|  | /* Copyright © 1994-1999 Lucent Technologies Inc.  All rights reserved. | 
|  | * Portions Copyright © 1997-1999 Vita Nuova Limited | 
|  | * Portions Copyright © 2000-2007 Vita Nuova Holdings Limited | 
|  | *                                (www.vitanuova.com) | 
|  | * Revisions Copyright © 2000-2007 Lucent Technologies Inc. and others | 
|  | * | 
|  | * Modified for the Akaros operating system: | 
|  | * Copyright (c) 2013-2014 The Regents of the University of California | 
|  | * Copyright (c) 2013-2015 Google Inc. | 
|  | * | 
|  | * Permission is hereby granted, free of charge, to any person obtaining a copy | 
|  | * of this software and associated documentation files (the "Software"), to deal | 
|  | * in the Software without restriction, including without limitation the rights | 
|  | * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | 
|  | * copies of the Software, and to permit persons to whom the Software is | 
|  | * furnished to do so, subject to the following conditions: | 
|  | * | 
|  | * The above copyright notice and this permission notice shall be included in | 
|  | * all copies or substantial portions of the Software. | 
|  | * | 
|  | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | 
|  | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | 
|  | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE | 
|  | * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | 
|  | * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | 
|  | * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | 
|  | * SOFTWARE. */ | 
|  |  | 
|  | #include <slab.h> | 
|  | #include <kmalloc.h> | 
|  | #include <kref.h> | 
|  | #include <string.h> | 
|  | #include <stdio.h> | 
|  | #include <assert.h> | 
|  | #include <error.h> | 
|  | #include <cpio.h> | 
|  | #include <pmap.h> | 
|  | #include <smp.h> | 
|  | #include <net/ip.h> | 
|  |  | 
|  | struct dev ipdevtab; | 
|  |  | 
|  | static char *devname(void) | 
|  | { | 
|  | return ipdevtab.name; | 
|  | } | 
|  |  | 
|  | enum { | 
|  | Qtopdir = 1,	/* top level directory */ | 
|  | Qtopbase, | 
|  | Qarp = Qtopbase, | 
|  | Qndb, | 
|  | Qiproute, | 
|  | Qiprouter, | 
|  | Qipselftab, | 
|  | Qlog, | 
|  |  | 
|  | Qprotodir,	/* directory for a protocol */ | 
|  | Qprotobase, | 
|  | Qclone = Qprotobase, | 
|  | Qstats, | 
|  |  | 
|  | Qconvdir,	/* directory for a conversation */ | 
|  | Qconvbase, | 
|  | Qctl = Qconvbase, | 
|  | Qdata, | 
|  | Qerr, | 
|  | Qlisten, | 
|  | Qlocal, | 
|  | Qremote, | 
|  | Qstatus, | 
|  | Qsnoop, | 
|  |  | 
|  | Logtype = 5, | 
|  | Masktype = (1 << Logtype) - 1, | 
|  | Logconv = 12, | 
|  | Maskconv = (1 << Logconv) - 1, | 
|  | Shiftconv = Logtype, | 
|  | Logproto = 8, | 
|  | Maskproto = (1 << Logproto) - 1, | 
|  | Shiftproto = Logtype + Logconv, | 
|  |  | 
|  | Nfs = 32, | 
|  | BYPASS_QMAX = 64 * MiB, | 
|  | IPROUTE_LEN = 2 * PGSIZE, | 
|  | }; | 
|  | #define TYPE(x) 	( ((uint32_t)(x).path) & Masktype ) | 
|  | #define CONV(x) 	( (((uint32_t)(x).path) >> Shiftconv) & Maskconv ) | 
|  | #define PROTO(x) 	( (((uint32_t)(x).path) >> Shiftproto) & Maskproto ) | 
|  | #define QID(p, c, y) 	( ((p)<<(Shiftproto)) | ((c)<<Shiftconv) | (y)) | 
|  | static char network[] = "network"; | 
|  |  | 
|  | qlock_t fslock; | 
|  | struct Fs *ipfs[Nfs];			/* attached fs's */ | 
|  | struct queue *qlog; | 
|  |  | 
|  | extern void nullmediumlink(void); | 
|  | extern void pktmediumlink(void); | 
|  | extern struct username eve; | 
|  | static long ndbwrite(struct Fs *, char *unused_char_p_t, uint32_t, int); | 
|  | static void closeconv(struct conv *); | 
|  | static void setup_proto_qio_bypass(struct conv *cv); | 
|  | static void undo_proto_qio_bypass(struct conv *cv); | 
|  | static int connected(void *a); | 
|  |  | 
|  | static struct conv *chan2conv(struct chan *chan) | 
|  | { | 
|  | /* That's a lot of pointers to get to the conv! */ | 
|  | return ipfs[chan->dev]->p[PROTO(chan->qid)]->conv[CONV(chan->qid)]; | 
|  | } | 
|  |  | 
|  | static inline int founddevdir(struct chan *c, struct qid q, char *n, | 
|  | int64_t length, char *user, long perm, | 
|  | struct dir *db) | 
|  | { | 
|  | devdir(c, q, n, length, user, perm, db); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int topdirgen(struct chan *c, struct dir *dp) | 
|  | { | 
|  | struct qid q; | 
|  |  | 
|  | mkqid(&q, QID(0, 0, Qtopdir), 0, QTDIR); | 
|  | snprintf(get_cur_genbuf(), GENBUF_SZ, "#%s%lu", devname(), c->dev); | 
|  | return founddevdir(c, q, get_cur_genbuf(), 0, network, 0555, dp); | 
|  | } | 
|  |  | 
|  | /* Computes the perm field for a stat for Qdata.  Since select() polls the | 
|  | * 'actionability' of a socket via the qdata FD, we'll also report listenable | 
|  | * and connected conversations.  It's a minor hack.  =( */ | 
|  | static int qdata_stat_perm(struct conv *cv) | 
|  | { | 
|  | int perm; | 
|  |  | 
|  | perm = cv->perm; | 
|  | /* If there is ever a listener, then it's readable.  Ideally, we'd only | 
|  | * report this on the Qlisten file (which we also do).  The socket crap | 
|  | * should never use a listening socket for data, so there shouldn't be | 
|  | * any confusion when a Qdata shows up as readable. */ | 
|  | perm |= cv->incall ? DMREADABLE : 0; | 
|  | /* For connectable convs, they need to be both connected and qio | 
|  | * readable/writable.  The way to think about this is that the convs are | 
|  | * not truly writable/readable until they are connected.  Conveniently, | 
|  | * this means that when select polls Qdata for non-blocking connect(), a | 
|  | * connected conversation pops up as writable (the qio is writable too). | 
|  | * | 
|  | * Note that a conversation can be 'Connected' even if it failed to | 
|  | * connect.  At least that's what the 9ns TCP code does.  It's more like | 
|  | * "the protocol did what it needed and the connectctlmsg call (or its | 
|  | * non-blocking equivalent) is done".  For instance, TCP has a few | 
|  | * reasons to call Fsconnected, such as when we send the SYN and get a | 
|  | * RST. */ | 
|  | if (!cv->p->connect || connected(cv)) { | 
|  | perm |= qreadable(cv->rq) ? DMREADABLE : 0; | 
|  | perm |= qwritable(cv->wq) ? DMWRITABLE : 0; | 
|  | } | 
|  | return perm; | 
|  | } | 
|  |  | 
|  | static int ip3gen(struct chan *c, int i, struct dir *dp) | 
|  | { | 
|  | struct qid q; | 
|  | struct conv *cv; | 
|  | char *p; | 
|  | int perm; | 
|  |  | 
|  | cv = chan2conv(c); | 
|  | if (cv->owner == NULL) | 
|  | kstrdup(&cv->owner, eve.name); | 
|  | mkqid(&q, QID(PROTO(c->qid), CONV(c->qid), i), 0, QTFILE); | 
|  |  | 
|  | switch (i) { | 
|  | default: | 
|  | return -1; | 
|  | case Qctl: | 
|  | return founddevdir(c, q, "ctl", 0, cv->owner, cv->perm, dp); | 
|  | case Qdata: | 
|  | perm = qdata_stat_perm(cv); | 
|  | return founddevdir(c, q, "data", qlen(cv->rq), cv->owner, perm, | 
|  | dp); | 
|  | case Qerr: | 
|  | perm = cv->perm; | 
|  | perm |= qreadable(cv->eq) ? DMREADABLE : 0; | 
|  | return founddevdir(c, q, "err", qlen(cv->eq), cv->owner, perm, | 
|  | dp); | 
|  | case Qlisten: | 
|  | perm = cv->perm; | 
|  | perm |= cv->incall ? DMREADABLE : 0; | 
|  | return founddevdir(c, q, "listen", 0, cv->owner, perm, dp); | 
|  | case Qlocal: | 
|  | p = "local"; | 
