| #ifndef __AKAROS_COMPILER_H | 
 | #error "Please don't include <linux/compiler.h> directly, include <compiler.h> instead." | 
 | #endif | 
 |  | 
 | #ifndef __LINUX_COMPILER_H | 
 | #define __LINUX_COMPILER_H | 
 |  | 
 | #ifndef __ASSEMBLY__ | 
 |  | 
 | #ifdef __CHECKER__ | 
 | # define __user		__attribute__((noderef, address_space(1))) | 
 | # define __kernel	__attribute__((address_space(0))) | 
 | # define __safe		__attribute__((safe)) | 
 | # define __force	__attribute__((force)) | 
 | # define __nocast	__attribute__((nocast)) | 
 | # define __iomem	__attribute__((noderef, address_space(2))) | 
 | # define __must_hold(x)	__attribute__((context(x,1,1))) | 
 | # define __acquires(x)	__attribute__((context(x,0,1))) | 
 | # define __releases(x)	__attribute__((context(x,1,0))) | 
 | # define __acquire(x)	__context__(x,1) | 
 | # define __release(x)	__context__(x,-1) | 
 | # define __cond_lock(x,c)	((c) ? ({ __acquire(x); 1; }) : 0) | 
 | # define __percpu	__attribute__((noderef, address_space(3))) | 
 | # define __rcu		__attribute__((noderef, address_space(4))) | 
 | # define __private	__attribute__((noderef)) | 
 | extern void __chk_user_ptr(const volatile void __user *); | 
 | extern void __chk_io_ptr(const volatile void __iomem *); | 
 | # define ACCESS_PRIVATE(p, member) (*((typeof((p)->member) __force *) &(p)->member)) | 
 | #else /* __CHECKER__ */ | 
 | # ifdef STRUCTLEAK_PLUGIN | 
 | #  define __user __attribute__((user)) | 
 | # else | 
 | #  define __user | 
 | # endif | 
 | # define __kernel | 
 | # define __safe | 
 | # define __force | 
 | # define __nocast | 
 | # define __iomem | 
 | # define __chk_user_ptr(x) (void)0 | 
 | # define __chk_io_ptr(x) (void)0 | 
 | # define __builtin_warning(x, y...) (1) | 
 | # define __must_hold(x) | 
 | # define __acquires(x) | 
 | # define __releases(x) | 
 | # define __acquire(x) (void)0 | 
 | # define __release(x) (void)0 | 
 | # define __cond_lock(x,c) (c) | 
 | # define __percpu | 
 | # define __rcu | 
 | # define __private | 
 | # define ACCESS_PRIVATE(p, member) ((p)->member) | 
 | #endif /* __CHECKER__ */ | 
 |  | 
 | /* Indirect macros required for expanded argument pasting, eg. __LINE__. */ | 
 | #define ___PASTE(a,b) a##b | 
 | #define __PASTE(a,b) ___PASTE(a,b) | 
 |  | 
 | #ifdef __KERNEL__ | 
 |  | 
 | #ifdef __GNUC__ | 
 | #include <linux/compiler-gcc.h> | 
 | #endif | 
 |  | 
 | #if defined(CC_USING_HOTPATCH) && !defined(__CHECKER__) | 
 | #define notrace __attribute__((hotpatch(0,0))) | 
 | #else | 
 | #define notrace __attribute__((no_instrument_function)) | 
 | #endif | 
 |  | 
 | /* Intel compiler defines __GNUC__. So we will overwrite implementations | 
 |  * coming from above header files here | 
 |  */ | 
 | #ifdef __INTEL_COMPILER | 
 | # include <linux/compiler-intel.h> | 
 | #endif | 
 |  | 
 | /* Clang compiler defines __GNUC__. So we will overwrite implementations | 
 |  * coming from above header files here | 
 |  */ | 
 | #ifdef __clang__ | 
 | #include <linux/compiler-clang.h> | 
 | #endif | 
 |  | 
 | /* | 
 |  * Generic compiler-dependent macros required for kernel | 
