| #include <ros/trapframe.h> | 
 | #include "pthread.h" | 
 | #include <parlib/vcore.h> | 
 | #include <parlib/mcs.h> | 
 | #include <stdlib.h> | 
 | #include <string.h> | 
 | #include <parlib/assert.h> | 
 | #include <stdio.h> | 
 | #include <errno.h> | 
 | #include <parlib/parlib.h> | 
 | #include <ros/event.h> | 
 | #include <parlib/arch/atomic.h> | 
 | #include <parlib/arch/arch.h> | 
 | #include <sys/queue.h> | 
 | #include <sys/mman.h> | 
 | #include <parlib/event.h> | 
 | #include <parlib/ucq.h> | 
 | #include <parlib/signal.h> | 
 | #include <parlib/arch/trap.h> | 
 | #include <parlib/ros_debug.h> | 
 | #include <parlib/stdio.h> | 
 |  | 
 | /* TODO: eventually, we probably want to split this into the pthreads interface | 
 |  * and a default 2LS.  That way, apps can use the pthreads interface and use any | 
 |  * 2LS.  Here's a few blockers: | 
 |  * - pthread_cleanup(): probably support at the uthread level | 
 |  * - attrs and creation: probably use a default stack size and handle detached | 
 |  * - getattrs_np: return -1, mostly due to the stackaddr.  Callers probably want | 
 |  *   a real 2LS operation. | 
 |  * Then we can split pthreads into parlib/default_sched.c (replaces thread0) and | 
 |  * pthread.c.  After that, we can have a signal handling thread (even for | 
 |  * 'thread0'), which allows us to close() or do other vcore-ctx-unsafe ops. */ | 
 |  | 
 | struct pthread_queue ready_queue = TAILQ_HEAD_INITIALIZER(ready_queue); | 
 | struct pthread_queue active_queue = TAILQ_HEAD_INITIALIZER(active_queue); | 
 | struct mcs_pdr_lock queue_lock; | 
 | int threads_ready = 0; | 
 | int threads_active = 0; | 
 | atomic_t threads_total; | 
 | bool need_tls = TRUE; | 
 |  | 
 | /* Array of per-vcore structs to manage waiting on syscalls and handling | 
 |  * overflow.  Init'd in pth_init(). */ | 
 | struct sysc_mgmt *sysc_mgmt = 0; | 
 |  | 
 | /* Helper / local functions */ | 
 | static int get_next_pid(void); | 
 | static inline void pthread_exit_no_cleanup(void *ret); | 
 |  | 
 | /* Pthread 2LS operations */ | 
 | static void pth_sched_init(void); | 
 | static void pth_sched_entry(void); | 
 | static void pth_thread_runnable(struct uthread *uthread); | 
 | static void pth_thread_paused(struct uthread *uthread); | 
 | static void pth_thread_blockon_sysc(struct uthread *uthread, void *sysc); | 
 | static void pth_thread_has_blocked(struct uthread *uthread, int flags); | 
 | static void pth_thread_refl_fault(struct uthread *uth, | 
 |                                   struct user_context *ctx); | 
 | static void pth_thread_exited(struct uthread *uth); | 
 | static struct uthread *pth_thread_create(void *(*func)(void *), void *arg); | 
 | static void pth_thread_bulk_runnable(uth_sync_t *wakees); | 
 |  | 
 | /* Event Handlers */ | 
 | static void pth_handle_syscall(struct event_msg *ev_msg, unsigned int ev_type, | 
 |                                void *data); | 
 |  | 
 | struct schedule_ops pthread_sched_ops = { | 
 | 	.sched_init = pth_sched_init, | 
 | 	.sched_entry = pth_sched_entry, | 
 | 	.thread_runnable = pth_thread_runnable, | 
 | 	.thread_paused = pth_thread_paused, | 
 | 	.thread_blockon_sysc = pth_thread_blockon_sysc, | 
 | 	.thread_has_blocked = pth_thread_has_blocked, | 
 | 	.thread_refl_fault = pth_thread_refl_fault, | 
 | 	.thread_exited = pth_thread_exited, | 
 | 	.thread_create = pth_thread_create, | 
 | 	.thread_bulk_runnable = pth_thread_bulk_runnable, | 
 | }; | 
 |  | 
 | struct schedule_ops *sched_ops = &pthread_sched_ops; | 
 |  | 
 | /* Static helpers */ | 
 | static void __pthread_free_stack(struct pthread_tcb *pt); | 
 | static int __pthread_allocate_stack(struct pthread_tcb *pt); | 
 | static void __pth_yield_cb(struct uthread *uthread, void *junk); | 
 |  | 
 | /* Called from vcore entry.  Options usually include restarting whoever was | 
 |  * running there before or running a new thread.  Events are handled out of | 
 |  * event.c (table of function pointers, stuff like that). */ | 
 | static void __attribute__((noreturn)) pth_sched_entry(void) | 
 | { | 
 | 	uint32_t vcoreid = vcore_id(); | 
 | 	if (current_uthread) { | 
 | 		/* Prep the pthread to run any pending posix signal handlers registered | 
 |          * via pthread_kill once it is restored. */ | 
 | 		uthread_prep_pending_signals(current_uthread); | 
 | 		/* Run the thread itself */ | 
 | 		run_current_uthread(); | 
 | 		assert(0); | 
 | 	} | 
 | 	/* no one currently running, so lets get someone from the ready queue */ | 
 | 	struct pthread_tcb *new_thread = NULL; | 
 | 	/* Try to get a thread.  If we get one, we'll break out and run it.  If not, | 
 | 	 * we'll try to yield.  vcore_yield() might return, if we lost a race and | 
 | 	 * had a new event come in, one that may make us able to get a new_thread */ | 
 | 	do { | 
 | 		handle_events(vcoreid); | 
 | 		__check_preempt_pending(vcoreid); | 
 | 		mcs_pdr_lock(&queue_lock); | 
 | 		new_thread = TAILQ_FIRST(&ready_queue); | 
 | 		if (new_thread) { | 
 | 			TAILQ_REMOVE(&ready_queue, new_thread, tq_next); | 
 | 			assert(new_thread->state == PTH_RUNNABLE); | 
 | 			new_thread->state = PTH_RUNNING; | 
 | 			TAILQ_INSERT_TAIL(&active_queue, new_thread, tq_next); | 
 | 			threads_active++; | 
 | 			threads_ready--; | 
 | 			mcs_pdr_unlock(&queue_lock); | 
 | 			/* If you see what looks like the same uthread running in multiple | 
 | 			 * places, your list might be jacked up.  Turn this on. */ | 
 | 			printd("[P] got uthread %08p on vc %d state %08p flags %08p\n", | 
 | 			       new_thread, vcoreid, | 
 | 			       ((struct uthread*)new_thread)->state, | 
 | 			       ((struct uthread*)new_thread)->flags); | 
 | 			break; | 
 | 		} | 
 | 		mcs_pdr_unlock(&queue_lock); | 
 | 		/* no new thread, try to yield */ | 
 | 		printd("[P] No threads, vcore %d is yielding\n", vcore_id()); | 
