|  | /* See COPYRIGHT for copyright information. */ | 
|  |  | 
|  | //#define DEBUG | 
|  | #include <ros/common.h> | 
|  | #include <ros/limits.h> | 
|  | #include <arch/types.h> | 
|  | #include <arch/arch.h> | 
|  | #include <arch/mmu.h> | 
|  | #include <arch/console.h> | 
|  | #include <time.h> | 
|  | #include <error.h> | 
|  |  | 
|  | #include <elf.h> | 
|  | #include <string.h> | 
|  | #include <assert.h> | 
|  | #include <process.h> | 
|  | #include <schedule.h> | 
|  | #include <pmap.h> | 
|  | #include <umem.h> | 
|  | #include <mm.h> | 
|  | #include <trap.h> | 
|  | #include <syscall.h> | 
|  | #include <kmalloc.h> | 
|  | #include <profiler.h> | 
|  | #include <stdio.h> | 
|  | #include <hashtable.h> | 
|  | #include <bitmask.h> | 
|  | #include <smp.h> | 
|  | #include <arsc_server.h> | 
|  | #include <event.h> | 
|  | #include <kprof.h> | 
|  | #include <termios.h> | 
|  | #include <manager.h> | 
|  | #include <ros/procinfo.h> | 
|  | #include <rcu.h> | 
|  |  | 
|  | static int execargs_stringer(struct proc *p, char *d, size_t slen, | 
|  | char *path, size_t path_l, | 
|  | char *argenv, size_t argenv_l); | 
|  |  | 
|  | /* Global, used by the kernel monitor for syscall debugging. */ | 
|  | bool systrace_loud = FALSE; | 
|  |  | 
|  | /* Helper, given the trace record, pretty-print the trace's contents into the | 
|  | * trace's pretty buf.  'entry' says whether we're an entry record or not | 
|  | * (exit).  Returns the number of bytes put into the pretty_buf. */ | 
|  | static size_t systrace_fill_pretty_buf(struct systrace_record *trace, | 
|  | bool entry) | 
|  | { | 
|  | size_t len = 0; | 
|  | struct timespec ts_start = tsc2timespec(trace->start_timestamp); | 
|  | struct timespec ts_end = tsc2timespec(trace->end_timestamp); | 
|  |  | 
|  | /* Slightly different formats between entry and exit.  Entry has retval | 
|  | * set to ---, and begins with E.  Exit begins with X. */ | 
|  | if (entry) { | 
|  | len = snprintf(trace->pretty_buf, SYSTR_PRETTY_BUF_SZ - len, | 
|  | "E [%7d.%09d]-[%7d.%09d] Syscall %3d (%12s):(0x%llx, " | 
|  | "0x%llx, 0x%llx, 0x%llx, 0x%llx, 0x%llx) ret: --- " | 
|  | "proc: %d core: %2d vcore: %2d errno: --- data: ", | 
|  | ts_start.tv_sec, | 
|  | ts_start.tv_nsec, | 
|  | ts_end.tv_sec, | 
|  | ts_end.tv_nsec, | 
|  | trace->syscallno, | 
|  | syscall_table[trace->syscallno].name, | 
|  | trace->arg0, | 
|  | trace->arg1, | 
|  | trace->arg2, | 
|  | trace->arg3, | 
|  | trace->arg4, | 
|  | trace->arg5, | 
|  | trace->pid, | 
|  | trace->coreid, | 
|  | trace->vcoreid); | 
|  | } else { | 
|  | len = snprintf(trace->pretty_buf, SYSTR_PRETTY_BUF_SZ - len, | 
|  | "X [%7d.%09d]-[%7d.%09d] Syscall %3d (%12s):(0x%llx, " | 
|  | "0x%llx, 0x%llx, 0x%llx, 0x%llx, 0x%llx) ret: 0x%llx " | 
|  | "proc: %d core: %2d vcore: -- errno: %3d data: ", | 
|  | ts_start.tv_sec, | 
|  | ts_start.tv_nsec, | 
|  | ts_end.tv_sec, | 
|  | ts_end.tv_nsec, | 
|  | trace->syscallno, | 
|  | syscall_table[trace->syscallno].name, | 
|  | trace->arg0, | 
|  | trace->arg1, | 
|  | trace->arg2, | 
|  | trace->arg3, | 
|  | trace->arg4, | 
|  | trace->arg5, | 
|  | trace->retval, | 
|  | trace->pid, | 
|  | trace->coreid, | 
|  | trace->errno); | 
|  | } | 
|  | len += printdump(trace->pretty_buf + len, trace->datalen, | 
|  | SYSTR_PRETTY_BUF_SZ - len - 1, | 
|  | trace->data); | 
|  | len += snprintf(trace->pretty_buf + len, SYSTR_PRETTY_BUF_SZ - len, | 
|  | "\n"); | 
|  | return len; | 
|  | } | 
|  |  | 
|  | /* If some syscalls block, then they can really hurt the user and the | 
|  | * kernel.  For instance, if you blocked another call because the trace queue is | 
|  | * full, the 2LS will want to yield the vcore, but then *that* call would block | 
|  | * too.  Since that caller was in vcore context, the core will just spin | 
|  | * forever. | 
|  | * | 
|  | * Even worse, some syscalls operate on the calling core or current context, | 
|  | * thus accessing pcpui.  If we block, then that old context is gone.  Worse, we | 
|  | * could migrate and then be operating on a different core.  Imagine | 
|  | * SYS_halt_core.  Doh! */ | 
|  | static bool sysc_can_block(unsigned int sysc_num) | 
|  | { | 
|  | switch (sysc_num) { | 
|  | case SYS_proc_yield: | 
|  | case SYS_fork: | 
|  | case SYS_exec: | 
|  | case SYS_pop_ctx: | 
|  | case SYS_getvcoreid: | 
|  | case SYS_halt_core: | 
|  | case SYS_vc_entry: | 
|  | case SYS_change_vcore: | 
|  | case SYS_change_to_m: | 
|  | return FALSE; | 
|  | } | 
|  | return TRUE; | 
|  | } | 
|  |  | 
|  | /* Helper: spits out our trace to the various sinks. */ | 
|  | static void systrace_output(struct systrace_record *trace, | 
|  | struct strace *strace, bool entry) | 
|  | { | 
|  | ERRSTACK(1); | 
|  | size_t pretty_len; | 
|  |  | 
|  | /* qio ops can throw, especially the blocking qwrite.  I had it block on | 
|  | * the outbound path of sys_proc_destroy().  The rendez immediately | 
|  | * throws. */ | 
|  | if (waserror()) { | 
|  | poperror(); | 
|  | return; | 
|  | } | 
|  | pretty_len = systrace_fill_pretty_buf(trace, entry); | 
|  | if (strace) { | 
|  | /* At this point, we're going to emit the exit trace.  It's just | 
|  | * a question of whether or not we block while doing it. */ | 
|  | if (strace->drop_overflow || !sysc_can_block(trace->syscallno)) | 
|  | qiwrite(strace->q, trace->pretty_buf, pretty_len); | 
|  | else | 
|  | qwrite(strace->q, trace->pretty_buf, pretty_len); | 
|  | } | 
|  | if (systrace_loud) | 
|  | printk("%s", trace->pretty_buf); | 
|  | poperror(); | 
|  | } | 
|  |  | 
|  | static bool should_strace(struct proc *p, struct syscall *sysc) | 
|  | { | 
|  | unsigned int sysc_num; | 
|  |  | 
|  | if (systrace_loud) | 
|  | return TRUE; | 
|  | if (!p->strace || !p->strace->tracing) | 
|  | return FALSE; | 
|  | /* TOCTTOU concerns - sysc is __user. */ | 
|  | sysc_num = ACCESS_ONCE(sysc->num); | 
|  | if (qfull(p->strace->q)) { | 
|  | if (p->strace->drop_overflow || !sysc_can_block(sysc_num)) { | 
|  | atomic_inc(&p->strace->nr_drops); | 
|  | return FALSE; | 
|  | } | 
|  | } | 
|  | if (sysc_num > MAX_SYSCALL_NR) | 
|  | return FALSE; | 
|  | return test_bit(sysc_num, p->strace->trace_set); | 
|  | } | 
|  |  | 
|  | /* Helper, copies len bytes from u_data to the trace->data, if there's room. */ | 
|  | static void copy_tracedata_from_user(struct systrace_record *trace, | 
|  | long u_data, size_t len) | 
|  | { | 
|  | size_t copy_amt; | 
|  |  | 
|  | copy_amt = MIN(sizeof(trace->data) - trace->datalen, len); | 
|  | copy_from_user(trace->data + trace->datalen, (void*)u_data, copy_amt); | 
|  | trace->datalen += copy_amt; | 
|  | } | 
|  |  | 
|  | /* Helper, snprintfs to the trace, if there's room. */ | 
|  | static void snprintf_to_trace(struct systrace_record *trace, const char *fmt, | 
|  | ...) | 
|  | { | 
|  | va_list ap; | 
|  | int rc; | 
|  |  | 
|  | va_start(ap, fmt); | 
|  | rc = vsnprintf((char*)trace->data + trace->datalen, | 
|  | sizeof(trace->data) - trace->datalen, fmt, ap); | 
|  | va_end(ap); | 
|  | if (!snprintf_error(rc, sizeof(trace->data) - trace->datalen)) | 
|  | trace->datalen += rc; | 
|  | } | 
|  |  | 
|  | static bool trace_data_full(struct systrace_record *trace) | 
|  | { | 
|  | return trace->datalen == sizeof(trace->data); | 
|  | } | 
|  |  | 
|  | static bool systrace_has_error(struct systrace_record *trace) | 
|  | { | 
|  | return syscall_retval_is_error(trace->syscallno, trace->retval); | 
|  | } | 
|  |  | 
|  | /* Starts a trace for p running sysc, attaching it to kthread.  Pairs with | 
|  | * systrace_finish_trace(). */ | 
|  | static void systrace_start_trace(struct kthread *kthread, struct syscall *sysc) | 
|  | { | 
|  | struct proc *p = current; | 
|  | struct systrace_record *trace; | 
|  |  | 
|  | kthread->strace = 0; | 
|  | if (!should_strace(p, sysc)) | 
|  | return; | 
|  | /* TODO: consider a block_alloc and qpass, though note that we actually | 
|  | * write the same trace in twice (entry and exit). */ | 
|  | trace = kpages_alloc(SYSTR_BUF_SZ, MEM_ATOMIC); | 
|  | if (p->strace) { | 
|  | if (!trace) { | 
|  | atomic_inc(&p->strace->nr_drops); | 
|  | return; | 
|  | } | 
|  | /* Avoiding the atomic op.  We sacrifice accuracy for less | 
|  | * overhead. */ | 
|  | p->strace->appx_nr_sysc++; | 
|  | } else { | 
|  | if (!trace) | 
|  | return; | 
|  | } | 
|  | /* if you ever need to debug just one strace function, this is | 
|  | * handy way to do it: just bail out if it's not the one you | 
|  | * want. | 
|  | * if (sysc->num != SYS_exec) | 
|  | * return; */ | 
|  | trace->start_timestamp = read_tsc(); | 
|  | trace->end_timestamp = 0; | 
|  | trace->syscallno = sysc->num; | 
|  | trace->arg0 = sysc->arg0; | 
|  | trace->arg1 = sysc->arg1; | 
|  | trace->arg2 = sysc->arg2; | 
|  | trace->arg3 = sysc->arg3; | 
|  | trace->arg4 = sysc->arg4; | 
|  | trace->arg5 = sysc->arg5; | 
|  | trace->retval = 0; | 
|  | trace->pid = p->pid; | 
|  | trace->coreid = core_id(); | 
|  | trace->vcoreid = proc_get_vcoreid(p); | 
|  | trace->pretty_buf = (char*)trace + sizeof(struct systrace_record); | 
|  | trace->datalen = 0; | 
|  | trace->data[0] = 0; | 
|  |  | 
|  | switch (sysc->num) { | 
|  | case SYS_write: | 
|  | case SYS_openat: | 
|  | case SYS_chdir: | 
|  | case SYS_nmount: | 
|  | copy_tracedata_from_user(trace, sysc->arg1, sysc->arg2); | 
|  | break; | 
|  | case SYS_stat: | 
|  | case SYS_lstat: | 
|  | case SYS_access: | 
|  | case SYS_unlink: | 
|  | case SYS_mkdir: | 
|  | case SYS_rmdir: | 
|  | case SYS_wstat: | 
|  | copy_tracedata_from_user(trace, sysc->arg0, sysc->arg1); | 
|  | break; | 
|  | case SYS_link: | 
|  | case SYS_symlink: | 
|  | case SYS_rename: | 
|  | case SYS_nbind: | 
|  | copy_tracedata_from_user(trace, sysc->arg0, sysc->arg1); | 
|  | snprintf_to_trace(trace, " -> "); | 
|  | copy_tracedata_from_user(trace, sysc->arg2, sysc->arg3); | 
|  | break; | 
|  | case SYS_nunmount: | 
|  | copy_tracedata_from_user(trace, sysc->arg2, sysc->arg3); | 
|  | break; | 
|  | case SYS_exec: | 
|  | trace->datalen = execargs_stringer(current, | 
|  | (char *)trace->data, | 
|  | sizeof(trace->data), | 
|  | (char *)sysc->arg0, | 
|  | sysc->arg1, | 
|  | (char *)sysc->arg2, | 
|  | sysc->arg3); | 
|  | break; | 
|  | case SYS_proc_create: | 
|  | trace->datalen = execargs_stringer(current, | 
|  | (char *)trace->data, | 
|  | sizeof(trace->data), | 
|  | (char *)sysc->arg0, | 
|  | sysc->arg1, | 
|  | (char *)sysc->arg2, | 
|  | sysc->arg3); | 
|  | break; | 
|  | case SYS_tap_fds: | 
|  | for (size_t i = 0; i < (size_t)sysc->arg1; i++) { | 
|  | struct fd_tap_req *tap_reqs = (struct | 
|  | fd_tap_req*)sysc->arg0; | 
|  | int fd, cmd, filter; | 
|  |  | 
|  | tap_reqs += i; | 
|  | copy_from_user(&fd, &tap_reqs->fd, sizeof(fd)); | 
|  | copy_from_user(&cmd, &tap_reqs->cmd, sizeof(cmd)); | 
|  | copy_from_user(&filter, &tap_reqs->filter, | 
|  | sizeof(filter)); | 
|  | snprintf_to_trace(trace, "%d (%d 0x%x), ", fd, cmd, | 
|  | filter); | 
|  | if (trace_data_full(trace)) | 
|  | break; | 
|  | } | 
|  | break; | 
|  | } | 
|  | systrace_output(trace, p->strace, TRUE); | 
|  |  | 
|  | kthread->strace = trace; | 
|  | } | 
|  |  | 
|  | /* Finishes the trace on kthread for p, with retval being the return from the | 
|  | * syscall we're tracing.  Pairs with systrace_start_trace(). */ | 
|  | static void systrace_finish_trace(struct kthread *kthread, long retval) | 
|  | { | 
|  | struct proc *p = current; | 
|  | struct systrace_record *trace; | 
|  |  | 
|  | if (!kthread->strace) | 
|  | return; | 
|  | trace = kthread->strace; | 
|  | trace->end_timestamp = read_tsc(); | 
|  | trace->retval = retval; | 
|  | trace->coreid = core_id(); | 
|  | /* Can't trust the vcoreid of an exit record.  This'll be ignored later. | 
|  | */ | 
|  | trace->vcoreid = -1; | 
|  | trace->errno = get_errno(); | 
|  | trace->datalen = 0; | 
|  |  | 
|  | /* Only try to do the trace data if we didn't do it on entry */ | 
|  | if (systrace_has_error(trace)) { | 
|  | snprintf_to_trace(trace, "errstr: %s", current_errstr()); | 
|  | } else { | 
|  | switch (trace->syscallno) { | 
|  | case SYS_read: | 
|  | if (retval <= 0) | 
|  | break; | 
|  | copy_tracedata_from_user(trace, trace->arg1, retval); | 
|  | break; | 
|  | case SYS_getcwd: | 
|  | if (retval < 0) | 
