blob: 534fa83d7fa018916311e7bb05c4a81c425bac99 [file] [log] [blame]
#pragma once
#include <parlib/vcore.h>
#include <parlib/signal.h>
#include <parlib/spinlock.h>
#include <parlib/parlib.h>
#include <parlib/kref.h>
#include <ros/syscall.h>
#include <sys/queue.h>
#include <time.h>
__BEGIN_DECLS
#define UTHREAD_DONT_MIGRATE 0x001 /* don't move to another vcore */
#define UTHREAD_SAVED 0x002 /* uthread's state is in utf */
#define UTHREAD_FPSAVED 0x004 /* uthread's FP state is in uth->as */
#define UTHREAD_IS_THREAD0 0x008 /* thread0: glibc's main() thread */
/* Thread States */
#define UT_RUNNING 1
#define UT_NOT_RUNNING 2
/* Externally blocked thread reasons (for uthread_has_blocked()) */
#define UTH_EXT_BLK_MUTEX 1
#define UTH_EXT_BLK_EVENTQ 2
#define UTH_EXT_BLK_YIELD 3
#define UTH_EXT_BLK_MISC 4
/* One per joiner, usually kept on the stack. */
struct uth_join_kicker {
struct kref kref;
struct uthread *joiner;
};
/* Join states, stored in the join_ctl */
#define UTH_JOIN_DETACHED 1
#define UTH_JOIN_JOINABLE 2
#define UTH_JOIN_HAS_JOINER 3
#define UTH_JOIN_EXITED 4
/* One per uthread, to encapsulate all the join fields. */
struct uth_join_ctl {
atomic_t state;
void *retval;
void **retval_loc;
struct uth_join_kicker *kicker;
};
/* Bare necessities of a user thread. 2LSs should allocate a bigger struct and
* cast their threads to uthreads when talking with vcore code. Vcore/default
* 2LS code won't touch udata or beyond. */
struct uthread {
struct user_context u_ctx;
struct ancillary_state as;
void *tls_desc;
int flags;
int state;
struct uth_join_ctl join_ctl;
struct sigstate sigstate;
int notif_disabled_depth;
TAILQ_ENTRY(uthread) sync_next;
struct syscall *sysc; /* syscall we're blocking on, if any */
struct syscall local_sysc; /* for when we don't want to use the stack */
void (*yield_func)(struct uthread*, void*);
void *yield_arg;
int err_no;
char err_str[MAX_ERRSTR_LEN];
};
TAILQ_HEAD(uth_tailq, uthread);
extern __thread struct uthread *current_uthread;
/* This struct is a blob of sufficient storage to be whatever a 2LS wants for
* its thread list structure (e.g., TAILQ, priority queue, RB tree, etc).
* Internally, 2LSs and the default implementation use another object type.
*
* If a 2LS overrides the sync ops and uses its own synchronization, it can
* either use the uthread->sync_next field, or add its own field to its thread
* structure.
*
* If we need to increase the size, then do a full rebuild (with a make clean)
* of the toolchain. libgomp and probably c++ threads care about the size of
* objects that contain uth_sync_t. */
typedef struct __uth_sync_opaque {
uint8_t foo[sizeof(uintptr_t) * 2];
} __attribute__ ((aligned(sizeof(uintptr_t)))) uth_sync_t;
/* 2LS-independent synchronization code (e.g. uthread mutexes) uses these
* helpers to access 2LS-specific functions.
*
* Note the spinlock associated with the higher-level sync primitive is held for
* these (where applicable). */
void __uth_sync_init(uth_sync_t *sync);
void __uth_sync_destroy(uth_sync_t *sync);
void __uth_sync_enqueue(struct uthread *uth, uth_sync_t *sync);
struct uthread *__uth_sync_get_next(uth_sync_t *sync);
bool __uth_sync_get_uth(uth_sync_t *sync, struct uthread *uth);
void __uth_sync_swap(uth_sync_t *a, uth_sync_t *b);
bool __uth_sync_is_empty(uth_sync_t *sync);
void __uth_sync_wake_all(uth_sync_t *wakees);
/* 2L-Scheduler operations. Examples in pthread.c. */
struct schedule_ops {
/**** These functions must be defined ****/
void (*sched_init)(void);
void (*sched_entry)(void);
void (*thread_runnable)(struct uthread *);
void (*thread_paused)(struct uthread *);
void (*thread_blockon_sysc)(struct uthread *, void *);
void (*thread_has_blocked)(struct uthread *, int);
void (*thread_refl_fault)(struct uthread *, struct user_context *);
void (*thread_exited)(struct uthread *);
struct uthread *(*thread_create)(void *(*)(void *), void *);
void (*got_posix_signal)(int sig_nr, struct siginfo *info);
/**** Defining these functions is optional. ****/
void (*sync_init)(uth_sync_t *);
void (*sync_destroy)(uth_sync_t *);
void (*sync_enqueue)(struct uthread *, uth_sync_t *);
struct uthread *(*sync_get_next)(uth_sync_t *);
bool (*sync_get_uth)(uth_sync_t *, struct uthread *);
void (*sync_swap)(uth_sync_t *, uth_sync_t *);
bool (*sync_is_empty)(uth_sync_t *);
void (*preempt_pending)(void);
void (*thread_bulk_runnable)(uth_sync_t *);
};
extern struct schedule_ops *sched_ops;
/* Call this from your 2LS init routines. Pass it a uthread representing
* thread0, your 2LS ops, and your syscall handler + data.