 |  * build go below this comment. Actual compiler/compiler version | 
 |  * specific implementations come from the above header files | 
 |  */ | 
 |  | 
 | struct ftrace_branch_data { | 
 | 	const char *func; | 
 | 	const char *file; | 
 | 	unsigned line; | 
 | 	union { | 
 | 		struct { | 
 | 			unsigned long correct; | 
 | 			unsigned long incorrect; | 
 | 		}; | 
 | 		struct { | 
 | 			unsigned long miss; | 
 | 			unsigned long hit; | 
 | 		}; | 
 | 		unsigned long miss_hit[2]; | 
 | 	}; | 
 | }; | 
 |  | 
 | struct ftrace_likely_data { | 
 | 	struct ftrace_branch_data	data; | 
 | 	unsigned long			constant; | 
 | }; | 
 |  | 
 | /* | 
 |  * Note: DISABLE_BRANCH_PROFILING can be used by special lowlevel code | 
 |  * to disable branch tracing on a per file basis. | 
 |  */ | 
 | #if defined(CONFIG_TRACE_BRANCH_PROFILING) \ | 
 |     && !defined(DISABLE_BRANCH_PROFILING) && !defined(__CHECKER__) | 
 | void ftrace_likely_update(struct ftrace_likely_data *f, int val, | 
 | 			  int expect, int is_constant); | 
 |  | 
 | #define likely_notrace(x)	__builtin_expect(!!(x), 1) | 
 | #define unlikely_notrace(x)	__builtin_expect(!!(x), 0) | 
 |  | 
 | #define __branch_check__(x, expect, is_constant) ({			\ | 
 | 			int ______r;					\ | 
 | 			static struct ftrace_likely_data		\ | 
 | 				__attribute__((__aligned__(4)))		\ | 
 | 				__attribute__((section("_ftrace_annotated_branch"))) \ | 
 | 				______f = {				\ | 
 | 				.data.func = __func__,			\ | 
 | 				.data.file = __FILE__,			\ | 
 | 				.data.line = __LINE__,			\ | 
 | 			};						\ | 
 | 			______r = __builtin_expect(!!(x), expect);	\ | 
 | 			ftrace_likely_update(&______f, ______r,		\ | 
 | 					     expect, is_constant);	\ | 
 | 			______r;					\ | 
 | 		}) | 
 |  | 
 | /* | 
 |  * Using __builtin_constant_p(x) to ignore cases where the return | 
 |  * value is always the same.  This idea is taken from a similar patch | 
 |  * written by Daniel Walker. | 
 |  */ | 
 | # ifndef likely | 
 | #  define likely(x)	(__branch_check__(x, 1, __builtin_constant_p(x))) | 
 | # endif | 
 | # ifndef unlikely | 
 | #  define unlikely(x)	(__branch_check__(x, 0, __builtin_constant_p(x))) | 
 | # endif | 
 |  | 
 | #ifdef CONFIG_PROFILE_ALL_BRANCHES | 
 | /* | 
 |  * "Define 'is'", Bill Clinton | 
 |  * "Define 'if'", Steven Rostedt | 
 |  */ | 
 | #define if(cond, ...) __trace_if( (cond , ## __VA_ARGS__) ) | 
 | #define __trace_if(cond) \ | 
 | 	if (__builtin_constant_p(!!(cond)) ? !!(cond) :			\ | 
 | 	({								\ | 
 | 		int ______r;						\ | 
 | 		static struct ftrace_branch_data			\ | 
 | 			__attribute__((__aligned__(4)))			\ | 
 | 			__attribute__((section("_ftrace_branch")))	\ | 
 | 			______f = {					\ | 
 | 				.func = __func__,			\ | 
 | 				.file = __FILE__,			\ | 
 | 				.line = __LINE__,			\ | 
 | 			};						\ | 
 | 		______r = !!(cond);					\ | 
 | 		______f.miss_hit[______r]++;					\ | 
 | 		______r;						\ | 
 | 	})) | 
 | #endif /* CONFIG_PROFILE_ALL_BRANCHES */ | 
 |  | 
 | #else | 
 | # define likely(x)	__builtin_expect(!!(x), 1) | 
 | # define unlikely(x)	__builtin_expect(!!(x), 0) | 
 | #endif | 
 |  | 
 | /* Optimization barrier */ | 
 | #ifndef barrier | 