|  | break; | 
|  | copy_tracedata_from_user(trace, trace->arg0, retval); | 
|  | break; | 
|  | case SYS_readlink: | 
|  | if (retval <= 0) | 
|  | break; | 
|  | copy_tracedata_from_user(trace, trace->arg0, | 
|  | trace->arg1); | 
|  | snprintf_to_trace(trace, " -> "); | 
|  | copy_tracedata_from_user(trace, trace->arg2, retval); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | systrace_output(trace, p->strace, FALSE); | 
|  | kpages_free(kthread->strace, SYSTR_BUF_SZ); | 
|  | kthread->strace = 0; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SYSCALL_STRING_SAVING | 
|  |  | 
|  | static void alloc_sysc_str(struct kthread *kth) | 
|  | { | 
|  | kth->name = kmalloc(SYSCALL_STRLEN, MEM_ATOMIC); | 
|  | if (!kth->name) | 
|  | return; | 
|  | kth->name[0] = 0; | 
|  | } | 
|  |  | 
|  | static void free_sysc_str(struct kthread *kth) | 
|  | { | 
|  | char *str = kth->name; | 
|  |  | 
|  | kth->name = 0; | 
|  | kfree(str); | 
|  | } | 
|  |  | 
|  | #define sysc_save_str(...)                                                     \ | 
|  | {                                                                              \ | 
|  | struct per_cpu_info *pcpui = this_pcpui_ptr();                         \ | 
|  | \ | 
|  | if (pcpui->cur_kthread->name)                                          \ | 
|  | snprintf(pcpui->cur_kthread->name, SYSCALL_STRLEN,             \ | 
|  | __VA_ARGS__);                                         \ | 
|  | } | 
|  |  | 
|  | #else | 
|  |  | 
|  | static void alloc_sysc_str(struct kthread *kth) | 
|  | { | 
|  | } | 
|  |  | 
|  | static void free_sysc_str(struct kthread *kth) | 
|  | { | 
|  | } | 
|  |  | 
|  | #define sysc_save_str(...) | 
|  |  | 
|  | #endif /* CONFIG_SYSCALL_STRING_SAVING */ | 
|  |  | 
|  | /* Helper to finish a syscall, signalling if appropriate */ | 
|  | static void finish_sysc(struct syscall *sysc, struct proc *p, long retval) | 
|  | { | 
|  | sysc->retval = retval; | 
|  | /* Atomically turn on the LOCK and SC_DONE flag.  The lock tells | 
|  | * userspace we're messing with the flags and to not proceed.  We use it | 
|  | * instead of CASing with userspace.  We need the atomics since we're | 
|  | * racing with userspace for the event_queue registration.  The 'lock' | 
|  | * tells userspace to not muck with the flags while we're signalling. */ | 
|  | atomic_or(&sysc->flags, SC_K_LOCK | SC_DONE); | 
|  | __signal_syscall(sysc, p); | 
|  | atomic_and(&sysc->flags, ~SC_K_LOCK); | 
|  | } | 
|  |  | 
|  | /* Helper that "finishes" the current async syscall.  This should be used with | 
|  | * care when we are not using the normal syscall completion path. | 
|  | * | 
|  | * Do *NOT* complete the same syscall twice.  This is catastrophic for _Ms, and | 
|  | * a bad idea for _S. | 
|  | * | 
|  | * It is possible for another user thread to see the syscall being done early - | 
|  | * they just need to be careful with the weird proc management calls (as in, | 
|  | * don't trust an async fork). | 
|  | * | 
|  | * *sysc is in user memory, and should be pinned (TODO: UMEM).  There may be | 
|  | * issues with unpinning this if we never return. */ | 
|  | static void finish_current_sysc(long retval) | 
|  | { | 
|  | /* Need to re-load pcpui, in case we migrated */ | 
|  | struct per_cpu_info *pcpui = this_pcpui_ptr(); | 
|  | struct syscall *sysc = pcpui->cur_kthread->sysc; | 
|  |  | 
|  | assert(sysc); | 
|  | /* Some 9ns paths set errstr, but not errno.  glibc will ignore errstr. | 
|  | * this is somewhat hacky, since errno might get set unnecessarily */ | 
|  | if ((current_errstr()[0] != 0) && !get_errno()) | 
|  | set_errno(EUNSPECIFIED); | 
|  | sysc->err = pcpui->cur_kthread->errno; | 
|  | strncpy(sysc->errstr, pcpui->cur_kthread->errstr, MAX_ERRSTR_LEN); | 
|  | free_sysc_str(pcpui->cur_kthread); | 
|  | systrace_finish_trace(pcpui->cur_kthread, retval); | 
|  | pcpui = this_pcpui_ptr();	/* reload again */ | 
|  | finish_sysc(pcpui->cur_kthread->sysc, pcpui->cur_proc, retval); | 
|  | pcpui->cur_kthread->sysc = NULL; | 
|  | } | 
|  |  | 
|  | /* Callable by any function while executing a syscall (or otherwise, actually). | 
|  | */ | 
|  | void set_errno(int errno) | 
|  | { | 
|  | struct per_cpu_info *pcpui = this_pcpui_ptr(); | 
|  |  | 
|  | if (pcpui->cur_kthread) | 
|  | pcpui->cur_kthread->errno = errno; | 
|  | } | 
|  |  | 
|  | /* Callable by any function while executing a syscall (or otherwise, actually). | 
|  | */ | 
|  | int get_errno(void) | 
|  | { | 
|  | struct per_cpu_info *pcpui = this_pcpui_ptr(); | 
|  |  | 
|  | if (pcpui->cur_kthread) | 
|  | return pcpui->cur_kthread->errno; | 
|  | /* if there's no errno to get, that's not an error I guess. */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void unset_errno(void) | 
|  | { | 
|  | struct per_cpu_info *pcpui = this_pcpui_ptr(); | 
|  |  | 
|  | if (!pcpui->cur_kthread) | 
|  | return; | 
|  | pcpui->cur_kthread->errno = 0; | 
|  | pcpui->cur_kthread->errstr[0] = '\0'; | 
|  | } | 
|  |  | 
|  | void vset_errstr(const char *fmt, va_list ap) | 
|  | { | 
|  | struct per_cpu_info *pcpui = this_pcpui_ptr(); | 
|  |  | 
|  | if (!pcpui->cur_kthread) | 
|  | return; | 
|  |  | 
|  | vsnprintf(pcpui->cur_kthread->errstr, MAX_ERRSTR_LEN, fmt, ap); | 
|  |  | 
|  | /* TODO: likely not needed */ | 
|  | pcpui->cur_kthread->errstr[MAX_ERRSTR_LEN - 1] = '\0'; | 
|  | } | 
|  |  | 
|  | void set_errstr(const char *fmt, ...) | 
|  | { | 
|  | va_list ap; | 
|  |  | 
|  | assert(fmt); | 
|  | va_start(ap, fmt); | 
|  | vset_errstr(fmt, ap); | 
|  | va_end(ap); | 
|  | } | 
|  |  | 
|  | char *current_errstr(void) | 
|  | { | 
|  | struct per_cpu_info *pcpui = this_pcpui_ptr(); | 
|  |  | 
|  | if (!pcpui->cur_kthread) | 
|  | return "no errstr"; | 
|  | return pcpui->cur_kthread->errstr; | 
|  | } | 
|  |  | 
|  | void set_error(int error, const char *fmt, ...) | 
|  | { | 
|  | va_list ap; | 
|  |  | 
|  | set_errno(error); | 
|  |  | 
|  | assert(fmt); | 
|  | va_start(ap, fmt); | 
|  | vset_errstr(fmt, ap); | 
|  | va_end(ap); | 
|  | } | 
|  |  | 
|  | struct errbuf *get_cur_errbuf(void) | 
|  | { | 
|  | return this_pcpui_var(cur_kthread)->errbuf; | 
|  | } | 
|  |  | 
|  | void set_cur_errbuf(struct errbuf *ebuf) | 
|  | { | 
|  | this_pcpui_var(cur_kthread)->errbuf = ebuf; | 
|  | } | 
|  |  | 
|  | char *get_cur_genbuf(void) | 
|  | { | 
|  | struct per_cpu_info *pcpui = this_pcpui_ptr(); | 
|  |  | 
|  | assert(pcpui->cur_kthread); | 
|  | return pcpui->cur_kthread->generic_buf; | 
|  | } | 
|  |  | 
|  | /* Helper, looks up proc* for pid and ensures p controls that proc. 0 o/w */ | 
|  | static struct proc *get_controllable_proc(struct proc *p, pid_t pid) | 
|  | { | 
|  | struct proc *target = pid2proc(pid); | 
|  |  | 
|  | if (!target) { | 
|  | set_error(ESRCH, "no proc for pid %d", pid); | 
|  | return 0; | 
|  | } | 
|  | if (!proc_controls(p, target)) { | 
|  | set_error(EPERM, "can't control pid %d", pid); | 
|  | proc_decref(target); | 
|  | return 0; | 
|  | } | 
|  | return target; | 
|  | } | 
|  |  | 
|  | static int unpack_argenv(struct argenv *argenv, size_t argenv_l, | 
|  | int *argc_p, char ***argv_p, | 
|  | int *envc_p, char ***envp_p) | 
|  | { | 
|  | int argc = argenv->argc; | 
|  | int envc = argenv->envc; | 
|  | char **argv = (char**)argenv->buf; | 
|  | char **envp = argv + argc; | 
|  | char *argbuf = (char*)(envp + envc); | 
|  | uintptr_t argbuf_offset = (uintptr_t)(argbuf - (char*)(argenv)); | 
|  |  | 
|  | /* ARG_MAX is the max number of bytes, which is an upper bound on the | 
|  | * number of args or envs. */ | 
|  | if (argc > ARG_MAX || envc > ARG_MAX) | 
|  | return -1; | 
|  | if (((char*)argv - (char*)argenv) > argenv_l) | 
|  | return -1; | 
|  | if (((char*)argv + (argc * sizeof(char**)) - (char*)argenv) > argenv_l) | 
|  | return -1; | 
|  | if (((char*)envp - (char*)argenv) > argenv_l) | 
|  | return -1; | 
|  | if (((char*)envp + (envc * sizeof(char**)) - (char*)argenv) > argenv_l) | 
|  | return -1; | 
|  | if (((char*)argbuf - (char*)argenv) > argenv_l) | 
|  | return -1; | 
|  | for (int i = 0; i < argc; i++) { | 
|  | if ((uintptr_t)(argv[i] + argbuf_offset) > argenv_l) | 
|  | return -1; | 
|  | argv[i] += (uintptr_t)argbuf; | 
|  | } | 
|  | for (int i = 0; i < envc; i++) { | 
|  | if ((uintptr_t)(envp[i] + argbuf_offset) > argenv_l) | 
|  | return -1; | 
|  | envp[i] += (uintptr_t)argbuf; | 
|  | } | 
|  | *argc_p = argc; | 
|  | *argv_p = argv; | 
|  | *envc_p = envc; | 
|  | *envp_p = envp; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /************** Utility Syscalls **************/ | 
|  |  | 
|  | static int sys_null(void) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Diagnostic function: blocks the kthread/syscall, to help userspace test its | 
|  | * async I/O handling. */ | 
|  | static int sys_block(struct proc *p, unsigned long usec) | 
|  | { | 
|  | sysc_save_str("block for %lu usec", usec); | 
|  | kthread_usleep(usec); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Pause execution for a number of nanoseconds. | 
|  | * The current implementation rounds up to the nearest microsecond. If the | 
|  | * syscall is aborted, we return the remaining time the call would have ran | 
|  | * in the 'rem' parameter.  */ | 
|  | static int sys_nanosleep(struct proc *p, | 
|  | const struct timespec *req, | 
|  | struct timespec *rem) | 
|  | { | 
|  | ERRSTACK(1); | 
|  | uint64_t usec; | 
|  | struct timespec kreq, krem = {0, 0}; | 
|  | uint64_t tsc = read_tsc(); | 
|  |  | 
|  | /* Check the input arguments. */ | 
|  | if (memcpy_from_user(p, &kreq, req, sizeof(struct timespec))) { | 
|  | set_errno(EFAULT); | 
|  | return -1; | 
|  | } | 
|  | if (rem && memcpy_to_user(p, rem, &krem, sizeof(struct timespec))) { | 
|  | set_errno(EFAULT); | 
|  | return -1; | 
|  | } | 
|  | if (kreq.tv_sec < 0) { | 
|  | set_errno(EINVAL); | 
|  | return -1; | 
|  | } | 
|  | if ((kreq.tv_nsec < 0) || (kreq.tv_nsec > 999999999)) { | 
|  | set_errno(EINVAL); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* Convert timespec to usec. Ignore overflow on the tv_sec field. */ | 
|  | usec = kreq.tv_sec * 1000000; | 
|  | usec += DIV_ROUND_UP(kreq.tv_nsec, 1000); | 
|  |  | 
|  | /* Attempt to sleep. If we get aborted, copy the remaining time into | 
|  | * 'rem' and return. We assume the tsc is sufficient to tell how much | 
|  | * time is remaining (i.e. it only overflows on the order of hundreds of | 
|  | * years, which should be sufficiently long enough to ensure we don't | 
|  | * overflow). */ | 
|  | if (waserror()) { | 
|  | krem = tsc2timespec(read_tsc() - tsc); | 
|  | if (rem && | 
|  | memcpy_to_user(p, rem, &krem, sizeof(struct timespec))) | 
|  | set_errno(EFAULT); | 
|  | poperror(); | 
|  | return -1; | 
|  | } | 
|  | sysc_save_str("nanosleep for %lu usec", usec); | 
|  | kthread_usleep(usec); | 
|  | poperror(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int sys_cache_invalidate(void) | 
|  | { | 
|  | #ifdef CONFIG_X86 | 
|  | wbinvd(); | 
|  | #endif | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* sys_reboot(): called directly from dispatch table. */ | 
|  |  | 
|  | /* Returns the id of the physical core this syscall is executed on. */ | 
|  | static uint32_t sys_getpcoreid(void) | 
|  | { | 
|  | return core_id(); | 
|  | } | 
|  |  | 
|  | // TODO: Temporary hack until thread-local storage is implemented on i386 and | 
|  | // this is removed from the user interface | 
|  | static size_t sys_getvcoreid(struct proc *p) | 
|  | { | 
|  | return proc_get_vcoreid(p); | 
|  | } | 
|  |  | 
|  | /************** Process management syscalls **************/ | 
|  |  | 
|  | /* Helper for proc_create and fork */ | 
|  | static void inherit_strace(struct proc *parent, struct proc *child) | 
|  | { | 
|  | if (parent->strace && parent->strace->inherit) { | 
|  | /* Refcnt on both, put in the child's ->strace. */ | 
|  | kref_get(&parent->strace->users, 1); | 
|  | kref_get(&parent->strace->procs, 1); | 
|  | child->strace = parent->strace; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Creates a process from the file 'path'.  The process is not runnable by | 
|  | * default, so it needs it's status to be changed so that the next call to | 
|  | * schedule() will try to run it. */ | 