*
* When it returns, you're in _M mode (thread0 on vcore0) */
void uthread_2ls_init(struct uthread *uthread,
void (*handle_sysc)(struct event_msg *, unsigned int,
void *),
void *data);
/* Call this to become an mcp capable of worling with uthreads. */
void uthread_mcp_init(void);
/* Functions to make/manage uthreads. Can be called by functions such as
* pthread_create(), which can wrap these with their own stuff (like attrs,
* retvals, etc). */
struct uth_thread_attr {
bool want_tls; /* default, no */
bool detached; /* default, no */
};
struct uth_join_request {
struct uthread *uth;
void **retval_loc;
};
/* uthread_init() does the uthread initialization of a uthread that the caller
* created. Call this whenever you are "starting over" with a thread. Pass in
* attr, if you want to override any defaults. */
void uthread_init(struct uthread *new_thread, struct uth_thread_attr *attr);
/* uthread_create() is a front-end for getting the 2LS to make and run a thread
* appropriate for running func(arg) in the GCC/glibc environment. The thread
* will have TLS and not be detached. */
struct uthread *uthread_create(void *(*func)(void *), void *arg);
void uthread_detach(struct uthread *uth);
void uthread_join(struct uthread *uth, void **retval_loc);
void uthread_join_arr(struct uth_join_request reqs[], size_t nr_req);
void uthread_sched_yield(void);
struct uthread *uthread_self(void);
/* Call this when you are done with a uthread, forever, but before you free it */
void uthread_cleanup(struct uthread *uthread);
void uthread_runnable(struct uthread *uthread);
void uthread_yield(bool save_state, void (*yield_func)(struct uthread*, void*),
void *yield_arg);
void uthread_sleep(unsigned int seconds);
void uthread_usleep(unsigned int usecs);
void __attribute__((noreturn)) uthread_sleep_forever(void);
void uthread_has_blocked(struct uthread *uthread, int flags);
void uthread_paused(struct uthread *uthread);
/* Utility functions */
bool __check_preempt_pending(uint32_t vcoreid); /* careful: check the code */
void uth_disable_notifs(void);
void uth_enable_notifs(void);
void assert_can_block(void);
/* Helpers, which the 2LS can call */
void __block_uthread_on_async_sysc(struct uthread *uth);
void highjack_current_uthread(struct uthread *uthread);
struct uthread *stop_current_uthread(void);
void __attribute__((noreturn)) run_current_uthread(void);
void __attribute__((noreturn)) run_uthread(struct uthread *uthread);
void __attribute__((noreturn)) uth_2ls_thread_exit(void *retval);
/* Asking for trouble with this API, when we just want stacktop (or whatever
* the SP will be). */
static inline void init_uthread_ctx(struct uthread *uth, void (*entry)(void),
void *stack_bottom, uint32_t size)
{
init_user_ctx(&uth->u_ctx, (long)entry, (long)(stack_bottom) + size);
}
/* When we look at the current_uthread, its context might be in the uthread
* struct or it might be in VCPD. This returns a pointer to the right place. */
static inline struct user_context *get_cur_uth_ctx(void)
{
if (current_uthread->flags & UTHREAD_SAVED)
return &current_uthread->u_ctx;
else
return &vcpd_of(vcore_id())->uthread_ctx;
}
static inline bool cur_uth_is_sw_ctx(void)
{
return get_cur_uth_ctx()->type == ROS_SW_CTX;
}
static inline bool uthread_is_thread0(struct uthread *uth)
{
return uth->flags & UTHREAD_IS_THREAD0;
}
#define uthread_set_tls_var(uth, name, val) \
({ \
typeof(val) __val = val; \
begin_access_tls_vars(((struct uthread*)(uth))->tls_desc); \
name = __val; \
end_access_tls_vars(); \
})
#define uthread_get_tls_var(uth, name) \
({ \
typeof(name) val; \
begin_access_tls_vars(((struct uthread*)(uth))->tls_desc); \
val = name; \
end_access_tls_vars(); \
val; \
})
/* Uthread Mutexes / CVs / etc. */
typedef struct uth_semaphore uth_semaphore_t;
typedef struct uth_semaphore uth_mutex_t;
typedef struct uth_recurse_mutex uth_recurse_mutex_t;
