcpui->owning_proc != kthread->proc) {
/* Some process should be running here that is not the same as the
* kthread. This means the _M is getting interrupted or otherwise
* delayed. If we want to do something other than run it (like send the
* kmsg to another pcore, or ship the context from here to somewhere
* else/deschedule it (like for an _S)), do it here.
*
* If you want to do something here, call out to the ksched, then
* abandon_core(). */
cmb(); /* do nothing/placeholder */
}
/* o/w, just run the kthread. any trapframes that are supposed to run or
* were interrupted will run whenever the kthread smp_idles() or otherwise
* finishes. We also need to clear the RKMSG context since we will not
* return from restart_kth. */
clear_rkmsg(pcpui);
restart_kthread(kthread);
assert(0);
}
/* Call this when a kthread becomes runnable/unblocked. We don't do anything
* particularly smart yet, but when we do, we can put it here. */
void kthread_runnable(struct kthread *kthread)
{
uint32_t dst = core_id();
#if 0
/* turn this block on if you want to test migrating non-core0 kthreads */
switch (dst) {
case 0:
break;
case 7:
dst = 2;
break;
default:
dst++;
}
#endif
/* For lack of anything better, send it to ourselves. (TODO: KSCHED) */
send_kernel_message(dst, __launch_kthread, (long)kthread, 0, 0,
KMSG_ROUTINE);
}
/* Kmsg helper for kthread_yield */
static void __wake_me_up(uint32_t srcid, long a0, long a1, long a2)
{
struct semaphore *sem = (struct semaphore*)a0;
assert(sem_up(sem));
}
/* Stop the current kthread. It'll get woken up next time we run routine kmsgs,
* after all existing kmsgs are processed. */
void kthread_yield(void)
{
struct semaphore local_sem, *sem = &local_sem;
sem_init(sem, 0);
send_kernel_message(core_id(), __wake_me_up, (long)sem, 0, 0,
KMSG_ROUTINE);
sem_down(sem);
}
void kthread_usleep(uint64_t usec)
{
/* TODO: classic ksched issue: where do we want the wake up to happen? */
struct timer_chain *tchain = &per_cpu_info[core_id()].tchain;
struct alarm_waiter a_waiter;
init_awaiter(&a_waiter, 0);
set_awaiter_rel(&a_waiter, usec);
set_alarm(tchain, &a_waiter);
sleep_on_awaiter(&a_waiter);
}
static void __ktask_wrapper(uint32_t srcid, long a0, long a1, long a2)
{
ERRSTACK(1);
void (*fn)(void*) = (void (*)(void*))a0;
void *arg = (void*)a1;
char *name = (char*)a2;
struct per_cpu_info *pcpui = &per_cpu_info[core_id()];
assert(pcpui->cur_kthread->is_ktask);
pcpui->cur_kthread->name = name;
/* There are some rendezs out there that aren't wrapped. Though no one can
* abort them. Yet. */
if (waserror()) {
printk("Ktask %s threw error %s\n", name, current_errstr());
goto out;
}
enable_irq();
fn(arg);
out:
disable_irq();
pcpui->cur_kthread->name = 0;
poperror();
/* if we blocked, when we return, PRKM will smp_idle() */
}
/* Creates a kernel task, running fn(arg), named "name". This is just a routine
* kernel message that happens to have a name, and is allowed to block. It
* won't be associated with any process. For lack of a better place, we'll just
* start it on the calling core. Caller (and/or fn) need to deal with the
* storage for *name. */
void ktask(char *name, void (*fn)(void*), void *arg)
{
send_kernel_message(core_id(), __ktask_wrapper, (long)fn, (long)arg,
(long)name, KMSG_ROUTINE);
}
void check_poison(char *msg)
{
#ifdef CONFIG_KTHREAD_POISON
struct per_cpu_info *pcpui = &per_cpu_info[core_id()];
assert(pcpui->cur_kthread && pcpui->cur_kthread->stacktop);
if (*kstack_bottom_addr(pcpui->cur_kthread->stacktop) != 0xdeadbeef) {
printk("\nBad kthread canary, msg: %s\n", msg);
panic("");
}
#endif /* CONFIG_KTHREAD_POISON */
}
/* Semaphores, using kthreads directly */
static void debug_downed_sem(struct semaphore *sem);
