blob: 6a66287f3c841d6fa225cf061734bfaf82a107fe [file] [log] [blame]
/*
* This file is part of the UCB release of Plan 9. It is subject to the license
* terms in the LICENSE file found in the top-level directory of this
* distribution and at http://akaros.cs.berkeley.edu/files/Plan9License. No
* part of the UCB release of Plan 9, including this file, may be copied,
* modified, propagated, or distributed except according to the terms contained
* in the LICENSE file.
*/
#include <vfs.h>
#include <kfs.h>
#include <slab.h>
#include <kmalloc.h>
#include <kref.h>
#include <string.h>
#include <stdio.h>
#include <assert.h>
#include <error.h>
#include <cpio.h>
#include <pmap.h>
#include <smp.h>
#include <ip.h>
#include <acpi.h>
#include "../timers/hpet.h"
#ifdef CONFIG_X86
#include <arch/pci.h>
#endif
/*
* ACPI 4.0 Support.
* Still WIP.
*
* This driver locates tables and parses only the FADT
* and the XSDT. All other tables are mapped and kept there
* for the user-level interpreter.
*/
static struct Atable *acpifadt(uint8_t *, int);
static struct Atable *acpitable(uint8_t *, int);
static struct Atable *acpimadt(uint8_t *, int);
static struct Atable *acpimsct(uint8_t *, int);
static struct Atable *acpisrat(uint8_t *, int);
static struct Atable *acpislit(uint8_t *, int);
static struct cmdtab ctls[] = {
{CMregion, "region", 6},
{CMgpe, "gpe", 3},
};
static struct dirtab acpidir[] = {
{".", {Qdir, 0, QTDIR}, 0, DMDIR | 0555},
{"acpictl", {Qctl}, 0, 0666},
{"acpitbl", {Qtbl}, 0, 0444},
{"acpiregio", {Qio}, 0, 0666},
{"acpipretty", {Qpretty}, 0, 0444},
{"ioapic", {Qioapic}, 0, 0444},
{"apic", {Qapic}, 0, 0444},
};
/*
* The DSDT is always given to the user interpreter.
* Tables listed here are also loaded from the XSDT:
* MSCT, MADT, and FADT are processed by us, because they are
* required to do early initialization before we have user processes.
* Other tables are given to the user level interpreter for
* execution.
*
* These historically returned a value to tell acpi whether or not it was okay
* to unmap the table. (return 0 means there was no table, meaning it was okay
* to unmap). We just use the kernbase mapping, so it's irrelevant. */
static struct Parse ptables[] = {
{"FACP", acpifadt},
{"APIC", acpimadt,},
{"SRAT", acpisrat,},
{"SLIT", acpislit,},
{"MSCT", acpimsct,},
{"SSDT", acpitable,},
{"HPET", acpihpet,},
};
static struct Facs *facs; /* Firmware ACPI control structure */
static struct Fadt fadt; /* Fixed ACPI description. To reach ACPI registers */
static struct Xsdt *xsdt; /* XSDT table */
static struct Atable *tfirst; /* loaded DSDT/SSDT/... tables */
static struct Atable *tlast; /* pointer to last table */
struct Madt *apics; /* APIC info */
static struct Srat *srat; /* System resource affinity, used by physalloc */
static struct Slit *slit; /* System locality information table used by the scheduler */
static struct Msct *msct; /* Maximum system characteristics table */
static struct Reg *reg; /* region used for I/O */
static struct Gpe *gpes; /* General purpose events */
static int ngpes;
static char *regnames[] = {
"mem", "io", "pcicfg", "embed",
"smb", "cmos", "pcibar",
};
static char *dumpGas(char *start, char *end, char *prefix, struct Gas *g);
static char *acpiregstr(int id)
{
static char buf[20]; /* BUG */
if (id >= 0 && id < ARRAY_SIZE(regnames)) {
return regnames[id];
}
seprintf(buf, buf + sizeof(buf), "spc:%#x", id);
return buf;
}
static int acpiregid(char *s)
{
int i;
for (i = 0; i < ARRAY_SIZE(regnames); i++)
if (strcmp(regnames[i], s) == 0) {
return i;
}
return -1;
}
