|  | /* | 
|  | * Copyright (c) 2009 The Regents of the University of California | 
|  | * Barret Rhoden <brho@cs.berkeley.edu> | 
|  | * Kevin Klues <klueska@cs.berkeley.edu> | 
|  | * See LICENSE for details. | 
|  | * | 
|  | * Slab allocator, based on the SunOS 5.4 allocator paper. | 
|  | * | 
|  | * Note that we don't have a hash table for buf to bufctl for the large buffer | 
|  | * objects, so we use the same style for small objects: store the pointer to the | 
|  | * controlling bufctl at the top of the slab object.  Fix this with TODO (BUF). | 
|  | * | 
|  | * Ported directly from the kernel's slab allocator. */ | 
|  |  | 
|  | #include <parlib/slab.h> | 
|  | #include <parlib/assert.h> | 
|  | #include <parlib/parlib.h> | 
|  | #include <parlib/stdio.h> | 
|  | #include <sys/mman.h> | 
|  | #include <sys/param.h> | 
|  |  | 
|  | struct kmem_cache_list kmem_caches; | 
|  | struct spin_pdr_lock kmem_caches_lock; | 
|  |  | 
|  | /* Backend/internal functions, defined later.  Grab the lock before calling | 
|  | * these. */ | 
|  | static void kmem_cache_grow(struct kmem_cache *cp); | 
|  |  | 
|  | /* Cache of the kmem_cache objects, needed for bootstrapping */ | 
|  | struct kmem_cache kmem_cache_cache; | 
|  | struct kmem_cache *kmem_slab_cache, *kmem_bufctl_cache; | 
|  |  | 
|  | static void __kmem_cache_create(struct kmem_cache *kc, const char *name, | 
|  | size_t obj_size, int align, int flags, | 
|  | int (*ctor)(void *, void *, int), | 
|  | void (*dtor)(void *, void *), | 
|  | void *priv) | 
|  | { | 
|  | assert(kc); | 
|  | assert(align); | 
|  | spin_pdr_init(&kc->cache_lock); | 
|  | kc->name = name; | 
|  | kc->obj_size = obj_size; | 
|  | kc->align = align; | 
|  | kc->flags = flags; | 
|  | TAILQ_INIT(&kc->full_slab_list); | 
|  | TAILQ_INIT(&kc->partial_slab_list); | 
|  | TAILQ_INIT(&kc->empty_slab_list); | 
|  | kc->ctor = ctor; | 
|  | kc->dtor = dtor; | 
|  | kc->priv = priv; | 
|  | kc->nr_cur_alloc = 0; | 
|  |  | 
|  | /* put in cache list based on it's size */ | 
|  | struct kmem_cache *i, *prev = NULL; | 
|  | spin_pdr_lock(&kmem_caches_lock); | 
|  | /* find the kmem_cache before us in the list.  yes, this is O(n). */ | 
|  | SLIST_FOREACH(i, &kmem_caches, link) { | 
|  | if (i->obj_size < kc->obj_size) | 
|  | prev = i; | 
|  | else | 
|  | break; | 
|  | } | 
|  | if (prev) | 
|  | SLIST_INSERT_AFTER(prev, kc, link); | 
|  | else | 
|  | SLIST_INSERT_HEAD(&kmem_caches, kc, link); | 
|  | spin_pdr_unlock(&kmem_caches_lock); | 
|  | } | 
|  |  | 
|  | static void kmem_cache_init(void *arg) | 
|  | { | 
|  | spin_pdr_init(&kmem_caches_lock); | 
|  | SLIST_INIT(&kmem_caches); | 
|  | /* We need to call the __ version directly to bootstrap the global | 
|  | * kmem_cache_cache. */ | 
|  | __kmem_cache_create(&kmem_cache_cache, "kmem_cache", | 
|  | sizeof(struct kmem_cache), | 
|  | __alignof__(struct kmem_cache), 0, NULL, NULL, | 
|  | NULL); | 
|  | /* Build the slab and bufctl caches */ | 
|  | kmem_slab_cache = kmem_cache_alloc(&kmem_cache_cache, 0); | 
|  | __kmem_cache_create(kmem_slab_cache, "kmem_slab", | 
|  | sizeof(struct kmem_slab), | 
|  | __alignof__(struct kmem_slab), 0, NULL, NULL, NULL); | 