static void debug_upped_sem(struct semaphore *sem);
static void sem_init_common(struct semaphore *sem, int signals)
{
TAILQ_INIT(&sem->waiters);
sem->nr_signals = signals;
#ifdef CONFIG_SEMAPHORE_DEBUG
sem->is_on_list = FALSE;
sem->bt_pc = 0;
sem->bt_fp = 0;
sem->calling_core = 0;
#endif
}
void sem_init(struct semaphore *sem, int signals)
{
sem_init_common(sem, signals);
spinlock_init(&sem->lock);
sem->irq_okay = FALSE;
}
void sem_init_irqsave(struct semaphore *sem, int signals)
{
sem_init_common(sem, signals);
spinlock_init_irqsave(&sem->lock);
sem->irq_okay = TRUE;
}
bool sem_trydown(struct semaphore *sem)
{
bool ret = FALSE;
/* lockless peek */
if (sem->nr_signals <= 0)
return ret;
spin_lock(&sem->lock);
if (sem->nr_signals > 0) {
sem->nr_signals--;
ret = TRUE;
debug_downed_sem(sem);
}
spin_unlock(&sem->lock);
return ret;
}
/* This downs the semaphore and suspends the current kernel context on its
* waitqueue if there are no pending signals. Note that the case where the
* signal is already there is not optimized. */
void sem_down(struct semaphore *sem)
{
struct kthread *kthread, *new_kthread;
register uintptr_t new_stacktop;
struct per_cpu_info *pcpui = &per_cpu_info[core_id()];
bool irqs_were_on = irq_is_enabled();
assert(can_block(pcpui));
/* Make sure we aren't holding any locks (only works if SPINLOCK_DEBUG) */
if (pcpui->lock_depth)
panic("Kthread tried to sleep, with lockdepth %d\n", pcpui->lock_depth);
assert(pcpui->cur_kthread);
/* Try to down the semaphore. If there is a signal there, we can skip all
* of the sleep prep and just return. */
#ifdef CONFIG_SEM_SPINWAIT
for (int i = 0; i < CONFIG_SEM_SPINWAIT_NR_LOOPS; i++) {
if (sem_trydown(sem))
goto block_return_path;
cpu_relax();
}
#else
if (sem_trydown(sem))
goto block_return_path;
#endif
#ifdef CONFIG_SEM_TRACE_BLOCKERS
TRACEME();
#endif
/* We're probably going to sleep, so get ready. We'll check again later. */
kthread = pcpui->cur_kthread;
/* We need to have a spare slot for restart, so we also use it when
* sleeping. Right now, we need a new kthread to take over if/when our
* current kthread sleeps. Use the spare, and if not, get a new one.
*
* Note we do this with interrupts disabled (which protects us from
* concurrent modifications). */
if (pcpui->spare) {
new_kthread = pcpui->spare;
new_stacktop = new_kthread->stacktop;
pcpui->spare = 0;
/* Based on how we set is_ktask (in PRKM), we'll usually have a spare
* with is_ktask set, even though the default setting is off. The
* reason is that the launching of blocked kthreads also uses PRKM, and
* that KMSG (__launch_kthread) doesn't return. Thus the soon-to-be
* spare kthread, that is launching another, has is_ktask set. */
new_kthread->is_ktask = FALSE;
new_kthread->proc = 0;
new_kthread->name = 0;
} else {
new_kthread = __kthread_zalloc();
new_stacktop = get_kstack();
new_kthread->stacktop = new_stacktop;
#ifdef CONFIG_KTHREAD_POISON
*kstack_bottom_addr(new_stacktop) = 0;
#endif /* CONFIG_KTHREAD_POISON */
}
/* Set the core's new default stack and kthread */
set_stack_top(new_stacktop);
pcpui->cur_kthread = new_kthread;
#ifdef CONFIG_KTHREAD_POISON
/* Mark the new stack as in-use, and unmark the current kthread */
uintptr_t *new_stack_poison, *kth_stack_poison;
new_stack_poison = kstack_bottom_addr(new_stacktop);
assert(!*new_stack_poison);
*new_stack_poison = 0xdeadbeef;
kth_stack_poison = kstack_bottom_addr(kthread->stacktop);
assert(*kth_stack_poison == 0xdeadbeef);
*kth_stack_poison = 0;
#endif /* CONFIG_KTHREAD_POISON */
/* Kthreads that are ktasks are not related to any process, and do not need
* to work in a process's address space. They can operate in any address
* space that has the kernel mapped (like boot_pgdir, or any pgdir).