 | 		/* TODO: you can imagine having something smarter here, like spin for a | 
 | 		 * bit before yielding. */ | 
 | 		vcore_yield(FALSE); | 
 | 	} while (1); | 
 | 	/* Prep the pthread to run any pending posix signal handlers registered | 
 |      * via pthread_kill once it is restored. */ | 
 | 	uthread_prep_pending_signals((struct uthread*)new_thread); | 
 | 	/* Run the thread itself */ | 
 | 	run_uthread((struct uthread*)new_thread); | 
 | 	assert(0); | 
 | } | 
 |  | 
 | /* Could move this, along with start_routine and arg, into the 2LSs */ | 
 | static void __pthread_run(void) | 
 | { | 
 | 	struct pthread_tcb *me = pthread_self(); | 
 | 	pthread_exit_no_cleanup(me->start_routine(me->arg)); | 
 | } | 
 |  | 
 | /* GIANT WARNING: if you make any changes to this, also change the broadcast | 
 |  * wakeups (cond var, barrier, etc) */ | 
 | static void pth_thread_runnable(struct uthread *uthread) | 
 | { | 
 | 	struct pthread_tcb *pthread = (struct pthread_tcb*)uthread; | 
 | 	/* At this point, the 2LS can see why the thread blocked and was woken up in | 
 | 	 * the first place (coupling these things together).  On the yield path, the | 
 | 	 * 2LS was involved and was able to set the state.  Now when we get the | 
 | 	 * thread back, we can take a look. */ | 
 | 	printd("pthread %08p runnable, state was %d\n", pthread, pthread->state); | 
 | 	switch (pthread->state) { | 
 | 		case (PTH_CREATED): | 
 | 		case (PTH_BLK_YIELDING): | 
 | 		case (PTH_BLK_SYSC): | 
 | 		case (PTH_BLK_PAUSED): | 
 | 		case (PTH_BLK_MUTEX): | 
 | 		case (PTH_BLK_MISC): | 
 | 			/* can do whatever for each of these cases */ | 
 | 			break; | 
 | 		default: | 
 | 			panic("Odd state %d for pthread %08p\n", pthread->state, pthread); | 
 | 	} | 
 | 	pthread->state = PTH_RUNNABLE; | 
 | 	/* Insert the newly created thread into the ready queue of threads. | 
 | 	 * It will be removed from this queue later when vcore_entry() comes up */ | 
 | 	mcs_pdr_lock(&queue_lock); | 
 | 	/* Again, GIANT WARNING: if you change this, change batch wakeup code */ | 
 | 	TAILQ_INSERT_TAIL(&ready_queue, pthread, tq_next); | 
 | 	threads_ready++; | 
 | 	mcs_pdr_unlock(&queue_lock); | 
 | 	/* Smarter schedulers should look at the num_vcores() and how much work is | 
 | 	 * going on to make a decision about how many vcores to request. */ | 
 | 	vcore_request_more(threads_ready); | 
 | } | 
 |  | 
 | /* For some reason not under its control, the uthread stopped running (compared | 
 |  * to yield, which was caused by uthread/2LS code). | 
 |  * | 
 |  * The main case for this is if the vcore was preempted or if the vcore it was | 
 |  * running on needed to stop.  You are given a uthread that looks like it took a | 
 |  * notif, and had its context/silly state copied out to the uthread struct. | 
 |  * (copyout_uthread).  Note that this will be called in the context (TLS) of the | 
 |  * vcore that is losing the uthread.  If that vcore is running, it'll be in a | 
 |  * preempt-event handling loop (not in your 2LS code).  If this is a big | 
 |  * problem, I'll change it. */ | 
 | static void pth_thread_paused(struct uthread *uthread) | 
 | { | 
 | 	struct pthread_tcb *pthread = (struct pthread_tcb*)uthread; | 
 |  | 
 | 	__pthread_generic_yield(pthread); | 
 | 	/* communicate to pth_thread_runnable */ | 
 | 	pthread->state = PTH_BLK_PAUSED; | 
 | 	/* At this point, you could do something clever, like put it at the front of | 
 | 	 * the runqueue, see if it was holding a lock, do some accounting, or | 
 | 	 * whatever. */ | 
 | 	pth_thread_runnable(uthread); | 
 | } | 
 |  | 
 | /* Restarts a uthread hanging off a syscall.  For the simple pthread case, we | 
 |  * just make it runnable and let the main scheduler code handle it. */ | 
 | static void restart_thread(struct syscall *sysc) | 
 | { | 
 | 	struct uthread *ut_restartee = (struct uthread*)sysc->u_data; | 
 | 	/* uthread stuff here: */ | 
 | 	assert(ut_restartee); | 
 | 	assert(((struct pthread_tcb*)ut_restartee)->state == PTH_BLK_SYSC); | 
 | 	assert(ut_restartee->sysc == sysc);	/* set in uthread.c */ | 
 | 	ut_restartee->sysc = 0;	/* so we don't 'reblock' on this later */ | 
 | 	pth_thread_runnable(ut_restartee); | 
 | } | 
 |  | 
 | /* This handler is usually run in vcore context, though I can imagine it being | 
 |  * called by a uthread in some other threading library. */ | 
 | static void pth_handle_syscall(struct event_msg *ev_msg, unsigned int ev_type, | 
 |                                void *data) | 
 | { | 
 | 	struct syscall *sysc; | 
 | 	assert(in_vcore_context()); | 
 | 	/* if we just got a bit (not a msg), it should be because the process is | 
 | 	 * still an SCP and hasn't started using the MCP ev_q yet (using the simple | 
 | 	 * ev_q and glibc's blockon) or because the bit is still set from an old | 
 | 	 * ev_q (blocking syscalls from before we could enter vcore ctx).  Either | 
 | 	 * way, just return.  Note that if you screwed up the pth ev_q and made it | 
 | 	 * NO_MSG, you'll never notice (we used to assert(ev_msg)). */ | 
 | 	if (!ev_msg) | 
 | 		return; | 
 | 	/* It's a bug if we don't have a msg (we're handling a syscall bit-event) */ | 
 | 	assert(ev_msg); | 
 | 	/* Get the sysc from the message and just restart it */ | 
 | 	sysc = ev_msg->ev_arg3; | 
 | 	assert(sysc); | 
 | 	restart_thread(sysc); | 
 | } | 
 |  | 
 | /* This will be called from vcore context, after the current thread has yielded | 
 |  * and is trying to block on sysc.  Need to put it somewhere were we can wake it | 
 |  * up when the sysc is done.  For now, we'll have the kernel send us an event | 
 |  * when the syscall is done. */ | 
 | static void pth_thread_blockon_sysc(struct uthread *uthread, void *syscall) | 
 | { | 
 | 	struct syscall *sysc = (struct syscall*)syscall; | 
 | 	int old_flags; | 
 | 	uint32_t vcoreid = vcore_id(); | 
 | 	struct pthread_tcb *pthread = (struct pthread_tcb*)uthread; | 