|  | kmem_bufctl_cache = kmem_cache_alloc(&kmem_cache_cache, 0); | 
|  | __kmem_cache_create(kmem_bufctl_cache, "kmem_bufctl", | 
|  | sizeof(struct kmem_bufctl), | 
|  | __alignof__(struct kmem_bufctl), 0, NULL, NULL, | 
|  | NULL); | 
|  | } | 
|  |  | 
|  | /* Cache management */ | 
|  | struct kmem_cache *kmem_cache_create(const char *name, size_t obj_size, | 
|  | int align, int flags, | 
|  | int (*ctor)(void *, void *, int), | 
|  | void (*dtor)(void *, void *), | 
|  | void *priv) | 
|  | { | 
|  | struct kmem_cache *kc; | 
|  | static parlib_once_t once = PARLIB_ONCE_INIT; | 
|  |  | 
|  | parlib_run_once(&once, kmem_cache_init, NULL); | 
|  | kc = kmem_cache_alloc(&kmem_cache_cache, 0); | 
|  | __kmem_cache_create(kc, name, obj_size, align, flags, ctor, dtor, priv); | 
|  | return kc; | 
|  | } | 
|  |  | 
|  | static void kmem_slab_destroy(struct kmem_cache *cp, struct kmem_slab *a_slab) | 
|  | { | 
|  | if (cp->obj_size <= SLAB_LARGE_CUTOFF) { | 
|  | /* Deconstruct all the objects, if necessary */ | 
|  | if (cp->dtor) { | 
|  | void *buf = a_slab->free_small_obj; | 
|  | for (int i = 0; i < a_slab->num_total_obj; i++) { | 
|  | cp->dtor(buf, cp->priv); | 
|  | buf += a_slab->obj_size; | 
|  | } | 
|  | } | 
|  | munmap((void*)ROUNDDOWN((uintptr_t)a_slab, PGSIZE), PGSIZE); | 
|  | } else { | 
|  | struct kmem_bufctl *i; | 
|  | void *page_start = (void*)-1; | 
|  | /* compute how many pages are allocated, same as in grow */ | 
|  | size_t nr_pgs = ROUNDUP(NUM_BUF_PER_SLAB * a_slab->obj_size, | 
|  | PGSIZE) / PGSIZE; | 
|  | TAILQ_FOREACH(i, &a_slab->bufctl_freelist, link) { | 
|  | // Track the lowest buffer address, which is the start | 
|  | // of the buffer | 
|  | page_start = MIN(page_start, i->buf_addr); | 
|  | /* Deconstruct all the objects, if necessary */ | 
|  | if (cp->dtor) // TODO: (BUF) | 
|  | cp->dtor(i->buf_addr, cp->priv); | 
|  | kmem_cache_free(kmem_bufctl_cache, i); | 
|  | } | 
|  | // free the pages for the slab's buffer | 
|  | munmap(page_start, nr_pgs * PGSIZE); | 
|  | // free the slab object | 
|  | kmem_cache_free(kmem_slab_cache, a_slab); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Once you call destroy, never use this cache again... o/w there may be weird | 
|  | * races, and other serious issues.  */ | 
|  | void kmem_cache_destroy(struct kmem_cache *cp) | 
|  | { | 
|  | struct kmem_slab *a_slab, *next; | 
|  |  | 
|  | spin_pdr_lock(&cp->cache_lock); | 
|  | assert(TAILQ_EMPTY(&cp->full_slab_list)); | 
|  | assert(TAILQ_EMPTY(&cp->partial_slab_list)); | 
|  | /* Clean out the empty list.  We can't use a regular FOREACH here, since | 
|  | * the link element is stored in the slab struct, which is stored on the | 
|  | * page that we are freeing. */ | 
|  | a_slab = TAILQ_FIRST(&cp->empty_slab_list); | 
|  | while (a_slab) { | 
|  | next = TAILQ_NEXT(a_slab, link); | 
|  | kmem_slab_destroy(cp, a_slab); | 
|  | a_slab = next; | 
|  | } | 
|  | spin_pdr_lock(&kmem_caches_lock); | 
|  | SLIST_REMOVE(&kmem_caches, cp, kmem_cache, link); | 
|  | spin_pdr_unlock(&kmem_caches_lock); | 
|  | kmem_cache_free(&kmem_cache_cache, cp); | 
|  | spin_pdr_unlock(&cp->cache_lock); | 
|  | } | 
|  |  | 