*
* Other kthreads need to stay in the process context (if there is one), but
* we want the core (which could be a vcore) to stay in the context too. In
* the future, we could check owning_proc. If it isn't set, we could leave
* the process context and transfer the refcnt to kthread->proc. */
if (!kthread->is_ktask) {
kthread->proc = current;
if (kthread->proc) /* still could be none, like during init */
proc_incref(kthread->proc, 1);
} else {
kthread->proc = 0;
}
if (setjmp(&kthread->context))
goto block_return_path;
spin_lock(&sem->lock);
if (sem->nr_signals-- <= 0) {
TAILQ_INSERT_TAIL(&sem->waiters, kthread, link);
debug_downed_sem(sem); /* need to debug after inserting */
/* At this point, we know we'll sleep and change stacks later. Once we
* unlock, we could have the kthread restarted (possibly on another
* core), so we need to disable irqs until we are on our new stack.
* Otherwise, if we take an IRQ, we'll be using our stack while another
* core is using it (restarted kthread). Basically, disabling irqs
* allows us to atomically unlock and 'yield'. Also, IRQs might have
* already been disabled if this was an irqsave sem. */
disable_irq();
spin_unlock(&sem->lock);
/* Switch to the core's default stack. After this, don't use local
* variables. */
set_stack_pointer(new_stacktop);
smp_idle(); /* reenables irqs eventually */
assert(0);
}
/* We get here if we should not sleep on sem (the signal beat the sleep).
* We debug_downed_sem since we actually downed it - just didn't sleep. */
debug_downed_sem(sem);
spin_unlock(&sem->lock);
printd("[kernel] Didn't sleep, unwinding...\n");
/* Restore the core's current and default stacktop */
current = kthread->proc; /* arguably unnecessary */
if (kthread->proc)
proc_decref(kthread->proc);
set_stack_top(kthread->stacktop);
pcpui->cur_kthread = kthread;
/* Save the allocs as the spare */
assert(!pcpui->spare);
pcpui->spare = new_kthread;
#ifdef CONFIG_KTHREAD_POISON
/* switch back to old stack in use, new one not */
*new_stack_poison = 0;
*kth_stack_poison = 0xdeadbeef;
#endif /* CONFIG_KTHREAD_POISON */
block_return_path:
printd("[kernel] Returning from being 'blocked'! at %llu\n", read_tsc());
/* restart_kthread and longjmp did not reenable IRQs. We need to make sure
* irqs are on if they were on when we started to block. If they were
* already on and we short-circuited the block, it's harmless to reenable
* them. */
if (irqs_were_on)
enable_irq();
return;
}
/* Ups the semaphore. If it was < 0, we need to wake up someone, which we do.
* Returns TRUE if we woke someone, FALSE o/w (used for debugging in some
* places). If we need more control, we can implement a version of the old
* __up_sem() again. */
bool sem_up(struct semaphore *sem)
{
struct kthread *kthread = 0;
spin_lock(&sem->lock);
if (sem->nr_signals++ < 0) {
assert(!TAILQ_EMPTY(&sem->waiters));
/* could do something with 'priority' here */
kthread = TAILQ_FIRST(&sem->waiters);
TAILQ_REMOVE(&sem->waiters, kthread, link);
} else {
assert(TAILQ_EMPTY(&sem->waiters));
}
debug_upped_sem(sem);
spin_unlock(&sem->lock);
/* Note that once we call kthread_runnable(), we cannot touch the sem again.