|  | break; | 
|  | case Qremote: | 
|  | p = "remote"; | 
|  | break; | 
|  | case Qsnoop: | 
|  | if (strcmp(cv->p->name, "ipifc") != 0) | 
|  | return -1; | 
|  | perm = 0400; | 
|  | perm |= qreadable(cv->sq) ? DMREADABLE : 0; | 
|  | return founddevdir(c, q, "snoop", qlen(cv->sq), cv->owner, perm, | 
|  | dp); | 
|  | case Qstatus: | 
|  | p = "status"; | 
|  | break; | 
|  | } | 
|  | return founddevdir(c, q, p, 0, cv->owner, 0444, dp); | 
|  | } | 
|  |  | 
|  | static int ip2gen(struct chan *c, int i, struct dir *dp) | 
|  | { | 
|  | struct qid q; | 
|  |  | 
|  | mkqid(&q, QID(PROTO(c->qid), 0, i), 0, QTFILE); | 
|  | switch (i) { | 
|  | case Qclone: | 
|  | return founddevdir(c, q, "clone", 0, network, 0666, dp); | 
|  | case Qstats: | 
|  | return founddevdir(c, q, "stats", 0, network, 0444, dp); | 
|  | } | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | static int ip1gen(struct chan *c, int i, struct dir *dp) | 
|  | { | 
|  | struct qid q; | 
|  | char *p; | 
|  | int prot; | 
|  | int len = 0; | 
|  | struct Fs *f; | 
|  | extern uint32_t kerndate; | 
|  |  | 
|  | f = ipfs[c->dev]; | 
|  |  | 
|  | prot = 0666; | 
|  | mkqid(&q, QID(0, 0, i), 0, QTFILE); | 
|  | switch (i) { | 
|  | default: | 
|  | return -1; | 
|  | case Qarp: | 
|  | p = "arp"; | 
|  | break; | 
|  | case Qndb: | 
|  | p = "ndb"; | 
|  | len = strlen(f->ndb); | 
|  | q.vers = f->ndbvers; | 
|  | break; | 
|  | case Qiproute: | 
|  | p = "iproute"; | 
|  | break; | 
|  | case Qipselftab: | 
|  | p = "ipselftab"; | 
|  | prot = 0444; | 
|  | break; | 
|  | case Qiprouter: | 
|  | p = "iprouter"; | 
|  | break; | 
|  | case Qlog: | 
|  | p = "log"; | 
|  | break; | 
|  | } | 
|  | devdir(c, q, p, len, network, prot, dp); | 
|  | if (i == Qndb && f->ndbmtime > kerndate) | 
|  | dp->mtime.tv_sec = f->ndbmtime; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int ipgen(struct chan *c, char *unused_char_p_t, struct dirtab *d, | 
|  | int unused_int, int s, struct dir *dp) | 
|  | { | 
|  | struct qid q; | 
|  | struct conv *cv; | 
|  | struct Fs *f; | 
|  |  | 
|  | f = ipfs[c->dev]; | 
|  |  | 
|  | switch (TYPE(c->qid)) { | 
|  | case Qtopdir: | 
|  | if (s == DEVDOTDOT) | 
|  | return topdirgen(c, dp); | 
|  | if (s < f->np) { | 
|  | /* protocol with no user interface */ | 
|  | if (f->p[s]->connect == NULL) | 
|  | return 0; | 
|  | mkqid(&q, QID(s, 0, Qprotodir), 0, QTDIR); | 
|  | return founddevdir(c, q, f->p[s]->name, 0, network, | 
|  | 0555, dp); | 
|  | } | 
|  | s -= f->np; | 
|  | return ip1gen(c, s + Qtopbase, dp); | 
|  | case Qarp: | 
|  | case Qndb: | 
|  | case Qlog: | 
|  | case Qiproute: | 
|  | case Qiprouter: | 
|  | case Qipselftab: | 
|  | return ip1gen(c, TYPE(c->qid), dp); | 
|  | case Qprotodir: | 
|  | if (s == DEVDOTDOT) | 
|  | return topdirgen(c, dp); | 
|  | else if (s < f->p[PROTO(c->qid)]->ac) { | 
|  | cv = f->p[PROTO(c->qid)]->conv[s]; | 
|  | snprintf(get_cur_genbuf(), GENBUF_SZ, "%d", s); | 
|  | mkqid(&q, QID(PROTO(c->qid), s, Qconvdir), 0, QTDIR); | 
|  | return founddevdir(c, q, get_cur_genbuf(), 0, cv->owner, | 
|  | 0555, dp); | 
|  | } | 
|  | s -= f->p[PROTO(c->qid)]->ac; | 
|  | return ip2gen(c, s + Qprotobase, dp); | 
|  | case Qclone: | 
|  | case Qstats: | 
|  | return ip2gen(c, TYPE(c->qid), dp); | 
|  | case Qconvdir: | 
|  | if (s == DEVDOTDOT) { | 
|  | s = PROTO(c->qid); | 
|  | mkqid(&q, QID(s, 0, Qprotodir), 0, QTDIR); | 
|  | devdir(c, q, f->p[s]->name, 0, network, 0555, dp); | 
|  | return 1; | 
|  | } | 
|  | return ip3gen(c, s + Qconvbase, dp); | 
|  | case Qctl: | 
|  | case Qdata: | 
|  | case Qerr: | 
|  | case Qlisten: | 
|  | case Qlocal: | 
|  | case Qremote: | 
|  | case Qstatus: | 
|  | case Qsnoop: | 
|  | return ip3gen(c, TYPE(c->qid), dp); | 
|  | } | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | static void ipinit(void) | 
|  | { | 
|  | qlock_init(&fslock); | 
|  | nullmediumlink(); | 
|  | pktmediumlink(); | 
|  | /* if only | 
|  | fmtinstall('i', eipfmt); | 
|  | fmtinstall('I', eipfmt); | 
|  | fmtinstall('E', eipfmt); | 
|  | fmtinstall('V', eipfmt); | 
|  | fmtinstall('M', eipfmt); | 
|  | */ | 
|  | } | 
|  |  | 
|  | static void ipreset(void) | 
|  | { | 
|  | } | 
|  |  | 
|  | static struct Fs *ipgetfs(int dev) | 
|  | { | 
|  | extern void (*ipprotoinit[]) (struct Fs *); | 
|  | struct Fs *f; | 
|  | int i; | 
|  |  | 
|  | if (dev >= Nfs) | 
|  | return NULL; | 
|  |  | 
|  | qlock(&fslock); | 
|  | if (ipfs[dev] == NULL) { | 
|  | f = kzmalloc(sizeof(struct Fs), MEM_WAIT); | 
|  | rwinit(&f->rwlock); | 
|  | qlock_init(&f->iprouter.qlock); | 
|  | ip_init(f); | 
|  | arpinit(f); | 
|  | netloginit(f); | 
|  | for (i = 0; ipprotoinit[i]; i++) | 
|  | ipprotoinit[i] (f); | 
|  | f->dev = dev; | 
|  | ipfs[dev] = f; | 
|  | } | 
|  | qunlock(&fslock); | 
|  |  | 
|  | return ipfs[dev]; | 
|  | } | 
|  |  | 
|  | struct IPaux *newipaux(char *owner, char *tag) | 
|  | { | 
|  | struct IPaux *a; | 
|  | int n; | 
|  |  | 
|  | a = kzmalloc(sizeof(*a), 0); | 
|  | kstrdup(&a->owner, owner); | 
|  | memset(a->tag, ' ', sizeof(a->tag)); | 
|  | n = strlen(tag); | 
|  | if (n > sizeof(a->tag)) | 
|  | n = sizeof(a->tag); | 
|  | memmove(a->tag, tag, n); | 
|  | return a; | 
|  | } | 
|  |  | 
|  | #define ATTACHER(c) (((struct IPaux*)((c)->aux))->owner) | 
|  |  | 
|  | static struct chan *ipattach(char *spec) | 
|  | { | 
|  | struct chan *c; | 
|  | int dev; | 
|  |  | 
|  | dev = atoi(spec); | 
|  | if (dev >= Nfs) | 
|  | error(EFAIL, "bad specification"); | 
|  |  | 
|  | ipgetfs(dev); | 
|  | c = devattach(devname(), spec); | 
|  | mkqid(&c->qid, QID(0, 0, Qtopdir), 0, QTDIR); | 
|  | c->dev = dev; | 
|  |  | 
|  | c->aux = newipaux(commonuser(), "none"); | 
|  |  | 
|  | return c; | 
|  | } | 
|  |  | 
|  | static struct walkqid *ipwalk(struct chan *c, struct chan *nc, char **name, | 
|  | unsigned int nname) | 
|  | { | 
|  | struct IPaux *a = c->aux; | 
|  | struct walkqid *w; | 
|  |  | 
|  | w = devwalk(c, nc, name, nname, NULL, 0, ipgen); | 
|  | if (w != NULL && w->clone != NULL) | 
|  | w->clone->aux = newipaux(a->owner, a->tag); | 
|  | return w; | 
|  | } | 
|  |  | 
|  | static size_t ipstat(struct chan *c, uint8_t *db, size_t n) | 
|  | { | 
|  | return devstat(c, db, n, NULL, 0, ipgen); | 
|  | } | 
|  |  | 
|  | static int should_wake(void *arg) | 
|  | { | 
|  | struct conv *cv = arg; | 
|  | /* signal that the conv is closed */ | 
|  | if (qisclosed(cv->rq)) | 
|  | return TRUE; | 
|  | return cv->incall != NULL; | 
|  | } | 
|  |  | 
|  | static struct chan *ipopen(struct chan *c, int omode) | 
|  | { | 
|  | ERRSTACK(2); | 
|  | struct conv *cv, *nc; | 
|  | struct Proto *p; | 
|  | int perm; | 
|  | struct Fs *f; | 
|  |  | 
|  | /* perm is a lone rwx, not the rwx------ from the conversion */ | 
|  | perm = omode_to_rwx(omode) >> 6; | 
|  |  | 
|  | f = ipfs[c->dev]; | 
|  |  | 
|  | switch (TYPE(c->qid)) { | 
|  | default: | 
|  | break; | 
|  | case Qndb: | 
|  | if (omode & (O_WRITE | O_TRUNC) && !iseve()) | 
|  | error(EPERM, ERROR_FIXME); | 
|  | if ((omode & (O_WRITE | O_TRUNC)) == (O_WRITE | O_TRUNC)) | 
|  | f->ndb[0] = 0; | 
|  | break; | 
|  | case Qlog: | 
|  | netlogopen(f); | 
|  | break; | 
|  | case Qiprouter: | 
