|  | /* +++ deflate.c */ | 
|  | /* deflate.c -- compress data using the deflation algorithm | 
|  | * Copyright (C) 1995-1996 Jean-loup Gailly. | 
|  | * For conditions of distribution and use, see copyright notice in zlib.h | 
|  | */ | 
|  |  | 
|  | /* | 
|  | *  ALGORITHM | 
|  | * | 
|  | *      The "deflation" process depends on being able to identify portions | 
|  | *      of the input text which are identical to earlier input (within a | 
|  | *      sliding window trailing behind the input currently being processed). | 
|  | * | 
|  | *      The most straightforward technique turns out to be the fastest for | 
|  | *      most input files: try all possible matches and select the longest. | 
|  | *      The key feature of this algorithm is that insertions into the string | 
|  | *      dictionary are very simple and thus fast, and deletions are avoided | 
|  | *      completely. Insertions are performed at each input character, whereas | 
|  | *      string matches are performed only when the previous match ends. So it | 
|  | *      is preferable to spend more time in matches to allow very fast string | 
|  | *      insertions and avoid deletions. The matching algorithm for small | 
|  | *      strings is inspired from that of Rabin & Karp. A brute force approach | 
|  | *      is used to find longer strings when a small match has been found. | 
|  | *      A similar algorithm is used in comic (by Jan-Mark Wams) and freeze | 
|  | *      (by Leonid Broukhis). | 
|  | *         A previous version of this file used a more sophisticated algorithm | 
|  | *      (by Fiala and Greene) which is guaranteed to run in linear amortized | 
|  | *      time, but has a larger average cost, uses more memory and is patented. | 
|  | *      However the F&G algorithm may be faster for some highly redundant | 
|  | *      files if the parameter max_chain_length (described below) is too large. | 
|  | * | 
|  | *  ACKNOWLEDGEMENTS | 
|  | * | 
|  | *      The idea of lazy evaluation of matches is due to Jan-Mark Wams, and | 
|  | *      I found it in 'freeze' written by Leonid Broukhis. | 
|  | *      Thanks to many people for bug reports and testing. | 
|  | * | 
|  | *  REFERENCES | 
|  | * | 
|  | *      Deutsch, L.P.,"DEFLATE Compressed Data Format Specification". | 
|  | *      Available in ftp://ds.internic.net/rfc/rfc1951.txt | 
|  | * | 
|  | *      A description of the Rabin and Karp algorithm is given in the book | 
|  | *         "Algorithms" by R. Sedgewick, Addison-Wesley, p252. | 
|  | * | 
|  | *      Fiala,E.R., and Greene,D.H. | 
|  | *         Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595 | 
|  | * | 
|  | */ | 
|  |  | 
|  | #include <zutil.h> | 
|  | #include <assert.h> | 
|  | #include "defutil.h" | 
|  |  | 
|  |  | 
|  | /* =========================================================================== | 
|  | *  Function prototypes. | 
|  | */ | 
|  | typedef enum { | 
|  | need_more,      /* block not completed, need more input or more output */ | 
|  | block_done,     /* block flush performed */ | 
|  | finish_started, /* finish started, need only more output at next deflate */ | 
|  | finish_done     /* finish done, accept no more input or output */ | 
|  | } block_state; | 
|  |  | 
|  | typedef block_state (*compress_func) (deflate_state *s, int flush); | 
|  | /* Compression function. Returns the block state after the call. */ | 
|  |  | 
|  | static void fill_window    (deflate_state *s); | 
|  | static block_state deflate_stored (deflate_state *s, int flush); | 
|  | static block_state deflate_fast   (deflate_state *s, int flush); | 
|  | static block_state deflate_slow   (deflate_state *s, int flush); | 
|  | static void lm_init        (deflate_state *s); | 
|  | static void putShortMSB    (deflate_state *s, uInt b); | 
|  | static void flush_pending  (z_streamp strm); | 
|  | static int read_buf        (z_streamp strm, Byte *buf, unsigned size); | 
|  | static uInt longest_match  (deflate_state *s, IPos cur_match); | 
|  |  | 
|  | #ifdef DEBUG_ZLIB | 
|  | static  void check_match (deflate_state *s, IPos start, IPos match, | 
|  | int length); | 
|  | #endif | 
|  |  | 
|  | /* =========================================================================== | 
|  | * Local data | 
|  | */ | 
|  |  | 
|  | #define NIL 0 | 
|  | /* Tail of hash chains */ | 
|  |  | 
|  | #ifndef TOO_FAR | 
|  | #  define TOO_FAR 4096 | 
|  | #endif | 
|  | /* Matches of length 3 are discarded if their distance exceeds TOO_FAR */ | 
|  |  | 
|  | #define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1) | 
|  | /* Minimum amount of lookahead, except at the end of the input file. | 
|  | * See deflate.c for comments about the MIN_MATCH+1. | 
|  | */ | 
|  |  | 
|  | /* Values for max_lazy_match, good_match and max_chain_length, depending on | 
|  | * the desired pack level (0..9). The values given below have been tuned to | 
|  | * exclude worst case performance for pathological files. Better values may be | 
|  | * found for specific files. | 
|  | */ | 
|  | typedef struct config_s { | 
|  | ush good_length; /* reduce lazy search above this match length */ | 
|  | ush max_lazy;    /* do not perform lazy search above this match length */ | 
|  | ush nice_length; /* quit search above this match length */ | 
|  | ush max_chain; | 
|  | compress_func func; | 
|  | } config; | 
|  |  | 
|  | static const config configuration_table[10] = { | 
|  | /*      good lazy nice chain */ | 
|  | /* 0 */ {0,    0,  0,    0, deflate_stored},  /* store only */ | 