* Some sems are on stacks. The caller can touch sem, if it knows about the
* memory/usage of the sem. Likewise, we can't touch the kthread either. */
if (kthread) {
kthread_runnable(kthread);
return TRUE;
}
return FALSE;
}
bool sem_trydown_irqsave(struct semaphore *sem, int8_t *irq_state)
{
bool ret;
disable_irqsave(irq_state);
ret = sem_trydown(sem);
enable_irqsave(irq_state);
return ret;
}
void sem_down_irqsave(struct semaphore *sem, int8_t *irq_state)
{
disable_irqsave(irq_state);
sem_down(sem);
enable_irqsave(irq_state);
}
bool sem_up_irqsave(struct semaphore *sem, int8_t *irq_state)
{
bool retval;
disable_irqsave(irq_state);
retval = sem_up(sem);
enable_irqsave(irq_state);
return retval;
}
/* Sem debugging */
#ifdef CONFIG_SEMAPHORE_DEBUG
struct semaphore_tailq sems_with_waiters =
TAILQ_HEAD_INITIALIZER(sems_with_waiters);
spinlock_t sems_with_waiters_lock = SPINLOCK_INITIALIZER_IRQSAVE;
/* this gets called any time we downed the sem, regardless of whether or not we
* waited */
static void debug_downed_sem(struct semaphore *sem)
{
sem->bt_pc = read_pc();
sem->bt_fp = read_bp();
sem->calling_core = core_id();
if (TAILQ_EMPTY(&sem->waiters) || sem->is_on_list)
return;
spin_lock_irqsave(&sems_with_waiters_lock);
TAILQ_INSERT_HEAD(&sems_with_waiters, sem, link);
spin_unlock_irqsave(&sems_with_waiters_lock);
sem->is_on_list = TRUE;
}
/* Called when a sem is upped. It may or may not have waiters, and it may or
* may not be on the list. (we could up several times past 0). */
static void debug_upped_sem(struct semaphore *sem)
{
if (TAILQ_EMPTY(&sem->waiters) && sem->is_on_list) {
spin_lock_irqsave(&sems_with_waiters_lock);
TAILQ_REMOVE(&sems_with_waiters, sem, link);
spin_unlock_irqsave(&sems_with_waiters_lock);
sem->is_on_list = FALSE;
}
}
#else
static void debug_downed_sem(struct semaphore *sem)
{
/* no debugging */
}
static void debug_upped_sem(struct semaphore *sem)
{
/* no debugging */
}
#endif /* CONFIG_SEMAPHORE_DEBUG */
void print_sem_info(struct semaphore *sem)
{
struct kthread *kth_i;
/* Always safe to irqsave */
spin_lock_irqsave(&sem->lock);
printk("Semaphore %p has %d signals (neg = waiters)", sem, sem->nr_signals);
#ifdef CONFIG_SEMAPHORE_DEBUG
printk(", recently downed on core %d with pc/frame %p %p\n",
sem->calling_core, sem->bt_pc, sem->bt_fp);
#else
printk("\n");
#endif /* CONFIG_SEMAPHORE_DEBUG */
TAILQ_FOREACH(kth_i, &sem->waiters, link)
printk("\tKthread %p (%s), proc %d (%p), sysc %p\n", kth_i, kth_i->name,
kth_i->proc ? kth_i->proc->pid : 0, kth_i->proc, kth_i->sysc);
printk("\n");
spin_unlock_irqsave(&sem->lock);
}
void print_all_sem_info(void)
{
#ifdef CONFIG_SEMAPHORE_DEBUG
struct semaphore *sem_i;
printk("All sems with waiters:\n");
spin_lock_irqsave(&sems_with_waiters_lock);
TAILQ_FOREACH(sem_i, &sems_with_waiters, link)
print_sem_info(sem_i);
spin_unlock_irqsave(&sems_with_waiters_lock);
#else
printk("Failed to print all sems: build with CONFIG_SEMAPHORE_DEBUG\n");