|  | iprouteropen(f); | 
|  | break; | 
|  | case Qiproute: | 
|  | c->synth_buf = kpages_zalloc(IPROUTE_LEN, MEM_WAIT); | 
|  | routeread(f, c->synth_buf, 0, IPROUTE_LEN); | 
|  | break; | 
|  | case Qtopdir: | 
|  | case Qprotodir: | 
|  | case Qconvdir: | 
|  | case Qstatus: | 
|  | case Qremote: | 
|  | case Qlocal: | 
|  | case Qstats: | 
|  | case Qipselftab: | 
|  | if (omode & O_WRITE) | 
|  | error(EPERM, ERROR_FIXME); | 
|  | break; | 
|  | case Qsnoop: | 
|  | if (omode & O_WRITE) | 
|  | error(EPERM, ERROR_FIXME); | 
|  | /* might be racy. note the lack of a proto lock, unlike Qdata */ | 
|  | p = f->p[PROTO(c->qid)]; | 
|  | cv = p->conv[CONV(c->qid)]; | 
|  | if (strcmp(ATTACHER(c), cv->owner) != 0 && !iseve()) | 
|  | error(EPERM, ERROR_FIXME); | 
|  | atomic_inc(&cv->snoopers); | 
|  | break; | 
|  | case Qclone: | 
|  | p = f->p[PROTO(c->qid)]; | 
|  | qlock(&p->qlock); | 
|  | if (waserror()) { | 
|  | qunlock(&p->qlock); | 
|  | nexterror(); | 
|  | } | 
|  | cv = Fsprotoclone(p, ATTACHER(c)); | 
|  | qunlock(&p->qlock); | 
|  | poperror(); | 
|  | if (cv == NULL) { | 
|  | error(ENODEV, "Null conversation from Fsprotoclone"); | 
|  | break; | 
|  | } | 
|  | mkqid(&c->qid, QID(p->x, cv->x, Qctl), 0, QTFILE); | 
|  | break; | 
|  | case Qdata: | 
|  | case Qctl: | 
|  | case Qerr: | 
|  | p = f->p[PROTO(c->qid)]; | 
|  | qlock(&p->qlock); | 
|  | cv = p->conv[CONV(c->qid)]; | 
|  | qlock(&cv->qlock); | 
|  | if (waserror()) { | 
|  | qunlock(&cv->qlock); | 
|  | qunlock(&p->qlock); | 
|  | nexterror(); | 
|  | } | 
|  | if ((perm & (cv->perm >> 6)) != perm) { | 
|  | if (strcmp(ATTACHER(c), cv->owner) != 0) | 
|  | error(EPERM, ERROR_FIXME); | 
|  | if ((perm & cv->perm) != perm) | 
|  | error(EPERM, ERROR_FIXME); | 
|  |  | 
|  | } | 
|  | cv->inuse++; | 
|  | if (cv->inuse == 1) { | 
|  | kstrdup(&cv->owner, ATTACHER(c)); | 
|  | cv->perm = 0660; | 
|  | } | 
|  | qunlock(&cv->qlock); | 
|  | qunlock(&p->qlock); | 
|  | poperror(); | 
|  | break; | 
|  | case Qlisten: | 
|  | cv = f->p[PROTO(c->qid)]->conv[CONV(c->qid)]; | 
|  | /* No permissions or Announce checks required.  We'll see if | 
|  | * that's a good idea or not. (the perm check would do nothing, | 
|  | * as is, since an O_PATH perm is 0). | 
|  | * | 
|  | * But we probably want to incref to keep the conversation | 
|  | * around until this FD/chan is closed.  #ip is a little weird | 
|  | * in that objects never really go away (high water mark for | 
|  | * convs, you can always find them in the ns).  I think it is | 
|  | * possible to namec/ipgen a chan, then have that conv close, | 
|  | * then have that chan be opened.  You can probably do this with | 
|  | * a data file. */ | 
|  | if (omode & O_PATH) { | 
|  | qlock(&cv->qlock); | 
|  | cv->inuse++; | 
|  | qunlock(&cv->qlock); | 
|  | break; | 
|  | } | 
|  | if ((perm & (cv->perm >> 6)) != perm) { | 
|  | if (strcmp(ATTACHER(c), cv->owner) != 0) | 
|  | error(EPERM, ERROR_FIXME); | 
|  | if ((perm & cv->perm) != perm) | 
|  | error(EPERM, ERROR_FIXME); | 
|  |  | 
|  | } | 
|  |  | 
|  | if (cv->state != Announced) | 
|  | error(EFAIL, "not announced"); | 
|  |  | 
|  | if (waserror()) { | 
|  | closeconv(cv); | 
|  | nexterror(); | 
|  | } | 
|  | qlock(&cv->qlock); | 
|  | cv->inuse++; | 
|  | qunlock(&cv->qlock); | 
|  |  | 
|  | nc = NULL; | 
|  | while (nc == NULL) { | 
|  | /* give up if we got a hangup */ | 
|  | if (qisclosed(cv->rq)) | 
|  | error(EFAIL, "listen hungup"); | 
|  |  | 
|  | qlock(&cv->listenq); | 
|  | if (waserror()) { | 
|  | qunlock(&cv->listenq); | 
|  | nexterror(); | 
|  | } | 
|  | /* we can peek at incall without grabbing the cv qlock. | 
|  | * if anything is there, it'll remain there until we | 
|  | * dequeue it.  no one else can, since we hold the | 
|  | * listenq lock */ | 
|  | if ((c->flag & O_NONBLOCK) && !cv->incall) | 
|  | error(EAGAIN, "listen queue empty"); | 
|  | /* wait for a connect */ | 
|  | rendez_sleep(&cv->listenr, should_wake, cv); | 
|  |  | 
|  | /* if there is a concurrent hangup, they will hold the | 
|  | * qlock until the hangup is complete, including closing | 
|  | * the cv->rq */ | 
|  | qlock(&cv->qlock); | 
|  | nc = cv->incall; | 
|  | if (nc != NULL) { | 
|  | cv->incall = nc->next; | 
|  | mkqid(&c->qid, QID(PROTO(c->qid), nc->x, Qctl), | 
|  | 0, QTFILE); | 
|  | kstrdup(&cv->owner, ATTACHER(c)); | 
|  | } | 
|  | qunlock(&cv->qlock); | 
|  |  | 
|  | qunlock(&cv->listenq); | 
|  | poperror(); | 
|  | } | 
|  | closeconv(cv); | 
|  | poperror(); | 
|  | break; | 
|  | } | 
|  | c->mode = openmode(omode); | 
|  | c->flag |= COPEN; | 
|  | c->offset = 0; | 
|  | return c; | 
|  | } | 
|  |  | 
|  | static size_t ipwstat(struct chan *c, uint8_t *dp, size_t n) | 
|  | { | 
|  | ERRSTACK(2); | 
|  | struct dir *d; | 
|  | struct conv *cv; | 
|  | struct Fs *f; | 
|  | struct Proto *p; | 
|  |  | 
|  | f = ipfs[c->dev]; | 
|  | switch (TYPE(c->qid)) { | 
|  | default: | 
|  | error(EPERM, ERROR_FIXME); | 
|  | break; | 
|  | case Qctl: | 
|  | case Qdata: | 
|  | break; | 
|  | } | 
|  |  | 
|  | d = kzmalloc(sizeof(*d) + n, 0); | 
|  | if (waserror()) { | 
|  | kfree(d); | 
|  | nexterror(); | 
|  | } | 
|  | n = convM2D(dp, n, d, (char *)&d[1]); | 
|  | if (n == 0) | 
|  | error(ENODATA, ERROR_FIXME); | 
|  | p = f->p[PROTO(c->qid)]; | 
|  | cv = p->conv[CONV(c->qid)]; | 
|  | if (!iseve() && strcmp(ATTACHER(c), cv->owner) != 0) | 
|  | error(EPERM, ERROR_FIXME); | 
|  | if (!emptystr(d->uid)) | 
|  | kstrdup(&cv->owner, d->uid); | 
|  | if (d->mode != -1) | 
|  | cv->perm = d->mode & 0777; | 
|  | poperror(); | 
|  | kfree(d); | 
|  | return n; | 
|  | } | 
|  |  | 
|  | /* Should be able to handle any file type chan. Feel free to extend it. */ | 
|  | static char *ipchaninfo(struct chan *ch, char *ret, size_t ret_l) | 
|  | { | 
|  | struct conv *conv; | 
|  | struct Proto *proto; | 
|  | char *p; | 
|  | struct Fs *f; | 
|  |  | 
|  | f = ipfs[ch->dev]; | 
|  |  | 
|  | switch (TYPE(ch->qid)) { | 
|  | default: | 
|  | ret = "Unknown type"; | 
|  | break; | 
|  | case Qdata: | 
|  | proto = f->p[PROTO(ch->qid)]; | 
|  | conv = proto->conv[CONV(ch->qid)]; | 
|  | snprintf(ret, ret_l, | 
|  | "Qdata, %s, proto %s, conv idx %d, rq len %d, wq len %d, total read %llu", | 
|  | SLIST_EMPTY(&conv->data_taps) ? "untapped" : "tapped", | 
|  | proto->name, conv->x, qlen(conv->rq), qlen(conv->wq), | 
|  | q_bytes_read(conv->rq)); | 
|  | break; | 
|  | case Qarp: | 
|  | ret = "Qarp"; | 
|  | break; | 
|  | case Qiproute: | 
|  | ret = "Qiproute"; | 
|  | break; | 
|  | case Qlisten: | 
|  | proto = f->p[PROTO(ch->qid)]; | 
|  | conv = proto->conv[CONV(ch->qid)]; | 
|  | snprintf(ret, ret_l, | 
|  | "Qlisten, %s proto %s, conv idx %d, has %sincalls", | 
|  | SLIST_EMPTY(&conv->listen_taps) ? "untapped" | 
|  | : "tapped", | 
|  | proto->name, conv->x, conv->incall ? "" : "no "); | 
|  | break; | 
|  | case Qlog: | 
|  | ret = "Qlog"; | 
|  | break; | 
|  | case Qndb: | 
|  | ret = "Qndb"; | 
|  | break; | 
|  | case Qctl: | 
|  | proto = f->p[PROTO(ch->qid)]; | 
|  | conv = proto->conv[CONV(ch->qid)]; | 
|  | snprintf(ret, ret_l, "Qctl, proto %s, conv idx %d", proto->name, | 
|  | conv->x); | 
|  | break; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void closeconv(struct conv *cv) | 