 | # define barrier() __memory_barrier() | 
 | #endif | 
 |  | 
 | #ifndef barrier_data | 
 | # define barrier_data(ptr) barrier() | 
 | #endif | 
 |  | 
 | /* Unreachable code */ | 
 | #ifndef unreachable | 
 | # define unreachable() do { } while (1) | 
 | #endif | 
 |  | 
 | /* | 
 |  * KENTRY - kernel entry point | 
 |  * This can be used to annotate symbols (functions or data) that are used | 
 |  * without their linker symbol being referenced explicitly. For example, | 
 |  * interrupt vector handlers, or functions in the kernel image that are found | 
 |  * programatically. | 
 |  * | 
 |  * Not required for symbols exported with EXPORT_SYMBOL, or initcalls. Those | 
 |  * are handled in their own way (with KEEP() in linker scripts). | 
 |  * | 
 |  * KENTRY can be avoided if the symbols in question are marked as KEEP() in the | 
 |  * linker script. For example an architecture could KEEP() its entire | 
 |  * boot/exception vector code rather than annotate each function and data. | 
 |  */ | 
 | #ifndef KENTRY | 
 | # define KENTRY(sym)						\ | 
 | 	extern typeof(sym) sym;					\ | 
 | 	static const unsigned long __kentry_##sym		\ | 
 | 	__used							\ | 
 | 	__attribute__((section("___kentry" "+" #sym ), used))	\ | 
 | 	= (unsigned long)&sym; | 
 | #endif | 
 |  | 
 | #ifndef RELOC_HIDE | 
 | # define RELOC_HIDE(ptr, off)					\ | 
 |   ({ unsigned long __ptr;					\ | 
 |      __ptr = (unsigned long) (ptr);				\ | 
 |     (typeof(ptr)) (__ptr + (off)); }) | 
 | #endif | 
 |  | 
 | #ifndef OPTIMIZER_HIDE_VAR | 
 | #define OPTIMIZER_HIDE_VAR(var) barrier() | 
 | #endif | 
 |  | 
 | /* Not-quite-unique ID. */ | 
 | #ifndef __UNIQUE_ID | 
 | # define __UNIQUE_ID(prefix) __PASTE(__PASTE(__UNIQUE_ID_, prefix), __LINE__) | 
 | #endif | 
 |  | 
 | #if 0 // AKAROS_PORT | 
 | #include <uapi/linux/types.h> | 
 | #else | 
 | #include <sys/types.h> | 
 | typedef uint8_t __u8; | 
 | typedef uint16_t __u16; | 
 | typedef uint32_t __u32; | 
 | typedef uint64_t __u64; | 
 | #endif | 
 |  | 
 | #define __READ_ONCE_SIZE						\ | 
 | ({									\ | 
 | 	switch (size) {							\ | 
 | 	case 1: *(__u8 *)res = *(volatile __u8 *)p; break;		\ | 
 | 	case 2: *(__u16 *)res = *(volatile __u16 *)p; break;		\ | 
 | 	case 4: *(__u32 *)res = *(volatile __u32 *)p; break;		\ | 
 | 	case 8: *(__u64 *)res = *(volatile __u64 *)p; break;		\ | 
 | 	default:							\ | 
 | 		barrier();						\ | 
 | 		__builtin_memcpy((void *)res, (const void *)p, size);	\ | 
 | 		barrier();						\ | 
 | 	}								\ | 
 | }) | 
 |  | 
 | static __always_inline | 
 | void __read_once_size(const volatile void *p, void *res, int size) | 
 | { | 
 | 	__READ_ONCE_SIZE; | 
 | } | 
 |  | 
 | #ifdef CONFIG_KASAN | 
 | /* | 
 |  * This function is not 'inline' because __no_sanitize_address confilcts | 
 |  * with inlining. Attempt to inline it may cause a build failure. | 
 |  * 	https://gcc.gnu.org/bugzilla/show_bug.cgi?id=67368 | 
 |  * '__maybe_unused' allows us to avoid defined-but-not-used warnings. | 
 |  */ | 
 | static __no_sanitize_address __maybe_unused | 
 | void __read_once_size_nocheck(const volatile void *p, void *res, int size) | 