#endif
}
/* Condition variables, using semaphores and kthreads */
void cv_init(struct cond_var *cv)
{
sem_init(&cv->sem, 0);
cv->lock = &cv->internal_lock;
spinlock_init(cv->lock);
cv->nr_waiters = 0;
cv->irq_okay = FALSE;
}
void cv_init_irqsave(struct cond_var *cv)
{
sem_init_irqsave(&cv->sem, 0);
cv->lock = &cv->internal_lock;
spinlock_init_irqsave(cv->lock);
cv->nr_waiters = 0;
cv->irq_okay = TRUE;
}
void cv_init_with_lock(struct cond_var *cv, spinlock_t *lock)
{
sem_init(&cv->sem, 0);
cv->nr_waiters = 0;
cv->lock = lock;
cv->irq_okay = FALSE;
}
void cv_init_irqsave_with_lock(struct cond_var *cv, spinlock_t *lock)
{
sem_init_irqsave(&cv->sem, 0);
cv->nr_waiters = 0;
cv->lock = lock;
cv->irq_okay = TRUE;
}
void cv_lock(struct cond_var *cv)
{
spin_lock(cv->lock);
}
void cv_unlock(struct cond_var *cv)
{
spin_unlock(cv->lock);
}
void cv_lock_irqsave(struct cond_var *cv, int8_t *irq_state)
{
disable_irqsave(irq_state);
cv_lock(cv);
}
void cv_unlock_irqsave(struct cond_var *cv, int8_t *irq_state)
{
cv_unlock(cv);
enable_irqsave(irq_state);
}
/* Helper to clarify the wait/signalling code */
static int nr_sem_waiters(struct semaphore *sem)
{
int retval;
retval = 0 - sem->nr_signals;
assert(retval >= 0);
return retval;
}
/* Comes in locked. Note we don't mess with enabling/disabling irqs. The
* initial cv_lock would have disabled irqs (if applicable), and we don't mess
* with that setting at all. */
void cv_wait_and_unlock(struct cond_var *cv)
{
unsigned long nr_prev_waiters;
nr_prev_waiters = cv->nr_waiters++;
spin_unlock(cv->lock);
/* Wait til our turn. This forces an ordering of all waiters such that the
* order in which they wait is the order in which they down the sem. */
while (nr_prev_waiters != nr_sem_waiters(&cv->sem))
cpu_relax();
printd("core %d, sees nr_sem_waiters: %d, cv_nr_waiters %d\n",
core_id(), nr_sem_waiters(&cv->sem), cv->nr_waiters);
/* Atomically sleeps and 'unlocks' the next kthread from its busy loop (the
* one right above this), when it changes the sems nr_signals/waiters. */
sem_down(&cv->sem);
}
/* Comes in locked. Note cv_lock does not disable irqs. They should still be
* disabled from the initial cv_lock_irqsave(). */
void cv_wait(struct cond_var *cv)
{
cv_wait_and_unlock(cv);
if (cv->irq_okay)
assert(!irq_is_enabled());
cv_lock(cv);
}
/* Helper, wakes exactly one, and there should have been at least one waiter. */
static void sem_wake_one(struct semaphore *sem)
{
struct kthread *kthread;
/* these locks will be irqsaved if the CV is irqsave (only need the one) */
spin_lock(&sem->lock);
assert(sem->nr_signals < 0);
sem->nr_signals++;
kthread = TAILQ_FIRST(&sem->waiters);
TAILQ_REMOVE(&sem->waiters, kthread, link);
debug_upped_sem(sem);
spin_unlock(&sem->lock);
kthread_runnable(kthread);
}
void __cv_signal(struct cond_var *cv)
{
/* Can't short circuit this stuff. We need to make sure any waiters that
* made it past upping the cv->nr_waiters has also downed the sem.