 |  | 
 | 	__pthread_generic_yield(pthread); | 
 | 	pthread->state = PTH_BLK_SYSC; | 
 | 	/* Set things up so we can wake this thread up later */ | 
 | 	sysc->u_data = uthread; | 
 | 	/* Register our vcore's syscall ev_q to hear about this syscall. */ | 
 | 	if (!register_evq(sysc, sysc_mgmt[vcoreid].ev_q)) { | 
 | 		/* Lost the race with the call being done.  The kernel won't send the | 
 | 		 * event.  Just restart him. */ | 
 | 		restart_thread(sysc); | 
 | 	} | 
 | 	/* GIANT WARNING: do not touch the thread after this point. */ | 
 | } | 
 |  | 
 | static void pth_thread_has_blocked(struct uthread *uthread, int flags) | 
 | { | 
 | 	struct pthread_tcb *pthread = (struct pthread_tcb*)uthread; | 
 |  | 
 | 	__pthread_generic_yield(pthread); | 
 | 	/* Whatever we do here, we are mostly communicating to our future selves in | 
 | 	 * pth_thread_runnable(), which gets called by whoever triggered this | 
 | 	 * callback */ | 
 | 	switch (flags) { | 
 | 	case UTH_EXT_BLK_YIELD: | 
 | 		pthread->state = PTH_BLK_YIELDING; | 
 | 		break; | 
 | 	case UTH_EXT_BLK_MUTEX: | 
 | 		pthread->state = PTH_BLK_MUTEX; | 
 | 		break; | 
 | 	default: | 
 | 		pthread->state = PTH_BLK_MISC; | 
 | 	}; | 
 | } | 
 |  | 
 | static void __signal_and_restart(struct uthread *uthread, | 
 |                                  int signo, int code, void *addr) | 
 | { | 
 | 	uthread_prep_signal_from_fault(uthread, signo, code, addr); | 
 | 	pth_thread_runnable(uthread); | 
 | } | 
 |  | 
 | static void handle_div_by_zero(struct uthread *uthread, unsigned int err, | 
 |                                unsigned long aux) | 
 | { | 
 | 	__signal_and_restart(uthread, SIGFPE, FPE_INTDIV, (void*)aux); | 
 | } | 
 |  | 
 | static void handle_gp_fault(struct uthread *uthread, unsigned int err, | 
 |                             unsigned long aux) | 
 | { | 
 | 	__signal_and_restart(uthread, SIGSEGV, SEGV_ACCERR, (void*)aux); | 
 | } | 
 |  | 
 | static void handle_page_fault(struct uthread *uthread, unsigned int err, | 
 |                               unsigned long aux) | 
 | { | 
 | 	struct pthread_tcb *pthread = (struct pthread_tcb*)uthread; | 
 | 	if (!(err & PF_VMR_BACKED)) { | 
 | 		__signal_and_restart(uthread, SIGSEGV, SEGV_MAPERR, (void*)aux); | 
 | 	} else { | 
 | 		syscall_async(&uthread->local_sysc, SYS_populate_va, aux, 1); | 
 | 		__block_uthread_on_async_sysc(uthread); | 
 | 	} | 
 | } | 
 |  | 
 | static void pth_thread_refl_hw_fault(struct uthread *uthread, | 
 |                                      unsigned int trap_nr, | 
 |                                      unsigned int err, unsigned long aux) | 
 | { | 
 | 	struct pthread_tcb *pthread = (struct pthread_tcb*)uthread; | 
 |  | 
 | 	__pthread_generic_yield(pthread); | 
 | 	pthread->state = PTH_BLK_SYSC; | 
 |  | 
 | 	switch (trap_nr) { | 
 | 	case HW_TRAP_DIV_ZERO: | 
 | 		handle_div_by_zero(uthread, err, aux); | 
 | 		break; | 
 | 	case HW_TRAP_GP_FAULT: | 
 | 		handle_gp_fault(uthread, err, aux); | 
 | 		break; | 
 | 	case HW_TRAP_PAGE_FAULT: | 
 | 		handle_page_fault(uthread, err, aux); | 
 | 		break; | 
 | 	default: | 
 | 		printf("Pthread has unhandled fault: %d, err: %d, aux: %p\n", | 
 | 		       trap_nr, err, aux); | 
 | 		/* Note that uthread.c already copied out our ctx into the uth | 
 | 		 * struct */ | 
 | 		print_user_context(&uthread->u_ctx); | 
 | 		printf("Turn on printx to spew unhandled, malignant trap info\n"); | 
 | 		exit(-1); | 
 | 	} | 
 | } | 
 |  | 
 | static void pth_thread_refl_fault(struct uthread *uth, | 
 |                                   struct user_context *ctx) | 
 | { | 
 | 	switch (ctx->type) { | 
 | 	case ROS_HW_CTX: | 
 | 		pth_thread_refl_hw_fault(uth, __arch_refl_get_nr(ctx), | 
 | 		                         __arch_refl_get_err(ctx), | 
 | 		                         __arch_refl_get_aux(ctx)); | 
 | 		break; | 
 | 	default: | 
 | 		assert(0); | 
 | 	} | 
 | } | 
 |  | 
 | static void pth_thread_exited(struct uthread *uth) | 
 | { | 
 | 	struct pthread_tcb *pthread = (struct pthread_tcb*)uth; | 
 |  | 
 | 	__pthread_generic_yield(pthread); | 
 | 	/* Catch some bugs */ | 
 | 	pthread->state = PTH_EXITING; | 
 | 	/* Destroy the pthread */ | 
 | 	uthread_cleanup(uth); | 
 | 	/* Cleanup, mirroring pthread_create() */ | 
 | 	__pthread_free_stack(pthread); | 
 | 	/* If we were the last pthread, we exit for the whole process.  Keep in mind | 
 | 	 * that thread0 is counted in this, so this will only happen if that thread | 
 | 	 * calls pthread_exit(). */ | 
 | 	if ((atomic_fetch_and_add(&threads_total, -1) == 1)) | 
 | 		exit(0); | 
 | } | 
 |  | 
 | /* Careful, if someone used the pthread_need_tls() hack to turn off TLS, it will | 
 |  * also be turned off for these threads. */ | 
 | static struct uthread *pth_thread_create(void *(*func)(void *), void *arg) | 
 | { | 
 | 	struct pthread_tcb *pth; | 
 | 	int ret; | 
 |  | 
 | 	ret = pthread_create(&pth, NULL, func, arg); | 
 | 	return ret == 0 ? (struct uthread*)pth : NULL; | 
 | } | 
 |  | 
 | static void pth_thread_bulk_runnable(uth_sync_t *wakees) | 
 | { | 
 | 	struct uthread *uth_i; | 
 | 	struct pthread_tcb *pth_i; | 
 |  | 
 | 	/* Amortize the lock grabbing over all restartees */ | 
 | 	mcs_pdr_lock(&queue_lock); | 
 | 	while ((uth_i = __uth_sync_get_next(wakees))) { | 
 | 		pth_i = (struct pthread_tcb*)uth_i; | 
 | 		pth_i->state = PTH_RUNNABLE; | 
 | 		TAILQ_INSERT_TAIL(&ready_queue, pth_i, tq_next); | 
 | 		threads_ready++; | 
 | 	} | 
 | 	mcs_pdr_unlock(&queue_lock); | 
 | 	vcore_request_more(threads_ready); | 
 | } | 
 |  | 
 | /* Akaros pthread extensions / hacks */ | 
 |  | 
 | /* Careful using this - glibc and gcc are likely to use TLS without you knowing | 
 |  * it. */ | 
 | void pthread_need_tls(bool need) | 
 | { | 
 | 	need_tls = need; | 
 | } | 
 |  | 
 | /* Pthread interface stuff and helpers */ | 
 |  | 