 | { | 
 | 	__READ_ONCE_SIZE; | 
 | } | 
 | #else | 
 | static __always_inline | 
 | void __read_once_size_nocheck(const volatile void *p, void *res, int size) | 
 | { | 
 | 	__READ_ONCE_SIZE; | 
 | } | 
 | #endif | 
 |  | 
 | static __always_inline void __write_once_size(volatile void *p, void *res, int size) | 
 | { | 
 | 	switch (size) { | 
 | 	case 1: *(volatile __u8 *)p = *(__u8 *)res; break; | 
 | 	case 2: *(volatile __u16 *)p = *(__u16 *)res; break; | 
 | 	case 4: *(volatile __u32 *)p = *(__u32 *)res; break; | 
 | 	case 8: *(volatile __u64 *)p = *(__u64 *)res; break; | 
 | 	default: | 
 | 		barrier(); | 
 | 		__builtin_memcpy((void *)p, (const void *)res, size); | 
 | 		barrier(); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Prevent the compiler from merging or refetching reads or writes. The | 
 |  * compiler is also forbidden from reordering successive instances of | 
 |  * READ_ONCE, WRITE_ONCE and ACCESS_ONCE (see below), but only when the | 
 |  * compiler is aware of some particular ordering.  One way to make the | 
 |  * compiler aware of ordering is to put the two invocations of READ_ONCE, | 
 |  * WRITE_ONCE or ACCESS_ONCE() in different C statements. | 
 |  * | 
 |  * In contrast to ACCESS_ONCE these two macros will also work on aggregate | 
 |  * data types like structs or unions. If the size of the accessed data | 
 |  * type exceeds the word size of the machine (e.g., 32 bits or 64 bits) | 
 |  * READ_ONCE() and WRITE_ONCE() will fall back to memcpy(). There's at | 
 |  * least two memcpy()s: one for the __builtin_memcpy() and then one for | 
 |  * the macro doing the copy of variable - '__u' allocated on the stack. | 
 |  * | 
 |  * Their two major use cases are: (1) Mediating communication between | 
 |  * process-level code and irq/NMI handlers, all running on the same CPU, | 
 |  * and (2) Ensuring that the compiler does not  fold, spindle, or otherwise | 
 |  * mutilate accesses that either do not require ordering or that interact | 
 |  * with an explicit memory barrier or atomic instruction that provides the | 
 |  * required ordering. | 
 |  */ | 
 |  | 
 | #define __READ_ONCE(x, check)						\ | 
 | ({									\ | 
 | 	union { typeof(x) __val; char __c[1]; } __u;			\ | 
 | 	if (check)							\ | 
 | 		__read_once_size(&(x), __u.__c, sizeof(x));		\ | 
 | 	else								\ | 
 | 		__read_once_size_nocheck(&(x), __u.__c, sizeof(x));	\ | 
 | 	__u.__val;							\ | 
 | }) | 
 | #define READ_ONCE(x) __READ_ONCE(x, 1) | 
 |  | 
 | /* | 
 |  * Use READ_ONCE_NOCHECK() instead of READ_ONCE() if you need | 
 |  * to hide memory access from KASAN. | 
 |  */ | 
 | #define READ_ONCE_NOCHECK(x) __READ_ONCE(x, 0) | 
 |  | 
 | #define WRITE_ONCE(x, val) \ | 
 | ({							\ | 
 | 	union { typeof(x) __val; char __c[1]; } __u =	\ | 
 | 		{ .__val = (__force typeof(x)) (val) }; \ | 
 | 	__write_once_size(&(x), __u.__c, sizeof(x));	\ | 
 | 	__u.__val;					\ | 
 | }) | 
 |  | 
 | #endif /* __KERNEL__ */ | 
 |  | 
 | #endif /* __ASSEMBLY__ */ | 
 |  | 
 | #ifdef __KERNEL__ | 
 | /* | 
 |  * Allow us to mark functions as 'deprecated' and have gcc emit a nice | 