|  | /* 1 */ {4,    4,  8,    4, deflate_fast}, /* maximum speed, no lazy matches */ | 
|  | /* 2 */ {4,    5, 16,    8, deflate_fast}, | 
|  | /* 3 */ {4,    6, 32,   32, deflate_fast}, | 
|  |  | 
|  | /* 4 */ {4,    4, 16,   16, deflate_slow},  /* lazy matches */ | 
|  | /* 5 */ {8,   16, 32,   32, deflate_slow}, | 
|  | /* 6 */ {8,   16, 128, 128, deflate_slow}, | 
|  | /* 7 */ {8,   32, 128, 256, deflate_slow}, | 
|  | /* 8 */ {32, 128, 258, 1024, deflate_slow}, | 
|  | /* 9 */ {32, 258, 258, 4096, deflate_slow}}; /* maximum compression */ | 
|  |  | 
|  | /* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4 | 
|  | * For deflate_fast() (levels <= 3) good is ignored and lazy has a different | 
|  | * meaning. | 
|  | */ | 
|  |  | 
|  | #define EQUAL 0 | 
|  | /* result of memcmp for equal strings */ | 
|  |  | 
|  | /* =========================================================================== | 
|  | * Update a hash value with the given input byte | 
|  | * IN  assertion: all calls to UPDATE_HASH are made with consecutive | 
|  | *    input characters, so that a running hash key can be computed from the | 
|  | *    previous key instead of complete recalculation each time. | 
|  | */ | 
|  | #define UPDATE_HASH(s,h,c) (h = (((h)<<s->hash_shift) ^ (c)) & s->hash_mask) | 
|  |  | 
|  |  | 
|  | /* =========================================================================== | 
|  | * Insert string str in the dictionary and set match_head to the previous head | 
|  | * of the hash chain (the most recent string with same hash key). Return | 
|  | * the previous length of the hash chain. | 
|  | * IN  assertion: all calls to INSERT_STRING are made with consecutive | 
|  | *    input characters and the first MIN_MATCH bytes of str are valid | 
|  | *    (except for the last MIN_MATCH-1 bytes of the input file). | 
|  | */ | 
|  | #define INSERT_STRING(s, str, match_head) \ | 
|  | (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \ | 
|  | s->prev[(str) & s->w_mask] = match_head = s->head[s->ins_h], \ | 
|  | s->head[s->ins_h] = (Pos)(str)) | 
|  |  | 
|  | /* =========================================================================== | 
|  | * Initialize the hash table (avoiding 64K overflow for 16 bit systems). | 
|  | * prev[] will be initialized on the fly. | 
|  | */ | 
|  | #define CLEAR_HASH(s) \ | 
|  | s->head[s->hash_size-1] = NIL; \ | 
|  | memset((char *)s->head, 0, (unsigned)(s->hash_size-1)*sizeof(*s->head)); | 
|  |  | 
|  | /* ========================================================================= */ | 
|  | int zlib_deflateInit2( | 
|  | z_streamp strm, | 
|  | int  level, | 
|  | int  method, | 
|  | int  windowBits, | 
|  | int  memLevel, | 
|  | int  strategy | 
|  | ) | 
|  | { | 
|  | deflate_state *s; | 
|  | int noheader = 0; | 
|  | deflate_workspace *mem; | 
|  | char *next; | 
|  |  | 
|  | ush *overlay; | 
|  | /* We overlay pending_buf and d_buf+l_buf. This works since the average | 
|  | * output size for (length,distance) codes is <= 24 bits. | 
|  | */ | 
|  |  | 
|  | if (strm == NULL) return Z_STREAM_ERROR; | 
|  |  | 
|  | strm->msg = NULL; | 
|  |  | 
|  | if (level == Z_DEFAULT_COMPRESSION) level = 6; | 
|  |  | 
|  | mem = (deflate_workspace *) strm->workspace; | 
|  |  | 
|  | if (windowBits < 0) { /* undocumented feature: suppress zlib header */ | 
|  | noheader = 1; | 
|  | windowBits = -windowBits; | 
|  | } | 
|  | if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED || | 
|  | windowBits < 9 || windowBits > 15 || level < 0 || level > 9 || | 
|  | strategy < 0 || strategy > Z_HUFFMAN_ONLY) { | 
|  | return Z_STREAM_ERROR; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Direct the workspace's pointers to the chunks that were allocated | 
|  | * along with the deflate_workspace struct. | 
|  | */ | 
|  | next = (char *) mem; | 
|  | next += sizeof(*mem); | 
|  | mem->window_memory = (Byte *) next; | 
|  | next += zlib_deflate_window_memsize(windowBits); | 
|  | mem->prev_memory = (Pos *) next; | 
|  | next += zlib_deflate_prev_memsize(windowBits); | 
|  | mem->head_memory = (Pos *) next; | 
|  | next += zlib_deflate_head_memsize(memLevel); | 
|  | mem->overlay_memory = next; | 
|  |  | 
|  | s = (deflate_state *) &(mem->deflate_memory); | 
|  | strm->state = (struct internal_state *)s; | 
|  | s->strm = strm; | 
|  |  | 
|  | s->noheader = noheader; | 
|  | s->w_bits = windowBits; | 
|  | s->w_size = 1 << s->w_bits; | 
|  | s->w_mask = s->w_size - 1; | 
|  |  | 
|  | s->hash_bits = memLevel + 7; | 
|  | s->hash_size = 1 << s->hash_bits; | 
|  | s->hash_mask = s->hash_size - 1; | 
|  | s->hash_shift =  ((s->hash_bits+MIN_MATCH-1)/MIN_MATCH); | 
|  |  | 
|  | s->window = (Byte *) mem->window_memory; | 
|  | s->prev   = (Pos *)  mem->prev_memory; | 
|  | s->head   = (Pos *)  mem->head_memory; | 
|  |  | 
|  | s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */ | 
|  |  | 
|  | overlay = (ush *) mem->overlay_memory; | 
|  | s->pending_buf = (uch *) overlay; | 
|  | s->pending_buf_size = (ulg)s->lit_bufsize * (sizeof(ush)+2L); | 
|  |  | 
|  | s->d_buf = overlay + s->lit_bufsize/sizeof(ush); | 
|  | s->l_buf = s->pending_buf + (1+sizeof(ush))*s->lit_bufsize; | 
|  |  | 
|  | s->level = level; | 
|  | s->strategy = strategy; | 
|  | s->method = (Byte)method; | 
|  |  | 
|  | return zlib_deflateReset(strm); | 
|  | } | 
|  |  | 
|  | /* ========================================================================= */ | 
|  | int zlib_deflateReset( | 
|  | z_streamp strm | 
|  | ) | 
|  | { | 
|  | deflate_state *s; | 
|  |  | 