|  | static int sys_proc_create(struct proc *p, char *path, size_t path_l, | 
|  | char *argenv, size_t argenv_l, int flags) | 
|  | { | 
|  | int pid = 0; | 
|  | char *t_path; | 
|  | struct file_or_chan *program; | 
|  | struct proc *new_p; | 
|  | int argc, envc; | 
|  | char **argv, **envp; | 
|  | struct argenv *kargenv; | 
|  |  | 
|  | t_path = copy_in_path(p, path, path_l); | 
|  | if (!t_path) | 
|  | return -1; | 
|  | program = foc_open(t_path, O_EXEC | O_READ, 0); | 
|  | if (!program) | 
|  | goto error_with_path; | 
|  | if (!is_valid_elf(program)) { | 
|  | set_errno(ENOEXEC); | 
|  | goto error_with_file; | 
|  | } | 
|  | /* Check the size of the argenv array, error out if too large. */ | 
|  | if ((argenv_l < sizeof(struct argenv)) || (argenv_l > ARG_MAX)) { | 
|  | set_error(EINVAL, "The argenv array has an invalid size: %lu\n", | 
|  | argenv_l); | 
|  | goto error_with_file; | 
|  | } | 
|  | /* Copy the argenv array into a kernel buffer. Delay processing of the | 
|  | * array to load_elf(). */ | 
|  | kargenv = user_memdup_errno(p, argenv, argenv_l); | 
|  | if (!kargenv) { | 
|  | set_error(EINVAL, "Failed to copy in the args"); | 
|  | goto error_with_file; | 
|  | } | 
|  | /* Unpack the argenv array into more usable variables. Integrity | 
|  | * checking done along side this as well. */ | 
|  | if (unpack_argenv(kargenv, argenv_l, &argc, &argv, &envc, &envp)) { | 
|  | set_error(EINVAL, "Failed to unpack the args"); | 
|  | goto error_with_kargenv; | 
|  | } | 
|  | /* TODO: need to split the proc creation, since you must load after | 
|  | * setting args/env, since auxp gets set up there. */ | 
|  | //new_p = proc_create(program, 0, 0); | 
|  | if (proc_alloc(&new_p, current, flags)) { | 
|  | set_error(ENOMEM, "Failed to alloc new proc"); | 
|  | goto error_with_kargenv; | 
|  | } | 
|  | inherit_strace(p, new_p); | 
|  | /* close the CLOEXEC ones, even though this isn't really an exec */ | 
|  | close_fdt(&new_p->open_files, TRUE); | 
|  | /* Load the elf. */ | 
|  | if (load_elf(new_p, program, argc, argv, envc, envp)) { | 
|  | set_error(EINVAL, "Failed to load elf"); | 
|  | goto error_with_proc; | 
|  | } | 
|  | /* progname is argv0, which accounts for symlinks */ | 
|  | proc_set_progname(new_p, argc ? argv[0] : NULL); | 
|  | proc_replace_binary_path(new_p, t_path); | 
|  | foc_decref(program); | 
|  | user_memdup_free(p, kargenv); | 
|  | __proc_ready(new_p); | 
|  | pid = new_p->pid; | 
|  | profiler_notify_new_process(new_p); | 
|  | /* give up the reference created in proc_create() */ | 
|  | proc_decref(new_p); | 
|  | return pid; | 
|  | error_with_proc: | 
|  | /* proc_destroy will decref once, which is for the ref created in | 
|  | * proc_create().  We don't decref again (the usual "+1 for existing"), | 
|  | * since the scheduler, which usually handles that, hasn't heard about | 
|  | * the process (via __proc_ready()). */ | 
|  | proc_destroy(new_p); | 
|  | error_with_kargenv: | 
|  | user_memdup_free(p, kargenv); | 
|  | error_with_file: | 
|  | foc_decref(program); | 
|  | error_with_path: | 
|  | free_path(p, t_path); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* Makes process PID runnable.  Consider moving the functionality to process.c | 
|  | */ | 
|  | static error_t sys_proc_run(struct proc *p, unsigned pid) | 
|  | { | 
|  | error_t retval = 0; | 
|  | struct proc *target = get_controllable_proc(p, pid); | 
|  |  | 
|  | if (!target) | 
|  | return -1; | 
|  | if (target->state != PROC_CREATED) { | 
|  | set_errno(EINVAL); | 
|  | proc_decref(target); | 
|  | return -1; | 
|  | } | 
|  | /* Note a proc can spam this for someone it controls.  Seems safe - if | 
|  | * it isn't we can change it. */ | 
|  | proc_wakeup(target); | 
|  | proc_decref(target); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Destroy proc pid.  If this is called by the dying process, it will never | 
|  | * return.  o/w it will return 0 on success, or an error.  Errors include: | 
|  | * - ESRCH: if there is no such process with pid | 
|  | * - EPERM: if caller does not control pid */ | 
|  | static error_t sys_proc_destroy(struct proc *p, pid_t pid, int exitcode) | 
|  | { | 
|  | error_t r; | 
|  | struct proc *p_to_die = get_controllable_proc(p, pid); | 
|  | if (!p_to_die) | 
|  | return -1; | 
|  | if (p_to_die == p) { | 
|  | p->exitcode = exitcode; | 
|  | printd("[PID %d] proc exiting gracefully (code %d)\n", | 
|  | p->pid,exitcode); | 
|  | } else { | 
|  | p_to_die->exitcode = exitcode; | 
|  | printd("[%d] destroying proc %d\n", p->pid, p_to_die->pid); | 
|  | } | 
|  | proc_destroy(p_to_die); | 
|  | proc_decref(p_to_die); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int sys_proc_yield(struct proc *p, bool being_nice) | 
|  | { | 
|  | /* proc_yield() often doesn't return - we need to finish the syscall | 
|  | * early.  If it doesn't return, it expects to eat our reference (for | 
|  | * now). */ | 
|  | finish_current_sysc(0); | 
|  | proc_incref(p, 1); | 
|  | proc_yield(p, being_nice); | 
|  | proc_decref(p); | 
|  | /* Shouldn't return, to prevent the chance of mucking with cur_sysc. */ | 
|  | smp_idle(); | 
|  | assert(0); | 
|  | } | 
|  |  | 
|  | static int sys_change_vcore(struct proc *p, uint32_t vcoreid, | 
|  | bool enable_my_notif) | 
|  | { | 
|  | if (!proc_vcoreid_is_safe(p, vcoreid)) { | 
|  | set_error(EINVAL, "vcoreid %d out of range %d", vcoreid, | 
|  | p->procinfo->max_vcores); | 
|  | return -1; | 
|  | } | 
|  | /* Note retvals can be negative, but we don't mess with errno in case | 
|  | * callers use this in low-level code and want to extract the 'errno'. | 
|  | */ | 
|  | return proc_change_to_vcore(p, vcoreid, enable_my_notif); | 
|  | } | 
|  |  | 
|  | static ssize_t sys_fork(env_t* e) | 
|  | { | 
|  | uintptr_t temp; | 
|  | int ret; | 
|  |  | 
|  | // TODO: right now we only support fork for single-core processes | 
|  | if (e->state != PROC_RUNNING_S) { | 
|  | set_errno(EINVAL); | 
|  | return -1; | 
|  | } | 
|  | env_t* env; | 
|  |  | 
|  | ret = proc_alloc(&env, current, PROC_DUP_FGRP); | 
|  | if (ret < 0) { | 
|  | set_errno(-ret); | 
|  | return -1; | 
|  | } | 
|  | proc_set_progname(env, e->progname); | 
|  |  | 
|  | /* Can't really fork if we don't have a current_ctx to fork */ | 
|  | if (!current_ctx) { | 
|  | proc_destroy(env); | 
|  | proc_decref(env); | 
|  | set_errno(EINVAL); | 
|  | return -1; | 
|  | } | 
|  | assert(current == this_pcpui_var(owning_proc)); | 
|  | copy_current_ctx_to(&env->scp_ctx); | 
|  |  | 
|  | /* Make the new process have the same VMRs as the older.  This will copy | 
|  | * the contents of non MAP_SHARED pages to the new VMRs. */ | 
|  | if (duplicate_vmrs(e, env)) { | 
|  | proc_destroy(env); | 
|  | proc_decref(env); | 
|  | set_errno(ENOMEM); | 
|  | return -1; | 
|  | } | 
|  | /* Switch to the new proc's address space and finish the syscall.  We'll | 
|  | * never naturally finish this syscall for the new proc, since its | 
|  | * memory is cloned before we return for the original process.  If we | 
|  | * ever do CoW for forked memory, this will be the first place that gets | 
|  | * CoW'd. */ | 
|  | temp = switch_to(env); | 
|  | finish_sysc(current_kthread->sysc, env, 0); | 
|  | switch_back(env, temp); | 
|  |  | 
|  | /* Copy some state from the original proc into the new proc. */ | 
|  | env->env_flags = e->env_flags; | 
|  |  | 
|  | inherit_strace(e, env); | 
|  |  | 
|  | /* In general, a forked process should be a fresh process, and we copy | 
|  | * over whatever stuff is needed between procinfo/procdata. */ | 
|  | *env->procdata = *e->procdata; | 
|  | env->procinfo->program_end = e->procinfo->program_end; | 
|  |  | 
|  | /* FYI: once we call ready, the proc is open for concurrent usage */ | 
|  | __proc_ready(env); | 
|  | proc_wakeup(env); | 
|  |  | 
|  | // don't decref the new process. | 
|  | // that will happen when the parent waits for it. | 
|  | // TODO: if the parent doesn't wait, we need to change the child's | 
|  | // parent when the parent dies, or at least decref it | 
|  |  | 
|  | printd("[PID %d] fork PID %d\n", e->pid, env->pid); | 
|  | ret = env->pid; | 
|  | profiler_notify_new_process(env); | 
|  | proc_decref(env); /* give up the reference created in proc_alloc() */ | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* string for sys_exec arguments. Assumes that d is pointing to zero'd | 
|  | * storage or storage that does not require null termination or | 
|  | * provides the null. */ | 
|  | static int execargs_stringer(struct proc *p, char *d, size_t slen, | 
|  | char *path, size_t path_l, | 
|  | char *argenv, size_t argenv_l) | 
|  | { | 
|  | int argc, envc, i; | 
|  | char **argv, **envp; | 
|  | struct argenv *kargenv; | 
|  | int amt; | 
|  | char *s = d; | 
|  | char *e = d + slen; | 
|  |  | 
|  | if (path_l > slen) | 
|  | path_l = slen; | 
|  | if (memcpy_from_user(p, d, path, path_l)) { | 
|  | s = seprintf(s, e, "Invalid exec path"); | 
|  | return s - d; | 
|  | } | 
|  | s += path_l; | 
|  |  | 
|  | /* yes, this code is cloned from below. I wrote a helper but | 
|  | * Barret and I concluded after talking about it that the | 
|  | * helper was not really helper-ful, as it has almost 10 | 
|  | * arguments. Please, don't suggest a cpp macro. Thank you. */ | 
|  | /* Check the size of the argenv array, error out if too large. */ | 
|  | if ((argenv_l < sizeof(struct argenv)) || (argenv_l > ARG_MAX)) { | 
|  | s = seprintf(s, e, | 
|  | "The argenv array has an invalid size: %lu\n", | 
|  | argenv_l); | 
|  | return s - d; | 
|  | } | 
|  | /* Copy the argenv array into a kernel buffer. */ | 
|  | kargenv = user_memdup_errno(p, argenv, argenv_l); | 
|  | if (!kargenv) { | 
|  | s = seprintf(s, e, | 
|  | "Failed to copy in the args and environment"); | 
|  | return s - d; | 
|  | } | 
|  | /* Unpack the argenv array into more usable variables. Integrity | 
|  | * checking done along side this as well. */ | 
|  | if (unpack_argenv(kargenv, argenv_l, &argc, &argv, &envc, &envp)) { | 
|  | s = seprintf(s, e, "Failed to unpack the args"); | 
|  | user_memdup_free(p, kargenv); | 
|  | return s - d; | 
|  | } | 
|  | s = seprintf(s, e, "[%d]{", argc); | 
|  | for (i = 0; i < argc; i++) | 
|  | s = seprintf(s, e, "%s, ", argv[i]); | 
|  | s = seprintf(s, e, "}"); | 
|  |  | 
|  | user_memdup_free(p, kargenv); | 
|  | return s - d; | 
|  | } | 
|  |  | 
|  | /* Load the binary "path" into the current process, and start executing it. | 
|  | * argv and envp are magically bundled in procinfo for now.  Keep in sync with | 
|  | * glibc's sysdeps/ros/execve.c.  Once past a certain point, this function won't | 
|  | * return.  It assumes (and checks) that it is current.  Don't give it an extra | 
|  | * refcnt'd *p (syscall won't do that). | 
|  | * Note: if someone batched syscalls with this call, they could clobber their | 
|  | * old memory (and will likely PF and die).  Don't do it... */ | 
|  | static int sys_exec(struct proc *p, char *path, size_t path_l, | 
|  | char *argenv, size_t argenv_l) | 
|  | { | 
|  | int ret = -1; | 
|  | char *t_path = NULL; | 
|  | struct file_or_chan *program; | 
|  | int argc, envc; | 
|  | char **argv, **envp; | 
|  | struct argenv *kargenv; | 
|  |  | 
|  | /* We probably want it to never be allowed to exec if it ever was _M */ | 
|  | if (p->state != PROC_RUNNING_S) { | 
|  | set_error(EINVAL, "Can't exec an MCP"); | 
|  | return -1; | 
|  | } | 
|  | /* Check the size of the argenv array, error out if too large. */ | 
|  | if ((argenv_l < sizeof(struct argenv)) || (argenv_l > ARG_MAX)) { | 
|  | set_error(EINVAL, "The argenv array has an invalid size: %lu\n", | 
|  | argenv_l); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | if (p != this_pcpui_var(owning_proc)) { | 
|  | warn("Proc %d tried to exec and wasn't owning_proc", p->pid); | 
|  | set_error(EAGAIN, "exec may have blocked during execution"); | 
|  | return -1; | 
|  | } | 
|  | assert(current_ctx); | 
|  | /* Before this, we shouldn't have blocked (maybe with strace, though we | 
|  | * explicitly don't block exec for strace).  The owning proc, cur_proc, | 
|  | * and cur_ctx checks should catch that.  After this, we might still | 
|  | * block, such as on accessing the filesystem. | 
|  | * | 
|  | * After this point, we're treated like a yield - we're waiting until | 