|  | { | 
|  | ERRSTACK(1); | 
|  | struct conv *nc; | 
|  | struct Ipmulti *mp; | 
|  |  | 
|  | qlock(&cv->qlock); | 
|  |  | 
|  | if (--cv->inuse > 0) { | 
|  | qunlock(&cv->qlock); | 
|  | return; | 
|  | } | 
|  | if (waserror()) { | 
|  | qunlock(&cv->qlock); | 
|  | nexterror(); | 
|  | } | 
|  | /* close all incoming calls since no listen will ever happen */ | 
|  | for (nc = cv->incall; nc; nc = cv->incall) { | 
|  | cv->incall = nc->next; | 
|  | closeconv(nc); | 
|  | } | 
|  | cv->incall = NULL; | 
|  |  | 
|  | kstrdup(&cv->owner, network); | 
|  | cv->perm = 0660; | 
|  |  | 
|  | while ((mp = cv->multi) != NULL) | 
|  | ipifcremmulti(cv, mp->ma, mp->ia); | 
|  |  | 
|  | cv->r = NULL; | 
|  | cv->rgen = 0; | 
|  | if (cv->state == Bypass) | 
|  | undo_proto_qio_bypass(cv); | 
|  | cv->p->close(cv); | 
|  | cv->state = Idle; | 
|  | qunlock(&cv->qlock); | 
|  | poperror(); | 
|  | } | 
|  |  | 
|  | static void ipclose(struct chan *c) | 
|  | { | 
|  | struct Fs *f; | 
|  |  | 
|  | f = ipfs[c->dev]; | 
|  | switch (TYPE(c->qid)) { | 
|  | default: | 
|  | break; | 
|  | case Qlog: | 
|  | if (c->flag & COPEN) | 
|  | netlogclose(f); | 
|  | break; | 
|  | case Qiprouter: | 
|  | if (c->flag & COPEN) | 
|  | iprouterclose(f); | 
|  | break; | 
|  | case Qdata: | 
|  | case Qctl: | 
|  | case Qerr: | 
|  | case Qlisten: | 
|  | if (c->flag & COPEN) | 
|  | closeconv(f->p[PROTO(c->qid)]->conv[CONV(c->qid)]); | 
|  | break; | 
|  | case Qsnoop: | 
|  | if (c->flag & COPEN) | 
|  | atomic_dec(&f->p[PROTO(c->qid)]->conv[CONV(c->qid)]->snoopers); | 
|  | break; | 
|  | case Qiproute: | 
|  | if (c->flag & COPEN) { | 
|  | kpages_free(c->synth_buf, IPROUTE_LEN); | 
|  | c->synth_buf = NULL; | 
|  | } | 
|  | break; | 
|  | } | 
|  | kfree(((struct IPaux *)c->aux)->owner); | 
|  | kfree(c->aux); | 
|  | } | 
|  |  | 
|  | enum { | 
|  | Statelen = 32 * 1024, | 
|  | }; | 
|  |  | 
|  | static size_t ipread(struct chan *ch, void *a, size_t n, off64_t off) | 
|  | { | 
|  | struct conv *c; | 
|  | struct Proto *x; | 
|  | char *buf, *p; | 
|  | long rv; | 
|  | struct Fs *f; | 
|  | uint32_t offset = off; | 
|  |  | 
|  | f = ipfs[ch->dev]; | 
|  |  | 
|  | p = a; | 
|  | switch (TYPE(ch->qid)) { | 
|  | default: | 
|  | error(EPERM, ERROR_FIXME); | 
|  | case Qtopdir: | 
|  | case Qprotodir: | 
|  | case Qconvdir: | 
|  | return devdirread(ch, a, n, 0, 0, ipgen); | 
|  | case Qarp: | 
|  | return arpread(f->arp, a, offset, n); | 
|  | case Qndb: | 
|  | return readstr(offset, a, n, f->ndb); | 
|  | case Qiproute: | 
|  | return readmem(offset, a, n, ch->synth_buf, IPROUTE_LEN); | 
|  | case Qiprouter: | 
|  | return iprouterread(f, a, n); | 
|  | case Qipselftab: | 
|  | return ipselftabread(f, a, offset, n); | 
|  | case Qlog: | 
|  | return netlogread(f, a, offset, n); | 
|  | case Qctl: | 
|  | snprintf(get_cur_genbuf(), GENBUF_SZ, "%lu", CONV(ch->qid)); | 
|  | return readstr(offset, p, n, get_cur_genbuf()); | 
|  | case Qremote: | 
|  | buf = kzmalloc(Statelen, 0); | 
|  | x = f->p[PROTO(ch->qid)]; | 
|  | c = x->conv[CONV(ch->qid)]; | 
|  | if (x->remote == NULL) { | 
|  | snprintf(buf, Statelen, "%I!%d\n", c->raddr, c->rport); | 
|  | } else { | 
|  | (*x->remote) (c, buf, Statelen - 2); | 
|  | } | 
|  | rv = readstr(offset, p, n, buf); | 
|  | kfree(buf); | 
|  | return rv; | 
|  | case Qlocal: | 
|  | buf = kzmalloc(Statelen, 0); | 
|  | x = f->p[PROTO(ch->qid)]; | 
|  | c = x->conv[CONV(ch->qid)]; | 
|  | if (x->local == NULL) { | 
|  | snprintf(buf, Statelen, "%I!%d\n", c->laddr, c->lport); | 
|  | } else { | 
|  | (*x->local) (c, buf, Statelen - 2); | 
|  | } | 
|  | rv = readstr(offset, p, n, buf); | 
|  | kfree(buf); | 
|  | return rv; | 
|  | case Qstatus: | 
|  | /* this all is a bit screwed up since the size of some state's | 
|  | * buffers will change from one invocation to another.  a reader | 
|  | * will come in and read the entire buffer.  then it will come | 
|  | * again and read from the next offset, expecting EOF.  if the | 
|  | * buffer changed sizes, it'll reprint the end of the buffer | 
|  | * slightly. */ | 
|  | buf = kzmalloc(Statelen, 0); | 
|  | x = f->p[PROTO(ch->qid)]; | 
|  | c = x->conv[CONV(ch->qid)]; | 
|  | if (c->state == Bypass) | 
|  | snprintf(buf, Statelen, "Bypassed\n"); | 
|  | else | 
|  | (*x->state)(c, buf, Statelen - 2); | 
|  | rv = readstr(offset, p, n, buf); | 
|  | kfree(buf); | 
|  | return rv; | 
|  | case Qdata: | 
|  | c = f->p[PROTO(ch->qid)]->conv[CONV(ch->qid)]; | 
|  | if (ch->flag & O_NONBLOCK) | 
|  | return qread_nonblock(c->rq, a, n); | 
|  | else | 
|  | return qread(c->rq, a, n); | 
|  | case Qerr: | 
|  | c = f->p[PROTO(ch->qid)]->conv[CONV(ch->qid)]; | 
|  | return qread(c->eq, a, n); | 
|  | case Qsnoop: | 
|  | c = f->p[PROTO(ch->qid)]->conv[CONV(ch->qid)]; | 
|  | return qread(c->sq, a, n); | 
|  | case Qstats: | 
|  | x = f->p[PROTO(ch->qid)]; | 
|  | if (x->stats == NULL) | 
|  | error(EFAIL, "stats not implemented"); | 
|  | buf = kzmalloc(Statelen, 0); | 
|  | (*x->stats) (x, buf, Statelen); | 
|  | rv = readstr(offset, p, n, buf); | 
|  | kfree(buf); | 
|  | return rv; | 
|  | } | 
|  | } | 
|  |  | 
|  | static struct block *ipbread(struct chan *ch, size_t n, off64_t offset) | 
|  | { | 
|  | struct conv *c; | 
|  |  | 
|  | switch (TYPE(ch->qid)) { | 
|  | case Qdata: | 
|  | c = chan2conv(ch); | 
|  | if (ch->flag & O_NONBLOCK) | 
|  | return qbread_nonblock(c->rq, n); | 
|  | else | 
|  | return qbread(c->rq, n); | 
|  | default: | 
|  | return devbread(ch, n, offset); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | *  set local address to be that of the ifc closest to remote address | 
|  | */ | 
|  | static void setladdr(struct conv *c) | 
|  | { | 
|  | findlocalip(c->p->f, c->laddr, c->raddr); | 
|  | } | 
|  |  | 
|  | /* | 
|  | *  set a local port making sure the quad of raddr,rport,laddr,lport is unique | 
|  | */ | 
|  | static void setluniqueport(struct conv *c, int lport) | 
|  | { | 
|  | struct Proto *p; | 
|  | struct conv *xp; | 
|  | int x; | 
|  |  | 
|  | p = c->p; | 
|  |  | 
|  | qlock(&p->qlock); | 
|  | for (x = 0; x < p->nc; x++) { | 
|  | xp = p->conv[x]; | 
|  | if (xp == NULL) | 
|  | break; | 
|  | if (xp == c) | 
|  | continue; | 
|  | if ((xp->state == Connected || xp->state == Announced | 
|  | || xp->state == Bypass) | 
|  | && xp->lport == lport | 
|  | && xp->rport == c->rport | 
|  | && ipcmp(xp->raddr, c->raddr) == 0 | 
|  | && ipcmp(xp->laddr, c->laddr) == 0) { | 
|  | qunlock(&p->qlock); | 
|  | error(EFAIL, "address in use"); | 
|  | } | 
|  | } | 
|  | c->lport = lport; | 
|  | qunlock(&p->qlock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | *  pick a local port and set it | 
|  | */ | 
|  | static void setlport(struct conv *c) | 
|  | { | 
|  | struct Proto *p; | 
|  | uint16_t *pp; | 
|  | int x, found; | 
|  |  | 
|  | p = c->p; | 
|  | if (c->restricted) | 
|  | pp = &p->nextrport; | 
|  | else | 
|  | pp = &p->nextport; | 
|  | qlock(&p->qlock); | 
|  | for (;; (*pp)++) { | 
|  | /* | 
|  | * Fsproto initialises p->nextport to 0 and the restricted | 
|  | * ports (p->nextrport) to 600. | 
|  | * Restricted ports must lie between 600 and 1024.  For the | 