|  | if (strm == NULL || strm->state == NULL) | 
|  | return Z_STREAM_ERROR; | 
|  |  | 
|  | strm->total_in = strm->total_out = 0; | 
|  | strm->msg = NULL; | 
|  | strm->data_type = Z_UNKNOWN; | 
|  |  | 
|  | s = (deflate_state *)strm->state; | 
|  | s->pending = 0; | 
|  | s->pending_out = s->pending_buf; | 
|  |  | 
|  | if (s->noheader < 0) { | 
|  | s->noheader = 0; /* was set to -1 by deflate(..., Z_FINISH); */ | 
|  | } | 
|  | s->status = s->noheader ? BUSY_STATE : INIT_STATE; | 
|  | strm->adler = 1; | 
|  | s->last_flush = Z_NO_FLUSH; | 
|  |  | 
|  | zlib_tr_init(s); | 
|  | lm_init(s); | 
|  |  | 
|  | return Z_OK; | 
|  | } | 
|  |  | 
|  | /* ========================================================================= | 
|  | * Put a short in the pending buffer. The 16-bit value is put in MSB order. | 
|  | * IN assertion: the stream state is correct and there is enough room in | 
|  | * pending_buf. | 
|  | */ | 
|  | static void putShortMSB( | 
|  | deflate_state *s, | 
|  | uInt b | 
|  | ) | 
|  | { | 
|  | put_byte(s, (Byte)(b >> 8)); | 
|  | put_byte(s, (Byte)(b & 0xff)); | 
|  | } | 
|  |  | 
|  | /* ========================================================================= | 
|  | * Flush as much pending output as possible. All deflate() output goes | 
|  | * through this function so some applications may wish to modify it | 
|  | * to avoid allocating a large strm->next_out buffer and copying into it. | 
|  | * (See also read_buf()). | 
|  | */ | 
|  | static void flush_pending( | 
|  | z_streamp strm | 
|  | ) | 
|  | { | 
|  | deflate_state *s = (deflate_state *) strm->state; | 
|  | unsigned len = s->pending; | 
|  |  | 
|  | if (len > strm->avail_out) len = strm->avail_out; | 
|  | if (len == 0) return; | 
|  |  | 
|  | if (strm->next_out != NULL) { | 
|  | memcpy(strm->next_out, s->pending_out, len); | 
|  | strm->next_out += len; | 
|  | } | 
|  | s->pending_out += len; | 
|  | strm->total_out += len; | 
|  | strm->avail_out  -= len; | 
|  | s->pending -= len; | 
|  | if (s->pending == 0) { | 
|  | s->pending_out = s->pending_buf; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* ========================================================================= */ | 
|  | int zlib_deflate( | 
|  | z_streamp strm, | 
|  | int flush | 
|  | ) | 
|  | { | 
|  | int old_flush; /* value of flush param for previous deflate call */ | 
|  | deflate_state *s; | 
|  |  | 
|  | if (strm == NULL || strm->state == NULL || | 
|  | flush > Z_FINISH || flush < 0) { | 
|  | return Z_STREAM_ERROR; | 
|  | } | 
|  | s = (deflate_state *) strm->state; | 
|  |  | 
|  | if ((strm->next_in == NULL && strm->avail_in != 0) || | 
|  | (s->status == FINISH_STATE && flush != Z_FINISH)) { | 
|  | return Z_STREAM_ERROR; | 
|  | } | 
|  | if (strm->avail_out == 0) return Z_BUF_ERROR; | 
|  |  | 
|  | s->strm = strm; /* just in case */ | 
|  | old_flush = s->last_flush; | 
|  | s->last_flush = flush; | 
|  |  | 
|  | /* Write the zlib header */ | 
|  | if (s->status == INIT_STATE) { | 
|  |  | 
|  | uInt header = (Z_DEFLATED + ((s->w_bits-8)<<4)) << 8; | 
|  | uInt level_flags = (s->level-1) >> 1; | 
|  |  | 
|  | if (level_flags > 3) level_flags = 3; | 
|  | header |= (level_flags << 6); | 
|  | if (s->strstart != 0) header |= PRESET_DICT; | 
|  | header += 31 - (header % 31); | 
|  |  | 
|  | s->status = BUSY_STATE; | 
|  | putShortMSB(s, header); | 
|  |  | 
|  | /* Save the adler32 of the preset dictionary: */ | 
|  | if (s->strstart != 0) { | 
|  | putShortMSB(s, (uInt)(strm->adler >> 16)); | 
|  | putShortMSB(s, (uInt)(strm->adler & 0xffff)); | 
|  | } | 
|  | strm->adler = 1L; | 
|  | } | 
|  |  | 
|  | /* Flush as much pending output as possible */ | 
|  | if (s->pending != 0) { | 
|  | flush_pending(strm); | 
|  | if (strm->avail_out == 0) { | 
|  | /* Since avail_out is 0, deflate will be called again with | 
|  | * more output space, but possibly with both pending and | 
|  | * avail_in equal to zero. There won't be anything to do, | 
|  | * but this is not an error situation so make sure we | 
|  | * return OK instead of BUF_ERROR at next call of deflate: | 
|  | */ | 
|  | s->last_flush = -1; | 
|  | return Z_OK; | 
|  | } | 
|  |  | 
|  | /* Make sure there is something to do and avoid duplicate consecutive | 
|  | * flushes. For repeated and useless calls with Z_FINISH, we keep | 
|  | * returning Z_STREAM_END instead of Z_BUFF_ERROR. | 
|  | */ | 
|  | } else if (strm->avail_in == 0 && flush <= old_flush && | 
|  | flush != Z_FINISH) { | 
|  | return Z_BUF_ERROR; | 
|  | } | 
|  |  | 
|  | /* User must not provide more input after the first FINISH: */ | 
|  | if (s->status == FINISH_STATE && strm->avail_in != 0) { | 
|  | return Z_BUF_ERROR; | 
|  | } | 
|  |  | 
|  | /* Start a new block or continue the current one. | 
|  | */ | 
|  | if (strm->avail_in != 0 || s->lookahead != 0 || | 
|  | (flush != Z_NO_FLUSH && s->status != FINISH_STATE)) { | 
|  | block_state bstate; | 
|  |  | 
|  | bstate = (*(configuration_table[s->level].func))(s, flush); | 
|  |  | 
|  | if (bstate == finish_started || bstate == finish_done) { | 
|  | s->status = FINISH_STATE; | 
|  | } | 
|  | if (bstate == need_more || bstate == finish_started) { | 
|  | if (strm->avail_out == 0) { | 
|  | s->last_flush = -1; /* avoid BUF_ERROR next call, see above */ | 
|  | } | 
|  | return Z_OK; | 
|  | /* If flush != Z_NO_FLUSH && avail_out == 0, the next call | 
|  | * of deflate should use the same flush parameter to make sure | 
|  | * that the flush is complete. So we don't have to output an | 