|  | * something wakes us.  The kthread might block, error and fail, or | 
|  | * succeed.  We shouldn't return to userspace before one of those.  The | 
|  | * only way out of this function is via smp_idle, not returning the way | 
|  | * we came. | 
|  | * | 
|  | * Under normal situations, the only thing that will wake us is this | 
|  | * kthread completing.  I think you can trigger wakeups with events and | 
|  | * async syscalls started before the exec.  I'm not sure if that could | 
|  | * trigger more bugs or if that would hurt the kernel.  If so, we could | 
|  | * add an EXEC_LIMBO state. | 
|  | * | 
|  | * Note that we will 'hard block' if we block at all.  We can't return | 
|  | * to userspace and then asynchronously finish the exec later. */ | 
|  | spin_lock(&p->proc_lock); | 
|  | /* We only need the context for the error case.  We have to save it now, | 
|  | * since once we leave this core, such as when the kthread blocks, the | 
|  | * old SCP's context will be gone. */ | 
|  | __proc_save_context_s(p); | 
|  | /* We are no longer owning, but we are still current, like any | 
|  | * kthread-that-blocked-on-behalf of a process.  I think one invariant | 
|  | * for SCPs is: "RUNNING_S <==> is the owning proc". */ | 
|  | clear_owning_proc(core_id()); | 
|  | __proc_set_state(p, PROC_WAITING); | 
|  | spin_unlock(&p->proc_lock); | 
|  |  | 
|  | /* Copy the argenv array into a kernel buffer. */ | 
|  | kargenv = user_memdup_errno(p, argenv, argenv_l); | 
|  | if (!kargenv) { | 
|  | set_error(EINVAL, "Failed to copy in the args and environment"); | 
|  | goto out_error; | 
|  | } | 
|  | /* Unpack the argenv array into more usable variables. Integrity | 
|  | * checking done along side this as well. */ | 
|  | if (unpack_argenv(kargenv, argenv_l, &argc, &argv, &envc, &envp)) { | 
|  | set_error(EINVAL, "Failed to unpack the args"); | 
|  | goto out_error_kargenv; | 
|  | } | 
|  | t_path = copy_in_path(p, path, path_l); | 
|  | if (!t_path) { | 
|  | user_memdup_free(p, kargenv); | 
|  | goto out_error_kargenv; | 
|  | } | 
|  | program = foc_open(t_path, O_EXEC | O_READ, 0); | 
|  | if (!program) | 
|  | goto out_error_tpath; | 
|  | if (!is_valid_elf(program)) { | 
|  | set_error(ENOEXEC, "Program was not a valid ELF"); | 
|  | goto out_error_program; | 
|  | } | 
|  |  | 
|  | /* This is the point of no return for the process.  Any errors here lead | 
|  | * to destruction. */ | 
|  |  | 
|  | /* progname is argv0, which accounts for symlinks */ | 
|  | proc_replace_binary_path(p, t_path); | 
|  | /* p now owns the t_path, and it'll get freed when we destroy p. */ | 
|  | t_path = NULL; | 
|  | proc_set_progname(p, argc ? argv[0] : NULL); | 
|  | proc_init_procdata(p); | 
|  | p->procinfo->program_end = 0; | 
|  | /* When we destroy our memory regions, accessing cur_sysc would PF */ | 
|  | current_kthread->sysc = 0; | 
|  | unmap_and_destroy_vmrs(p); | 
|  | /* close the CLOEXEC ones */ | 
|  | close_fdt(&p->open_files, TRUE); | 
|  | env_user_mem_free(p, 0, UMAPTOP); | 
|  | if (load_elf(p, program, argc, argv, envc, envp)) { | 
|  | set_error(EINVAL, "Failed to load elf"); | 
|  | /* At this point, we destroyed memory and can't return to the | 
|  | * app.  We can't use the error cases, since they assume we'll | 
|  | * return. */ | 
|  | foc_decref(program); | 
|  | user_memdup_free(p, kargenv); | 
|  | /* We finish the trace and not the sysc, since the sysc is gone. | 
|  | */ | 
|  | systrace_finish_trace(current_kthread, -1); | 
|  | /* Note this is an inedible reference, but proc_destroy now | 
|  | * returns */ | 
|  | proc_destroy(p); | 
|  | /* We don't want to do anything else - we just need to not | 
|  | * accidentally return to the user (hence the all_out) */ | 
|  | goto all_out; | 
|  | } | 
|  | printd("[PID %d] exec %s\n", p->pid, foc_to_name(program)); | 
|  | foc_decref(program); | 
|  | user_memdup_free(p, kargenv); | 
|  | systrace_finish_trace(current_kthread, 0); | 
|  | proc_wakeup(p); | 
|  |  | 
|  | goto all_out; | 
|  |  | 
|  | out_error_program: | 
|  | foc_decref(program); | 
|  | out_error_tpath: | 
|  | /* Note the t_path is passed to proc_replace_binary_path in the non | 
|  | * out_error cases. */ | 
|  | free_path(p, t_path); | 
|  | out_error_kargenv: | 
|  | user_memdup_free(p, kargenv); | 
|  | out_error: | 
|  | finish_current_sysc(-1); | 
|  | proc_wakeup(p); | 
|  |  | 
|  | all_out: | 
|  | /* This free and setting sysc = NULL may happen twice (early errors do | 
|  | * it), but they are idempotent. */ | 
|  | free_sysc_str(current_kthread); | 
|  | current_kthread->sysc = NULL; | 
|  | /* we can't return, since we'd write retvals to the old location of the | 
|  | * syscall struct (which has been freed and is in the old userspace) (or | 
|  | * has already been written to).*/ | 
|  | disable_irq();		/* abandon_core/clear_own wants irqs disabled */ | 
|  | abandon_core(); | 
|  | smp_idle();		/* will reenable interrupts */ | 
|  | } | 
|  |  | 
|  | /* Helper, will attempt a particular wait on a proc.  Returns the pid of the | 
|  | * process if we waited on it successfully, and the status will be passed back | 
|  | * in ret_status (kernel memory).  Returns 0 if the wait failed and we should | 
|  | * try again.  Returns -1 if we should abort.  Only handles DYING.  Callers | 
|  | * need to lock to protect the children tailq and reaping bits.  Callers must | 
|  | * decref the child on success. */ | 
|  | static pid_t __try_wait(struct proc *parent, struct proc *child, | 
|  | int *ret_status, int options) | 
|  | { | 
|  | if (proc_is_dying(child)) { | 
|  | /* Disown returns -1 if it's already been disowned or we should | 
|  | * o/w abort.  This can happen if we have concurrent waiters, | 
|  | * both with pointers to the child (only one should reap).  Note | 
|  | * that if we don't do this, we could go to sleep and never | 
|  | * receive a cv_signal. */ | 
|  | if (__proc_disown_child(parent, child)) | 
|  | return -1; | 
|  | /* despite disowning, the child won't be freed til we drop this | 
|  | * ref held by this function, so it is safe to access the | 
|  | * memory. | 
|  | * | 
|  | * Note the exit code one byte in the 0xff00 spot.  Check out | 
|  | * glibc's posix/sys/wait.h and bits/waitstatus.h for more info. | 
|  | * If we ever deal with signalling and stopping, we'll need to | 
|  | * do some more work here.*/ | 
|  | *ret_status = (child->exitcode & 0xff) << 8; | 
|  | return child->pid; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Helper, like __try_wait, but attempts a wait on any of the children, | 
|  | * returning the specific PID we waited on, 0 to try again (a waitable exists), | 
|  | * and -1 to abort (no children/waitables exist).  Callers need to lock to | 
|  | * protect the children tailq and reaping bits.  Callers must decref the child, | 
|  | * if successful. */ | 
|  | static pid_t __try_wait_any(struct proc *parent, int *ret_status, int options, | 
|  | struct proc **child) | 
|  | { | 
|  | struct proc *i, *temp; | 
|  | pid_t retval; | 
|  |  | 
|  | if (TAILQ_EMPTY(&parent->children)) | 
|  | return -1; | 
|  | /* Could have concurrent waiters mucking with the tailq, caller must | 
|  | * lock */ | 
|  | TAILQ_FOREACH_SAFE(i, &parent->children, sibling_link, temp) { | 
|  | retval = __try_wait(parent, i, ret_status, options); | 
|  | /* This catches a thread causing a wait to fail but not taking | 
|  | * the child off the list before unlocking.  Should never | 
|  | * happen. */ | 
|  | assert(retval != -1); | 
|  | /* Succeeded, return the pid of the child we waited on */ | 
|  | if (retval) { | 
|  | *child = i; | 
|  | return retval; | 
|  | } | 
|  | } | 
|  | assert(retval == 0); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Waits on a particular child, returns the pid of the child waited on, and | 
|  | * puts the ret status in *ret_status.  Returns the pid if we succeeded, 0 if | 
|  | * the child was not waitable and WNOHANG, and -1 on error. */ | 
|  | static pid_t wait_one(struct proc *parent, struct proc *child, int *ret_status, | 
|  | int options) | 
|  | { | 
|  | pid_t retval; | 
|  | struct cv_lookup_elm cle; | 
|  |  | 
|  | cv_lock(&parent->child_wait); | 
|  | __reg_abortable_cv(&cle, &parent->child_wait); | 
|  | /* retval == 0 means we should block */ | 
|  | retval = __try_wait(parent, child, ret_status, options); | 
|  | if ((retval == 0) && (options & WNOHANG)) | 
|  | goto out_unlock; | 
|  | while (!retval) { | 
|  | if (should_abort(&cle)) { | 
|  | retval = -1; | 
|  | set_error(EINTR, "wait aborted"); | 
|  | goto out_unlock; | 
|  | } | 
|  | cv_wait(&parent->child_wait); | 
|  | /* Any child can wake us up, but we check for the particular | 
|  | * child we care about */ | 
|  | retval = __try_wait(parent, child, ret_status, options); | 
|  | } | 
|  | if (retval == -1) { | 
|  | /* Child was already waited on by a concurrent syscall. */ | 
|  | set_errno(ECHILD); | 
|  | } | 
|  | /* Fallthrough */ | 
|  | out_unlock: | 
|  | cv_unlock(&parent->child_wait); | 
|  | dereg_abortable_cv(&cle); | 
|  | if (retval > 0) | 
|  | proc_decref(child); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | /* Waits on any child, returns the pid of the child waited on, and puts the ret | 
|  | * status in *ret_status.  Is basically a waitpid(-1, ... );  See wait_one for | 
|  | * more details.  Returns -1 if there are no children to wait on, and returns 0 | 
|  | * if there are children and we need to block but WNOHANG was set. */ | 
|  | static pid_t wait_any(struct proc *parent, int *ret_status, int options) | 
|  | { | 
|  | pid_t retval; | 
|  | struct cv_lookup_elm cle; | 
|  | struct proc *child; | 
|  |  | 
|  | cv_lock(&parent->child_wait); | 
|  | __reg_abortable_cv(&cle, &parent->child_wait); | 
|  | retval = __try_wait_any(parent, ret_status, options, &child); | 
|  | if ((retval == 0) && (options & WNOHANG)) | 
|  | goto out_unlock; | 
|  | while (!retval) { | 
|  | if (should_abort(&cle)) { | 
|  | retval = -1; | 
|  | set_error(EINTR, "wait aborted"); | 
|  | goto out_unlock; | 
|  | } | 
|  | cv_wait(&parent->child_wait); | 
|  | /* Any child can wake us up from the CV.  This is a linear | 
|  | * __try_wait scan.  If we have a lot of children, we could | 
|  | * optimize this. */ | 
|  | retval = __try_wait_any(parent, ret_status, options, &child); | 
|  | } | 
|  | if (retval == -1) | 
|  | assert(TAILQ_EMPTY(&parent->children)); | 
|  | /* Fallthrough */ | 
|  | out_unlock: | 
|  | cv_unlock(&parent->child_wait); | 
|  | dereg_abortable_cv(&cle); | 
|  | if (retval > 0) | 
|  | proc_decref(child); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | /* Note: we only allow waiting on children (no such thing as threads, for | 
|  | * instance).  Right now we only allow waiting on termination (not signals), | 
|  | * and we don't have a way for parents to disown their children (such as | 
|  | * ignoring SIGCHLD, see man 2 waitpid's Notes). | 
|  | * | 
|  | * We don't bother with stop/start signals here, though we can probably build | 
|  | * it in the helper above. | 
|  | * | 
|  | * Returns the pid of who we waited on, or -1 on error, or 0 if we couldn't | 
|  | * wait (WNOHANG). */ | 
|  | static pid_t sys_waitpid(struct proc *parent, pid_t pid, int *status, | 
|  | int options) | 
|  | { | 
|  | struct proc *child; | 
|  | pid_t retval = 0; | 
|  | int ret_status = 0; | 
|  |  | 
|  | sysc_save_str("waitpid on %d", pid); | 
|  | /* -1 is the signal for 'any child' */ | 
|  | if (pid == -1) { | 
|  | retval = wait_any(parent, &ret_status, options); | 
|  | goto out; | 
|  | } | 
|  | child = pid2proc(pid); | 
|  | if (!child) { | 
|  | set_errno(ECHILD);	/* ECHILD also used for no proc */ | 
|  | retval = -1; | 
|  | goto out; | 
|  | } | 
|  | if (!(parent->pid == child->ppid)) { | 
|  | set_errno(ECHILD); | 
|  | retval = -1; | 
|  | goto out_decref; | 
|  | } | 
|  | retval = wait_one(parent, child, &ret_status, options); | 
|  | /* fall-through */ | 
|  | out_decref: | 
|  | proc_decref(child); | 
|  | out: | 
|  | /* ignoring / don't care about memcpy's retval here. */ | 
|  | if (status) | 
|  | memcpy_to_user(parent, status, &ret_status, sizeof(ret_status)); | 
|  | printd("[PID %d] waited for PID %d, got retval %d (status 0x%x)\n", | 