|  | /* Front end: clients of caches use these */ | 
|  | void *kmem_cache_alloc(struct kmem_cache *cp, int flags) | 
|  | { | 
|  | void *retval = NULL; | 
|  | spin_pdr_lock(&cp->cache_lock); | 
|  | // look at partial list | 
|  | struct kmem_slab *a_slab = TAILQ_FIRST(&cp->partial_slab_list); | 
|  |  | 
|  | // 	if none, go to empty list and get an empty and make it partial | 
|  | if (!a_slab) { | 
|  | if (TAILQ_EMPTY(&cp->empty_slab_list)) | 
|  | // TODO: think about non-sleeping flags | 
|  | kmem_cache_grow(cp); | 
|  | // move to partial list | 
|  | a_slab = TAILQ_FIRST(&cp->empty_slab_list); | 
|  | TAILQ_REMOVE(&cp->empty_slab_list, a_slab, link); | 
|  | TAILQ_INSERT_HEAD(&cp->partial_slab_list, a_slab, link); | 
|  | } | 
|  | // have a partial now (a_slab), get an item, return item | 
|  | if (cp->obj_size <= SLAB_LARGE_CUTOFF) { | 
|  | retval = a_slab->free_small_obj; | 
|  | /* adding the size of the cache_obj to get to the pointer at end | 
|  | * of the buffer pointing to the next free_small_obj */ | 
|  | a_slab->free_small_obj = *(uintptr_t**)(a_slab->free_small_obj + | 
|  | cp->obj_size); | 
|  | } else { | 
|  | // rip the first bufctl out of the partial slab's buf list | 
|  | struct kmem_bufctl *a_bufctl = | 
|  | TAILQ_FIRST(&a_slab->bufctl_freelist); | 
|  | TAILQ_REMOVE(&a_slab->bufctl_freelist, a_bufctl, link); | 
|  | retval = a_bufctl->buf_addr; | 
|  | } | 
|  | a_slab->num_busy_obj++; | 
|  | // Check if we are full, if so, move to the full list | 
|  | if (a_slab->num_busy_obj == a_slab->num_total_obj) { | 
|  | TAILQ_REMOVE(&cp->partial_slab_list, a_slab, link); | 
|  | TAILQ_INSERT_HEAD(&cp->full_slab_list, a_slab, link); | 
|  | } | 
|  | cp->nr_cur_alloc++; | 
|  | spin_pdr_unlock(&cp->cache_lock); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | static inline struct kmem_bufctl *buf2bufctl(void *buf, size_t offset) | 
|  | { | 
|  | // TODO: hash table for back reference (BUF) | 
|  | return *((struct kmem_bufctl**)(buf + offset)); | 
|  | } | 
|  |  | 
|  | void kmem_cache_free(struct kmem_cache *cp, void *buf) | 
|  | { | 
|  | struct kmem_slab *a_slab; | 
|  | struct kmem_bufctl *a_bufctl; | 
|  |  | 
|  | spin_pdr_lock(&cp->cache_lock); | 
|  | if (cp->obj_size <= SLAB_LARGE_CUTOFF) { | 
|  | // find its slab | 
|  | a_slab = (struct kmem_slab*)(ROUNDDOWN((uintptr_t)buf, PGSIZE) + | 
|  | PGSIZE - sizeof(struct kmem_slab)); | 
|  | /* write location of next free small obj to the space at the end | 
|  | * of the buffer, then list buf as the next free small obj */ | 
|  | *(uintptr_t**)(buf + cp->obj_size) = a_slab->free_small_obj; | 
|  | a_slab->free_small_obj = buf; | 
|  | } else { | 
|  | /* Give the bufctl back to the parent slab */ | 
|  | // TODO: (BUF) change the interface to not take an offset | 
|  | a_bufctl = buf2bufctl(buf, cp->obj_size); | 
|  | a_slab = a_bufctl->my_slab; | 
|  | TAILQ_INSERT_HEAD(&a_slab->bufctl_freelist, a_bufctl, link); | 
|  | } | 
|  | a_slab->num_busy_obj--; | 
|  | cp->nr_cur_alloc--; | 
|  | // if it was full, move it to partial | 
|  | if (a_slab->num_busy_obj + 1 == a_slab->num_total_obj) { | 
|  | TAILQ_REMOVE(&cp->full_slab_list, a_slab, link); | 