|  | * empty block here, this will be done at next call. This also | 
|  | * ensures that for a very small output buffer, we emit at most | 
|  | * one empty block. | 
|  | */ | 
|  | } | 
|  | if (bstate == block_done) { | 
|  | if (flush == Z_PARTIAL_FLUSH) { | 
|  | zlib_tr_align(s); | 
|  | } else if (flush == Z_PACKET_FLUSH) { | 
|  | /* Output just the 3-bit `stored' block type value, | 
|  | but not a zero length. */ | 
|  | zlib_tr_stored_type_only(s); | 
|  | } else { /* FULL_FLUSH or SYNC_FLUSH */ | 
|  | zlib_tr_stored_block(s, (char*)0, 0L, 0); | 
|  | /* For a full flush, this empty block will be recognized | 
|  | * as a special marker by inflate_sync(). | 
|  | */ | 
|  | if (flush == Z_FULL_FLUSH) { | 
|  | CLEAR_HASH(s);             /* forget history */ | 
|  | } | 
|  | } | 
|  | flush_pending(strm); | 
|  | if (strm->avail_out == 0) { | 
|  | s->last_flush = -1; /* avoid BUF_ERROR at next call, see above */ | 
|  | return Z_OK; | 
|  | } | 
|  | } | 
|  | } | 
|  | Assert(strm->avail_out > 0, "bug2"); | 
|  |  | 
|  | if (flush != Z_FINISH) return Z_OK; | 
|  | if (s->noheader) return Z_STREAM_END; | 
|  |  | 
|  | /* Write the zlib trailer (adler32) */ | 
|  | putShortMSB(s, (uInt)(strm->adler >> 16)); | 
|  | putShortMSB(s, (uInt)(strm->adler & 0xffff)); | 
|  | flush_pending(strm); | 
|  | /* If avail_out is zero, the application will call deflate again | 
|  | * to flush the rest. | 
|  | */ | 
|  | s->noheader = -1; /* write the trailer only once! */ | 
|  | return s->pending != 0 ? Z_OK : Z_STREAM_END; | 
|  | } | 
|  |  | 
|  | /* ========================================================================= */ | 
|  | int zlib_deflateEnd( | 
|  | z_streamp strm | 
|  | ) | 
|  | { | 
|  | int status; | 
|  | deflate_state *s; | 
|  |  | 
|  | if (strm == NULL || strm->state == NULL) return Z_STREAM_ERROR; | 
|  | s = (deflate_state *) strm->state; | 
|  |  | 
|  | status = s->status; | 
|  | if (status != INIT_STATE && status != BUSY_STATE && | 
|  | status != FINISH_STATE) { | 
|  | return Z_STREAM_ERROR; | 
|  | } | 
|  |  | 
|  | strm->state = NULL; | 
|  |  | 
|  | return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK; | 
|  | } | 
|  |  | 
|  | /* =========================================================================== | 
|  | * Read a new buffer from the current input stream, update the adler32 | 
|  | * and total number of bytes read.  All deflate() input goes through | 
|  | * this function so some applications may wish to modify it to avoid | 
|  | * allocating a large strm->next_in buffer and copying from it. | 
|  | * (See also flush_pending()). | 
|  | */ | 
|  | static int read_buf( | 
|  | z_streamp strm, | 
|  | Byte *buf, | 
|  | unsigned size | 
|  | ) | 
|  | { | 
|  | unsigned len = strm->avail_in; | 
|  |  | 
|  | if (len > size) len = size; | 
|  | if (len == 0) return 0; | 
|  |  | 
|  | strm->avail_in  -= len; | 
|  |  | 
|  | if (!((deflate_state *)(strm->state))->noheader) { | 
|  | strm->adler = zlib_adler32(strm->adler, strm->next_in, len); | 
|  | } | 
|  | memcpy(buf, strm->next_in, len); | 
|  | strm->next_in  += len; | 
|  | strm->total_in += len; | 
|  |  | 
|  | return (int)len; | 
|  | } | 
|  |  | 
|  | /* =========================================================================== | 
|  | * Initialize the "longest match" routines for a new zlib stream | 
|  | */ | 
|  | static void lm_init( | 
|  | deflate_state *s | 
|  | ) | 
|  | { | 
|  | s->window_size = (ulg)2L*s->w_size; | 
|  |  | 
|  | CLEAR_HASH(s); | 
|  |  | 
|  | /* Set the default configuration parameters: | 
|  | */ | 
|  | s->max_lazy_match   = configuration_table[s->level].max_lazy; | 
|  | s->good_match       = configuration_table[s->level].good_length; | 
|  | s->nice_match       = configuration_table[s->level].nice_length; | 
|  | s->max_chain_length = configuration_table[s->level].max_chain; | 
|  |  | 
|  | s->strstart = 0; | 
|  | s->block_start = 0L; | 
|  | s->lookahead = 0; | 
|  | s->match_length = s->prev_length = MIN_MATCH-1; | 
|  | s->match_available = 0; | 
|  | s->ins_h = 0; | 
|  | } | 
|  |  | 
|  | /* =========================================================================== | 
|  | * Set match_start to the longest match starting at the given string and | 
|  | * return its length. Matches shorter or equal to prev_length are discarded, | 
|  | * in which case the result is equal to prev_length and match_start is | 
|  | * garbage. | 
|  | * IN assertions: cur_match is the head of the hash chain for the current | 
|  | *   string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1 | 
|  | * OUT assertion: the match length is not greater than s->lookahead. | 
|  | */ | 
|  | /* For 80x86 and 680x0, an optimized version will be provided in match.asm or | 
|  | * match.S. The code will be functionally equivalent. | 
|  | */ | 
|  | static uInt longest_match( | 
|  | deflate_state *s, | 
|  | IPos cur_match			/* current match */ | 
|  | ) | 
|  | { | 
|  | unsigned chain_length = s->max_chain_length;/* max hash chain length */ | 
|  | register Byte *scan = s->window + s->strstart; /* current string */ | 
|  | register Byte *match;                       /* matched string */ | 
|  | register int len;                           /* length of current match */ | 
|  | int best_len = s->prev_length;              /* best match length so far */ | 
|  | int nice_match = s->nice_match;             /* stop if match long enough */ | 
|  | IPos limit = s->strstart > (IPos)MAX_DIST(s) ? | 
|  | s->strstart - (IPos)MAX_DIST(s) : NIL; | 