 |  * warning for each use, in hopes of speeding the functions removal. | 
 |  * Usage is: | 
 |  * 		int __deprecated foo(void) | 
 |  */ | 
 | #ifndef __deprecated | 
 | # define __deprecated		/* unimplemented */ | 
 | #endif | 
 |  | 
 | #ifdef MODULE | 
 | #define __deprecated_for_modules __deprecated | 
 | #else | 
 | #define __deprecated_for_modules | 
 | #endif | 
 |  | 
 | #ifndef __must_check | 
 | #define __must_check | 
 | #endif | 
 |  | 
 | #ifndef CONFIG_ENABLE_MUST_CHECK | 
 | #undef __must_check | 
 | #define __must_check | 
 | #endif | 
 | #ifndef CONFIG_ENABLE_WARN_DEPRECATED | 
 | #undef __deprecated | 
 | #undef __deprecated_for_modules | 
 | #define __deprecated | 
 | #define __deprecated_for_modules | 
 | #endif | 
 |  | 
 | #ifndef __malloc | 
 | #define __malloc | 
 | #endif | 
 |  | 
 | /* | 
 |  * Allow us to avoid 'defined but not used' warnings on functions and data, | 
 |  * as well as force them to be emitted to the assembly file. | 
 |  * | 
 |  * As of gcc 3.4, static functions that are not marked with attribute((used)) | 
 |  * may be elided from the assembly file.  As of gcc 3.4, static data not so | 
 |  * marked will not be elided, but this may change in a future gcc version. | 
 |  * | 
 |  * NOTE: Because distributions shipped with a backported unit-at-a-time | 
 |  * compiler in gcc 3.3, we must define __used to be __attribute__((used)) | 
 |  * for gcc >=3.3 instead of 3.4. | 
 |  * | 
 |  * In prior versions of gcc, such functions and data would be emitted, but | 
 |  * would be warned about except with attribute((unused)). | 
 |  * | 
 |  * Mark functions that are referenced only in inline assembly as __used so | 
 |  * the code is emitted even though it appears to be unreferenced. | 
 |  */ | 
 | #ifndef __used | 
 | # define __used			/* unimplemented */ | 
 | #endif | 
 |  | 
 | #ifndef __maybe_unused | 
 | # define __maybe_unused		/* unimplemented */ | 
 | #endif | 
 |  | 
 | #ifndef __always_unused | 
 | # define __always_unused	/* unimplemented */ | 
 | #endif | 
 |  | 
 | #ifndef noinline | 
 | #define noinline | 
 | #endif | 
 |  | 
 | /* | 
 |  * Rather then using noinline to prevent stack consumption, use | 
 |  * noinline_for_stack instead.  For documentation reasons. | 
 |  */ | 
 | #define noinline_for_stack noinline | 
 |  | 
 | #ifndef __always_inline | 
 | #define __always_inline inline | 
 | #endif | 
 |  | 
 | #endif /* __KERNEL__ */ | 
 |  | 
 | /* | 
 |  * From the GCC manual: | 
 |  * | 
 |  * Many functions do not examine any values except their arguments, | 
 |  * and have no effects except the return value.  Basically this is | 
 |  * just slightly more strict class than the `pure' attribute above, | 
 |  * since function is not allowed to read global memory. | 
 |  * | 
 |  * Note that a function that has pointer arguments and examines the | 
 |  * data pointed to must _not_ be declared `const'.  Likewise, a | 
 |  * function that calls a non-`const' function usually must not be | 
 |  * `const'.  It does not make sense for a `const' function to return | 
 |  * `void'. | 
 |  */ | 
 | #ifndef __attribute_const__ | 