static uint8_t mget8(uintptr_t p, void *unused)
{
uint8_t *cp = (uint8_t *) p;
return *cp;
}
static void mset8(uintptr_t p, uint8_t v, void *unused)
{
uint8_t *cp = (uint8_t *) p;
*cp = v;
}
static uint16_t mget16(uintptr_t p, void *unused)
{
uint16_t *cp = (uint16_t *) p;
return *cp;
}
static void mset16(uintptr_t p, uint16_t v, void *unused)
{
uint16_t *cp = (uint16_t *) p;
*cp = v;
}
static uint32_t mget32(uintptr_t p, void *unused)
{
uint32_t *cp = (uint32_t *) p;
return *cp;
}
static void mset32(uintptr_t p, uint32_t v, void *unused)
{
uint32_t *cp = (uint32_t *) p;
*cp = v;
}
static uint64_t mget64(uintptr_t p, void *unused)
{
uint64_t *cp = (uint64_t *) p;
return *cp;
}
static void mset64(uintptr_t p, uint64_t v, void *unused)
{
uint64_t *cp = (uint64_t *) p;
*cp = v;
}
static uint8_t ioget8(uintptr_t p, void *unused)
{
return inb(p);
}
static void ioset8(uintptr_t p, uint8_t v, void *unused)
{
outb(p, v);
}
static uint16_t ioget16(uintptr_t p, void *unused)
{
return inw(p);
}
static void ioset16(uintptr_t p, uint16_t v, void *unused)
{
outw(p, v);
}
static uint32_t ioget32(uintptr_t p, void *unused)
{
return inl(p);
}
static void ioset32(uintptr_t p, uint32_t v, void *unused)
{
outl(p, v);
}
/* TODO: these cfgs are hacky. maybe all the struct Reg should have struct
* pci_device or something? */
static uint8_t cfgget8(uintptr_t p, void *r)
{
struct Reg *ro = r;
struct pci_device pcidev;
explode_tbdf(ro->tbdf);
return pcidev_read8(&pcidev, p);
}
static void cfgset8(uintptr_t p, uint8_t v, void *r)
{
struct Reg *ro = r;
struct pci_device pcidev;
explode_tbdf(ro->tbdf);
pcidev_write8(&pcidev, p, v);
}
static uint16_t cfgget16(uintptr_t p, void *r)
{
struct Reg *ro = r;
struct pci_device pcidev;
explode_tbdf(ro->tbdf);
return pcidev_read16(&pcidev, p);
}
static void cfgset16(uintptr_t p, uint16_t v, void *r)
{
struct Reg *ro = r;
struct pci_device pcidev;
explode_tbdf(ro->tbdf);
pcidev_write16(&pcidev, p, v);
}
static uint32_t cfgget32(uintptr_t p, void *r)
{
struct Reg *ro = r;
struct pci_device pcidev;
explode_tbdf(ro->tbdf);
return pcidev_read32(&pcidev, p);
}
static void cfgset32(uintptr_t p, uint32_t v, void *r)
{
struct Reg *ro = r;
struct pci_device pcidev;
explode_tbdf(ro->tbdf);
pcidev_write32(&pcidev, p, v);
}
static struct Regio memio = {
NULL,
mget8, mset8, mget16, mset16,
mget32, mset32, mget64, mset64
};
static struct Regio ioio = {
NULL,
ioget8, ioset8, ioget16, ioset16,
ioget32, ioset32, NULL, NULL
};
static struct Regio cfgio = {
NULL,
cfgget8, cfgset8, cfgget16, cfgset16,
cfgget32, cfgset32, NULL, NULL
};
/*
* Copy memory, 1/2/4/8-bytes at a time, to/from a region.
*/
static long
regcpy(struct Regio *dio, uintptr_t da, struct Regio *sio,
uintptr_t sa, long len, int align)
{
int n, i;
printd("regcpy %#p %#p %#p %#p\n", da, sa, len, align);
if ((len % align) != 0)
printd("regcpy: bug: copy not aligned. truncated\n");
n = len / align;
for (i = 0; i < n; i++) {
switch (align) {
case 1:
printd("cpy8 %#p %#p\n", da, sa);
dio->set8(da, sio->get8(sa, sio->arg), dio->arg);
break;
case 2:
printd("cpy16 %#p %#p\n", da, sa);
dio->set16(da, sio->get16(sa, sio->arg), dio->arg);
break;
case 4:
printd("cpy32 %#p %#p\n", da, sa);
dio->set32(da, sio->get32(sa, sio->arg), dio->arg);
break;
case 8:
printd("cpy64 %#p %#p\n", da, sa);
warn("Not doing set64 for some reason, fix me!");
// dio->set64(da, sio->get64(sa, sio->arg), dio->arg);
break;
default:
panic("regcpy: align bug");
}
da += align;
sa += align;
}
return n * align;
}
/*
* Perform I/O within region in access units of accsz bytes.