|  | * initial condition or if the unrestricted port number has | 
|  | * wrapped round, select a random port between 5000 and 1<<15 to | 
|  | * start at. | 
|  | */ | 
|  | if (c->restricted) { | 
|  | if (*pp >= 1024) | 
|  | *pp = 600; | 
|  | } else | 
|  | while (*pp < 5000) | 
|  | urandom_read(pp, sizeof(*pp)); | 
|  |  | 
|  | found = 0; | 
|  | for (x = 0; x < p->nc; x++) { | 
|  | if (p->conv[x] == NULL) | 
|  | break; | 
|  | if (p->conv[x]->lport == *pp) { | 
|  | found = 1; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (!found) | 
|  | break; | 
|  | } | 
|  | c->lport = (*pp)++; | 
|  | qunlock(&p->qlock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | *  set a local address and port from a string of the form | 
|  | *	[address!]port[!r] | 
|  | */ | 
|  | static void setladdrport(struct conv *c, char *str, int announcing) | 
|  | { | 
|  | char *p; | 
|  | uint16_t lport; | 
|  | uint8_t addr[IPaddrlen]; | 
|  |  | 
|  | /* | 
|  | *  ignore restricted part if it exists.  it's | 
|  | *  meaningless on local ports. | 
|  | */ | 
|  | p = strchr(str, '!'); | 
|  | if (p != NULL) { | 
|  | *p++ = 0; | 
|  | if (strcmp(p, "r") == 0) | 
|  | p = NULL; | 
|  | } | 
|  |  | 
|  | c->lport = 0; | 
|  | if (p == NULL) { | 
|  | if (announcing) | 
|  | ipmove(c->laddr, IPnoaddr); | 
|  | else | 
|  | setladdr(c); | 
|  | p = str; | 
|  | } else { | 
|  | if (strcmp(str, "*") == 0) | 
|  | ipmove(c->laddr, IPnoaddr); | 
|  | else { | 
|  | parseip(addr, str); | 
|  | if (ipforme(c->p->f, addr)) | 
|  | ipmove(c->laddr, addr); | 
|  | else | 
|  | error(EFAIL, "not a local IP address"); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* one process can get all connections */ | 
|  | if (announcing && strcmp(p, "*") == 0) { | 
|  | if (!iseve()) | 
|  | error(EPERM, ERROR_FIXME); | 
|  | setluniqueport(c, 0); | 
|  | } | 
|  |  | 
|  | lport = atoi(p); | 
|  | if (lport <= 0) | 
|  | setlport(c); | 
|  | else | 
|  | setluniqueport(c, lport); | 
|  | } | 
|  |  | 
|  | static void setraddrport(struct conv *c, char *str) | 
|  | { | 
|  | char *p; | 
|  |  | 
|  | p = strchr(str, '!'); | 
|  | if (p == NULL) | 
|  | error(EFAIL, "malformed address"); | 
|  | *p++ = 0; | 
|  | parseip(c->raddr, str); | 
|  | c->rport = atoi(p); | 
|  | p = strchr(p, '!'); | 
|  | if (p) { | 
|  | if (strstr(p, "!r") != NULL) | 
|  | c->restricted = 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | *  called by protocol connect routine to set addresses | 
|  | */ | 
|  | void Fsstdconnect(struct conv *c, char *argv[], int argc) | 
|  | { | 
|  | switch (argc) { | 
|  | default: | 
|  | error(EINVAL, "bad args to %s", __func__); | 
|  | case 2: | 
|  | setraddrport(c, argv[1]); | 
|  | setladdr(c); | 
|  | setlport(c); | 
|  | break; | 
|  | case 3: | 
|  | setraddrport(c, argv[1]); | 
|  | setladdrport(c, argv[2], 0); | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* TODO: why is an IPnoaddr (in v6 format, equivalent to v6Unspecified), | 
|  | * a v4 format? */ | 
|  | if ((memcmp(c->raddr, v4prefix, IPv4off) == 0 && | 
|  | memcmp(c->laddr, v4prefix, IPv4off) == 0) | 
|  | || ipcmp(c->raddr, IPnoaddr) == 0) | 
|  | c->ipversion = V4; | 
|  | else | 
|  | c->ipversion = V6; | 
|  | /* Linux has taught people to use zeros for local interfaces.  TODO: We | 
|  | * might need this for v6 in the future. */ | 
|  | if (!ipcmp(c->raddr, IPv4_zeroes)) | 
|  | ipmove(c->raddr, IPv4_loopback); | 
|  | } | 
|  |  | 
|  | /* | 
|  | *  initiate connection and sleep till its set up | 
|  | */ | 
|  | static int connected(void *a) | 
|  | { | 
|  | return ((struct conv *)a)->state == Connected; | 
|  | } | 
|  |  | 
|  | static void connectctlmsg(struct Proto *x, struct conv *c, struct cmdbuf *cb, | 
|  | struct chan *chan) | 
|  | { | 
|  | ERRSTACK(1); | 
|  | char *p; | 
|  |  | 
|  | if (c->state != 0) | 
|  | error(EBUSY, ERROR_FIXME); | 
|  | c->state = Connecting; | 
|  | c->cerr[0] = '\0'; | 
|  | if (x->connect == NULL) | 
|  | error(EFAIL, "connect not supported"); | 
|  | /* It's up to the proto connect method to not block the kthread.  This | 
|  | * is currently the case for e.g. TCP. */ | 
|  | x->connect(c, cb->f, cb->nf); | 
|  | /* This is notionally right before the rendez_sleep: either we block or | 
|  | * we kick back to userspace.  We do this before the unlock to avoid | 
|  | * races with c->state (rendez's internal lock deals with its race with | 
|  | * the waker) and to avoid the excessive unlock and relock. | 
|  | * | 
|  | * Also, it's important that we don't do anything important for the | 
|  | * functionality of the conv after the rendez sleep.  The non-blocking | 
|  | * style won't call back into the kernel - it just wants the event.  I | 
|  | * considered allowing multiple connect calls, where we just return if | 
|  | * it was already connected, but that would break UDP, which allows | 
|  | * multiple different connect calls. */ | 
|  | if ((chan->flag & O_NONBLOCK) && !connected(c)) | 
|  | error(EINPROGRESS, "connection not ready yet"); | 
|  | qunlock(&c->qlock); | 
|  | if (waserror()) { | 
|  | qlock(&c->qlock); | 
|  | nexterror(); | 
|  | } | 
|  | rendez_sleep(&c->cr, connected, c); | 
|  | qlock(&c->qlock); | 
|  | poperror(); | 
|  |  | 
|  | if (c->cerr[0] != '\0') | 
|  | error(EFAIL, c->cerr); | 
|  | } | 
|  |  | 
|  | /* | 
|  | *  called by protocol announce routine to set addresses | 
|  | */ | 
|  | void Fsstdannounce(struct conv *c, char *argv[], int argc) | 
|  | { | 
|  | memset(c->raddr, 0, sizeof(c->raddr)); | 
|  | c->rport = 0; | 
|  | switch (argc) { | 
|  | default: | 
|  | error(EINVAL, "bad args to announce"); | 
|  | case 2: | 
|  | setladdrport(c, argv[1], 1); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | *  initiate announcement and sleep till its set up | 
|  | */ | 
|  | static int announced(void *a) | 
|  | { | 
|  | return ((struct conv *)a)->state == Announced; | 
|  | } | 
|  |  | 
|  | static void announcectlmsg(struct Proto *x, struct conv *c, struct cmdbuf *cb) | 
|  | { | 
|  | ERRSTACK(1); | 
|  | char *p; | 
|  |  | 
|  | if (c->state != 0) | 
|  | error(EBUSY, ERROR_FIXME); | 
|  | c->state = Announcing; | 
|  | c->cerr[0] = '\0'; | 
|  | if (x->announce == NULL) | 
|  | error(EFAIL, "announce not supported"); | 
|  | x->announce(c, cb->f, cb->nf); | 
|  |  | 
|  | qunlock(&c->qlock); | 
|  | if (waserror()) { | 
|  | qlock(&c->qlock); | 
|  | nexterror(); | 
|  | } | 
|  | rendez_sleep(&c->cr, announced, c); | 
|  | qlock(&c->qlock); | 
|  | poperror(); | 
|  |  | 
|  | if (c->cerr[0] != '\0') | 
|  | error(EFAIL, c->cerr); | 
|  | } | 
|  |  | 
|  | /* | 
|  | *  called by protocol bind routine to set addresses | 
|  | */ | 
|  | void Fsstdbind(struct conv *c, char *argv[], int argc) | 
|  | { | 
|  | switch (argc) { | 
|  | default: | 
|  | error(EINVAL, "bad args to bind"); | 
|  | case 2: | 
|  | setladdrport(c, argv[1], 0); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void bindctlmsg(struct Proto *x, struct conv *c, struct cmdbuf *cb) | 
|  | { | 
|  | if (x->bind == NULL) | 
|  | Fsstdbind(c, cb->f, cb->nf); | 
|  | else | 
|  | x->bind(c, cb->f, cb->nf); | 
|  | } | 
|  |  | 
|  | /* Helper, called by protocols to use the bypass. | 