 | # define __attribute_const__	/* unimplemented */ | 
 | #endif | 
 |  | 
 | #ifndef __designated_init | 
 | # define __designated_init | 
 | #endif | 
 |  | 
 | #ifndef __latent_entropy | 
 | # define __latent_entropy | 
 | #endif | 
 |  | 
 | #ifndef __randomize_layout | 
 | # define __randomize_layout __designated_init | 
 | #endif | 
 |  | 
 | #ifndef __no_randomize_layout | 
 | # define __no_randomize_layout | 
 | #endif | 
 |  | 
 | #ifndef randomized_struct_fields_start | 
 | # define randomized_struct_fields_start | 
 | # define randomized_struct_fields_end | 
 | #endif | 
 |  | 
 | /* | 
 |  * Tell gcc if a function is cold. The compiler will assume any path | 
 |  * directly leading to the call is unlikely. | 
 |  */ | 
 |  | 
 | #ifndef __cold | 
 | #define __cold | 
 | #endif | 
 |  | 
 | /* Simple shorthand for a section definition */ | 
 | #ifndef __section | 
 | # define __section(S) __attribute__ ((__section__(#S))) | 
 | #endif | 
 |  | 
 | #ifndef __visible | 
 | #define __visible | 
 | #endif | 
 |  | 
 | /* | 
 |  * Assume alignment of return value. | 
 |  */ | 
 | #ifndef __assume_aligned | 
 | #define __assume_aligned(a, ...) | 
 | #endif | 
 |  | 
 |  | 
 | /* Are two types/vars the same type (ignoring qualifiers)? */ | 
 | #ifndef __same_type | 
 | # define __same_type(a, b) __builtin_types_compatible_p(typeof(a), typeof(b)) | 
 | #endif | 
 |  | 
 | /* Is this type a native word size -- useful for atomic operations */ | 
 | #ifndef __native_word | 
 | # define __native_word(t) (sizeof(t) == sizeof(char) || sizeof(t) == sizeof(short) || sizeof(t) == sizeof(int) || sizeof(t) == sizeof(long)) | 
 | #endif | 
 |  | 
 | /* Compile time object size, -1 for unknown */ | 
 | #ifndef __compiletime_object_size | 
 | # define __compiletime_object_size(obj) -1 | 
 | #endif | 
 | #ifndef __compiletime_warning | 
 | # define __compiletime_warning(message) | 
 | #endif | 
 | #ifndef __compiletime_error_foo | 
 | # define __compiletime_error_foo(message) | 
 | /* | 
 |  * Sparse complains of variable sized arrays due to the temporary variable in | 
 |  * __compiletime_assert. Unfortunately we can't just expand it out to make | 
 |  * sparse see a constant array size without breaking compiletime_assert on old | 
 |  * versions of GCC (e.g. 4.2.4), so hide the array from sparse altogether. | 
 |  */ | 
 | # ifndef __CHECKER__ | 
 | #  define __compiletime_error_fallback(condition) \ | 
 | 	do { ((void)sizeof(char[1 - 2 * condition])); } while (0) | 
 | # endif | 
 | #endif | 
 | #ifndef __compiletime_error_fallback | 
 | # define __compiletime_error_fallback(condition) do { } while (0) | 
 | #endif | 
 |  | 
 | #ifdef __OPTIMIZE__ | 
 | # define __compiletime_assert(condition, msg, prefix, suffix)		\ | 
 | 	do {								\ | 
 | 		bool __cond = !(condition);				\ | 
 | 		extern void prefix ## suffix(void) __compiletime_error_foo(msg); \ | 
 | 		if (__cond)						\ | 
 | 			prefix ## suffix();				\ | 
 | 		__compiletime_error_fallback(__cond);			\ | 
 | 	} while (0) | 
 | #else | 
 | # define __compiletime_assert(condition, msg, prefix, suffix) do { } while (0) | 
 | #endif | 