 | int pthread_attr_init(pthread_attr_t *a) | 
 | { | 
 | 	a->stackaddr = 0; | 
 |  	a->stacksize = PTHREAD_STACK_SIZE; | 
 | 	a->detachstate = PTHREAD_CREATE_JOINABLE; | 
 | 	/* priority and policy should be set by anyone changing inherit. */ | 
 | 	a->sched_priority = 0; | 
 | 	a->sched_policy = 0; | 
 | 	a->sched_inherit = PTHREAD_INHERIT_SCHED; | 
 |   	return 0; | 
 | } | 
 |  | 
 | int pthread_attr_destroy(pthread_attr_t *a) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void __pthread_free_stack(struct pthread_tcb *pt) | 
 | { | 
 | 	int ret = munmap(pt->stacktop - pt->stacksize, pt->stacksize); | 
 | 	assert(!ret); | 
 | } | 
 |  | 
 | static int __pthread_allocate_stack(struct pthread_tcb *pt) | 
 | { | 
 | 	int force_a_page_fault; | 
 | 	assert(pt->stacksize); | 
 | 	void* stackbot = mmap(0, pt->stacksize, | 
 | 	                      PROT_READ | PROT_WRITE | PROT_EXEC, | 
 | 	                      MAP_ANONYMOUS | MAP_PRIVATE, -1, 0); | 
 | 	if (stackbot == MAP_FAILED) | 
 | 		return -1; // errno set by mmap | 
 | 	pt->stacktop = stackbot + pt->stacksize; | 
 | 	/* Want the top of the stack populated, but not the rest of the stack; | 
 | 	 * that'll grow on demand (up to pt->stacksize) */ | 
 | 	force_a_page_fault = ACCESS_ONCE(*(int*)(pt->stacktop - sizeof(int))); | 
 | 	return 0; | 
 | } | 
 |  | 
 | // Warning, this will reuse numbers eventually | 
 | static int get_next_pid(void) | 
 | { | 
 | 	static uint32_t next_pid = 0; | 
 | 	return next_pid++; | 
 | } | 
 |  | 
 | int pthread_attr_setstacksize(pthread_attr_t *attr, size_t stacksize) | 
 | { | 
 | 	attr->stacksize = stacksize; | 
 | 	return 0; | 
 | } | 
 |  | 
 | int pthread_attr_getstacksize(const pthread_attr_t *attr, size_t *stacksize) | 
 | { | 
 | 	*stacksize = attr->stacksize; | 
 | 	return 0; | 
 | } | 
 |  | 
 | int pthread_attr_setguardsize(pthread_attr_t *attr, size_t guardsize) | 
 | { | 
 | 	attr->guardsize = guardsize; | 
 | 	return 0; | 
 | } | 
 |  | 
 | int pthread_attr_getguardsize(pthread_attr_t *attr, size_t *guardsize) | 
 | { | 
 | 	*guardsize = attr->guardsize; | 
 | 	return 0; | 
 | } | 
 |  | 
 | int pthread_attr_getstack(const pthread_attr_t *__restrict __attr, | 
 | 						   void **__stackaddr, size_t *__stacksize) | 
 | { | 
 | 	*__stackaddr = __attr->stackaddr; | 
 | 	*__stacksize = __attr->stacksize; | 
 | 	return 0; | 
 | } | 
 |  | 
 | int pthread_getattr_np(pthread_t __th, pthread_attr_t *__attr) | 
 | { | 
 | 	struct uthread *uth = (struct uthread*)__th; | 
 |  | 
 | 	__attr->stackaddr = __th->stacktop - __th->stacksize; | 
 | 	__attr->stacksize = __th->stacksize; | 
 | 	if (atomic_read(&uth->join_ctl.state) == UTH_JOIN_DETACHED) | 
 | 		__attr->detachstate = PTHREAD_CREATE_DETACHED; | 
 | 	else | 
 | 		__attr->detachstate = PTHREAD_CREATE_JOINABLE; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Do whatever init you want.  At some point call uthread_2ls_init() and pass it | 
 |  * a uthread representing thread0 (int main()) */ | 
 | void pth_sched_init(void) | 
 | { | 
 | 	uintptr_t mmap_block; | 
 | 	struct pthread_tcb *t; | 
 | 	int ret; | 
 |  | 
 | 	mcs_pdr_init(&queue_lock); | 
 | 	/* Create a pthread_tcb for the main thread */ | 
 | 	ret = posix_memalign((void**)&t, __alignof__(struct pthread_tcb), | 
 | 	                     sizeof(struct pthread_tcb)); | 
 | 	assert(!ret); | 
 | 	memset(t, 0, sizeof(struct pthread_tcb));	/* aggressively 0 for bugs */ | 
 | 	t->id = get_next_pid(); | 
 | 	t->stacksize = USTACK_NUM_PAGES * PGSIZE; | 
 | 	t->stacktop = (void*)USTACKTOP; | 
 | 	t->state = PTH_RUNNING; | 
 | 	/* implies that sigmasks are longs, which they are. */ | 
 | 	assert(t->id == 0); | 
 | 	SLIST_INIT(&t->cr_stack); | 
 | 	/* Put the new pthread (thread0) on the active queue */ | 
 | 	mcs_pdr_lock(&queue_lock); | 
 | 	threads_active++; | 
 | 	TAILQ_INSERT_TAIL(&active_queue, t, tq_next); | 
 | 	mcs_pdr_unlock(&queue_lock); | 
 | 	/* Tell the kernel where and how we want to receive events.  This is just an | 
 | 	 * example of what to do to have a notification turned on.  We're turning on | 
 | 	 * USER_IPIs, posting events to vcore 0's vcpd, and telling the kernel to | 
 | 	 * send to vcore 0.  Note sys_self_notify will ignore the vcoreid and | 
 | 	 * private preference.  Also note that enable_kevent() is just an example, | 
 | 	 * and you probably want to use parts of event.c to do what you want. */ | 
 | 	enable_kevent(EV_USER_IPI, 0, EVENT_IPI | EVENT_VCORE_PRIVATE); | 
 | 	/* Set up the per-vcore structs to track outstanding syscalls */ | 
 | 	sysc_mgmt = malloc(sizeof(struct sysc_mgmt) * max_vcores()); | 
 | 	assert(sysc_mgmt); | 
 | #if 1   /* Independent ev_mboxes per vcore */ | 
 | 	/* Get a block of pages for our per-vcore (but non-VCPD) ev_qs */ | 
 | 	mmap_block = (uintptr_t)mmap(0, PGSIZE * 2 * max_vcores(), | 
 | 	                             PROT_WRITE | PROT_READ, | 
 | 	                             MAP_POPULATE | MAP_ANONYMOUS | MAP_PRIVATE, | 
 | 	                             -1, 0); | 
 | 	assert(mmap_block); | 
 | 	/* Could be smarter and do this on demand (in case we don't actually want | 
 | 	 * max_vcores()). */ | 
 | 	for (int i = 0; i < max_vcores(); i++) { | 
 | 		/* Each vcore needs to point to a non-VCPD ev_q */ | 
 | 		sysc_mgmt[i].ev_q = get_eventq_raw(); | 
 | 		sysc_mgmt[i].ev_q->ev_flags = EVENT_IPI | EVENT_INDIR | | 
 | 		                              EVENT_SPAM_INDIR | EVENT_WAKEUP; | 
 | 		sysc_mgmt[i].ev_q->ev_vcore = i; | 
 | 		sysc_mgmt[i].ev_q->ev_mbox->type = EV_MBOX_UCQ; | 
 | 		ucq_init_raw(&sysc_mgmt[i].ev_q->ev_mbox->ucq, | 
 | 		             mmap_block + (2 * i    ) * PGSIZE,  | 
 | 		             mmap_block + (2 * i + 1) * PGSIZE);  | 
 | 	} | 
 | 	/* Technically, we should munmap and free what we've alloc'd, but the | 
 | 	 * kernel will clean it up for us when we exit. */ | 
 | #endif  | 
 | #if 0   /* One global ev_mbox, separate ev_q per vcore */ | 