|  | /* Stop when cur_match becomes <= limit. To simplify the code, | 
|  | * we prevent matches with the string of window index 0. | 
|  | */ | 
|  | Pos *prev = s->prev; | 
|  | uInt wmask = s->w_mask; | 
|  |  | 
|  | #ifdef UNALIGNED_OK | 
|  | /* Compare two bytes at a time. Note: this is not always beneficial. | 
|  | * Try with and without -DUNALIGNED_OK to check. | 
|  | */ | 
|  | register Byte *strend = s->window + s->strstart + MAX_MATCH - 1; | 
|  | register ush scan_start = *(ush*)scan; | 
|  | register ush scan_end   = *(ush*)(scan+best_len-1); | 
|  | #else | 
|  | register Byte *strend = s->window + s->strstart + MAX_MATCH; | 
|  | register Byte scan_end1  = scan[best_len-1]; | 
|  | register Byte scan_end   = scan[best_len]; | 
|  | #endif | 
|  |  | 
|  | /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16. | 
|  | * It is easy to get rid of this optimization if necessary. | 
|  | */ | 
|  | Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever"); | 
|  |  | 
|  | /* Do not waste too much time if we already have a good match: */ | 
|  | if (s->prev_length >= s->good_match) { | 
|  | chain_length >>= 2; | 
|  | } | 
|  | /* Do not look for matches beyond the end of the input. This is necessary | 
|  | * to make deflate deterministic. | 
|  | */ | 
|  | if ((uInt)nice_match > s->lookahead) nice_match = s->lookahead; | 
|  |  | 
|  | Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead"); | 
|  |  | 
|  | do { | 
|  | Assert(cur_match < s->strstart, "no future"); | 
|  | match = s->window + cur_match; | 
|  |  | 
|  | /* Skip to next match if the match length cannot increase | 
|  | * or if the match length is less than 2: | 
|  | */ | 
|  | #if (defined(UNALIGNED_OK) && MAX_MATCH == 258) | 
|  | /* This code assumes sizeof(unsigned short) == 2. Do not use | 
|  | * UNALIGNED_OK if your compiler uses a different size. | 
|  | */ | 
|  | if (*(ush*)(match+best_len-1) != scan_end || | 
|  | *(ush*)match != scan_start) continue; | 
|  |  | 
|  | /* It is not necessary to compare scan[2] and match[2] since they are | 
|  | * always equal when the other bytes match, given that the hash keys | 
|  | * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at | 
|  | * strstart+3, +5, ... up to strstart+257. We check for insufficient | 
|  | * lookahead only every 4th comparison; the 128th check will be made | 
|  | * at strstart+257. If MAX_MATCH-2 is not a multiple of 8, it is | 
|  | * necessary to put more guard bytes at the end of the window, or | 
|  | * to check more often for insufficient lookahead. | 
|  | */ | 
|  | Assert(scan[2] == match[2], "scan[2]?"); | 
|  | scan++, match++; | 
|  | do { | 
|  | } while (*(ush*)(scan+=2) == *(ush*)(match+=2) && | 
|  | *(ush*)(scan+=2) == *(ush*)(match+=2) && | 
|  | *(ush*)(scan+=2) == *(ush*)(match+=2) && | 
|  | *(ush*)(scan+=2) == *(ush*)(match+=2) && | 
|  | scan < strend); | 
|  | /* The funny "do {}" generates better code on most compilers */ | 
|  |  | 
|  | /* Here, scan <= window+strstart+257 */ | 
|  | Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan"); | 
|  | if (*scan == *match) scan++; | 
|  |  | 
|  | len = (MAX_MATCH - 1) - (int)(strend-scan); | 
|  | scan = strend - (MAX_MATCH-1); | 
|  |  | 
|  | #else /* UNALIGNED_OK */ | 
|  |  | 
|  | if (match[best_len]   != scan_end  || | 
|  | match[best_len-1] != scan_end1 || | 
|  | *match            != *scan     || | 
|  | *++match          != scan[1])      continue; | 
|  |  | 
|  | /* The check at best_len-1 can be removed because it will be made | 
|  | * again later. (This heuristic is not always a win.) | 
|  | * It is not necessary to compare scan[2] and match[2] since they | 
|  | * are always equal when the other bytes match, given that | 
|  | * the hash keys are equal and that HASH_BITS >= 8. | 
|  | */ | 
|  | scan += 2, match++; | 
|  | Assert(*scan == *match, "match[2]?"); | 
|  |  | 
|  | /* We check for insufficient lookahead only every 8th comparison; | 
|  | * the 256th check will be made at strstart+258. | 
|  | */ | 
|  | do { | 
|  | } while (*++scan == *++match && *++scan == *++match && | 
|  | *++scan == *++match && *++scan == *++match && | 
|  | *++scan == *++match && *++scan == *++match && | 
|  | *++scan == *++match && *++scan == *++match && | 
|  | scan < strend); | 
|  |  | 
|  | Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan"); | 
|  |  | 
|  | len = MAX_MATCH - (int)(strend - scan); | 
|  | scan = strend - MAX_MATCH; | 
|  |  | 
|  | #endif /* UNALIGNED_OK */ | 
|  |  | 
|  | if (len > best_len) { | 
|  | s->match_start = cur_match; | 
|  | best_len = len; | 
|  | if (len >= nice_match) break; | 
|  | #ifdef UNALIGNED_OK | 
|  | scan_end = *(ush*)(scan+best_len-1); | 
|  | #else | 
|  | scan_end1  = scan[best_len-1]; | 
|  | scan_end   = scan[best_len]; | 
|  | #endif | 
|  | } | 
|  | } while ((cur_match = prev[cur_match & wmask]) > limit | 
|  | && --chain_length != 0); | 
|  |  | 
|  | if ((uInt)best_len <= s->lookahead) return best_len; | 
|  | return s->lookahead; | 
|  | } | 
|  |  | 
|  | #ifdef DEBUG_ZLIB | 
|  | /* =========================================================================== | 
|  | * Check that the match at match_start is indeed a match. | 
|  | */ | 
|  | static void check_match( | 
|  | deflate_state *s, | 
|  | IPos start, | 
|  | IPos match, | 
|  | int length | 
|  | ) | 
|  | { | 
|  | /* check that the match is indeed a match */ | 
|  | if (memcmp((char *)s->window + match, | 
|  | (char *)s->window + start, length) != EQUAL) { | 
|  | fprintf(stderr, " start %u, match %u, length %d\n", | 