|  | parent->pid, pid, retval, ret_status); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | /************** Memory Management Syscalls **************/ | 
|  |  | 
|  | static void *sys_mmap(struct proc *p, uintptr_t addr, size_t len, int prot, | 
|  | int flags, int fd, off_t offset) | 
|  | { | 
|  | return mmap(p, addr, len, prot, flags, fd, offset); | 
|  | } | 
|  |  | 
|  | static intreg_t sys_mprotect(struct proc *p, void *addr, size_t len, int prot) | 
|  | { | 
|  | return mprotect(p, (uintptr_t)addr, len, prot); | 
|  | } | 
|  |  | 
|  | static intreg_t sys_munmap(struct proc *p, void *addr, size_t len) | 
|  | { | 
|  | return munmap(p, (uintptr_t)addr, len); | 
|  | } | 
|  |  | 
|  | static ssize_t sys_shared_page_alloc(env_t* p1, | 
|  | void **_addr, pid_t p2_id, | 
|  | int p1_flags, int p2_flags | 
|  | ) | 
|  | { | 
|  | printk("[kernel] shared page alloc is deprecated/unimplemented.\n"); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | static int sys_shared_page_free(env_t* p1, void *addr, pid_t p2) | 
|  | { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* Helper, to do the actual provisioning of a resource to a proc */ | 
|  | static int prov_resource(struct proc *target, unsigned int res_type, | 
|  | long res_val) | 
|  | { | 
|  | switch (res_type) { | 
|  | case (RES_CORES): | 
|  | /* in the off chance we have a kernel scheduler that can't | 
|  | * provision, we'll need to change this. */ | 
|  | return provision_core(target, res_val); | 
|  | default: | 
|  | printk("[kernel] got provisioning for unknown resource %d\n", | 
|  | res_type); | 
|  | set_errno(ENOENT);	/* or EINVAL? */ | 
|  | return -1; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Rough syscall to provision res_val of type res_type to target_pid */ | 
|  | static int sys_provision(struct proc *p, int target_pid, | 
|  | unsigned int res_type, long res_val) | 
|  | { | 
|  | struct proc *target = pid2proc(target_pid); | 
|  | int retval; | 
|  |  | 
|  | if (!target) { | 
|  | if (target_pid == 0) | 
|  | return prov_resource(0, res_type, res_val); | 
|  | /* debugging interface */ | 
|  | if (target_pid == -1) | 
|  | print_coreprov_map(); | 
|  | set_errno(ESRCH); | 
|  | return -1; | 
|  | } | 
|  | retval = prov_resource(target, res_type, res_val); | 
|  | proc_decref(target); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | /* Untested.  Will notify the target on the given vcore, if the caller controls | 
|  | * the target.  Will honor the target's wanted/vcoreid.  u_ne can be NULL. */ | 
|  | static int sys_notify(struct proc *p, int target_pid, unsigned int ev_type, | 
|  | struct event_msg *u_msg) | 
|  | { | 
|  | struct event_msg local_msg = {0}; | 
|  | struct proc *target = get_controllable_proc(p, target_pid); | 
|  |  | 
|  | if (!target) | 
|  | return -1; | 
|  | /* if the user provided an ev_msg, copy it in and use that */ | 
|  | if (u_msg) { | 
|  | if (memcpy_from_user(p, &local_msg, u_msg, | 
|  | sizeof(struct event_msg))) { | 
|  | proc_decref(target); | 
|  | set_errno(EINVAL); | 
|  | return -1; | 
|  | } | 
|  | } else { | 
|  | local_msg.ev_type = ev_type; | 
|  | } | 
|  | send_kernel_event(target, &local_msg, 0); | 
|  | proc_decref(target); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Will notify the calling process on the given vcore, independently of WANTED | 
|  | * or advertised vcoreid.  If you change the parameters, change pop_user_ctx(). | 
|  | */ | 
|  | static int sys_self_notify(struct proc *p, uint32_t vcoreid, | 
|  | unsigned int ev_type, struct event_msg *u_msg, | 
|  | bool priv) | 
|  | { | 
|  | struct event_msg local_msg = {0}; | 
|  |  | 
|  | /* if the user provided an ev_msg, copy it in and use that */ | 
|  | if (u_msg) { | 
|  | if (memcpy_from_user(p, &local_msg, u_msg, | 
|  | sizeof(struct event_msg))) { | 
|  | set_errno(EINVAL); | 
|  | return -1; | 
|  | } | 
|  | } else { | 
|  | local_msg.ev_type = ev_type; | 
|  | } | 
|  | if (local_msg.ev_type >= MAX_NR_EVENT) { | 
|  | printk("[kernel] received self-notify for vcoreid %d, " | 
|  | "ev_type %d, u_msg %p, u_msg->type %d\n", vcoreid, | 
|  | ev_type, u_msg, u_msg ? u_msg->ev_type : 0); | 
|  | return -1; | 
|  | } | 
|  | if (!proc_vcoreid_is_safe(p, vcoreid)) { | 
|  | set_error(EINVAL, "vcoreid %d out of range %d", vcoreid, | 
|  | p->procinfo->max_vcores); | 
|  | return -1; | 
|  | } | 
|  | /* this will post a message and IPI, regardless of | 
|  | * wants/needs/debutantes.*/ | 
|  | post_vcore_event(p, &local_msg, vcoreid, | 
|  | priv ? EVENT_VCORE_PRIVATE : 0); | 
|  | proc_notify(p, vcoreid); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int sys_send_event(struct proc *p, struct event_queue *ev_q, | 
|  | struct event_msg *u_msg, uint32_t vcoreid) | 
|  | { | 
|  | struct event_msg local_msg = {0}; | 
|  |  | 
|  | if (memcpy_from_user_errno(p, &local_msg, u_msg, | 
|  | sizeof(struct event_msg))) { | 
|  | return -1; | 
|  | } | 
|  | if (!is_user_rwaddr(ev_q, sizeof(struct event_queue))) { | 
|  | set_error(EINVAL, "bad event_queue %p", ev_q); | 
|  | return -1; | 
|  | } | 
|  | if (!proc_vcoreid_is_safe(p, vcoreid)) { | 
|  | set_error(EINVAL, "vcoreid %d out of range %d", vcoreid, | 
|  | p->procinfo->max_vcores); | 
|  | return -1; | 
|  | } | 
|  | send_event(p, ev_q, &local_msg, vcoreid); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Puts the calling core into vcore context, if it wasn't already, via a | 
|  | * self-IPI / active notification.  Barring any weird unmappings, we just send | 
|  | * ourselves a __notify. */ | 
|  | static int sys_vc_entry(struct proc *p) | 
|  | { | 
|  | send_kernel_message(core_id(), __notify, (long)p, 0, 0, KMSG_ROUTINE); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* This will halt the core, waking on an IRQ.  These could be kernel IRQs for | 
|  | * things like timers or devices, or they could be IPIs for RKMs (__notify for | 
|  | * an evq with IPIs for a syscall completion, etc).  With arch support, this | 
|  | * will also wake on a write to notif_pending. | 
|  | * | 
|  | * We don't need to finish the syscall early (worried about the syscall struct, | 
|  | * on the vcore's stack).  The syscall will finish before any __preempt RKM | 
|  | * executes, so the vcore will not restart somewhere else before the syscall | 
|  | * completes (unlike with yield, where the syscall itself adjusts the vcore | 
|  | * structures). | 
|  | * | 
|  | * In the future, RKM code might avoid sending IPIs if the core is already in | 
|  | * the kernel.  That code will need to check the CPU's state in some manner, and | 
|  | * send if the core is halted/idle.  Or perhaps use mwait, if there's arch | 
|  | * support. | 
|  | * | 
|  | * The core must wake up for RKMs, including RKMs that arrive while the kernel | 
|  | * is trying to halt. | 
|  | * | 
|  | * If our hardware supports something like monitor/mwait, we'll abort if | 
|  | * notif_pending was or gets set.  Note that whoever writes notif_pending may | 
|  | * send an IPI regardless of whether or not we have mwait.  That's up to the | 
|  | * ev_q settings (so basically userspace).  If userspace doesn't want an IPI, a | 
|  | * notif will wake it up, but it won't break it out of a uthread loop. */ | 
|  | static int sys_halt_core(struct proc *p, unsigned long usec) | 
|  | { | 
|  | struct per_cpu_info *pcpui = this_pcpui_ptr(); | 
|  | struct preempt_data *vcpd; | 
|  |  | 
|  | /* The user can only halt CG cores!  (ones it owns) */ | 
|  | if (management_core()) | 
|  | return -1; | 
|  | rcu_report_qs(); | 
|  | disable_irq(); | 
|  | /* both for accounting and possible RKM optimizations */ | 
|  | __set_cpu_state(pcpui, CPU_STATE_IDLE); | 
|  | wrmb(); | 
|  | if (has_routine_kmsg()) { | 
|  | __set_cpu_state(pcpui, CPU_STATE_KERNEL); | 
|  | enable_irq(); | 
|  | return 0; | 
|  | } | 
|  | vcpd = &p->procdata->vcore_preempt_data[pcpui->owning_vcoreid]; | 
|  | /* We pretend to not be in vcore context so other cores will send us | 
|  | * IPIs (__notify).  If we do get a __notify, we'll have set | 
|  | * notif_disabled back on before we handle the message, since it's a | 
|  | * routine KMSG.  Note that other vcores will think we are not in vcore | 
|  | * context.  This is no different to when we pop contexts: 'briefly' | 
|  | * leave VC ctx, check notif_pending, and (possibly) abort and set | 
|  | * notif_disabled. */ | 
|  | vcpd->notif_disabled = false; | 
|  | cpu_halt_notif_pending(vcpd); | 
|  | __set_cpu_state(pcpui, CPU_STATE_KERNEL); | 
|  | vcpd->notif_disabled = true; | 
|  | enable_irq(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Changes a process into _M mode, or -EINVAL if it already is an mcp. | 
|  | * __proc_change_to_m() returns and we'll eventually finish the sysc later.  The | 
|  | * original context may restart on a remote core before we return and finish, | 
|  | * but that's fine thanks to the async kernel interface. */ | 
|  | static int sys_change_to_m(struct proc *p) | 
|  | { | 
|  | int retval = proc_change_to_m(p); | 
|  |  | 
|  | /* convert the kernel error code into (-1, errno) */ | 
|  | if (retval) { | 
|  | set_errno(-retval); | 
|  | retval = -1; | 
|  | } | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | /* Assists the user/2LS by atomically running *ctx and leaving vcore context. | 
|  | * Normally, the user can do this themselves, but x86 VM contexts need kernel | 
|  | * support.  The caller ought to be in vcore context, and if a notif is pending, | 
|  | * then the calling vcore will restart in a fresh VC ctx (as if it was notified | 
|  | * or did a sys_vc_entry). | 
|  | * | 
|  | * Note that this will set the TLS too, which is part of the context.  Parlib's | 
|  | * pop_user_ctx currently does *not* do this, since the TLS is managed | 
|  | * separately.  If you want to use this syscall for testing, you'll need to 0 | 
|  | * out fsbase and conditionally write_msr in proc_pop_ctx(). */ | 
|  | static int sys_pop_ctx(struct proc *p, struct user_context *ctx) | 
|  | { | 
|  | int pcoreid = core_id(); | 
|  | struct per_cpu_info *pcpui = &per_cpu_info[pcoreid]; | 
|  | int vcoreid = pcpui->owning_vcoreid; | 
|  | struct preempt_data *vcpd = &p->procdata->vcore_preempt_data[vcoreid]; | 
|  |  | 
|  | /* With change_to, there's a bunch of concerns about changing the vcore | 
|  | * map, since the kernel may have already locked and sent preempts, | 
|  | * deaths, etc. | 
|  | * | 
|  | * In this case, we don't care as much.  Other than notif_pending and | 
|  | * notif_disabled, it's more like we're just changing a few registers in | 
|  | * cur_ctx.  We can safely order-after any kernel messages or other | 
|  | * changes, as if the user had done all of the changes we'll make and | 
|  | * then did a no-op syscall. | 
|  | * | 
|  | * Since we are mucking with current_ctx, it is important that we don't | 
|  | * block before or during this syscall. */ | 
|  | arch_finalize_ctx(pcpui->cur_ctx); | 
|  | if (copy_from_user(pcpui->cur_ctx, ctx, sizeof(struct user_context))) { | 
|  | /* The 2LS isn't really in a position to handle errors.  At the | 
|  | * very least, we can print something and give them a fresh vc | 
|  | * ctx. */ | 
|  | printk("[kernel] unable to copy user_ctx, 2LS bug\n"); | 
|  | memset(pcpui->cur_ctx, 0, sizeof(struct user_context)); | 
|  | proc_init_ctx(pcpui->cur_ctx, vcoreid, vcpd->vcore_entry, | 
|  | vcpd->vcore_stack, vcpd->vcore_tls_desc); | 
|  | return -1; | 
|  | } | 
|  | proc_secure_ctx(pcpui->cur_ctx); | 
|  | /* The caller leaves vcore context no matter what.  We'll put them back | 
|  | * in if they missed a message. */ | 
|  | vcpd->notif_disabled = FALSE; | 
|  | wrmb();	/* order disabled write before pending read */ | 
|  | if (vcpd->notif_pending) | 
|  | send_kernel_message(pcoreid, __notify, (long)p, 0, 0, | 
|  | KMSG_ROUTINE); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int sys_vmm_add_gpcs(struct proc *p, unsigned int nr_more_gpcs, | 
|  | struct vmm_gpcore_init *gpcis) | 
|  | { | 
|  | ERRSTACK(1); | 
|  | struct vmm *vmm = &p->vmm; | 
|  |  | 
|  | /* We do a copy_from_user in __vmm_add_gpcs, but it ought to be clear | 
|  | * from the syscall.c code if we did our error checking. */ | 
|  | if (!is_user_rwaddr(gpcis, sizeof(struct vmm_gpcore_init) * | 
|  | nr_more_gpcs)) { | 