 | 	struct event_mbox *sysc_mbox = malloc(sizeof(struct event_mbox)); | 
 | 	uintptr_t two_pages = (uintptr_t)mmap(0, PGSIZE * 2, PROT_WRITE | PROT_READ, | 
 | 	                                      MAP_POPULATE | MAP_ANONYMOUS | | 
 | 	                                      MAP_PRIVATE, -1, 0); | 
 | 	printd("Global ucq: %08p\n", &sysc_mbox->ev_msgs); | 
 | 	assert(sysc_mbox); | 
 | 	assert(two_pages); | 
 | 	memset(sysc_mbox, 0, sizeof(struct event_mbox)); | 
 | 	sysc_mbox->type = EV_MBOX_UCQ; | 
 | 	ucq_init_raw(&sysc_mbox->ucq, two_pages, two_pages + PGSIZE); | 
 | 	for (int i = 0; i < max_vcores(); i++) { | 
 | 		sysc_mgmt[i].ev_q = get_eventq_slim(); | 
 | 		sysc_mgmt[i].ev_q->ev_flags = EVENT_IPI | EVENT_INDIR | | 
 | 		                              EVENT_SPAM_INDIR | EVENT_WAKEUP; | 
 | 		sysc_mgmt[i].ev_q->ev_vcore = i; | 
 | 		sysc_mgmt[i].ev_q->ev_mbox = sysc_mbox; | 
 | 	} | 
 | #endif | 
 | 	uthread_2ls_init((struct uthread*)t, pth_handle_syscall, NULL); | 
 | 	atomic_init(&threads_total, 1);			/* one for thread0 */ | 
 | } | 
 |  | 
 | /* Make sure our scheduler runs inside an MCP rather than an SCP. */ | 
 | void pthread_mcp_init() | 
 | { | 
 | 	/* Prevent this from happening more than once. */ | 
 | 	parlib_init_once_racy(return); | 
 |  | 
 | 	uthread_mcp_init(); | 
 | 	/* From here forward we are an MCP running on vcore 0. Could consider doing | 
 | 	 * other pthread specific initialization based on knowing we are an mcp | 
 | 	 * after this point. */ | 
 | } | 
 |  | 
 | int __pthread_create(pthread_t *thread, const pthread_attr_t *attr, | 
 |                      void *(*start_routine)(void *), void *arg) | 
 | { | 
 | 	struct uth_thread_attr uth_attr = {0}; | 
 | 	struct pthread_tcb *parent; | 
 | 	struct pthread_tcb *pthread; | 
 | 	int ret; | 
 |  | 
 | 	/* For now, unconditionally become an mcp when creating a pthread (if not | 
 | 	 * one already). This may change in the future once we support 2LSs in an | 
 | 	 * SCP. */ | 
 | 	pthread_mcp_init(); | 
 |  | 
 | 	parent = (struct pthread_tcb*)current_uthread; | 
 | 	ret = posix_memalign((void**)&pthread, __alignof__(struct pthread_tcb), | 
 | 	                     sizeof(struct pthread_tcb)); | 
 | 	assert(!ret); | 
 | 	memset(pthread, 0, sizeof(struct pthread_tcb));	/* aggressively 0 for bugs*/ | 
 | 	pthread->stacksize = PTHREAD_STACK_SIZE;	/* default */ | 
 | 	pthread->state = PTH_CREATED; | 
 | 	pthread->id = get_next_pid(); | 
 | 	SLIST_INIT(&pthread->cr_stack); | 
 | 	/* Respect the attributes */ | 
 | 	if (attr) { | 
 | 		if (attr->stacksize)					/* don't set a 0 stacksize */ | 
 | 			pthread->stacksize = attr->stacksize; | 
 | 		if (attr->detachstate == PTHREAD_CREATE_DETACHED) | 
 | 			uth_attr.detached = TRUE; | 
 | 	} | 
 | 	/* allocate a stack */ | 
 | 	if (__pthread_allocate_stack(pthread)) | 
 | 		printf("We're fucked\n"); | 
 | 	/* Set the u_tf to start up in __pthread_run, which will call the real | 
 | 	 * start_routine and pass it the arg.  Note those aren't set until later in | 
 | 	 * pthread_create(). */ | 
 | 	init_user_ctx(&pthread->uthread.u_ctx, (uintptr_t)&__pthread_run, | 
 | 	              (uintptr_t)(pthread->stacktop)); | 
 | 	pthread->start_routine = start_routine; | 
 | 	pthread->arg = arg; | 
 | 	/* Initialize the uthread */ | 
 | 	if (need_tls) | 
 | 		uth_attr.want_tls = TRUE; | 
 | 	uthread_init((struct uthread*)pthread, &uth_attr); | 
 | 	*thread = pthread; | 
 | 	atomic_inc(&threads_total); | 
 | 	return 0; | 
 | } | 
 |  | 
 | int pthread_create(pthread_t *thread, const pthread_attr_t *attr, | 
 |                    void *(*start_routine)(void *), void *arg) | 
 | { | 
 | 	if (!__pthread_create(thread, attr, start_routine, arg)) | 
 | 		pth_thread_runnable((struct uthread*)*thread); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Helper that all pthread-controlled yield paths call.  Just does some | 
 |  * accounting.  This is another example of how the much-loathed (and loved) | 
 |  * active queue is keeping us honest.  Need to export for sem and friends. */ | 
 | void __pthread_generic_yield(struct pthread_tcb *pthread) | 
 | { | 
 | 	mcs_pdr_lock(&queue_lock); | 
 | 	threads_active--; | 
 | 	TAILQ_REMOVE(&active_queue, pthread, tq_next); | 
 | 	mcs_pdr_unlock(&queue_lock); | 
 | } | 
 |  | 
 | int pthread_join(struct pthread_tcb *join_target, void **retval) | 
 | { | 
 | 	uthread_join((struct uthread*)join_target, retval); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static inline void pthread_exit_no_cleanup(void *ret) | 
 | { | 
 | 	struct pthread_tcb *pthread = pthread_self(); | 
 |  | 
 | 	while (SLIST_FIRST(&pthread->cr_stack)) | 
 | 		pthread_cleanup_pop(FALSE); | 
 | 	destroy_dtls(); | 
 | 	uth_2ls_thread_exit(ret); | 
 | } | 
 |  | 
 | void pthread_exit(void *ret) | 
 | { | 
 | 	struct pthread_tcb *pthread = pthread_self(); | 
 | 	while (SLIST_FIRST(&pthread->cr_stack)) | 
 | 		pthread_cleanup_pop(TRUE); | 
 | 	pthread_exit_no_cleanup(ret); | 
 | } | 
 |  | 
 | /* Cooperative yielding of the processor, to allow other threads to run */ | 
 | int pthread_yield(void) | 
 | { | 
 | 	uthread_sched_yield(); | 
 | 	return 0; | 
 | } | 
 |  | 
 | int pthread_cancel(pthread_t __th) | 
 | { | 
 | 	fprintf(stderr, "Unsupported %s!", __FUNCTION__); | 
 | 	abort(); | 
 | 	return -1; | 
 | } | 
 |  | 
 | void pthread_cleanup_push(void (*routine)(void *), void *arg) | 
 | { | 
 | 	struct pthread_tcb *p = pthread_self(); | 
 | 	struct pthread_cleanup_routine *r = malloc(sizeof(*r)); | 
 | 	r->routine = routine; | 
 | 	r->arg = arg; | 
 | 	SLIST_INSERT_HEAD(&p->cr_stack, r, cr_next); | 
 | } | 
 |  | 
 | void pthread_cleanup_pop(int execute) | 
 | { | 
 | 	struct pthread_tcb *p = pthread_self(); | 
 | 	struct pthread_cleanup_routine *r = SLIST_FIRST(&p->cr_stack); | 
 | 	if (r) { | 
 | 		SLIST_REMOVE_HEAD(&p->cr_stack, cr_next); | 