|  | TAILQ_INSERT_HEAD(&cp->partial_slab_list, a_slab, link); | 
|  | } else if (!a_slab->num_busy_obj) { | 
|  | // if there are none, move to from partial to empty | 
|  | TAILQ_REMOVE(&cp->partial_slab_list, a_slab, link); | 
|  | TAILQ_INSERT_HEAD(&cp->empty_slab_list, a_slab, link); | 
|  | } | 
|  | spin_pdr_unlock(&cp->cache_lock); | 
|  | } | 
|  |  | 
|  | /* Back end: internal functions */ | 
|  | /* When this returns, the cache has at least one slab in the empty list.  If | 
|  | * page_alloc fails, there are some serious issues.  This only grows by one slab | 
|  | * at a time. | 
|  | * | 
|  | * Grab the cache lock before calling this. | 
|  | * | 
|  | * TODO: think about page colouring issues with kernel memory allocation. */ | 
|  | static void kmem_cache_grow(struct kmem_cache *cp) | 
|  | { | 
|  | struct kmem_slab *a_slab; | 
|  | struct kmem_bufctl *a_bufctl; | 
|  | void *a_page; | 
|  | int ctor_ret; | 
|  |  | 
|  | if (cp->obj_size <= SLAB_LARGE_CUTOFF) { | 
|  | // Just get a single page for small slabs | 
|  | a_page = mmap(0, PGSIZE, PROT_READ | PROT_WRITE | PROT_EXEC, | 
|  | MAP_POPULATE | MAP_ANONYMOUS | MAP_PRIVATE, -1, | 
|  | 0); | 
|  | assert(a_page != MAP_FAILED); | 
|  | // the slab struct is stored at the end of the page | 
|  | a_slab = (struct kmem_slab*)(a_page + PGSIZE - | 
|  | sizeof(struct kmem_slab)); | 
|  | // Need to add room for the next free item pointer in the object | 
|  | // buffer. | 
|  | a_slab->obj_size = ROUNDUP(cp->obj_size + sizeof(uintptr_t), | 
|  | cp->align); | 
|  | a_slab->num_busy_obj = 0; | 
|  | a_slab->num_total_obj = (PGSIZE - sizeof(struct kmem_slab)) / | 
|  | a_slab->obj_size; | 
|  | // TODO: consider staggering this IAW section 4.3 | 
|  | a_slab->free_small_obj = a_page; | 
|  | /* Walk and create the free list, which is circular.  Each item | 
|  | * stores the location of the next one at the end of the block. | 
|  | */ | 
|  | void *buf = a_slab->free_small_obj; | 
|  |  | 
|  | for (int i = 0; i < a_slab->num_total_obj - 1; i++) { | 
|  | // Initialize the object, if necessary | 
|  | if (cp->ctor) { | 
|  | ctor_ret = cp->ctor(buf, cp->priv, 0); | 
|  | assert(!ctor_ret); | 
|  | } | 
|  | *(uintptr_t**)(buf + cp->obj_size) = buf + | 
|  | a_slab->obj_size; | 
|  | buf += a_slab->obj_size; | 
|  | } | 
|  | /* Initialize the final object (note the -1 in the for loop). */ | 
|  | if (cp->ctor) { | 
|  | ctor_ret = cp->ctor(buf, cp->priv, 0); | 
|  | assert(!ctor_ret); | 
|  | } | 
|  | *((uintptr_t**)(buf + cp->obj_size)) = NULL; | 
|  | } else { | 
|  | a_slab = kmem_cache_alloc(kmem_slab_cache, 0); | 
|  | // TODO: hash table for back reference (BUF) | 
|  | a_slab->obj_size = ROUNDUP(cp->obj_size + sizeof(uintptr_t), | 
|  | cp->align); | 
|  | /* Need at least nr_pgs to hold NUM_BUF objects.  Note we don't | 
|  | * round up to the next higher order (power of 2) number of | 
|  | * pages, like we do in the kernel. */ | 
|  | size_t nr_pgs = ROUNDUP(NUM_BUF_PER_SLAB * a_slab->obj_size, | 
|  | PGSIZE) / PGSIZE; | 
|  | void *buf = mmap(0, nr_pgs * PGSIZE, PROT_READ | PROT_WRITE | | 
|  | PROT_EXEC, MAP_POPULATE | MAP_ANONYMOUS | | 
|  | MAP_PRIVATE, -1, 0); | 
|  |  | 