 |  | 
 | #define _compiletime_assert(condition, msg, prefix, suffix) \ | 
 | 	__compiletime_assert(condition, msg, prefix, suffix) | 
 |  | 
 | /** | 
 |  * compiletime_assert - break build and emit msg if condition is false | 
 |  * @condition: a compile-time constant condition to check | 
 |  * @msg:       a message to emit if condition is false | 
 |  * | 
 |  * In tradition of POSIX assert, this macro will break the build if the | 
 |  * supplied condition is *false*, emitting the supplied error message if the | 
 |  * compiler has support to do so. | 
 |  */ | 
 | #define compiletime_assert(condition, msg) \ | 
 | 	_compiletime_assert(condition, msg, __compiletime_assert_, __LINE__) | 
 |  | 
 | #define compiletime_assert_atomic_type(t)				\ | 
 | 	compiletime_assert(__native_word(t),				\ | 
 | 		"Need native word sized stores/loads for atomicity.") | 
 |  | 
 | /* | 
 |  * Prevent the compiler from merging or refetching accesses.  The compiler | 
 |  * is also forbidden from reordering successive instances of ACCESS_ONCE(), | 
 |  * but only when the compiler is aware of some particular ordering.  One way | 
 |  * to make the compiler aware of ordering is to put the two invocations of | 
 |  * ACCESS_ONCE() in different C statements. | 
 |  * | 
 |  * ACCESS_ONCE will only work on scalar types. For union types, ACCESS_ONCE | 
 |  * on a union member will work as long as the size of the member matches the | 
 |  * size of the union and the size is smaller than word size. | 
 |  * | 
 |  * The major use cases of ACCESS_ONCE used to be (1) Mediating communication | 
 |  * between process-level code and irq/NMI handlers, all running on the same CPU, | 
 |  * and (2) Ensuring that the compiler does not  fold, spindle, or otherwise | 
 |  * mutilate accesses that either do not require ordering or that interact | 
 |  * with an explicit memory barrier or atomic instruction that provides the | 
 |  * required ordering. | 
 |  * | 
 |  * If possible use READ_ONCE()/WRITE_ONCE() instead. | 
 |  */ | 
 | #define __ACCESS_ONCE(x) ({ \ | 
 | 	 __maybe_unused typeof(x) __var = (__force typeof(x)) 0; \ | 
 | 	(volatile typeof(x) *)&(x); }) | 
 | #define ACCESS_ONCE(x) (*__ACCESS_ONCE(x)) | 
 |  | 
 | /** | 
 |  * lockless_dereference() - safely load a pointer for later dereference | 
 |  * @p: The pointer to load | 
 |  * | 
 |  * Similar to rcu_dereference(), but for situations where the pointed-to | 
 |  * object's lifetime is managed by something other than RCU.  That | 
 |  * "something other" might be reference counting or simple immortality. | 
 |  * | 
 |  * The seemingly unused variable ___typecheck_p validates that @p is | 
 |  * indeed a pointer type by using a pointer to typeof(*p) as the type. | 
 |  * Taking a pointer to typeof(*p) again is needed in case p is void *. | 
 |  */ | 
 | #define lockless_dereference(p) \ | 
 | ({ \ | 
 | 	typeof(p) _________p1 = READ_ONCE(p); \ | 
 | 	typeof(*(p)) *___typecheck_p __maybe_unused; \ | 
 | 	smp_read_barrier_depends(); /* Dependency order vs. p above. */ \ | 
 | 	(_________p1); \ | 
 | }) | 
 |  | 
 | #endif /* __LINUX_COMPILER_H */ |