 | 		if (execute) | 
 | 			r->routine(r->arg); | 
 | 		free(r); | 
 | 	} | 
 | } | 
 |  | 
 | int pthread_mutexattr_init(pthread_mutexattr_t *attr) | 
 | { | 
 | 	attr->type = PTHREAD_MUTEX_DEFAULT; | 
 | 	return 0; | 
 | } | 
 |  | 
 | int pthread_mutexattr_destroy(pthread_mutexattr_t *attr) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | int pthread_attr_setdetachstate(pthread_attr_t *__attr, int __detachstate) | 
 | { | 
 | 	__attr->detachstate = __detachstate; | 
 | 	return 0; | 
 | } | 
 |  | 
 | int pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *type) | 
 | { | 
 | 	*type = attr ? attr->type : PTHREAD_MUTEX_DEFAULT; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static bool __pthread_mutex_type_ok(int type) | 
 | { | 
 | 	switch (type) { | 
 | 	case PTHREAD_MUTEX_NORMAL: | 
 | 	case PTHREAD_MUTEX_RECURSIVE: | 
 | 		return TRUE; | 
 | 	} | 
 | 	return FALSE; | 
 | } | 
 |  | 
 | int pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type) | 
 | { | 
 | 	if (!__pthread_mutex_type_ok(type)) | 
 | 		return EINVAL; | 
 | 	attr->type = type; | 
 | 	return 0; | 
 | } | 
 |  | 
 | int pthread_mutex_init(pthread_mutex_t *m, const pthread_mutexattr_t *attr) | 
 | { | 
 | 	if (attr) { | 
 | 		if (!__pthread_mutex_type_ok(attr->type)) | 
 | 			return EINVAL; | 
 | 		m->type = attr->type; | 
 | 	} else { | 
 | 		m->type = PTHREAD_MUTEX_NORMAL; | 
 | 	} | 
 | 	switch (m->type) { | 
 | 	case PTHREAD_MUTEX_NORMAL: | 
 | 		uth_mutex_init(&m->mtx); | 
 | 		break; | 
 | 	case PTHREAD_MUTEX_RECURSIVE: | 
 | 		uth_recurse_mutex_init(&m->r_mtx); | 
 | 		break; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | int pthread_mutex_lock(pthread_mutex_t *m) | 
 | { | 
 | 	switch (m->type) { | 
 | 	case PTHREAD_MUTEX_NORMAL: | 
 | 		uth_mutex_lock(&m->mtx); | 
 | 		break; | 
 | 	case PTHREAD_MUTEX_RECURSIVE: | 
 | 		uth_recurse_mutex_lock(&m->r_mtx); | 
 | 		break; | 
 | 	default: | 
 | 		panic("Bad pth mutex type %d!", m->type); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | int pthread_mutex_trylock(pthread_mutex_t *m) | 
 | { | 
 | 	bool got_it; | 
 |  | 
 | 	switch (m->type) { | 
 | 	case PTHREAD_MUTEX_NORMAL: | 
 | 		got_it = uth_mutex_trylock(&m->mtx); | 
 | 		break; | 
 | 	case PTHREAD_MUTEX_RECURSIVE: | 
 | 		got_it = uth_recurse_mutex_trylock(&m->r_mtx); | 
 | 		break; | 
 | 	default: | 
 | 		panic("Bad pth mutex type %d!", m->type); | 
 | 	} | 
 | 	return got_it ? 0 : EBUSY; | 
 | } | 
 |  | 
 | int pthread_mutex_unlock(pthread_mutex_t *m) | 
 | { | 
 | 	switch (m->type) { | 
 | 	case PTHREAD_MUTEX_NORMAL: | 
 | 		uth_mutex_unlock(&m->mtx); | 
 | 		break; | 
 | 	case PTHREAD_MUTEX_RECURSIVE: | 
 | 		uth_recurse_mutex_unlock(&m->r_mtx); | 
 | 		break; | 
 | 	default: | 
 | 		panic("Bad pth mutex type %d!", m->type); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | int pthread_mutex_destroy(pthread_mutex_t *m) | 
 | { | 
 | 	switch (m->type) { | 
 | 	case PTHREAD_MUTEX_NORMAL: | 
 | 		uth_mutex_destroy(&m->mtx); | 
 | 		break; | 
 | 	case PTHREAD_MUTEX_RECURSIVE: | 
 | 		uth_recurse_mutex_destroy(&m->r_mtx); | 
 | 		break; | 
 | 	default: | 
 | 		panic("Bad pth mutex type %d!", m->type); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | int pthread_mutex_timedlock(pthread_mutex_t *m, const struct timespec *abstime) | 
 | { | 
 | 	bool got_it; | 
 |  | 
 | 	switch (m->type) { | 
 | 	case PTHREAD_MUTEX_NORMAL: | 
 | 		got_it = uth_mutex_timed_lock(&m->mtx, abstime); | 
 | 		break; | 
 | 	case PTHREAD_MUTEX_RECURSIVE: | 
 | 		got_it = uth_recurse_mutex_timed_lock(&m->r_mtx, abstime); | 
 | 		break; | 
 | 	default: | 
 | 		panic("Bad pth mutex type %d!", m->type); | 
 | 	} | 
 | 	return got_it ? 0 : ETIMEDOUT; | 
 | } | 
 |  | 
 | int pthread_cond_init(pthread_cond_t *c, const pthread_condattr_t *a) | 
 | { | 
 | 	if (a) { | 
 | 		if (a->pshared != PTHREAD_PROCESS_PRIVATE) | 
 | 			fprintf(stderr, "pthreads only supports private condvars"); | 
 | 		/* We also ignore clock_id */ | 
 | 	} | 
 | 	uth_cond_var_init(c); | 
 | 	return 0; | 
 | } | 
 |  | 
 | int pthread_cond_destroy(pthread_cond_t *c) | 
 | { | 
 | 	uth_cond_var_destroy(c); | 
 | 	return 0; | 
 | } | 
 |  | 
 | int pthread_cond_broadcast(pthread_cond_t *c) | 
 | { | 
 | 	uth_cond_var_broadcast(c); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* spec says this needs to work regardless of whether or not it holds the mutex | 
 |  * already. */ | 
 | int pthread_cond_signal(pthread_cond_t *c) | 
 | { | 
 | 	uth_cond_var_signal(c); | 
 | 	return 0; | 
 | } | 
 |  | 
 | int pthread_cond_wait(pthread_cond_t *c, pthread_mutex_t *m) | 
 | { | 
 | 	switch (m->type) { | 
 | 	case PTHREAD_MUTEX_NORMAL: | 
 | 		uth_cond_var_wait(c, &m->mtx); | 
 | 		break; | 
 | 	case PTHREAD_MUTEX_RECURSIVE: | 
 | 		uth_cond_var_wait_recurse(c, &m->r_mtx); | 
 | 		break; | 
 | 	default: | 
 | 		panic("Bad pth mutex type %d!", m->type); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | int pthread_cond_timedwait(pthread_cond_t *c, pthread_mutex_t *m, | 
 |                            const struct timespec *abstime) | 
 | { | 
 | 	bool got_it; | 
 |  | 
 | 	switch (m->type) { | 
 | 	case PTHREAD_MUTEX_NORMAL: | 
 | 		got_it = uth_cond_var_timed_wait(c, &m->mtx, abstime); | 
 | 		break; | 
 | 	case PTHREAD_MUTEX_RECURSIVE: | 
 | 		got_it = uth_cond_var_timed_wait_recurse(c, &m->r_mtx, abstime); | 
 | 		break; | 
 | 	default: | 
 | 		panic("Bad pth mutex type %d!", m->type); | 
 | 	} | 
 | 	return got_it ? 0 : ETIMEDOUT; | 
 | } | 
 |  | 
 | int pthread_condattr_init(pthread_condattr_t *a) | 
 | { | 
 | 	a->pshared = PTHREAD_PROCESS_PRIVATE; | 
 | 	a->clock = 0; | 
 | 	return 0; | 
 | } | 
 |  | 
 | int pthread_condattr_destroy(pthread_condattr_t *a) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | int pthread_condattr_getpshared(pthread_condattr_t *a, int *s) | 
 | { | 
 | 	*s = a->pshared; | 