* Otherwise we muck with nr_waiters, which could break the ordering
* required by the waiters. We also need to lock while making this check,
* o/w a new waiter can slip in after our while loop. */
while (cv->nr_waiters != nr_sem_waiters(&cv->sem))
cpu_relax();
if (cv->nr_waiters) {
cv->nr_waiters--;
sem_wake_one(&cv->sem);
}
}
void __cv_broadcast(struct cond_var *cv)
{
while (cv->nr_waiters != nr_sem_waiters(&cv->sem))
cpu_relax();
while (cv->nr_waiters) {
cv->nr_waiters--;
sem_wake_one(&cv->sem);
}
}
void cv_signal(struct cond_var *cv)
{
spin_lock(cv->lock);
__cv_signal(cv);
spin_unlock(cv->lock);
}
void cv_broadcast(struct cond_var *cv)
{
spin_lock(cv->lock);
__cv_broadcast(cv);
spin_unlock(cv->lock);
}
void cv_signal_irqsave(struct cond_var *cv, int8_t *irq_state)
{
disable_irqsave(irq_state);
cv_signal(cv);
enable_irqsave(irq_state);
}
void cv_broadcast_irqsave(struct cond_var *cv, int8_t *irq_state)
{
disable_irqsave(irq_state);
cv_broadcast(cv);
enable_irqsave(irq_state);
}
/* Helper, aborts and releases a CLE. dereg_ spinwaits on abort_in_progress. */
static void __abort_and_release_cle(struct cv_lookup_elm *cle)
{
int8_t irq_state = 0;
/* At this point, we have a handle on the syscall that we want to abort (via
* the cle), and we know none of the memory will disappear on us (deregers
* wait on the flag). So we'll signal ABORT, which rendez will pick up next
* time it is awake. Then we make sure it is awake with a broadcast. */
atomic_or(&cle->sysc->flags, SC_ABORT);
cmb(); /* flags write before signal; atomic op provided CPU mb */
cv_broadcast_irqsave(cle->cv, &irq_state);
cmb(); /* broadcast writes before abort flag; atomic op provided CPU mb */
atomic_dec(&cle->abort_in_progress);
}
/* Attempts to abort p's sysc. It will only do so if the sysc lookup succeeds,
* so we can handle "guesses" for syscalls that might not be sleeping. This
* style of "do it if you know you can" is the best way here - anything else
* runs into situations where you don't know if the memory is safe to touch or
* not (we're doing a lookup via pointer address, and only dereferencing if that
* succeeds). Even something simple like letting userspace write SC_ABORT is
* very hard for them, since they don't know a sysc's state for sure (under the
* current system).
*
* Here are the rules:
* - if you're flagged SC_ABORT, you don't sleep
* - if you sleep, you're on the list
* - if you are on the list or abort_in_progress is set, CV is signallable, and
* all the memory for CLE is safe */
bool abort_sysc(struct proc *p, struct syscall *sysc)
{
struct cv_lookup_elm *cle;
int8_t irq_state = 0;
spin_lock_irqsave(&p->abort_list_lock);
TAILQ_FOREACH(cle, &p->abortable_sleepers, link) {
if (cle->sysc == sysc) {
/* Note: we could have multiple aborters, so we need to use a
* numeric refcnt instead of a flag. */
atomic_inc(&cle->abort_in_progress);
break;
}
}
spin_unlock_irqsave(&p->abort_list_lock);
if (!cle)
return FALSE;
__abort_and_release_cle(cle);
return TRUE;
}
/* This will abort any abortables at the time the call was started for which
* should_abort(cle, arg) returns true. New abortables could be registered
* concurrently. The original for this is proc_destroy(), so DYING will be set,
* and new abortables will quickly abort and dereg when they see their proc is
* DYING. */
static int __abort_all_sysc(struct proc *p,
bool (*should_abort)(struct cv_lookup_elm*, void*),
void *arg)
{
struct cv_lookup_elm *cle;
int8_t irq_state = 0;
struct cv_lookup_tailq abortall_list;
struct proc *old_proc = switch_to(p);
int ret = 0;
/* Concerns: we need to not remove them from their original list, since
* concurrent wake ups will cause a dereg, which will remove from the list.