|  | set_error(EINVAL, "bad user addr %p + %p", gpcis, | 
|  | sizeof(struct vmm_gpcore_init) * nr_more_gpcs); | 
|  | return -1; | 
|  | } | 
|  | qlock(&vmm->qlock); | 
|  | if (waserror()) { | 
|  | qunlock(&vmm->qlock); | 
|  | poperror(); | 
|  | return -1; | 
|  | } | 
|  | __vmm_struct_init(p); | 
|  | __vmm_add_gpcs(p, nr_more_gpcs, gpcis); | 
|  | qunlock(&vmm->qlock); | 
|  | poperror(); | 
|  | return nr_more_gpcs; | 
|  | } | 
|  |  | 
|  | static int sys_vmm_poke_guest(struct proc *p, int guest_pcoreid) | 
|  | { | 
|  | return vmm_poke_guest(p, guest_pcoreid); | 
|  | } | 
|  |  | 
|  | static int sys_vmm_ctl(struct proc *p, int cmd, unsigned long arg1, | 
|  | unsigned long arg2, unsigned long arg3, | 
|  | unsigned long arg4) | 
|  | { | 
|  | ERRSTACK(1); | 
|  | int ret; | 
|  | struct vmm *vmm = &p->vmm; | 
|  |  | 
|  | /* Protects against concurrent setters and for gets that are not atomic | 
|  | * reads (say, multiple exec ctls). */ | 
|  | qlock(&vmm->qlock); | 
|  | if (waserror()) { | 
|  | qunlock(&vmm->qlock); | 
|  | poperror(); | 
|  | return -1; | 
|  | } | 
|  | __vmm_struct_init(p); | 
|  | switch (cmd) { | 
|  | case VMM_CTL_GET_EXITS: | 
|  | if (vmm->amd) | 
|  | error(ENOTSUP, "AMD VMMs unsupported"); | 
|  | ret = vmx_ctl_get_exits(&vmm->vmx); | 
|  | break; | 
|  | case VMM_CTL_SET_EXITS: | 
|  | if (arg1 & ~VMM_CTL_ALL_EXITS) | 
|  | error(EINVAL, "Bad vmm_ctl_exits %x (%x)", arg1, | 
|  | VMM_CTL_ALL_EXITS); | 
|  | if (vmm->amd) | 
|  | error(ENOTSUP, "AMD VMMs unsupported"); | 
|  | ret = vmx_ctl_set_exits(&vmm->vmx, arg1); | 
|  | break; | 
|  | case VMM_CTL_GET_FLAGS: | 
|  | ret = vmm->flags; | 
|  | break; | 
|  | case VMM_CTL_SET_FLAGS: | 
|  | if (arg1 & ~VMM_CTL_ALL_FLAGS) | 
|  | error(EINVAL, | 
|  | "Bad vmm_ctl flags.  Got 0x%lx, allowed 0x%lx\n", | 
|  | arg1, VMM_CTL_ALL_FLAGS); | 
|  | vmm->flags = arg1; | 
|  | ret = 0; | 
|  | break; | 
|  | default: | 
|  | error(EINVAL, "Bad vmm_ctl cmd %d", cmd); | 
|  | } | 
|  | qunlock(&vmm->qlock); | 
|  | poperror(); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Pokes the ksched for the given resource for target_pid.  If the target pid | 
|  | * == 0, we just poke for the calling process.  The common case is poking for | 
|  | * self, so we avoid the lookup. | 
|  | * | 
|  | * Not sure if you could harm someone via asking the kernel to look at them, so | 
|  | * we'll do a 'controls' check for now.  In the future, we might have something | 
|  | * in the ksched that limits or penalizes excessive pokes. */ | 
|  | static int sys_poke_ksched(struct proc *p, int target_pid, | 
|  | unsigned int res_type) | 
|  | { | 
|  | struct proc *target; | 
|  | int retval = 0; | 
|  |  | 
|  | if (!target_pid) { | 
|  | poke_ksched(p, res_type); | 
|  | return 0; | 
|  | } | 
|  | target = pid2proc(target_pid); | 
|  | if (!target) { | 
|  | set_errno(ESRCH); | 
|  | return -1; | 
|  | } | 
|  | if (!proc_controls(p, target)) { | 
|  | set_errno(EPERM); | 
|  | retval = -1; | 
|  | goto out; | 
|  | } | 
|  | poke_ksched(target, res_type); | 
|  | out: | 
|  | proc_decref(target); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | static int sys_abort_sysc(struct proc *p, struct syscall *sysc) | 
|  | { | 
|  | return abort_sysc(p, (uintptr_t)sysc); | 
|  | } | 
|  |  | 
|  | static int sys_abort_sysc_fd(struct proc *p, int fd) | 
|  | { | 
|  | /* Consider checking for a bad fd.  Doesn't matter now, since we only | 
|  | * look for actual syscalls blocked that had used fd. */ | 
|  | return abort_all_sysc_fd(p, fd); | 
|  | } | 
|  |  | 
|  | static unsigned long sys_populate_va(struct proc *p, uintptr_t va, | 
|  | unsigned long nr_pgs) | 
|  | { | 
|  | return populate_va(p, ROUNDDOWN(va, PGSIZE), nr_pgs); | 
|  | } | 
|  |  | 
|  | static intreg_t sys_read(struct proc *p, int fd, void *buf, size_t len) | 
|  | { | 
|  | if (!is_user_rwaddr(buf, len)) { | 
|  | set_error(EINVAL, "bad user addr %p + %p", buf, len); | 
|  | return -1; | 
|  | } | 
|  | sysc_save_str("read on fd %d", fd); | 
|  | return sysread(fd, buf, len); | 
|  | } | 
|  |  | 
|  | static intreg_t sys_write(struct proc *p, int fd, const void *buf, size_t len) | 
|  | { | 
|  | /* We'll let this one include read-only areas, unlike most other | 
|  | * syscalls that take bufs created and written by the user. */ | 
|  | if (!is_user_raddr(buf, len)) { | 
|  | set_error(EINVAL, "bad user addr %p + %p", buf, len); | 
|  | return -1; | 
|  | } | 
|  | sysc_save_str("write on fd %d", fd); | 
|  | return syswrite(fd, (void*)buf, len); | 
|  | } | 
|  |  | 
|  | /* Checks args/reads in the path, opens the file (relative to fromfd if the path | 
|  | * is not absolute), and inserts it into the process's open file list. */ | 
|  | static intreg_t sys_openat(struct proc *p, int fromfd, const char *path, | 
|  | size_t path_l, int oflag, int mode) | 
|  | { | 
|  | int fd; | 
|  | char *t_path; | 
|  |  | 
|  | printd("File %s Open attempt oflag %x mode %x\n", path, oflag, mode); | 
|  | if ((oflag & O_PATH) && (oflag & O_ACCMODE)) { | 
|  | set_error(EINVAL, "Cannot open O_PATH with any I/O perms (O%o)", | 
|  | oflag); | 
|  | return -1; | 
|  | } | 
|  | if (oflag & O_EXCL && !(oflag & O_CREATE)) { | 
|  | set_error(EINVAL, "Cannot open O_EXCL without O_CREATE"); | 
|  | return -1; | 
|  | } | 
|  | t_path = copy_in_path(p, path, path_l); | 
|  | if (!t_path) | 
|  | return -1; | 
|  | sysc_save_str("open %s at fd %d", t_path, fromfd); | 
|  | mode &= ~p->umask; | 
|  | mode &= S_PMASK; | 
|  | static_assert(!(DMMODE_BITS & S_PMASK)); | 
|  | fd = sysopenat(fromfd, t_path, oflag, mode); | 
|  | free_path(p, t_path); | 
|  | printd("File %s Open, fd=%d\n", path, fd); | 
|  | return fd; | 
|  | } | 
|  |  | 
|  | static intreg_t sys_close(struct proc *p, int fd) | 
|  | { | 
|  | return sysclose(fd); | 
|  | } | 
|  |  | 
|  | static intreg_t sys_fstat(struct proc *p, int fd, struct kstat *u_stat) | 
|  | { | 
|  | struct kstat *kbuf; | 
|  |  | 
|  | kbuf = kmalloc(sizeof(struct kstat), 0); | 
|  | if (!kbuf) { | 
|  | set_errno(ENOMEM); | 
|  | return -1; | 
|  | } | 
|  | if (sysfstatakaros(fd, (struct kstat *)kbuf) < 0) { | 
|  | kfree(kbuf); | 
|  | return -1; | 
|  | } | 
|  | /* TODO: UMEM: pin the memory, copy directly, and skip the kernel buffer | 
|  | */ | 
|  | if (memcpy_to_user_errno(p, u_stat, kbuf, sizeof(struct kstat))) { | 
|  | kfree(kbuf); | 
|  | return -1; | 
|  | } | 
|  | kfree(kbuf); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* sys_stat() and sys_lstat() do nearly the same thing, differing in how they | 
|  | * treat a symlink for the final item, which (probably) will be controlled by | 
|  | * the lookup flags */ | 
|  | static intreg_t stat_helper(struct proc *p, const char *path, size_t path_l, | 
|  | struct kstat *u_stat, int flags) | 
|  | { | 
|  | struct kstat *kbuf; | 
|  | char *t_path = copy_in_path(p, path, path_l); | 
|  | int retval = 0; | 
|  |  | 
|  | if (!t_path) | 
|  | return -1; | 
|  | kbuf = kmalloc(sizeof(struct kstat), 0); | 
|  | if (!kbuf) { | 
|  | set_errno(ENOMEM); | 
|  | retval = -1; | 
|  | goto out_with_path; | 
|  | } | 
|  | retval = sysstatakaros(t_path, (struct kstat *)kbuf, flags); | 
|  | if (retval < 0) | 
|  | goto out_with_kbuf; | 
|  | /* TODO: UMEM: pin the memory, copy directly, and skip the kernel buffer | 
|  | */ | 
|  | if (memcpy_to_user_errno(p, u_stat, kbuf, sizeof(struct kstat))) | 
|  | retval = -1; | 
|  | /* Fall-through */ | 
|  | out_with_kbuf: | 
|  | kfree(kbuf); | 
|  | out_with_path: | 
|  | free_path(p, t_path); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | /* Follow a final symlink */ | 
|  | static intreg_t sys_stat(struct proc *p, const char *path, size_t path_l, | 
|  | struct kstat *u_stat) | 
|  | { | 
|  | return stat_helper(p, path, path_l, u_stat, 0); | 
|  | } | 
|  |  | 
|  | /* Don't follow a final symlink */ | 
|  | static intreg_t sys_lstat(struct proc *p, const char *path, size_t path_l, | 
|  | struct kstat *u_stat) | 
|  | { | 
|  | return stat_helper(p, path, path_l, u_stat, O_NOFOLLOW); | 
|  | } | 
|  |  | 
|  | intreg_t sys_fcntl(struct proc *p, int fd, int cmd, unsigned long arg1, | 
|  | unsigned long arg2, unsigned long arg3, unsigned long arg4) | 
|  | { | 
|  | switch (cmd) { | 
|  | case (F_DUPFD): | 
|  | /* TODO: glibc uses regular DUPFD for dup2, which is racy. */ | 
|  | return sysdup(fd, arg1, FALSE); | 
|  | case (F_GETFD): | 
|  | return fd_get_fd_flags(&p->open_files, fd); | 
|  | case (F_SETFD): | 
|  | if (arg1 & ~FD_VALID_FLAGS) { | 
|  | set_error(EINVAL, "Bad FD flags %p, valid are %p", arg1, | 
|  | FD_VALID_FLAGS); | 
|  | return -1; | 
|  | } | 
|  | return fd_set_fd_flags(&p->open_files, fd, arg1); | 
|  | case (F_SYNC): | 
|  | return fd_chan_ctl(fd, CCTL_SYNC, 0, 0, 0, 0); | 
|  | case (F_GETFL): | 
|  | return fd_getfl(fd); | 
|  | case (F_SETFL): | 
|  | return fd_chan_ctl(fd, CCTL_SET_FL, arg1, 0, 0, 0); | 
|  | default: | 
|  | /* chanctl and fcntl share flags */ | 
|  | if (cmd >= F_CHANCTL_BASE) | 
|  | return fd_chan_ctl(fd, cmd, arg1, arg2, arg3, arg4); | 
|  | set_error(EINVAL, "Unsupported fcntl cmd %d", cmd); | 
|  | return -1; | 
|  | } | 
|  | } | 
|  |  | 
|  | static intreg_t sys_access(struct proc *p, const char *path, size_t path_l, | 
|  | int mode) | 
|  | { | 
|  | int retval; | 
|  | struct dir *dir; | 
|  | char *t_path = copy_in_path(p, path, path_l); | 
|  |  | 
|  | if (!t_path) | 
|  | return -1; | 
|  | dir = sysdirstat(t_path); | 
|  | if (!dir) | 
|  | goto out; | 
|  | if ((mode == F_OK) || | 
|  | caller_has_dir_perms(dir, access_bits_to_omode(mode))) | 
|  | retval = 0; | 
|  | kfree(dir); | 
|  | out: | 
|  | free_path(p, t_path); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | intreg_t sys_umask(struct proc *p, int mask) | 
|  | { | 
|  | int old_mask = p->umask; | 
|  |  | 
|  | p->umask = mask & S_PMASK; | 
|  | return old_mask; | 
|  | } | 
|  |  | 
|  | /* 64 bit seek, with the off64_t passed in via two (potentially 32 bit) off_ts. | 
|  | * We're supporting both 32 and 64 bit kernels/userspaces, but both use the | 
|  | * llseek syscall with 64 bit parameters. */ | 
|  | static intreg_t sys_llseek(struct proc *p, int fd, off_t offset_hi, | 
|  | off_t offset_lo, off64_t *result, int whence) | 
|  | { | 
|  | off64_t retoff = 0; | 
|  | off64_t tempoff = 0; | 
|  | int ret = 0; | 
|  |  | 
|  | tempoff = offset_hi; | 
|  | tempoff <<= 32; | 
|  | tempoff |= offset_lo; | 
|  | retoff = sysseek(fd, tempoff, whence); | 
|  | ret = (retoff < 0); | 
|  | if (ret) | 
|  | return -1; | 
|  | if (memcpy_to_user_errno(p, result, &retoff, sizeof(off64_t))) | 
|  | return -1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | intreg_t sys_link(struct proc *p, char *old_path, size_t old_l, | 
|  | char *new_path, size_t new_l) | 
|  | { | 
|  | int ret; | 
|  | char *t_oldpath = copy_in_path(p, old_path, old_l); | 
|  |  | 
|  | if (t_oldpath == NULL) | 
|  | return -1; | 
|  | char *t_newpath = copy_in_path(p, new_path, new_l); | 
|  |  | 
|  | if (t_newpath == NULL) { | 
|  | free_path(p, t_oldpath); | 
|  | return -1; | 
|  | } | 
|  | set_error(ENOSYS, "no link"); | 
|  | ret = -1; | 
|  | free_path(p, t_oldpath); | 
|  | free_path(p, t_newpath); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | intreg_t sys_unlink(struct proc *p, const char *path, size_t path_l) | 
|  | { | 
|  | int retval; | 
|  | char *t_path = copy_in_path(p, path, path_l); | 
|  |  | 
|  | if (!t_path) | 
|  | return -1; | 
|  | retval = sysremove(t_path); | 
|  | free_path(p, t_path); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | intreg_t sys_symlink(struct proc *p, char *old_path, size_t old_l, | 
|  | char *new_path, size_t new_l) | 
|  | { | 
|  | int ret; | 
|  | char *t_oldpath = copy_in_path(p, old_path, old_l); | 
|  |  | 
|  | if (t_oldpath == NULL) | 
|  | return -1; | 
|  | char *t_newpath = copy_in_path(p, new_path, new_l); | 
|  |  | 
|  | if (t_newpath == NULL) { | 
|  | free_path(p, t_oldpath); | 
|  | return -1; | 
|  | } | 
|  | ret = syssymlink(t_newpath, t_oldpath); | 
|  | free_path(p, t_oldpath); | 
|  | free_path(p, t_newpath); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | intreg_t sys_readlink(struct proc *p, char *path, size_t path_l, | 
|  | char *u_buf, size_t buf_l) | 
|  | { | 