|  | * | 
|  | * This is a bit nasty due to the overall nastiness of #ip.  We need to lock | 
|  | * before checking the state and hold the qlock throughout, because a concurrent | 
|  | * closeconv() could tear down the bypass.  Specifically, it could free the | 
|  | * bypass queues.  The root issue is that conversation lifetimes are not managed | 
|  | * well. | 
|  | * | 
|  | * If we fail, it's our responsibility to consume (free) the block(s). */ | 
|  | void bypass_or_drop(struct conv *cv, struct block *bp) | 
|  | { | 
|  | qlock(&cv->qlock); | 
|  | if (cv->state == Bypass) | 
|  | qpass(cv->rq, bp); | 
|  | else | 
|  | freeblist(bp); | 
|  | qunlock(&cv->qlock); | 
|  | } | 
|  |  | 
|  | /* Push the block directly to the approprite ipoput function. | 
|  | * | 
|  | * It's the protocol's responsibility (and thus ours here) to make sure there is | 
|  | * at least the right amount of the IP header in the block (ipoput{4,6} assumes | 
|  | * it has the right amount, and the other protocols account for the IP header in | 
|  | * their own header). | 
|  | * | 
|  | * For the TTL and TOS, we just use the default ones.  If we want, we could look | 
|  | * into the actual block and see what the user wanted, though we're bypassing | 
|  | * the protocol layer, not the IP layer. */ | 
|  | static void proto_bypass_kick(void *arg, struct block *bp) | 
|  | { | 
|  | struct conv *cv = (struct conv*)arg; | 
|  | uint8_t vers_nibble; | 
|  | struct Fs *f; | 
|  |  | 
|  | f = cv->p->f; | 
|  |  | 
|  | bp = pullupblock(bp, 1); | 
|  | if (!bp) | 
|  | error(EINVAL, "Proto bypass unable to pullup a byte!"); | 
|  | vers_nibble = *(uint8_t*)bp->rp & 0xf0; | 
|  | switch (vers_nibble) { | 
|  | case IP_VER4: | 
|  | bp = pullupblock(bp, IPV4HDR_LEN); | 
|  | if (!bp) | 
|  | error(EINVAL, | 
|  | "Proto bypass unable to pullup v4 header"); | 
|  | ipoput4(f, bp, FALSE, MAXTTL, DFLTTOS, NULL); | 
|  | break; | 
|  | case IP_VER6: | 
|  | bp = pullupblock(bp, IPV6HDR_LEN); | 
|  | if (!bp) | 
|  | error(EINVAL, | 
|  | "Proto bypass unable to pullup v6 header"); | 
|  | ipoput6(f, bp, FALSE, MAXTTL, DFLTTOS, NULL); | 
|  | break; | 
|  | default: | 
|  | error(EINVAL, "Proto bypass block had unknown IP version 0x%x", | 
|  | vers_nibble); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Sets up cv for the protocol bypass.  We use different queues for two reasons: | 
|  | * 1) To be protocol independent.  For instance, TCP and UDP could use very | 
|  | * different QIO styles. | 
|  | * 2) To set up our own kick/bypass method.  Note how udpcreate() and here uses | 
|  | * qbypass() (just blast it out), while TCP uses qopen() with a kick.  TCP still | 
|  | * follows queuing discipline. | 
|  | * | 
|  | * It's like we are our own protocol, the bypass protocol, when it comes to how | 
|  | * we interact with qio.  The conv still is of the real protocol type (e.g. | 
|  | * TCP). | 
|  | * | 
|  | * Note that we can't free the old queues.  The way #ip works, the queues are | 
|  | * created when the conv is created, but the conv is never freed.  It's like a | 
|  | * slab allocator that never frees objects, but just reinitializes them a | 
|  | * little. | 
|  | * | 
|  | * For the queues, we're basically like UDP: | 
|  | * - We take packets for rq and drop on overflow. | 
|  | * - rq is also Qmsg, but we also have Qcoalesce, to ignore out zero-len blocks | 
|  | * - We kick for our outbound (wq) messages. | 
|  | * | 
|  | * Note that Qmsg can drop parts of packets.  It's up to the user to read | 
|  | * enough.  If they didn't read enough, the extra is dropped.  This is similar | 
|  | * to SOCK_DGRAM and recvfrom().  Minus major changes, there's no nice way to | 
|  | * get individual messages with read().  Userspace using the bypass will need to | 
|  | * find out the MTU of the NIC the IP stack is attached to, and make sure to | 
|  | * read in at least that amount each time. */ | 
|  | static void setup_proto_qio_bypass(struct conv *cv) | 
|  | { | 
|  | cv->rq_save = cv->rq; | 
|  | cv->wq_save = cv->wq; | 
|  | cv->rq = qopen(BYPASS_QMAX, Qmsg | Qcoalesce, 0, 0); | 
|  | cv->wq = qbypass(proto_bypass_kick, cv); | 
|  | } | 
|  |  | 
|  | static void undo_proto_qio_bypass(struct conv *cv) | 
|  | { | 
|  | qfree(cv->rq); | 
|  | qfree(cv->wq); | 
|  | cv->rq = cv->rq_save; | 
|  | cv->wq = cv->wq_save; | 
|  | cv->rq_save = NULL; | 
|  | cv->wq_save = NULL; | 
|  | } | 
|  |  | 
|  | void Fsstdbypass(struct conv *cv, char *argv[], int argc) | 
|  | { | 
|  | memset(cv->raddr, 0, sizeof(cv->raddr)); | 
|  | cv->rport = 0; | 
|  | switch (argc) { | 
|  | case 2: | 
|  | setladdrport(cv, argv[1], 1); | 
|  | break; | 
|  | default: | 
|  | error(EINVAL, "Bad args (was %d, need 2) to bypass", argc); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void bypassctlmsg(struct Proto *x, struct conv *cv, struct cmdbuf *cb) | 
|  | { | 
|  | if (!x->bypass) | 
|  | error(EFAIL, "Protocol %s does not support bypass", x->name); | 
|  | /* The protocol needs to set the port (usually by calling Fsstdbypass) | 
|  | * and then do whatever it needs to make sure it can find the conv again | 
|  | * during receive (usually by adding to a hash table). */ | 
|  | x->bypass(cv, cb->f, cb->nf); | 
|  | setup_proto_qio_bypass(cv); | 
|  | cv->state = Bypass; | 
|  | } | 
|  |  | 
|  | static void shutdownctlmsg(struct conv *cv, struct cmdbuf *cb) | 
|  | { | 
|  | if (cb->nf < 2) | 
|  | goto err; | 
|  | if (!strcmp(cb->f[1], "rd")) { | 
|  | qhangup(cv->rq, "shutdown"); | 
|  | if (cv->p->shutdown) | 
|  | cv->p->shutdown(cv, SHUT_RD); | 
|  | } else if (!strcmp(cb->f[1], "wr")) { | 
|  | qhangup(cv->wq, "shutdown"); | 
|  | if (cv->p->shutdown) | 
|  | cv->p->shutdown(cv, SHUT_WR); | 
|  | } else if (!strcmp(cb->f[1], "rdwr")) { | 
|  | qhangup(cv->rq, "shutdown"); | 
|  | qhangup(cv->wq, "shutdown"); | 
|  | if (cv->p->shutdown) | 
|  | cv->p->shutdown(cv, SHUT_RDWR); | 
|  | } else { | 
|  | goto err; | 
|  | } | 
|  | return; | 
|  | err: | 
|  | error(EINVAL, "shutdown [rx|tx|rxtx]"); | 
|  | } | 
|  |  | 
|  | static void tosctlmsg(struct conv *c, struct cmdbuf *cb) | 
|  | { | 
|  | if (cb->nf < 2) | 
|  | c->tos = 0; | 
|  | else | 
|  | c->tos = atoi(cb->f[1]); | 
|  | } | 
|  |  | 
|  | static void ttlctlmsg(struct conv *c, struct cmdbuf *cb) | 
|  | { | 
|  | if (cb->nf < 2) | 
|  | c->ttl = MAXTTL; | 
|  | else | 
|  | c->ttl = atoi(cb->f[1]); | 
|  | } | 
|  |  | 
|  | /* Binds a conversation, as if the user wrote "bind *" into ctl. */ | 
|  | static void autobind(struct conv *cv) | 
|  | { | 
|  | ERRSTACK(1); | 
|  | struct cmdbuf *cb; | 
|  |  | 
|  | cb = parsecmd("bind *", 7); | 
|  | if (waserror()) { | 
|  | kfree(cb); | 
|  | nexterror(); | 
|  | } | 
|  | bindctlmsg(cv->p, cv, cb); | 
|  | poperror(); | 
|  | kfree(cb); | 
|  | } | 
|  |  | 
|  | static size_t ipwrite(struct chan *ch, void *v, size_t n, off64_t off) | 
|  | { | 
|  | ERRSTACK(1); | 
|  | struct conv *c; | 
|  | struct Proto *x; | 
|  | char *p; | 
|  | struct cmdbuf *cb; | 
|  | uint8_t ia[IPaddrlen], ma[IPaddrlen]; | 
|  | struct Fs *f; | 
|  | char *a; | 
|  |  | 
|  | a = v; | 
|  | f = ipfs[ch->dev]; | 
|  |  | 
|  | switch (TYPE(ch->qid)) { | 
|  | default: | 