|  | start, match, length); | 
|  | do { | 
|  | fprintf(stderr, "%c%c", s->window[match++], s->window[start++]); | 
|  | } while (--length != 0); | 
|  | z_error("invalid match"); | 
|  | } | 
|  | if (z_verbose > 1) { | 
|  | fprintf(stderr,"\\[%d,%d]", start-match, length); | 
|  | do { putc(s->window[start++], stderr); } while (--length != 0); | 
|  | } | 
|  | } | 
|  | #else | 
|  | #  define check_match(s, start, match, length) | 
|  | #endif | 
|  |  | 
|  | /* =========================================================================== | 
|  | * Fill the window when the lookahead becomes insufficient. | 
|  | * Updates strstart and lookahead. | 
|  | * | 
|  | * IN assertion: lookahead < MIN_LOOKAHEAD | 
|  | * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD | 
|  | *    At least one byte has been read, or avail_in == 0; reads are | 
|  | *    performed for at least two bytes (required for the zip translate_eol | 
|  | *    option -- not supported here). | 
|  | */ | 
|  | static void fill_window( | 
|  | deflate_state *s | 
|  | ) | 
|  | { | 
|  | register unsigned n, m; | 
|  | register Pos *p; | 
|  | unsigned more;    /* Amount of free space at the end of the window. */ | 
|  | uInt wsize = s->w_size; | 
|  |  | 
|  | do { | 
|  | more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart); | 
|  |  | 
|  | /* Deal with !@#$% 64K limit: */ | 
|  | if (more == 0 && s->strstart == 0 && s->lookahead == 0) { | 
|  | more = wsize; | 
|  |  | 
|  | } else if (more == (unsigned)(-1)) { | 
|  | /* Very unlikely, but possible on 16 bit machine if strstart == 0 | 
|  | * and lookahead == 1 (input done one byte at time) | 
|  | */ | 
|  | more--; | 
|  |  | 
|  | /* If the window is almost full and there is insufficient lookahead, | 
|  | * move the upper half to the lower one to make room in the upper half. | 
|  | */ | 
|  | } else if (s->strstart >= wsize+MAX_DIST(s)) { | 
|  |  | 
|  | memcpy((char *)s->window, (char *)s->window+wsize, | 
|  | (unsigned)wsize); | 
|  | s->match_start -= wsize; | 
|  | s->strstart    -= wsize; /* we now have strstart >= MAX_DIST */ | 
|  | s->block_start -= (long) wsize; | 
|  |  | 
|  | /* Slide the hash table (could be avoided with 32 bit values | 
|  | at the expense of memory usage). We slide even when level == 0 | 
|  | to keep the hash table consistent if we switch back to level > 0 | 
|  | later. (Using level 0 permanently is not an optimal usage of | 
|  | zlib, so we don't care about this pathological case.) | 
|  | */ | 
|  | n = s->hash_size; | 
|  | p = &s->head[n]; | 
|  | do { | 
|  | m = *--p; | 
|  | *p = (Pos)(m >= wsize ? m-wsize : NIL); | 
|  | } while (--n); | 
|  |  | 
|  | n = wsize; | 
|  | p = &s->prev[n]; | 
|  | do { | 
|  | m = *--p; | 
|  | *p = (Pos)(m >= wsize ? m-wsize : NIL); | 
|  | /* If n is not on any hash chain, prev[n] is garbage but | 
|  | * its value will never be used. | 
|  | */ | 
|  | } while (--n); | 
|  | more += wsize; | 
|  | } | 
|  | if (s->strm->avail_in == 0) return; | 
|  |  | 
|  | /* If there was no sliding: | 
|  | *    strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 && | 
|  | *    more == window_size - lookahead - strstart | 
|  | * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1) | 
|  | * => more >= window_size - 2*WSIZE + 2 | 
|  | * In the BIG_MEM or MMAP case (not yet supported), | 
|  | *   window_size == input_size + MIN_LOOKAHEAD  && | 
|  | *   strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD. | 
|  | * Otherwise, window_size == 2*WSIZE so more >= 2. | 
|  | * If there was sliding, more >= WSIZE. So in all cases, more >= 2. | 
|  | */ | 
|  | Assert(more >= 2, "more < 2"); | 
|  |  | 
|  | n = read_buf(s->strm, s->window + s->strstart + s->lookahead, more); | 
|  | s->lookahead += n; | 
|  |  | 
|  | /* Initialize the hash value now that we have some input: */ | 
|  | if (s->lookahead >= MIN_MATCH) { | 
|  | s->ins_h = s->window[s->strstart]; | 
|  | UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]); | 
|  | #if MIN_MATCH != 3 | 
|  | Call UPDATE_HASH() MIN_MATCH-3 more times | 
|  | #endif | 
|  | } | 
|  | /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage, | 
|  | * but this is not important since only literal bytes will be emitted. | 
|  | */ | 
|  |  | 
|  | } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0); | 
|  | } | 
|  |  | 
|  | /* =========================================================================== | 
|  | * Flush the current block, with given end-of-file flag. | 
|  | * IN assertion: strstart is set to the end of the current match. | 
|  | */ | 
|  | #define FLUSH_BLOCK_ONLY(s, eof) { \ | 
|  | zlib_tr_flush_block(s, (s->block_start >= 0L ? \ | 
|  | (char *)&s->window[(unsigned)s->block_start] : \ | 
|  | NULL), \ | 
|  | (ulg)((long)s->strstart - s->block_start), \ | 
|  | (eof)); \ | 
|  | s->block_start = s->strstart; \ | 
|  | flush_pending(s->strm); \ | 
|  | Tracev((stderr,"[FLUSH]")); \ | 
|  | } | 
|  |  | 
|  | /* Same but force premature exit if necessary. */ | 
|  | #define FLUSH_BLOCK(s, eof) { \ | 
|  | FLUSH_BLOCK_ONLY(s, eof); \ | 
|  | if (s->strm->avail_out == 0) return (eof) ? finish_started : need_more; \ | 
|  | } | 
|  |  | 
|  | /* =========================================================================== | 
|  | * Copy without compression as much as possible from the input stream, return | 
|  | * the current block state. | 
|  | * This function does not insert new strings in the dictionary since | 
|  | * uncompressible data is probably not useful. This function is used | 