|  | char *symname = NULL; | 
|  | ssize_t copy_amt; | 
|  | int ret = -1; | 
|  | char *t_path = copy_in_path(p, path, path_l); | 
|  | struct dir *dir; | 
|  |  | 
|  | if (t_path == NULL) | 
|  | return -1; | 
|  | dir = sysdirlstat(t_path); | 
|  | if (!dir) | 
|  | return -1; | 
|  | if (!(dir->mode & DMSYMLINK)) | 
|  | set_error(EINVAL, "not a symlink: %s", t_path); | 
|  | else | 
|  | symname = dir->ext; | 
|  | free_path(p, t_path); | 
|  | if (symname){ | 
|  | copy_amt = strnlen(symname, buf_l - 1) + 1; | 
|  | if (!memcpy_to_user_errno(p, u_buf, symname, copy_amt)) | 
|  | ret = copy_amt - 1; | 
|  | } | 
|  | kfree(dir); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static intreg_t sys_chdir(struct proc *p, pid_t pid, const char *path, | 
|  | size_t path_l) | 
|  | { | 
|  | int retval; | 
|  | char *t_path; | 
|  | struct proc *target = get_controllable_proc(p, pid); | 
|  |  | 
|  | if (!target) | 
|  | return -1; | 
|  | if ((target != p) && (target->state != PROC_CREATED)) { | 
|  | proc_decref(target); | 
|  | set_error(EINVAL, "pid %d has already started", pid); | 
|  | return -1; | 
|  | } | 
|  | t_path = copy_in_path(p, path, path_l); | 
|  | if (!t_path) { | 
|  | proc_decref(target); | 
|  | return -1; | 
|  | } | 
|  | retval = syschdir(target, t_path); | 
|  | free_path(p, t_path); | 
|  | proc_decref(target); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | static intreg_t sys_fchdir(struct proc *p, pid_t pid, int fd) | 
|  | { | 
|  | int retval; | 
|  | struct proc *target = get_controllable_proc(p, pid); | 
|  |  | 
|  | if (!target) | 
|  | return -1; | 
|  | if ((target != p) && (target->state != PROC_CREATED)) { | 
|  | proc_decref(target); | 
|  | set_error(EINVAL, "pid %d has already started", pid); | 
|  | return -1; | 
|  | } | 
|  | retval = sysfchdir(target, fd); | 
|  | proc_decref(target); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | /* Note cwd_l is not a strlen, it's an absolute size. | 
|  | * Same as with readlink, we give them a null-terminated string, and we return | 
|  | * strlen, which doesn't include the \0.  If we can't give them the \0, we'll | 
|  | * error out.  Our readlink also does that, which is not POSIX-like. */ | 
|  | intreg_t sys_getcwd(struct proc *p, char *u_cwd, size_t cwd_l) | 
|  | { | 
|  | ssize_t retval = -1; | 
|  | size_t copy_amt; | 
|  | char *k_cwd; | 
|  |  | 
|  | k_cwd = sysgetcwd(); | 
|  | if (!k_cwd) { | 
|  | set_error(EINVAL, "unable to getcwd"); | 
|  | return -1; | 
|  | } | 
|  | copy_amt = strlen(k_cwd) + 1; | 
|  | if (copy_amt > cwd_l) { | 
|  | set_error(ERANGE, "getcwd buf too small, needed %d", copy_amt); | 
|  | goto out; | 
|  | } | 
|  | if (!memcpy_to_user_errno(p, u_cwd, k_cwd, copy_amt)) | 
|  | retval = copy_amt - 1; | 
|  | out: | 
|  | kfree(k_cwd); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | intreg_t sys_mkdir(struct proc *p, const char *path, size_t path_l, int mode) | 
|  | { | 
|  | int retval; | 
|  | char *t_path = copy_in_path(p, path, path_l); | 
|  |  | 
|  | if (!t_path) | 
|  | return -1; | 
|  | mode &= ~p->umask; | 
|  | mode &= S_PMASK; | 
|  | static_assert(!(DMMODE_BITS & S_PMASK)); | 
|  | retval = syscreate(t_path, O_READ, DMDIR | mode); | 
|  | if (retval >= 0) { | 
|  | sysclose(retval); | 
|  | retval = 0; | 
|  | } | 
|  | free_path(p, t_path); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | intreg_t sys_rmdir(struct proc *p, const char *path, size_t path_l) | 
|  | { | 
|  | int retval; | 
|  | char *t_path = copy_in_path(p, path, path_l); | 
|  |  | 
|  | if (!t_path) | 
|  | return -1; | 
|  | retval = sysremove(t_path); | 
|  | free_path(p, t_path); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | intreg_t sys_tcgetattr(struct proc *p, int fd, void *termios_p) | 
|  | { | 
|  | int retval = 0; | 
|  | /* TODO: actually support this call on tty FDs.  Right now, we just fake | 
|  | * what my linux box reports for a bash pty. */ | 
|  | struct termios *kbuf = kmalloc(sizeof(struct termios), 0); | 
|  |  | 
|  | kbuf->c_iflag = 0x2d02; | 
|  | kbuf->c_oflag = 0x0005; | 
|  | kbuf->c_cflag = 0x04bf; | 
|  | kbuf->c_lflag = 0x8a3b; | 
|  | kbuf->c_line = 0x0; | 
|  | kbuf->c_ispeed = 0xf; | 
|  | kbuf->c_ospeed = 0xf; | 
|  | kbuf->c_cc[0] = 0x03; | 
|  | kbuf->c_cc[1] = 0x1c; | 
|  | kbuf->c_cc[2] = 0x7f; | 
|  | kbuf->c_cc[3] = 0x15; | 
|  | kbuf->c_cc[4] = 0x04; | 
|  | kbuf->c_cc[5] = 0x00; | 
|  | kbuf->c_cc[6] = 0x01; | 
|  | kbuf->c_cc[7] = 0xff; | 
|  | kbuf->c_cc[8] = 0x11; | 
|  | kbuf->c_cc[9] = 0x13; | 
|  | kbuf->c_cc[10] = 0x1a; | 
|  | kbuf->c_cc[11] = 0xff; | 
|  | kbuf->c_cc[12] = 0x12; | 
|  | kbuf->c_cc[13] = 0x0f; | 
|  | kbuf->c_cc[14] = 0x17; | 
|  | kbuf->c_cc[15] = 0x16; | 
|  | kbuf->c_cc[16] = 0xff; | 
|  | kbuf->c_cc[17] = 0x00; | 
|  | kbuf->c_cc[18] = 0x00; | 
|  | kbuf->c_cc[19] = 0x00; | 
|  | kbuf->c_cc[20] = 0x00; | 
|  | kbuf->c_cc[21] = 0x00; | 
|  | kbuf->c_cc[22] = 0x00; | 
|  | kbuf->c_cc[23] = 0x00; | 
|  | kbuf->c_cc[24] = 0x00; | 
|  | kbuf->c_cc[25] = 0x00; | 
|  | kbuf->c_cc[26] = 0x00; | 
|  | kbuf->c_cc[27] = 0x00; | 
|  | kbuf->c_cc[28] = 0x00; | 
|  | kbuf->c_cc[29] = 0x00; | 
|  | kbuf->c_cc[30] = 0x00; | 
|  | kbuf->c_cc[31] = 0x00; | 
|  |  | 
|  | if (memcpy_to_user_errno(p, termios_p, kbuf, sizeof(struct termios))) | 
|  | retval = -1; | 
|  | kfree(kbuf); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | intreg_t sys_tcsetattr(struct proc *p, int fd, int optional_actions, | 
|  | const void *termios_p) | 
|  | { | 
|  | /* TODO: do this properly too.  For now, we just say 'it worked' */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* TODO: we don't have any notion of UIDs or GIDs yet, but don't let that stop a | 
|  | * process from thinking it can do these.  The other alternative is to have | 
|  | * glibc return 0 right away, though someone might want to do something with | 
|  | * these calls.  Someday. */ | 
|  | intreg_t sys_setuid(struct proc *p, uid_t uid) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | intreg_t sys_setgid(struct proc *p, gid_t gid) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* long bind(char* src_path, char* onto_path, int flag); | 
|  | * | 
|  | * The naming for the args in bind is messy historically.  We do: | 
|  | * 		bind src_path onto_path | 
|  | * plan9 says bind NEW OLD, where new is *src*, and old is *onto*. | 
|  | * Linux says mount --bind OLD NEW, where OLD is *src* and NEW is *onto*. */ | 
|  | intreg_t sys_nbind(struct proc *p, | 
|  | char *src_path, size_t src_l, | 
|  | char *onto_path, size_t onto_l, | 
|  | unsigned int flag) | 
|  |  | 
|  | { | 
|  | int ret; | 
|  | char *t_srcpath = copy_in_path(p, src_path, src_l); | 
|  |  | 
|  | if (t_srcpath == NULL) { | 
|  | printd("srcpath dup failed ptr %p size %d\n", src_path, src_l); | 
|  | return -1; | 
|  | } | 
|  | char *t_ontopath = copy_in_path(p, onto_path, onto_l); | 
|  |  | 
|  | if (t_ontopath == NULL) { | 
|  | free_path(p, t_srcpath); | 
|  | printd("ontopath dup failed ptr %p size %d\n", onto_path, | 
|  | onto_l); | 
|  | return -1; | 
|  | } | 
|  | printd("sys_nbind: %s -> %s flag %d\n", t_srcpath, t_ontopath, flag); | 
|  | ret = sysbind(t_srcpath, t_ontopath, flag); | 
|  | free_path(p, t_srcpath); | 
|  | free_path(p, t_ontopath); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* int mount(int fd, int afd, char* onto_path, int flag, char* aname); */ | 
|  | intreg_t sys_nmount(struct proc *p, | 
|  | int fd, | 
|  | char *onto_path, size_t onto_l, | 
|  | unsigned int flag | 
|  | /* we ignore these */ | 
|  | /* no easy way to pass this many args anyway. * | 
|  | int afd, | 
|  | char *auth, size_t auth_l*/) | 
|  | { | 
|  | int ret; | 
|  | int afd; | 
|  |  | 
|  | afd = -1; | 
|  | char *t_ontopath = copy_in_path(p, onto_path, onto_l); | 
|  |  | 
|  | if (t_ontopath == NULL) | 
|  | return -1; | 
|  | /* TODO: if we ever pass in the spec/auth, copy those in. */ | 
|  | ret = sysmount(fd, afd, t_ontopath, flag, /* spec or auth */"/"); | 
|  | free_path(p, t_ontopath); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Unmount undoes the operation of a bind or mount.  Check out | 
|  | * http://plan9.bell-labs.com/magic/man2html/1/bind .  Though our mount takes an | 
|  | * FD, not servename (aka src_path), so it's not quite the same. | 
|  | * | 
|  | * To translate between Plan 9 and Akaros, old -> onto_path.  new -> src_path. | 
|  | * | 
|  | * For unmount, src_path / new is optional.  If set, we only unmount the | 
|  | * bindmount that came from src_path. */ | 
|  | intreg_t sys_nunmount(struct proc *p, char *src_path, int src_l, | 
|  | char *onto_path, int onto_l) | 
|  | { | 
|  | int ret; | 
|  | char *t_ontopath, *t_srcpath; | 
|  |  | 
|  | t_ontopath = copy_in_path(p, onto_path, onto_l); | 
|  | if (t_ontopath == NULL) | 
|  | return -1; | 
|  | if (src_path) { | 
|  | t_srcpath = copy_in_path(p, src_path, src_l); | 
|  | if (t_srcpath == NULL) { | 
|  | free_path(p, t_ontopath); | 
|  | return -1; | 
|  | } | 
|  | } else { | 
|  | t_srcpath = 0; | 
|  | } | 
|  | ret = sysunmount(t_srcpath, t_ontopath); | 
|  | free_path(p, t_ontopath); | 
|  | free_path(p, t_srcpath);	/* you can free a null path */ | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | intreg_t sys_fd2path(struct proc *p, int fd, void *u_buf, size_t len) | 
|  | { | 
|  | int ret = 0; | 
|  | struct chan *ch; | 
|  | ERRSTACK(1); | 
|  |  | 
|  | /* UMEM: Check the range, can PF later and kill if the page isn't | 
|  | * present */ | 
|  | if (!is_user_rwaddr(u_buf, len)) { | 
|  | set_error(EINVAL, "bad user addr %p + %p", u_buf, len); | 
|  | return -1; | 
|  | } | 
|  | /* fdtochan throws */ | 
|  | if (waserror()) { | 
|  | poperror(); | 
|  | return -1; | 
|  | } | 
|  | ch = fdtochan(¤t->open_files, fd, -1, FALSE, TRUE); | 
|  | if (snprintf(u_buf, len, "%s", channame(ch)) >= len) { | 
|  | set_error(ERANGE, "fd2path buf too small, needed %d", ret); | 
|  | ret = -1; | 
|  | } | 
|  | cclose(ch); | 
|  | poperror(); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | intreg_t sys_wstat(struct proc *p, char *path, size_t path_l, | 
|  | uint8_t *stat_m, size_t stat_sz, int flags) | 
|  | { | 
|  | int retval = 0; | 
|  | char *t_path; | 
|  |  | 
|  | if (!is_user_rwaddr(stat_m, stat_sz)) { | 
|  | set_error(EINVAL, "bad user addr %p + %p", stat_m, stat_sz); | 
|  | return -1; | 
|  | } | 
|  | t_path = copy_in_path(p, path, path_l); | 
|  | if (!t_path) | 
|  | return -1; | 
|  | retval = syswstat(t_path, stat_m, stat_sz); | 
|  | free_path(p, t_path); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | intreg_t sys_fwstat(struct proc *p, int fd, uint8_t *stat_m, size_t stat_sz, | 
|  | int flags) | 
|  | { | 
|  | if (!is_user_rwaddr(stat_m, stat_sz)) { | 
|  | set_error(EINVAL, "bad user addr %p + %p", stat_m, stat_sz); | 
|  | return -1; | 
|  | } | 
|  | return sysfwstat(fd, stat_m, stat_sz); | 
|  | } | 
|  |  | 
|  | intreg_t sys_rename(struct proc *p, char *old_path, size_t old_path_l, | 
|  | char *new_path, size_t new_path_l) | 
|  | { | 
|  | char *from_path = copy_in_path(p, old_path, old_path_l); | 
|  | char *to_path = copy_in_path(p, new_path, new_path_l); | 
|  | int ret; | 
|  |  | 
|  | if ((!from_path) || (!to_path)) | 
|  | return -1; | 
|  | ret = sysrename(from_path, to_path); | 
|  | free_path(p, from_path); | 
|  | free_path(p, to_path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Careful: if an FD is busy, we don't close the old object, it just fails */ | 
|  | static intreg_t sys_dup_fds_to(struct proc *p, unsigned int pid, | 
|  | struct childfdmap *map, unsigned int nentries) | 
|  | { | 
|  | ssize_t ret = 0; | 
|  | struct proc *child; | 
|  | int slot; | 
|  |  | 
|  | if (!is_user_rwaddr(map, sizeof(struct childfdmap) * nentries)) { | 
|  | set_error(EINVAL, "bad user addr %p + %p", map, | 
|  | sizeof(struct childfdmap) * nentries); | 
|  | return -1; | 
|  | } | 
|  | child = get_controllable_proc(p, pid); | 
|  | if (!child) | 
|  | return -1; | 
|  | for (int i = 0; i < nentries; i++) { | 
|  | map[i].ok = -1; | 
|  | if (!sys_dup_to(p, map[i].parentfd, child, map[i].childfd)) { | 
|  | map[i].ok = 0; | 
|  | ret++; | 
|  | continue; | 
|  | } | 
|  | /* probably a bug, could send EBADF, maybe via 'ok' */ | 