|  | error(EPERM, ERROR_FIXME); | 
|  | case Qdata: | 
|  | x = f->p[PROTO(ch->qid)]; | 
|  | c = x->conv[CONV(ch->qid)]; | 
|  | /* connection-less protocols (UDP) can write without manually | 
|  | * binding. */ | 
|  | if (c->lport == 0) | 
|  | autobind(c); | 
|  | if (ch->flag & O_NONBLOCK) | 
|  | qwrite_nonblock(c->wq, a, n); | 
|  | else | 
|  | qwrite(c->wq, a, n); | 
|  | break; | 
|  | case Qarp: | 
|  | return arpwrite(f, a, n); | 
|  | case Qiproute: | 
|  | return routewrite(f, ch, a, n); | 
|  | case Qlog: | 
|  | netlogctl(f, a, n); | 
|  | return n; | 
|  | case Qndb: | 
|  | return ndbwrite(f, a, off, n); | 
|  | case Qctl: | 
|  | x = f->p[PROTO(ch->qid)]; | 
|  | c = x->conv[CONV(ch->qid)]; | 
|  | cb = parsecmd(a, n); | 
|  |  | 
|  | qlock(&c->qlock); | 
|  | if (waserror()) { | 
|  | qunlock(&c->qlock); | 
|  | kfree(cb); | 
|  | nexterror(); | 
|  | } | 
|  | if (cb->nf < 1) | 
|  | error(EFAIL, "short control request"); | 
|  | if (strcmp(cb->f[0], "connect") == 0) | 
|  | connectctlmsg(x, c, cb, ch); | 
|  | else if (strcmp(cb->f[0], "announce") == 0) | 
|  | announcectlmsg(x, c, cb); | 
|  | else if (strcmp(cb->f[0], "bind") == 0) | 
|  | bindctlmsg(x, c, cb); | 
|  | else if (strcmp(cb->f[0], "bypass") == 0) | 
|  | bypassctlmsg(x, c, cb); | 
|  | else if (strcmp(cb->f[0], "shutdown") == 0) | 
|  | shutdownctlmsg(c, cb); | 
|  | else if (strcmp(cb->f[0], "ttl") == 0) | 
|  | ttlctlmsg(c, cb); | 
|  | else if (strcmp(cb->f[0], "tos") == 0) | 
|  | tosctlmsg(c, cb); | 
|  | else if (strcmp(cb->f[0], "ignoreadvice") == 0) | 
|  | c->ignoreadvice = 1; | 
|  | else if (strcmp(cb->f[0], "addmulti") == 0) { | 
|  | if (cb->nf < 2) | 
|  | error(EFAIL, | 
|  | "addmulti needs interface address"); | 
|  | if (cb->nf == 2) { | 
|  | if (!ipismulticast(c->raddr)) | 
|  | error(EFAIL, "addmulti for a non multicast address"); | 
|  | parseip(ia, cb->f[1]); | 
|  | ipifcaddmulti(c, c->raddr, ia); | 
|  | } else { | 
|  | parseip(ma, cb->f[2]); | 
|  | if (!ipismulticast(ma)) | 
|  | error(EFAIL, "addmulti for a non multicast address"); | 
|  | parseip(ia, cb->f[1]); | 
|  | ipifcaddmulti(c, ma, ia); | 
|  | } | 
|  | } else if (strcmp(cb->f[0], "remmulti") == 0) { | 
|  | if (cb->nf < 2) | 
|  | error(EFAIL, | 
|  | "remmulti needs interface address"); | 
|  | if (!ipismulticast(c->raddr)) | 
|  | error(EFAIL, | 
|  | "remmulti for a non multicast address"); | 
|  | parseip(ia, cb->f[1]); | 
|  | ipifcremmulti(c, c->raddr, ia); | 
|  | } else if (x->ctl != NULL) { | 
|  | x->ctl(c, cb->f, cb->nf); | 
|  | } else | 
|  | error(EFAIL, "unknown control request"); | 
|  | qunlock(&c->qlock); | 
|  | kfree(cb); | 
|  | poperror(); | 
|  | } | 
|  | return n; | 
|  | } | 
|  |  | 
|  | static size_t ipbwrite(struct chan *ch, struct block *bp, off64_t offset) | 
|  | { | 
|  | struct conv *c; | 
|  | size_t n; | 
|  |  | 
|  | switch (TYPE(ch->qid)) { | 
|  | case Qdata: | 
|  | c = chan2conv(ch); | 
|  | if (bp->next) | 
|  | bp = concatblock(bp); | 
|  | n = BLEN(bp); | 
|  | if (ch->flag & O_NONBLOCK) | 
|  | qbwrite_nonblock(c->wq, bp); | 
|  | else | 
|  | qbwrite(c->wq, bp); | 
|  | return n; | 
|  | default: | 
|  | return devbwrite(ch, bp, offset); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void fire_data_taps(struct conv *conv, int filter) | 
|  | { | 
|  | struct fd_tap *tap_i; | 
|  |  | 
|  | /* At this point, we have an event we want to send to our taps (if any). | 
|  | * The lock protects list integrity and the existence of the tap. | 
|  | * | 
|  | * Previously, I thought of using the conv qlock.  That actually breaks, | 
|  | * due to weird usages of the qlock (someone holds it for a long time, | 
|  | * blocking the inbound wakeup from etherread4). | 
|  | * | 
|  | * I opted for a spinlock for a couple reasons: | 
|  | * - fire_tap should not block.  ideally it'll be fast too (it's mostly | 
|  | *   a send_event). | 
|  | * - our callers might not want to block.  A lot of network wakeups will | 
|  | * come network processes (etherread4) or otherwise unrelated to this | 
|  | * particular conversation.  I'd rather do something like fire off a | 
|  | * KMSG than block those. | 
|  | * - if fire_tap takes a while, holding the lock only slows down other | 
|  | * events on this *same* conversation, or other tap registration.  not a | 
|  | * huge deal. */ | 
|  | spin_lock(&conv->tap_lock); | 
|  | SLIST_FOREACH(tap_i, &conv->data_taps, link) | 
|  | fire_tap(tap_i, filter); | 
|  | spin_unlock(&conv->tap_lock); | 
|  | } | 
|  |  | 
|  | static void ip_wake_cb(struct queue *q, void *data, int filter) | 
|  | { | 
|  | struct conv *conv = (struct conv*)data; | 
|  |  | 
|  | /* For these two, we want to ignore events on the opposite end of the | 
|  | * queues.  For instance, we want to know when the WQ is writable.  Our | 
|  | * writes will actually make it readable - we don't want to trigger a | 
|  | * tap for that.  However, qio doesn't know how/why we are using a | 
|  | * queue, or even who the ends are (hence the callbacks) */ | 
|  | if ((filter & FDTAP_FILT_READABLE) && (q == conv->wq)) | 
|  | return; | 
|  | if ((filter & FDTAP_FILT_WRITABLE) && (q == conv->rq)) | 
|  | return; | 
|  | fire_data_taps(conv, filter); | 
|  | } | 
|  |  | 
|  | int iptapfd(struct chan *chan, struct fd_tap *tap, int cmd) | 
|  | { | 
|  | struct conv *conv = chan2conv(chan); | 
|  | int ret; | 
|  |  | 
|  | #define DEVIP_LEGAL_DATA_TAPS (FDTAP_FILT_READABLE | FDTAP_FILT_WRITABLE |     \ | 
|  | FDTAP_FILT_HANGUP | FDTAP_FILT_PRIORITY |       \ | 
|  | FDTAP_FILT_ERROR) | 
|  | #define DEVIP_LEGAL_LISTEN_TAPS (FDTAP_FILT_READABLE | FDTAP_FILT_HANGUP) | 
|  |  | 
|  | switch (TYPE(chan->qid)) { | 
|  | case Qdata: | 
|  | if (tap->filter & ~DEVIP_LEGAL_DATA_TAPS) { | 
|  | set_errno(ENOSYS); | 
|  | set_errstr("Unsupported #%s data tap %p, must be %p", | 
|  | devname(), tap->filter, | 
|  | DEVIP_LEGAL_DATA_TAPS); | 
|  | return -1; | 
|  | } | 
|  | spin_lock(&conv->tap_lock); | 
|  | switch (cmd) { | 
|  | case (FDTAP_CMD_ADD): | 
|  | if (SLIST_EMPTY(&conv->data_taps)) { | 
|  | qio_set_wake_cb(conv->rq, ip_wake_cb, conv); | 
|  | qio_set_wake_cb(conv->wq, ip_wake_cb, conv); | 
|  | } | 
|  | SLIST_INSERT_HEAD(&conv->data_taps, tap, link); | 
|  | ret = 0; | 
|  | break; | 
|  | case (FDTAP_CMD_REM): | 
|  | SLIST_REMOVE(&conv->data_taps, tap, fd_tap, link); | 
|  | if (SLIST_EMPTY(&conv->data_taps)) { | 
|  | qio_set_wake_cb(conv->rq, 0, conv); | 
|  | qio_set_wake_cb(conv->wq, 0, conv); | 
|  | } | 
|  | ret = 0; | 
|  | break; | 
|  | default: | 
|  | set_errno(ENOSYS); | 
|  | set_errstr("Unsupported #%s data tap command %p", | 
|  | devname(), cmd); | 
|  | ret = -1; | 
|  | } | 
|  | spin_unlock(&conv->tap_lock); | 
|  | return ret; | 
|  | case Qlisten: | 
|  | if (tap->filter & ~DEVIP_LEGAL_LISTEN_TAPS) { | 
|  | set_errno(ENOSYS); | 
|  | set_errstr("Unsupported #%s listen tap %p, must be %p", | 
|  | devname(), tap->filter, | 
|  | DEVIP_LEGAL_LISTEN_TAPS); | 
|  | return -1; | 
|  | } | 
|  | spin_lock(&conv->tap_lock); | 
|  | switch (cmd) { | 
|  | case (FDTAP_CMD_ADD): | 
|  | SLIST_INSERT_HEAD(&conv->listen_taps, tap, link); | 
|  | ret = 0; | 
|  | break; | 
|  | case (FDTAP_CMD_REM): | 