 | 	return 0; | 
 | } | 
 |  | 
 | int pthread_condattr_setpshared(pthread_condattr_t *a, int s) | 
 | { | 
 | 	a->pshared = s; | 
 | 	if (s == PTHREAD_PROCESS_SHARED) { | 
 | 		printf("Warning: we don't do shared pthread condvars btw diff MCPs\n"); | 
 | 		return -1; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | int pthread_condattr_getclock(const pthread_condattr_t *attr, | 
 |                               clockid_t *clock_id) | 
 | { | 
 | 	*clock_id = attr->clock; | 
 | 	return 0; | 
 | } | 
 |  | 
 | int pthread_condattr_setclock(pthread_condattr_t *attr, clockid_t clock_id) | 
 | { | 
 | 	printf("Warning: we don't do pthread condvar clock stuff\n"); | 
 | 	attr->clock = clock_id; | 
 | 	return 0; | 
 | } | 
 |  | 
 | int pthread_rwlock_init(pthread_rwlock_t *rwl, const pthread_rwlockattr_t *a) | 
 | { | 
 | 	uth_rwlock_init(rwl); | 
 | 	return 0; | 
 | } | 
 |  | 
 | int pthread_rwlock_destroy(pthread_rwlock_t *rwl) | 
 | { | 
 | 	uth_rwlock_destroy(rwl); | 
 | 	return 0; | 
 | } | 
 |  | 
 | int pthread_rwlock_rdlock(pthread_rwlock_t *rwl) | 
 | { | 
 | 	uth_rwlock_rdlock(rwl); | 
 | 	return 0; | 
 | } | 
 |  | 
 | int pthread_rwlock_tryrdlock(pthread_rwlock_t *rwl) | 
 | { | 
 | 	return uth_rwlock_try_rdlock(rwl) ? 0 : EBUSY; | 
 | } | 
 |  | 
 | int pthread_rwlock_wrlock(pthread_rwlock_t *rwl) | 
 | { | 
 | 	uth_rwlock_wrlock(rwl); | 
 | 	return 0; | 
 | } | 
 |  | 
 | int pthread_rwlock_trywrlock(pthread_rwlock_t *rwl) | 
 | { | 
 | 	return uth_rwlock_try_wrlock(rwl) ? 0 : EBUSY; | 
 | } | 
 |  | 
 | int pthread_rwlock_unlock(pthread_rwlock_t *rwl) | 
 | { | 
 | 	uth_rwlock_unlock(rwl); | 
 | 	return 0; | 
 | } | 
 |  | 
 | pthread_t pthread_self(void) | 
 | { | 
 | 	return (struct pthread_tcb*)uthread_self(); | 
 | } | 
 |  | 
 | int pthread_equal(pthread_t t1, pthread_t t2) | 
 | { | 
 |   return t1 == t2; | 
 | } | 
 |  | 
 | int pthread_once(pthread_once_t *once_control, void (*init_routine)(void)) | 
 | { | 
 | 	/* pthread_once's init routine doesn't take an argument, like parlibs.  This | 
 | 	 * means the func will be run with an argument passed to it, but it'll be | 
 | 	 * ignored. */ | 
 | 	parlib_run_once(once_control, (void (*)(void *))init_routine, NULL); | 
 | 	/* The return for pthread_once isn't an error from the function, it's just | 
 | 	 * an overall error.  Note pthread's init_routine() has no return value. */ | 
 | 	return 0; | 
 | } | 
 |  | 
 | int pthread_barrier_init(pthread_barrier_t *b, | 
 |                          const pthread_barrierattr_t *a, int count) | 
 | { | 
 | 	b->total_threads = count; | 
 | 	b->sense = 0; | 
 | 	atomic_set(&b->count, count); | 
 | 	spin_pdr_init(&b->lock); | 
 | 	__uth_sync_init(&b->waiters); | 
 | 	b->nr_waiters = 0; | 
 | 	return 0; | 
 | } | 
 |  | 
 | struct barrier_junk { | 
 | 	pthread_barrier_t				*b; | 
 | 	int								ls; | 
 | }; | 
 |  | 
 | /* Helper for spinning sync, returns TRUE if it is okay to keep spinning. | 
 |  * | 
 |  * Alternatives include: | 
 |  * 		old_count <= num_vcores() (barrier code, pass in old_count as *state, | 
 |  * 		                           but this only works if every awake pthread | 
 |  * 		                           will belong to the barrier). | 
 |  * 		just spin for a bit       (use *state to track spins) | 
 |  * 		FALSE                     (always is safe) | 
 |  * 		etc... | 
 |  * 'threads_ready' isn't too great since sometimes it'll be non-zero when it is | 
 |  * about to become 0.  We really want "I have no threads waiting to run that | 
 |  * aren't going to run on their on unless this core yields instead of spins". */ | 
 | /* TODO: consider making this a 2LS op */ | 
 | static inline bool safe_to_spin(unsigned int *state) | 
 | { | 
 | 	return (*state)++ % PTHREAD_BARRIER_SPINS; | 
 | } | 
 |  | 
 | /* Callback/bottom half of barrier. */ | 
 | static void __pth_barrier_cb(struct uthread *uthread, void *junk) | 
 | { | 
 | 	pthread_barrier_t *b = ((struct barrier_junk*)junk)->b; | 
 | 	int ls = ((struct barrier_junk*)junk)->ls; | 
 |  | 
 | 	uthread_has_blocked(uthread, UTH_EXT_BLK_MUTEX); | 
 | 	/* TODO: if we used a trylock, we could bail as soon as we see sense */ | 
 | 	spin_pdr_lock(&b->lock); | 
 | 	/* If sense is ls (our free value), we lost the race and shouldn't sleep */ | 
 | 	if (b->sense == ls) { | 
 | 		spin_pdr_unlock(&b->lock); | 
 | 		uthread_runnable(uthread); | 
 | 		return; | 
 | 	} | 
 | 	/* otherwise, we sleep */ | 
 | 	__uth_sync_enqueue(uthread, &b->waiters); | 
 | 	b->nr_waiters++; | 
 | 	spin_pdr_unlock(&b->lock); | 
 | } | 
 |  | 
 | /* We assume that the same threads participating in the barrier this time will | 
 |  * also participate next time.  Imagine a thread stopped right after its fetch | 
 |  * and add - we know it is coming through eventually.  We finish and change the | 
 |  * sense, which should allow the delayed thread to eventually break through. | 
 |  * But if another n threads come in first, we'll set the sense back to the old | 
 |  * value, thereby catching the delayed thread til the next barrier.  | 
 |  * | 
 |  * A note on preemption: if any thread gets preempted and it is never dealt | 
 |  * with, eventually we deadlock, with all threads waiting on the last one to | 
 |  * enter (and any stragglers from one run will be the last in the next run). | 
 |  * One way or another, we need to handle preemptions.  The current 2LS requests | 
 |  * an IPI for a preempt, so we'll be fine.  Any other strategies will need to | 
 |  * consider how barriers work.  Any time we sleep, we'll be okay (since that | 
 |  * frees up our core to handle preemptions/run other threads. */ | 
 | int pthread_barrier_wait(pthread_barrier_t *b) | 
 | { | 
 | 	unsigned int spin_state = 0; | 
 | 	int ls = !b->sense;	/* when b->sense is the value we read, then we're free*/ | 
 | 	uth_sync_t restartees; | 
 | 	struct uthread *uth_i; | 