typedef struct uth_cond_var uth_cond_var_t;
typedef struct uth_rwlock uth_rwlock_t;
struct uth_semaphore {
parlib_once_t once_ctl;
unsigned int count;
struct spin_pdr_lock lock;
uth_sync_t sync_obj;
};
#define UTH_SEMAPHORE_INIT(n) { PARLIB_ONCE_INIT, (n) }
#define UTH_MUTEX_INIT { PARLIB_ONCE_INIT }
struct uth_recurse_mutex {
parlib_once_t once_ctl;
uth_mutex_t mtx;
struct uthread *lockholder;
unsigned int count;
};
#define UTH_RECURSE_MUTEX_INIT { PARLIB_ONCE_INIT }
struct uth_cond_var {
parlib_once_t once_ctl;
struct spin_pdr_lock lock;
uth_sync_t sync_obj;
};
#define UTH_COND_VAR_INIT { PARLIB_ONCE_INIT }
struct uth_rwlock {
parlib_once_t once_ctl;
struct spin_pdr_lock lock;
unsigned int nr_readers;
bool has_writer;
uth_sync_t readers;
uth_sync_t writers;
};
#define UTH_RWLOCK_INIT { PARLIB_ONCE_INIT }
void uth_semaphore_init(uth_semaphore_t *sem, unsigned int count);
void uth_semaphore_destroy(uth_semaphore_t *sem);
uth_semaphore_t *uth_semaphore_alloc(unsigned int count);
void uth_semaphore_free(uth_semaphore_t *sem);
bool uth_semaphore_timed_down(uth_semaphore_t *sem,
const struct timespec *abs_timeout);
void uth_semaphore_down(uth_semaphore_t *sem);
bool uth_semaphore_trydown(uth_semaphore_t *sem);
void uth_semaphore_up(uth_semaphore_t *sem);
void uth_mutex_init(uth_mutex_t *m);
void uth_mutex_destroy(uth_mutex_t *m);
uth_mutex_t *uth_mutex_alloc(void);
void uth_mutex_free(uth_mutex_t *m);
bool uth_mutex_timed_lock(uth_mutex_t *m, const struct timespec *abs_timeout);
void uth_mutex_lock(uth_mutex_t *m);
bool uth_mutex_trylock(uth_mutex_t *m);
void uth_mutex_unlock(uth_mutex_t *m);
void uth_recurse_mutex_init(uth_recurse_mutex_t *r_m);
void uth_recurse_mutex_destroy(uth_recurse_mutex_t *r_m);
uth_recurse_mutex_t *uth_recurse_mutex_alloc(void);
void uth_recurse_mutex_free(uth_recurse_mutex_t *r_m);
bool uth_recurse_mutex_timed_lock(uth_recurse_mutex_t *m,
const struct timespec *abs_timeout);
void uth_recurse_mutex_lock(uth_recurse_mutex_t *r_m);
bool uth_recurse_mutex_trylock(uth_recurse_mutex_t *r_m);
void uth_recurse_mutex_unlock(uth_recurse_mutex_t *r_m);
/* Callers to cv_wait must hold the mutex, which it will atomically wait and
* unlock, then relock when it returns. Callers to signal and broadcast may
* hold the mutex, if they choose. */
void uth_cond_var_init(uth_cond_var_t *cv);
void uth_cond_var_destroy(uth_cond_var_t *cv);
uth_cond_var_t *uth_cond_var_alloc(void);
void uth_cond_var_free(uth_cond_var_t *cv);
bool uth_cond_var_timed_wait(uth_cond_var_t *cv, uth_mutex_t *m,
const struct timespec *abs_timeout);
void uth_cond_var_wait(uth_cond_var_t *cv, uth_mutex_t *m);
bool uth_cond_var_timed_wait_recurse(uth_cond_var_t *cv,
uth_recurse_mutex_t *r_mtx,
const struct timespec *abs_timeout);
void uth_cond_var_wait_recurse(uth_cond_var_t *cv, uth_recurse_mutex_t *r_mtx);
void uth_cond_var_signal(uth_cond_var_t *cv);
void uth_cond_var_broadcast(uth_cond_var_t *cv);
/* Mutex-less cond vars: Uses the CV's spinlock for synchronization */
void uth_cond_var_lock(uth_cond_var_t *cv);
void uth_cond_var_unlock(uth_cond_var_t *cv);
void __uth_cond_var_signal_and_unlock(uth_cond_var_t *cv);
void __uth_cond_var_broadcast_and_unlock(uth_cond_var_t *cv);
struct uthread *__uth_cond_var_wake_one(uth_cond_var_t *cv);
bool __uth_cond_var_wake_all(uth_cond_var_t *cv, uth_sync_t *restartees);
void uth_rwlock_init(uth_rwlock_t *rwl);
void uth_rwlock_destroy(uth_rwlock_t *rwl);
uth_rwlock_t *uth_rwlock_alloc(void);
void uth_rwlock_free(uth_rwlock_t *rwl);
void uth_rwlock_rdlock(uth_rwlock_t *rwl);
bool uth_rwlock_try_rdlock(uth_rwlock_t *rwl);
void uth_rwlock_wrlock(uth_rwlock_t *rwl);
bool uth_rwlock_try_wrlock(uth_rwlock_t *rwl);
void uth_rwlock_unlock(uth_rwlock_t *rwl);
/* Called by gcc to see if we are multithreaded. */
bool uth_2ls_is_multithreaded(void);
__END_DECLS