|  | * only for the level=0 compression option. | 
|  | * NOTE: this function should be optimized to avoid extra copying from | 
|  | * window to pending_buf. | 
|  | */ | 
|  | static block_state deflate_stored( | 
|  | deflate_state *s, | 
|  | int flush | 
|  | ) | 
|  | { | 
|  | /* Stored blocks are limited to 0xffff bytes, pending_buf is limited | 
|  | * to pending_buf_size, and each stored block has a 5 byte header: | 
|  | */ | 
|  | ulg max_block_size = 0xffff; | 
|  | ulg max_start; | 
|  |  | 
|  | if (max_block_size > s->pending_buf_size - 5) { | 
|  | max_block_size = s->pending_buf_size - 5; | 
|  | } | 
|  |  | 
|  | /* Copy as much as possible from input to output: */ | 
|  | for (;;) { | 
|  | /* Fill the window as much as possible: */ | 
|  | if (s->lookahead <= 1) { | 
|  |  | 
|  | Assert(s->strstart < s->w_size+MAX_DIST(s) || | 
|  | s->block_start >= (long)s->w_size, "slide too late"); | 
|  |  | 
|  | fill_window(s); | 
|  | if (s->lookahead == 0 && flush == Z_NO_FLUSH) return need_more; | 
|  |  | 
|  | if (s->lookahead == 0) break; /* flush the current block */ | 
|  | } | 
|  | Assert(s->block_start >= 0L, "block gone"); | 
|  |  | 
|  | s->strstart += s->lookahead; | 
|  | s->lookahead = 0; | 
|  |  | 
|  | /* Emit a stored block if pending_buf will be full: */ | 
|  | max_start = s->block_start + max_block_size; | 
|  | if (s->strstart == 0 || (ulg)s->strstart >= max_start) { | 
|  | /* strstart == 0 is possible when wraparound on 16-bit machine */ | 
|  | s->lookahead = (uInt)(s->strstart - max_start); | 
|  | s->strstart = (uInt)max_start; | 
|  | FLUSH_BLOCK(s, 0); | 
|  | } | 
|  | /* Flush if we may have to slide, otherwise block_start may become | 
|  | * negative and the data will be gone: | 
|  | */ | 
|  | if (s->strstart - (uInt)s->block_start >= MAX_DIST(s)) { | 
|  | FLUSH_BLOCK(s, 0); | 
|  | } | 
|  | } | 
|  | FLUSH_BLOCK(s, flush == Z_FINISH); | 
|  | return flush == Z_FINISH ? finish_done : block_done; | 
|  | } | 
|  |  | 
|  | /* =========================================================================== | 
|  | * Compress as much as possible from the input stream, return the current | 
|  | * block state. | 
|  | * This function does not perform lazy evaluation of matches and inserts | 
|  | * new strings in the dictionary only for unmatched strings or for short | 
|  | * matches. It is used only for the fast compression options. | 
|  | */ | 
|  | static block_state deflate_fast( | 
|  | deflate_state *s, | 
|  | int flush | 
|  | ) | 
|  | { | 
|  | IPos hash_head = NIL; /* head of the hash chain */ | 
|  | int bflush;           /* set if current block must be flushed */ | 
|  |  | 
|  | for (;;) { | 
|  | /* Make sure that we always have enough lookahead, except | 
|  | * at the end of the input file. We need MAX_MATCH bytes | 
|  | * for the next match, plus MIN_MATCH bytes to insert the | 
|  | * string following the next match. | 
|  | */ | 
|  | if (s->lookahead < MIN_LOOKAHEAD) { | 
|  | fill_window(s); | 
|  | if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) { | 
|  | return need_more; | 
|  | } | 
|  | if (s->lookahead == 0) break; /* flush the current block */ | 
|  | } | 
|  |  | 
|  | /* Insert the string window[strstart .. strstart+2] in the | 
|  | * dictionary, and set hash_head to the head of the hash chain: | 
|  | */ | 
|  | if (s->lookahead >= MIN_MATCH) { | 
|  | INSERT_STRING(s, s->strstart, hash_head); | 
|  | } | 
|  |  | 
|  | /* Find the longest match, discarding those <= prev_length. | 
|  | * At this point we have always match_length < MIN_MATCH | 
|  | */ | 
|  | if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) { | 
|  | /* To simplify the code, we prevent matches with the string | 
|  | * of window index 0 (in particular we have to avoid a match | 
|  | * of the string with itself at the start of the input file). | 
|  | */ | 
|  | if (s->strategy != Z_HUFFMAN_ONLY) { | 
|  | s->match_length = longest_match (s, hash_head); | 
|  | } | 
|  | /* longest_match() sets match_start */ | 
|  | } | 
|  | if (s->match_length >= MIN_MATCH) { | 
|  | check_match(s, s->strstart, s->match_start, s->match_length); | 
|  |  | 
|  | bflush = zlib_tr_tally(s, s->strstart - s->match_start, | 
|  | s->match_length - MIN_MATCH); | 
|  |  | 
|  | s->lookahead -= s->match_length; | 
|  |  | 
|  | /* Insert new strings in the hash table only if the match length | 
|  | * is not too large. This saves time but degrades compression. | 
|  | */ | 
|  | if (s->match_length <= s->max_insert_length && | 
|  | s->lookahead >= MIN_MATCH) { | 
|  | s->match_length--; /* string at strstart already in hash table */ | 
|  | do { | 
|  | s->strstart++; | 
|  | INSERT_STRING(s, s->strstart, hash_head); | 
|  | /* strstart never exceeds WSIZE-MAX_MATCH, so there are | 
|  | * always MIN_MATCH bytes ahead. | 
|  | */ | 
|  | } while (--s->match_length != 0); | 
|  | s->strstart++; | 
|  | } else { | 
|  | s->strstart += s->match_length; | 
|  | s->match_length = 0; | 
|  | s->ins_h = s->window[s->strstart]; | 
|  | UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]); | 
|  | #if MIN_MATCH != 3 | 
|  | Call UPDATE_HASH() MIN_MATCH-3 more times | 
|  | #endif | 
|  | /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not | 
|  | * matter since it will be recomputed at next deflate call. | 
|  | */ | 
|  | } | 
|  | } else { | 
|  | /* No match, output a literal byte */ | 
|  | Tracevv((stderr,"%c", s->window[s->strstart])); | 
|  | bflush = zlib_tr_tally (s, 0, s->window[s->strstart]); | 