|  | assert(buf != MAP_FAILED); | 
|  | a_slab->num_busy_obj = 0; | 
|  | a_slab->num_total_obj = nr_pgs * PGSIZE / a_slab->obj_size; | 
|  | TAILQ_INIT(&a_slab->bufctl_freelist); | 
|  | /* for each buffer, set up a bufctl and point to the buffer */ | 
|  | for (int i = 0; i < a_slab->num_total_obj; i++) { | 
|  | // Initialize the object, if necessary | 
|  | if (cp->ctor) { | 
|  | ctor_ret = cp->ctor(buf, cp->priv, 0); | 
|  | assert(!ctor_ret); | 
|  | } | 
|  | a_bufctl = kmem_cache_alloc(kmem_bufctl_cache, 0); | 
|  | TAILQ_INSERT_HEAD(&a_slab->bufctl_freelist, a_bufctl, | 
|  | link); | 
|  | a_bufctl->buf_addr = buf; | 
|  | a_bufctl->my_slab = a_slab; | 
|  | // TODO: (BUF) write the bufctl reference at the bottom | 
|  | // of the buffer. | 
|  | *(struct kmem_bufctl**)(buf + cp->obj_size) = a_bufctl; | 
|  | buf += a_slab->obj_size; | 
|  | } | 
|  | } | 
|  | // add a_slab to the empty_list | 
|  | TAILQ_INSERT_HEAD(&cp->empty_slab_list, a_slab, link); | 
|  | } | 
|  |  | 
|  | /* This deallocs every slab from the empty list.  TODO: think a bit more about | 
|  | * this.  We can do things like not free all of the empty lists to prevent | 
|  | * thrashing.  See 3.4 in the paper. */ | 
|  | void kmem_cache_reap(struct kmem_cache *cp) | 
|  | { | 
|  | struct kmem_slab *a_slab, *next; | 
|  |  | 
|  | // Destroy all empty slabs.  Refer to the notes about the while loop | 
|  | spin_pdr_lock(&cp->cache_lock); | 
|  | a_slab = TAILQ_FIRST(&cp->empty_slab_list); | 
|  | while (a_slab) { | 
|  | next = TAILQ_NEXT(a_slab, link); | 
|  | kmem_slab_destroy(cp, a_slab); | 
|  | a_slab = next; | 
|  | } | 
|  | spin_pdr_unlock(&cp->cache_lock); | 
|  | } | 
|  |  | 
|  | void print_kmem_cache(struct kmem_cache *cp) | 
|  | { | 
|  | spin_pdr_lock(&cp->cache_lock); | 
|  | printf("\nPrinting kmem_cache:\n---------------------\n"); | 
|  | printf("Name: %s\n", cp->name); | 
|  | printf("Objsize: %d\n", cp->obj_size); | 
|  | printf("Align: %d\n", cp->align); | 
|  | printf("Flags: 0x%08x\n", cp->flags); | 
|  | printf("Constructor: 0x%08x\n", cp->ctor); | 
|  | printf("Destructor: 0x%08x\n", cp->dtor); | 
|  | printf("Slab Full: 0x%08x\n", cp->full_slab_list); | 
|  | printf("Slab Partial: 0x%08x\n", cp->partial_slab_list); | 
|  | printf("Slab Empty: 0x%08x\n", cp->empty_slab_list); | 
|  | printf("Current Allocations: %d\n", cp->nr_cur_alloc); | 
|  | spin_pdr_unlock(&cp->cache_lock); | 
|  | } | 
|  |  | 
|  | void print_kmem_slab(struct kmem_slab *slab) | 
|  | { | 
|  | printf("\nPrinting kmem_slab:\n---------------------\n"); | 
|  | printf("Objsize: %d (%p)\n", slab->obj_size, slab->obj_size); | 
|  | printf("NumBusy: %d\n", slab->num_busy_obj); | 
|  | printf("Num_total: %d\n", slab->num_total_obj); | 
|  | if (slab->obj_size + sizeof(uintptr_t) < SLAB_LARGE_CUTOFF) { | 
|  | printf("Free Small obj: 0x%08x\n", slab->free_small_obj); | 
|  | void *buf = slab->free_small_obj; | 
|  | for (int i = 0; i < slab->num_total_obj; i++) { | 
|  | printf("Addr of buf: 0x%08x, Addr of next: 0x%08x\n", | 
|  | buf, *((uintptr_t**)buf)); | 
|  | buf += slab->obj_size; | 
|  | } | 
|  | } else { | 
|  | printf("This is a big slab!\n"); | 
|  | } | 
|  | } | 
|  |  |