|  | printk("[kernel] dup_fds_to: couldn't find %d\n", map[i].parentfd); | 
|  | } | 
|  | proc_decref(child); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* 0 on success, anything else is an error, with errno/errstr set */ | 
|  | static int handle_tap_req(struct proc *p, struct fd_tap_req *req) | 
|  | { | 
|  | switch (req->cmd) { | 
|  | case (FDTAP_CMD_ADD): | 
|  | return add_fd_tap(p, req); | 
|  | case (FDTAP_CMD_REM): | 
|  | return remove_fd_tap(p, req->fd); | 
|  | default: | 
|  | set_error(ENOSYS, "FD Tap Command %d not supported", req->cmd); | 
|  | return -1; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Processes up to nr_reqs tap requests.  If a request errors out, we stop | 
|  | * immediately.  Returns the number processed.  If done != nr_reqs, check errno | 
|  | * and errstr for the last failure, which is for tap_reqs[done]. */ | 
|  | static intreg_t sys_tap_fds(struct proc *p, struct fd_tap_req *tap_reqs, | 
|  | size_t nr_reqs) | 
|  | { | 
|  | struct fd_tap_req *req_i = tap_reqs; | 
|  | int done; | 
|  |  | 
|  | if (!is_user_rwaddr(tap_reqs, sizeof(struct fd_tap_req) * nr_reqs)) { | 
|  | set_error(EINVAL, "bad user addr %p + %p", tap_reqs, | 
|  | sizeof(struct fd_tap_req) * nr_reqs); | 
|  | return 0; | 
|  | } | 
|  | for (done = 0; done < nr_reqs; done++, req_i++) { | 
|  | if (handle_tap_req(p, req_i)) | 
|  | break; | 
|  | } | 
|  | return done; | 
|  | } | 
|  |  | 
|  | /************** Syscall Invokation **************/ | 
|  |  | 
|  | const struct sys_table_entry syscall_table[] = { | 
|  | [SYS_null] = {(syscall_t)sys_null, "null"}, | 
|  | [SYS_block] = {(syscall_t)sys_block, "block"}, | 
|  | [SYS_cache_invalidate] = {(syscall_t)sys_cache_invalidate, "wbinv"}, | 
|  | [SYS_reboot] = {(syscall_t)reboot, "reboot!"}, | 
|  | [SYS_getpcoreid] = {(syscall_t)sys_getpcoreid, "getpcoreid"}, | 
|  | [SYS_getvcoreid] = {(syscall_t)sys_getvcoreid, "getvcoreid"}, | 
|  | [SYS_proc_create] = {(syscall_t)sys_proc_create, "proc_create"}, | 
|  | [SYS_proc_run] = {(syscall_t)sys_proc_run, "proc_run"}, | 
|  | [SYS_proc_destroy] = {(syscall_t)sys_proc_destroy, "proc_destroy"}, | 
|  | [SYS_proc_yield] = {(syscall_t)sys_proc_yield, "proc_yield"}, | 
|  | [SYS_change_vcore] = {(syscall_t)sys_change_vcore, "change_vcore"}, | 
|  | [SYS_fork] = {(syscall_t)sys_fork, "fork"}, | 
|  | [SYS_exec] = {(syscall_t)sys_exec, "exec"}, | 
|  | [SYS_waitpid] = {(syscall_t)sys_waitpid, "waitpid"}, | 
|  | [SYS_mmap] = {(syscall_t)sys_mmap, "mmap"}, | 
|  | [SYS_munmap] = {(syscall_t)sys_munmap, "munmap"}, | 
|  | [SYS_mprotect] = {(syscall_t)sys_mprotect, "mprotect"}, | 
|  | [SYS_shared_page_alloc] = {(syscall_t)sys_shared_page_alloc, "pa"}, | 
|  | [SYS_shared_page_free] = {(syscall_t)sys_shared_page_free, "pf"}, | 
|  | [SYS_provision] = {(syscall_t)sys_provision, "provision"}, | 
|  | [SYS_notify] = {(syscall_t)sys_notify, "notify"}, | 
|  | [SYS_self_notify] = {(syscall_t)sys_self_notify, "self_notify"}, | 
|  | [SYS_send_event] = {(syscall_t)sys_send_event, "send_event"}, | 
|  | [SYS_vc_entry] = {(syscall_t)sys_vc_entry, "vc_entry"}, | 
|  | [SYS_halt_core] = {(syscall_t)sys_halt_core, "halt_core"}, | 
|  | #ifdef CONFIG_ARSC_SERVER | 
|  | [SYS_init_arsc] = {(syscall_t)sys_init_arsc, "init_arsc"}, | 
|  | #endif | 
|  | [SYS_change_to_m] = {(syscall_t)sys_change_to_m, "change_to_m"}, | 
|  | [SYS_vmm_add_gpcs] = {(syscall_t)sys_vmm_add_gpcs, "vmm_add_gpcs"}, | 
|  | [SYS_vmm_poke_guest] = {(syscall_t)sys_vmm_poke_guest, "vmm_poke_guest"}, | 
|  | [SYS_vmm_ctl] = {(syscall_t)sys_vmm_ctl, "vmm_ctl"}, | 
|  | [SYS_poke_ksched] = {(syscall_t)sys_poke_ksched, "poke_ksched"}, | 
|  | [SYS_abort_sysc] = {(syscall_t)sys_abort_sysc, "abort_sysc"}, | 
|  | [SYS_abort_sysc_fd] = {(syscall_t)sys_abort_sysc_fd, "abort_sysc_fd"}, | 
|  | [SYS_populate_va] = {(syscall_t)sys_populate_va, "populate_va"}, | 
|  | [SYS_nanosleep] = {(syscall_t)sys_nanosleep, "nanosleep"}, | 
|  | [SYS_pop_ctx] = {(syscall_t)sys_pop_ctx, "pop_ctx"}, | 
|  |  | 
|  | [SYS_read] = {(syscall_t)sys_read, "read"}, | 
|  | [SYS_write] = {(syscall_t)sys_write, "write"}, | 
|  | [SYS_openat] = {(syscall_t)sys_openat, "openat"}, | 
|  | [SYS_close] = {(syscall_t)sys_close, "close"}, | 
|  | [SYS_fstat] = {(syscall_t)sys_fstat, "fstat"}, | 
|  | [SYS_stat] = {(syscall_t)sys_stat, "stat"}, | 
|  | [SYS_lstat] = {(syscall_t)sys_lstat, "lstat"}, | 
|  | [SYS_fcntl] = {(syscall_t)sys_fcntl, "fcntl"}, | 
|  | [SYS_access] = {(syscall_t)sys_access, "access"}, | 
|  | [SYS_umask] = {(syscall_t)sys_umask, "umask"}, | 
|  | [SYS_llseek] = {(syscall_t)sys_llseek, "llseek"}, | 
|  | [SYS_link] = {(syscall_t)sys_link, "link"}, | 
|  | [SYS_unlink] = {(syscall_t)sys_unlink, "unlink"}, | 
|  | [SYS_symlink] = {(syscall_t)sys_symlink, "symlink"}, | 
|  | [SYS_readlink] = {(syscall_t)sys_readlink, "readlink"}, | 
|  | [SYS_chdir] = {(syscall_t)sys_chdir, "chdir"}, | 
|  | [SYS_fchdir] = {(syscall_t)sys_fchdir, "fchdir"}, | 
|  | [SYS_getcwd] = {(syscall_t)sys_getcwd, "getcwd"}, | 
|  | [SYS_mkdir] = {(syscall_t)sys_mkdir, "mkdir"}, | 
|  | [SYS_rmdir] = {(syscall_t)sys_rmdir, "rmdir"}, | 
|  | [SYS_tcgetattr] = {(syscall_t)sys_tcgetattr, "tcgetattr"}, | 
|  | [SYS_tcsetattr] = {(syscall_t)sys_tcsetattr, "tcsetattr"}, | 
|  | [SYS_setuid] = {(syscall_t)sys_setuid, "setuid"}, | 
|  | [SYS_setgid] = {(syscall_t)sys_setgid, "setgid"}, | 
|  | /* special! */ | 
|  | [SYS_nbind] ={(syscall_t)sys_nbind, "nbind"}, | 
|  | [SYS_nmount] ={(syscall_t)sys_nmount, "nmount"}, | 
|  | [SYS_nunmount] ={(syscall_t)sys_nunmount, "nunmount"}, | 
|  | [SYS_fd2path] ={(syscall_t)sys_fd2path, "fd2path"}, | 
|  | [SYS_wstat] ={(syscall_t)sys_wstat, "wstat"}, | 
|  | [SYS_fwstat] ={(syscall_t)sys_fwstat, "fwstat"}, | 
|  | [SYS_rename] ={(syscall_t)sys_rename, "rename"}, | 
|  | [SYS_dup_fds_to] = {(syscall_t)sys_dup_fds_to, "dup_fds_to"}, | 
|  | [SYS_tap_fds] = {(syscall_t)sys_tap_fds, "tap_fds"}, | 
|  | }; | 
|  | const int max_syscall = sizeof(syscall_table)/sizeof(syscall_table[0]); | 
|  |  | 
|  | /* Executes the given syscall. | 
|  | * | 
|  | * Note tf is passed in, which points to the tf of the context on the kernel | 
|  | * stack.  If any syscall needs to block, it needs to save this info, as well as | 
|  | * any silly state. | 
|  | * | 
|  | * This syscall function is used by both local syscall and arsc, and should | 
|  | * remain oblivious of the caller. */ | 
|  | intreg_t syscall(struct proc *p, uintreg_t sc_num, uintreg_t a0, uintreg_t a1, | 
|  | uintreg_t a2, uintreg_t a3, uintreg_t a4, uintreg_t a5) | 
|  | { | 
|  | intreg_t ret = -1; | 
|  | ERRSTACK(1); | 
|  |  | 
|  | if (sc_num > max_syscall || syscall_table[sc_num].call == NULL) { | 
|  | printk("[kernel] Invalid syscall %d for proc %d\n", sc_num, | 
|  | p->pid); | 
|  | printk("\tArgs: %p, %p, %p, %p, %p, %p\n", a0, a1, a2, a3, a4, | 
|  | a5); | 
|  | print_user_ctx(this_pcpui_var(cur_ctx)); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* N.B. This is going away. */ | 
|  | if (waserror()){ | 
|  | printk("Plan 9 system call returned via waserror()\n"); | 
|  | printk("String: '%s'\n", current_errstr()); | 
|  | /* if we got here, then the errbuf was right. | 
|  | * no need to check! | 
|  | */ | 
|  | return -1; | 
|  | } | 
|  | //printd("before syscall errstack %p\n", errstack); | 
|  | //printd("before syscall errstack base %p\n", get_cur_errbuf()); | 
|  | ret = syscall_table[sc_num].call(p, a0, a1, a2, a3, a4, a5); | 
|  | //printd("after syscall errstack base %p\n", get_cur_errbuf()); | 
|  | if (get_cur_errbuf() != &errstack[0]) { | 
|  | /* Can't trust coreid and vcoreid anymore, need to check the | 
|  | * trace */ | 
|  | printk("[%16llu] Syscall %3d (%12s):(%p, %p, %p, %p, " | 
|  | "%p, %p) proc: %d\n", read_tsc(), | 
|  | sc_num, syscall_table[sc_num].name, a0, a1, a2, a3, | 
|  | a4, a5, p->pid); | 
|  | if (sc_num != SYS_fork) | 
|  | panic("errstack mismatch"); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Execute the syscall on the local core */ | 
|  | void run_local_syscall(struct syscall *sysc) | 
|  | { | 
|  | struct per_cpu_info *pcpui = this_pcpui_ptr(); | 
|  | struct proc *p = pcpui->cur_proc; | 
|  | long retval; | 
|  |  | 
|  | /* In lieu of pinning, we just check the sysc and will PF on the user | 
|  | * addr later (if the addr was unmapped).  Which is the plan for all | 
|  | * UMEM. */ | 
|  | if (!is_user_rwaddr(sysc, sizeof(struct syscall))) { | 
|  | printk("[kernel] bad user addr %p (+%p) in %s (user bug)\n", | 
|  | sysc, sizeof(struct syscall), __FUNCTION__); | 
|  | return; | 
|  | } | 
|  | pcpui->cur_kthread->sysc = sysc;/* let the core know which sysc it is */ | 
|  | unset_errno(); | 
|  | systrace_start_trace(pcpui->cur_kthread, sysc); | 
|  | pcpui = this_pcpui_ptr();	/* reload again */ | 
|  | alloc_sysc_str(pcpui->cur_kthread); | 
|  | /* syscall() does not return for exec and yield, so put any cleanup in | 
|  | * there too. */ | 
|  | retval = syscall(pcpui->cur_proc, sysc->num, sysc->arg0, sysc->arg1, | 
|  | sysc->arg2, sysc->arg3, sysc->arg4, sysc->arg5); | 
|  | finish_current_sysc(retval); | 
|  | } | 
|  |  | 
|  | /* A process can trap and call this function, which will set up the core to | 
|  | * handle all the syscalls.  a.k.a. "sys_debutante(needs, wants)".  If there is | 
|  | * at least one, it will run it directly. */ | 
|  | void prep_syscalls(struct proc *p, struct syscall *sysc, unsigned int nr_syscs) | 
|  | { | 
|  | /* Careful with pcpui here, we could have migrated */ | 
|  | if (!nr_syscs) { | 
|  | printk("[kernel] No nr_sysc, probably a bug, user!\n"); | 
|  | return; | 
|  | } | 
|  | /* For all after the first call, send ourselves a KMSG (TODO). */ | 
|  | if (nr_syscs != 1) | 
|  | warn("Only one supported (Debutante calls: %d)\n", nr_syscs); | 
|  | /* Call the first one directly.  (we already checked to make sure there | 
|  | * is 1) */ | 
|  | run_local_syscall(sysc); | 
|  | } | 
|  |  | 
|  | /* Call this when something happens on the syscall where userspace might want to | 
|  | * get signaled.  Passing p, since the caller should know who the syscall | 
|  | * belongs to (probably is current). | 
|  | * | 
|  | * You need to have SC_K_LOCK set when you call this. */ | 
|  | void __signal_syscall(struct syscall *sysc, struct proc *p) | 
|  | { | 
|  | struct event_queue *ev_q; | 
|  | struct event_msg local_msg; | 
|  |  | 
|  | /* User sets the ev_q then atomically sets the flag (races with SC_DONE) | 
|  | */ | 
|  | if (atomic_read(&sysc->flags) & SC_UEVENT) { | 
|  | rmb();	/* read the ev_q after reading the flag */ | 
|  | ev_q = sysc->ev_q; | 
|  | if (ev_q) { | 
|  | memset(&local_msg, 0, sizeof(struct event_msg)); | 
|  | local_msg.ev_type = EV_SYSCALL; | 
|  | local_msg.ev_arg3 = sysc; | 
|  | if (!is_user_rwaddr(ev_q, sizeof(struct event_queue))) { | 
|  | printk("[kernel] syscall had bad ev_q %p\n", | 
|  | ev_q); | 
|  | return; | 
|  | } | 
|  | send_event(p, ev_q, &local_msg, 0); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | bool syscall_uses_fd(struct syscall *sysc, int fd) | 
|  | { | 
|  | switch (sysc->num) { | 
|  | case (SYS_read): | 
|  | case (SYS_write): | 
|  | case (SYS_close): | 
|  | case (SYS_fstat): | 
|  | case (SYS_fcntl): | 
|  | case (SYS_llseek): | 
|  | case (SYS_nmount): | 
|  | case (SYS_fd2path): | 
|  | if (sysc->arg0 == fd) | 
|  | return TRUE; | 
|  | return FALSE; | 
|  | case (SYS_mmap): | 
|  | /* mmap always has to be special. =) */ | 
|  | if (sysc->arg4 == fd) | 
|  | return TRUE; | 
|  | return FALSE; | 
|  | default: | 
|  | return FALSE; | 
|  | } | 
|  | } | 
|  |  | 
|  | void print_sysc(struct proc *p, struct syscall *sysc) | 
|  | { | 
|  | uintptr_t old_p = switch_to(p); | 
|  |  | 
|  | printk("SYS_%d, flags %p, a0 %p, a1 %p, a2 %p, a3 %p, a4 %p, a5 %p\n", | 
|  | sysc->num, atomic_read(&sysc->flags), | 
|  | sysc->arg0, sysc->arg1, sysc->arg2, sysc->arg3, sysc->arg4, | 
|  | sysc->arg5); | 
|  | switch_back(p, old_p); | 
|  | } | 
|  |  | 
|  | /* Called when we try to return from a panic. */ | 
|  | void kth_panic_sysc(struct kthread *kth) | 
|  | { | 
|  | kth->sysc = NULL; | 
|  | /* We actually could block here, but that might be OK, since we cleared | 
|  | * cur_kthread->sysc.  As OK as anything is after a panic... */ | 
|  | systrace_finish_trace(kth, -12345); | 
|  | } |