|  | s->lookahead--; | 
|  | s->strstart++; | 
|  | } | 
|  | if (bflush) FLUSH_BLOCK(s, 0); | 
|  | } | 
|  | FLUSH_BLOCK(s, flush == Z_FINISH); | 
|  | return flush == Z_FINISH ? finish_done : block_done; | 
|  | } | 
|  |  | 
|  | /* =========================================================================== | 
|  | * Same as above, but achieves better compression. We use a lazy | 
|  | * evaluation for matches: a match is finally adopted only if there is | 
|  | * no better match at the next window position. | 
|  | */ | 
|  | static block_state deflate_slow( | 
|  | deflate_state *s, | 
|  | int flush | 
|  | ) | 
|  | { | 
|  | IPos hash_head = NIL;    /* head of hash chain */ | 
|  | int bflush;              /* set if current block must be flushed */ | 
|  |  | 
|  | /* Process the input block. */ | 
|  | for (;;) { | 
|  | /* Make sure that we always have enough lookahead, except | 
|  | * at the end of the input file. We need MAX_MATCH bytes | 
|  | * for the next match, plus MIN_MATCH bytes to insert the | 
|  | * string following the next match. | 
|  | */ | 
|  | if (s->lookahead < MIN_LOOKAHEAD) { | 
|  | fill_window(s); | 
|  | if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) { | 
|  | return need_more; | 
|  | } | 
|  | if (s->lookahead == 0) break; /* flush the current block */ | 
|  | } | 
|  |  | 
|  | /* Insert the string window[strstart .. strstart+2] in the | 
|  | * dictionary, and set hash_head to the head of the hash chain: | 
|  | */ | 
|  | if (s->lookahead >= MIN_MATCH) { | 
|  | INSERT_STRING(s, s->strstart, hash_head); | 
|  | } | 
|  |  | 
|  | /* Find the longest match, discarding those <= prev_length. | 
|  | */ | 
|  | s->prev_length = s->match_length, s->prev_match = s->match_start; | 
|  | s->match_length = MIN_MATCH-1; | 
|  |  | 
|  | if (hash_head != NIL && s->prev_length < s->max_lazy_match && | 
|  | s->strstart - hash_head <= MAX_DIST(s)) { | 
|  | /* To simplify the code, we prevent matches with the string | 
|  | * of window index 0 (in particular we have to avoid a match | 
|  | * of the string with itself at the start of the input file). | 
|  | */ | 
|  | if (s->strategy != Z_HUFFMAN_ONLY) { | 
|  | s->match_length = longest_match (s, hash_head); | 
|  | } | 
|  | /* longest_match() sets match_start */ | 
|  |  | 
|  | if (s->match_length <= 5 && (s->strategy == Z_FILTERED || | 
|  | (s->match_length == MIN_MATCH && | 
|  | s->strstart - s->match_start > TOO_FAR))) { | 
|  |  | 
|  | /* If prev_match is also MIN_MATCH, match_start is garbage | 
|  | * but we will ignore the current match anyway. | 
|  | */ | 
|  | s->match_length = MIN_MATCH-1; | 
|  | } | 
|  | } | 
|  | /* If there was a match at the previous step and the current | 
|  | * match is not better, output the previous match: | 
|  | */ | 
|  | if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) { | 
|  | uInt max_insert = s->strstart + s->lookahead - MIN_MATCH; | 
|  | /* Do not insert strings in hash table beyond this. */ | 
|  |  | 
|  | check_match(s, s->strstart-1, s->prev_match, s->prev_length); | 
|  |  | 
|  | bflush = zlib_tr_tally(s, s->strstart -1 - s->prev_match, | 
|  | s->prev_length - MIN_MATCH); | 
|  |  | 
|  | /* Insert in hash table all strings up to the end of the match. | 
|  | * strstart-1 and strstart are already inserted. If there is not | 
|  | * enough lookahead, the last two strings are not inserted in | 
|  | * the hash table. | 
|  | */ | 
|  | s->lookahead -= s->prev_length-1; | 
|  | s->prev_length -= 2; | 
|  | do { | 
|  | if (++s->strstart <= max_insert) { | 
|  | INSERT_STRING(s, s->strstart, hash_head); | 
|  | } | 
|  | } while (--s->prev_length != 0); | 
|  | s->match_available = 0; | 
|  | s->match_length = MIN_MATCH-1; | 
|  | s->strstart++; | 
|  |  | 
|  | if (bflush) FLUSH_BLOCK(s, 0); | 
|  |  | 
|  | } else if (s->match_available) { | 
|  | /* If there was no match at the previous position, output a | 
|  | * single literal. If there was a match but the current match | 
|  | * is longer, truncate the previous match to a single literal. | 
|  | */ | 
|  | Tracevv((stderr,"%c", s->window[s->strstart-1])); | 
|  | if (zlib_tr_tally (s, 0, s->window[s->strstart-1])) { | 
|  | FLUSH_BLOCK_ONLY(s, 0); | 
|  | } | 
|  | s->strstart++; | 
|  | s->lookahead--; | 
|  | if (s->strm->avail_out == 0) return need_more; | 
|  | } else { | 
|  | /* There is no previous match to compare with, wait for | 
|  | * the next step to decide. | 
|  | */ | 
|  | s->match_available = 1; | 
|  | s->strstart++; | 
|  | s->lookahead--; | 
|  | } | 
|  | } | 
|  | Assert (flush != Z_NO_FLUSH, "no flush?"); | 
|  | if (s->match_available) { | 
|  | Tracevv((stderr,"%c", s->window[s->strstart-1])); | 
|  | zlib_tr_tally (s, 0, s->window[s->strstart-1]); | 
|  | s->match_available = 0; | 
|  | } | 
|  | FLUSH_BLOCK(s, flush == Z_FINISH); | 
|  | return flush == Z_FINISH ? finish_done : block_done; | 
|  | } | 
|  |  | 
|  | int zlib_deflate_workspacesize(int windowBits, int memLevel) | 
|  | { | 
|  | if (windowBits < 0) /* undocumented feature: suppress zlib header */ | 
|  | windowBits = -windowBits; | 
|  |  | 
|  | /* Since the return value is typically passed to vmalloc() unchecked... */ | 
|  | assert(!(memLevel < 1 || memLevel > MAX_MEM_LEVEL || windowBits < 9 || windowBits > 15)); | 
|  |  | 
|  | return sizeof(deflate_workspace) | 
|  | + zlib_deflate_window_memsize(windowBits) | 
|  | + zlib_deflate_prev_memsize(windowBits) | 
|  | + zlib_deflate_head_memsize(memLevel) | 
|  | + zlib_deflate_overlay_memsize(memLevel); | 
|  | } |