* We also can't touch freed memory, so we need a refcnt to keep cles
* around. */
TAILQ_INIT(&abortall_list);
spin_lock_irqsave(&p->abort_list_lock);
TAILQ_FOREACH(cle, &p->abortable_sleepers, link) {
if (!should_abort(cle, arg))
continue;
atomic_inc(&cle->abort_in_progress);
TAILQ_INSERT_HEAD(&abortall_list, cle, abortall_link);
ret++;
}
spin_unlock_irqsave(&p->abort_list_lock);
TAILQ_FOREACH(cle, &abortall_list, abortall_link)
__abort_and_release_cle(cle);
switch_back(p, old_proc);
return ret;
}
static bool always_abort(struct cv_lookup_elm *cle, void *arg)
{
return TRUE;
}
void abort_all_sysc(struct proc *p)
{
__abort_all_sysc(p, always_abort, 0);
}
static bool sysc_uses_fd(struct cv_lookup_elm *cle, void *fd)
{
return syscall_uses_fd(cle->sysc, (int)(long)fd);
}
int abort_all_sysc_fd(struct proc *p, int fd)
{
return __abort_all_sysc(p, sysc_uses_fd, (void*)(long)fd);
}
/* Being on the abortable list means that the CLE, KTH, SYSC, and CV are valid
* memory. The lock ordering is {CV lock, list_lock}. Callers to this *will*
* have CV held. This is done to avoid excessive locking in places like
* rendez_sleep, which want to check the condition before registering. */
void __reg_abortable_cv(struct cv_lookup_elm *cle, struct cond_var *cv)
{
struct per_cpu_info *pcpui = &per_cpu_info[core_id()];
cle->cv = cv;
cle->kthread = pcpui->cur_kthread;
/* Could be a ktask. Can build in support for aborting these later */
if (cle->kthread->is_ktask) {
cle->sysc = 0;
return;
}
cle->sysc = cle->kthread->sysc;
assert(cle->sysc);
cle->proc = pcpui->cur_proc;
atomic_init(&cle->abort_in_progress, 0);
spin_lock_irqsave(&cle->proc->abort_list_lock);
TAILQ_INSERT_HEAD(&cle->proc->abortable_sleepers, cle, link);
spin_unlock_irqsave(&cle->proc->abort_list_lock);
}
/* We're racing with the aborter too, who will hold the flag in cle to protect
* its ref on our cle. While the lock ordering is CV, list, callers to this
* must *not* have the cv lock held. The reason is this waits on a successful
* abort_sysc, which is trying to cv_{signal,broadcast}, which could wait on the
* CV lock. So if we hold the CV lock, we can deadlock (circular dependency).*/
void dereg_abortable_cv(struct cv_lookup_elm *cle)
{
if (cle->kthread->is_ktask)
return;
assert(cle->proc);
spin_lock_irqsave(&cle->proc->abort_list_lock);
TAILQ_REMOVE(&cle->proc->abortable_sleepers, cle, link);
spin_unlock_irqsave(&cle->proc->abort_list_lock);
/* If we won the race and yanked it out of the list before abort claimed it,
* this will already be FALSE. */
while (atomic_read(&cle->abort_in_progress))
cpu_relax();
}
/* Helper to sleepers to know if they should abort or not. I'll probably extend
* this with things for ktasks in the future. */
bool should_abort(struct cv_lookup_elm *cle)
{
if (cle->kthread->is_ktask)
return FALSE;
if (cle->proc && (cle->proc->state == PROC_DYING))
return TRUE;
if (cle->sysc && (atomic_read(&cle->sysc->flags) & SC_ABORT))
return TRUE;
return FALSE;
}