|  | SLIST_REMOVE(&conv->listen_taps, tap, fd_tap, link); | 
|  | ret = 0; | 
|  | break; | 
|  | default: | 
|  | set_errno(ENOSYS); | 
|  | set_errstr("Unsupported #%s listen tap command %p", | 
|  | devname(), cmd); | 
|  | ret = -1; | 
|  | } | 
|  | spin_unlock(&conv->tap_lock); | 
|  | return ret; | 
|  | default: | 
|  | set_errno(ENOSYS); | 
|  | set_errstr("Can't tap #%s file type %d", devname(), | 
|  | TYPE(chan->qid)); | 
|  | return -1; | 
|  | } | 
|  | } | 
|  |  | 
|  | static unsigned long ip_chan_ctl(struct chan *c, int op, unsigned long a1, | 
|  | unsigned long a2, unsigned long a3, | 
|  | unsigned long a4) | 
|  | { | 
|  | switch (op) { | 
|  | case CCTL_SET_FL: | 
|  | return 0; | 
|  | default: | 
|  | error(EINVAL, "%s does not support %d", __func__, op); | 
|  | } | 
|  | } | 
|  |  | 
|  | struct dev ipdevtab __devtab = { | 
|  | .name = "ip", | 
|  |  | 
|  | .reset = ipreset, | 
|  | .init = ipinit, | 
|  | .shutdown = devshutdown, | 
|  | .attach = ipattach, | 
|  | .walk = ipwalk, | 
|  | .stat = ipstat, | 
|  | .open = ipopen, | 
|  | .create = devcreate, | 
|  | .close = ipclose, | 
|  | .read = ipread, | 
|  | .bread = ipbread, | 
|  | .write = ipwrite, | 
|  | .bwrite = ipbwrite, | 
|  | .remove = devremove, | 
|  | .wstat = ipwstat, | 
|  | .power = devpower, | 
|  | .chaninfo = ipchaninfo, | 
|  | .tapfd = iptapfd, | 
|  | .chan_ctl = ip_chan_ctl, | 
|  | }; | 
|  |  | 
|  | int Fsproto(struct Fs *f, struct Proto *p) | 
|  | { | 
|  | if (f->np >= Maxproto) | 
|  | return -1; | 
|  |  | 
|  | qlock_init(&p->qlock); | 
|  | p->f = f; | 
|  |  | 
|  | if (p->ipproto > 0) { | 
|  | if (f->t2p[p->ipproto] != NULL) | 
|  | return -1; | 
|  | f->t2p[p->ipproto] = p; | 
|  | } | 
|  |  | 
|  | p->qid.type = QTDIR; | 
|  | p->qid.path = QID(f->np, 0, Qprotodir); | 
|  | p->conv = kzmalloc(sizeof(struct conv *) * (p->nc + 1), 0); | 
|  | if (p->conv == NULL) | 
|  | panic("Fsproto"); | 
|  |  | 
|  | p->x = f->np; | 
|  | p->nextport = 0; | 
|  | p->nextrport = 600; | 
|  | f->p[f->np++] = p; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *  return true if this protocol is | 
|  | *  built in | 
|  | */ | 
|  | int Fsbuiltinproto(struct Fs *f, uint8_t proto) | 
|  | { | 
|  | return f->t2p[proto] != NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *  called with protocol locked | 
|  | */ | 
|  | struct conv *Fsprotoclone(struct Proto *p, char *user) | 
|  | { | 
|  | struct conv *c, **pp, **ep; | 
|  |  | 
|  | retry: | 
|  | c = NULL; | 
|  | ep = &p->conv[p->nc]; | 
|  | for (pp = p->conv; pp < ep; pp++) { | 
|  | c = *pp; | 
|  | if (c == NULL) { | 
|  | c = kzmalloc(sizeof(struct conv), 0); | 
|  | if (c == NULL) | 
|  | error(ENOMEM, | 
|  | "conv kzmalloc(%d, 0) failed in Fsprotoclone", | 
|  | sizeof(struct conv)); | 
|  | qlock_init(&c->qlock); | 
|  | qlock_init(&c->listenq); | 
|  | rendez_init(&c->cr); | 
|  | rendez_init(&c->listenr); | 
|  | /* already = 0; set to be futureproof */ | 
|  | SLIST_INIT(&c->data_taps); | 
|  | SLIST_INIT(&c->listen_taps); | 
|  | spinlock_init(&c->tap_lock); | 
|  | qlock(&c->qlock); | 
|  | c->p = p; | 
|  | c->x = pp - p->conv; | 
|  | if (p->ptclsize != 0) { | 
|  | c->ptcl = kzmalloc(p->ptclsize, 0); | 
|  | if (c->ptcl == NULL) { | 
|  | kfree(c); | 
|  | error(ENOMEM, | 
|  | "ptcl kzmalloc(%d, 0) failed in Fsprotoclone", | 
|  | p->ptclsize); | 
|  | } | 
|  | } | 
|  | *pp = c; | 
|  | p->ac++; | 
|  | c->eq = qopen(1024, Qmsg, 0, 0); | 
|  | (*p->create) (c); | 
|  | assert(c->rq && c->wq); | 
|  | break; | 
|  | } | 
|  | if (canqlock(&c->qlock)) { | 
|  | /* | 
|  | *  make sure both processes and protocol | 
|  | *  are done with this Conv | 
|  | */ | 
|  | if (c->inuse == 0 && (p->inuse == NULL || | 
|  | (*p->inuse)(c) == 0)) | 
|  | break; | 
|  |  | 
|  | qunlock(&c->qlock); | 
|  | } | 
|  | } | 
|  | if (pp >= ep) { | 
|  | if (p->gc != NULL && (*p->gc) (p)) | 
|  | goto retry; | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | c->inuse = 1; | 
|  | kstrdup(&c->owner, user); | 
|  | c->perm = 0660; | 
|  | c->state = Idle; | 
|  | ipmove(c->laddr, IPnoaddr); | 
|  | ipmove(c->raddr, IPnoaddr); | 
|  | c->r = NULL; | 
|  | c->rgen = 0; | 
|  | c->lport = 0; | 
|  | c->rport = 0; | 
|  | c->restricted = 0; | 
|  | c->ttl = MAXTTL; | 
|  | c->tos = DFLTTOS; | 
|  | qreopen(c->rq); | 
|  | qreopen(c->wq); | 
|  | qreopen(c->eq); | 
|  |  | 
|  | qunlock(&c->qlock); | 
|  | return c; | 
|  | } | 
|  |  | 
|  | int Fsconnected(struct conv *c, char *msg) | 
|  | { | 
|  | if (msg != NULL && *msg != '\0') | 
|  | strlcpy(c->cerr, msg, sizeof(c->cerr)); | 
|  |  | 
|  | switch (c->state) { | 
|  | case Announcing: | 
|  | c->state = Announced; | 
|  | break; | 
|  |  | 
|  | case Connecting: | 
|  | c->state = Connected; | 
|  | break; | 
|  | } | 
|  |  | 
|  | rendez_wakeup(&c->cr); | 
|  | /* The user can poll or tap the connection status via Qdata */ | 
|  | fire_data_taps(c, FDTAP_FILT_WRITABLE); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | struct Proto *Fsrcvpcol(struct Fs *f, uint8_t proto) | 
|  | { | 
|  | if (f->ipmux) | 
|  | return f->ipmux; | 
|  | else | 
|  | return f->t2p[proto]; | 
|  | } | 
|  |  | 
|  | struct Proto *Fsrcvpcolx(struct Fs *f, uint8_t proto) | 
|  | { | 
|  | return f->t2p[proto]; | 
|  | } | 
|  |  | 
|  | static void fire_listener_taps(struct conv *conv) | 
|  | { | 
|  | struct fd_tap *tap_i; | 
|  | if (SLIST_EMPTY(&conv->listen_taps)) | 
|  | return; | 
|  | spin_lock(&conv->tap_lock); | 
|  | SLIST_FOREACH(tap_i, &conv->listen_taps, link) | 
|  | fire_tap(tap_i, FDTAP_FILT_READABLE); | 
|  | spin_unlock(&conv->tap_lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | *  called with protocol locked | 
|  | */ | 
|  | struct conv *Fsnewcall(struct conv *c, uint8_t *raddr, uint16_t rport, | 
|  | uint8_t *laddr, uint16_t lport, uint8_t version) | 
|  | { | 
|  | struct conv *nc; | 
|  | struct conv **l; | 
|  | int i; | 
|  |  | 
|  | qlock(&c->qlock); | 
|  | i = 0; | 
|  | for (l = &c->incall; *l; l = &(*l)->next) | 
|  | i++; | 
|  | if (i >= Maxincall) { | 
|  | qunlock(&c->qlock); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* find a free conversation */ | 
|  | nc = Fsprotoclone(c->p, network); | 
|  | if (nc == NULL) { | 
|  | qunlock(&c->qlock); | 
|  | return NULL; | 
|  | } | 
|  | ipmove(nc->raddr, raddr); | 
|  | nc->rport = rport; | 
|  | ipmove(nc->laddr, laddr); | 
|  | nc->lport = lport; | 
|  | nc->next = NULL; | 
|  | *l = nc; | 
|  | nc->state = Connected; | 
|  | nc->ipversion = version; | 
|  |  | 
|  | qunlock(&c->qlock); | 
|  |  | 
|  | rendez_wakeup(&c->listenr); | 
|  | fire_listener_taps(c); | 
|  |  | 
|  | return nc; | 
|  | } | 
|  |  | 
|  | static long ndbwrite(struct Fs *f, char *a, uint32_t off, int n) | 
|  | { | 
|  | if (off > strlen(f->ndb)) | 
|  | error(EIO, ERROR_FIXME); | 
|  | if (off + n >= sizeof(f->ndb) - 1) | 
|  | error(EIO, ERROR_FIXME); | 
|  | memmove(f->ndb + off, a, n); | 
|  | f->ndb[off + n] = 0; | 
|  | f->ndbvers++; | 
|  | f->ndbmtime = seconds(); | 
|  | return n; | 
|  | } | 
|  |  | 
|  | uint32_t scalednconv(void) | 
|  | { | 
|  | //if(conf.npage*BY2PG >= 128*MB) | 
|  | return Nchans * 4; | 
|  | //  return Nchans; | 
|  | } |