 | 	struct barrier_junk local_junk; | 
 | 	 | 
 | 	long old_count = atomic_fetch_and_add(&b->count, -1); | 
 |  | 
 | 	if (old_count == 1) { | 
 | 		/* TODO: we might want to grab the lock right away, so a few short | 
 | 		 * circuit faster? */ | 
 | 		atomic_set(&b->count, b->total_threads); | 
 | 		/* we still need to maintain ordering btw count and sense, in case | 
 | 		 * another thread doesn't sleep (if we wrote sense first, they could | 
 | 		 * break out, race around, and muck with count before it is time) */ | 
 | 		/* wmb(); handled by the spin lock */ | 
 | 		spin_pdr_lock(&b->lock); | 
 | 		/* Sense is only protected in addition to decisions to sleep */ | 
 | 		b->sense = ls;	/* set to free everyone */ | 
 | 		/* All access to nr_waiters is protected by the lock */ | 
 | 		if (!b->nr_waiters) { | 
 | 			spin_pdr_unlock(&b->lock); | 
 | 			return PTHREAD_BARRIER_SERIAL_THREAD; | 
 | 		} | 
 | 		__uth_sync_init(&restartees); | 
 | 		__uth_sync_swap(&restartees, &b->waiters); | 
 | 		b->nr_waiters = 0; | 
 | 		spin_pdr_unlock(&b->lock); | 
 | 		__uth_sync_wake_all(&restartees); | 
 | 		return PTHREAD_BARRIER_SERIAL_THREAD; | 
 | 	} else { | 
 | 		/* Spin if there are no other threads to run.  No sense sleeping */ | 
 | 		do { | 
 | 			if (b->sense == ls) | 
 | 				return 0; | 
 | 			cpu_relax(); | 
 | 		} while (safe_to_spin(&spin_state)); | 
 |  | 
 | 		/* Try to sleep, when we wake/return, we're free to go */ | 
 | 		local_junk.b = b; | 
 | 		local_junk.ls = ls; | 
 | 		uthread_yield(TRUE, __pth_barrier_cb, &local_junk); | 
 | 		// assert(b->sense == ls); | 
 | 		return 0; | 
 | 	} | 
 | } | 
 |  | 
 | int pthread_barrier_destroy(pthread_barrier_t *b) | 
 | { | 
 | 	assert(!b->nr_waiters); | 
 | 	__uth_sync_destroy(&b->waiters); | 
 | 	/* Free any locks (if we end up using an MCS) */ | 
 | 	return 0; | 
 | } | 
 |  | 
 | int pthread_detach(pthread_t thread) | 
 | { | 
 | 	uthread_detach((struct uthread*)thread); | 
 | 	return 0; | 
 | } | 
 |  | 
 | int pthread_kill(pthread_t thread, int signo) | 
 | { | 
 | 	return uthread_signal(&thread->uthread, signo); | 
 | } | 
 |  | 
 | int pthread_sigmask(int how, const sigset_t *set, sigset_t *oset) | 
 | { | 
 | 	int ret = sigprocmask(how, set, oset); | 
 |  | 
 | 	/* Ensures any pending signals we just unmasked get processed. */ | 
 | 	if (set && ret == 0) | 
 | 		pthread_yield(); | 
 | 	return ret; | 
 | } | 
 |  | 
 | int pthread_sigqueue(pthread_t *thread, int sig, const union sigval value) | 
 | { | 
 | 	printf("pthread_sigqueue is not yet implemented!"); | 
 | 	return -1; | 
 | } | 
 |  | 
 | int pthread_key_create(pthread_key_t *key, void (*destructor)(void*)) | 
 | { | 
 | 	*key = dtls_key_create(destructor); | 
 | 	assert(key); | 
 | 	return 0; | 
 | } | 
 |  | 
 | int pthread_key_delete(pthread_key_t key) | 
 | { | 
 | 	dtls_key_delete(key); | 
 | 	return 0; | 
 | } | 
 |  | 
 | void *pthread_getspecific(pthread_key_t key) | 
 | { | 
 | 	return get_dtls(key); | 
 | } | 
 |  | 
 | int pthread_setspecific(pthread_key_t key, const void *value) | 
 | { | 
 | 	set_dtls(key, (void*)value); | 
 | 	return 0; | 
 | } | 
 |  | 
 |  | 
 | /* Scheduling Stuff.  Actually, these don't tell the 2LS anything - they just | 
 |  * pretend to muck with attrs and params, as expected by pthreads apps. */ | 
 |  | 
 | int pthread_attr_setschedparam(pthread_attr_t *attr, | 
 |                                const struct sched_param *param) | 
 | { | 
 | 	/* The set of acceptable priorities are based on the scheduling policy. | 
 | 	 * We'll just accept any old number, since we might not know the policy | 
 | 	 * yet.  I didn't see anything in the man pages saying attr had to have a | 
 | 	 * policy set before setting priority. */ | 
 | 	attr->sched_priority = param->sched_priority; | 
 | 	return 0; | 
 | } | 
 |  | 
 | int pthread_attr_getschedparam(pthread_attr_t *attr, | 
 |                                struct sched_param *param) | 
 | { | 
 | 	param->sched_priority = attr->sched_priority; | 
 | 	return 0; | 
 | } | 
 |  | 
 | int pthread_attr_setschedpolicy(pthread_attr_t *attr, int policy) | 
 | { | 
 | 	attr->sched_policy = policy; | 
 | 	return 0; | 
 | } | 
 |  | 
 | int pthread_attr_getschedpolicy(pthread_attr_t *attr, int *policy) | 
 | { | 
 | 	*policy = attr->sched_policy; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* We only support SCOPE_PROCESS, so we don't even use the attr. */ | 
 | int pthread_attr_setscope(pthread_attr_t *attr, int scope) | 
 | { | 
 | 	if (scope != PTHREAD_SCOPE_PROCESS) | 
 | 		return -ENOTSUP; | 
 | 	return 0; | 
 | } | 
 |  | 
 | int pthread_attr_getscope(pthread_attr_t *attr, int *scope) | 
 | { | 
 | 	*scope = PTHREAD_SCOPE_PROCESS; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Inheritance refers to policy, priority, scope */ | 
 | int pthread_attr_setinheritsched(pthread_attr_t *attr, | 
 |                                  int inheritsched) | 
 | { | 
 | 	switch (inheritsched) { | 
 | 		case PTHREAD_INHERIT_SCHED: | 
 | 		case PTHREAD_EXPLICIT_SCHED: | 
 | 			break; | 
 | 		default: | 
 | 			return -EINVAL; | 
 | 	} | 
 | 	attr->sched_inherit = inheritsched; | 
 | 	return 0; | 
 | } | 
 |  | 
 | int pthread_attr_getinheritsched(const pthread_attr_t *attr, | 
 |                                  int *inheritsched) | 
 | { | 
 | 	*inheritsched = attr->sched_inherit; | 
 | 	return 0; | 
 | } | 
 |  | 
 | int pthread_setschedparam(pthread_t thread, int policy, | 
 |                            const struct sched_param *param) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | int pthread_getschedparam(pthread_t thread, int *policy, | 
 |                            struct sched_param *param) | 
 | { | 
 | 	/* Faking {FIFO, 0}.  It's up to the 2LS to do whatever it wants. */ | 
 | 	*policy = SCHED_FIFO; | 
 | 	param->sched_priority = 0; | 
 | 	return 0; | 
 | } |