* All units in bytes.
*/
static long regio(struct Reg *r, void *p, uint32_t len, uintptr_t off, int iswr)
{
struct Regio rio;
uintptr_t rp;
printd("reg%s %s %#p %#p %#lx sz=%d\n",
iswr ? "out" : "in", r->name, p, off, len, r->accsz);
rp = 0;
if (off + len > r->len) {
printd("regio: access outside limits");
len = r->len - off;
}
if (len <= 0) {
printd("regio: zero len\n");
return 0;
}
switch (r->spc) {
case Rsysmem:
if (r->p == NULL)
r->p = KADDR_NOCHECK(r->base);
if (r->p == NULL)
error("regio: vmap/KADDR failed");
rp = (uintptr_t) r->p + off;
rio = memio;
break;
case Rsysio:
rp = r->base + off;
rio = ioio;
break;
case Rpcicfg:
rp = r->base + off;
rio = cfgio;
rio.arg = r;
break;
case Rpcibar:
case Rembed:
case Rsmbus:
case Rcmos:
case Ripmi:
case Rfixedhw:
printd("regio: reg %s not supported\n", acpiregstr(r->spc));
error("region not supported");
}
if (iswr)
regcpy(&rio, rp, &memio, (uintptr_t) p, len, r->accsz);
else
regcpy(&memio, (uintptr_t) p, &rio, rp, len, r->accsz);
return len;
}
struct Atable *new_acpi_table(uint8_t * p)
{
struct Atable *t;
struct Sdthdr *h;
t = kzmalloc(sizeof(struct Atable), 0);
if (t == NULL)
panic("no memory for more aml tables");
t->tbl = p;
h = (struct Sdthdr *)t->tbl;
t->is64 = h->rev >= 2;
t->dlen = l32get(h->length) - Sdthdrsz;
memmove(t->sig, h->sig, sizeof(h->sig));
t->sig[sizeof(t->sig) - 1] = 0;
memmove(t->oemid, h->oemid, sizeof(h->oemid));
t->oemtblid[sizeof(t->oemtblid) - 1] = 0;
memmove(t->oemtblid, h->oemtblid, sizeof(h->oemtblid));
t->oemtblid[sizeof(t->oemtblid) - 1] = 0;
t->next = NULL;
if (tfirst == NULL)
tfirst = tlast = t;
else {
tlast->next = t;
tlast = t;
}
return t;
}
static void *sdtchecksum(void *addr, int len)
{
uint8_t *p, sum;
sum = 0;
for (p = addr; len-- > 0; p++)
sum += *p;
if (sum == 0) {
return addr;
}
return NULL;
}
static void *sdtmap(uintptr_t pa, int *n, int cksum)
{
struct Sdthdr *sdt;
if (!pa) {
printk("sdtmap: NULL pa\n");
return NULL;
}
sdt = KADDR_NOCHECK(pa);
if (sdt == NULL) {
printk("acpi: vmap1: NULL\n");
return NULL;
}
*n = l32get(sdt->length);
if (!*n) {
printk("sdt has zero length!\n");
return NULL;
}
if ((sdt = KADDR_NOCHECK(pa)) == NULL) {
printk("acpi: NULL vmap\n");
return NULL;
}
if (cksum != 0 && sdtchecksum(sdt, *n) == NULL) {
printk("acpi: SDT: bad checksum\n");
return NULL;
}
return sdt;
}
static int loadfacs(uintptr_t pa)
{
int n;
facs = sdtmap(pa, &n, 0);
if (facs == NULL) {
return -1;
}
if (memcmp(facs, "FACS", 4) != 0) {
facs = NULL;
return -1;
}
/* no unmap */
printd("acpi: facs: hwsig: %#p\n", facs->hwsig);
printd("acpi: facs: wakingv: %#p\n", facs->wakingv);
printd("acpi: facs: flags: %#p\n", facs->flags);
printd("acpi: facs: glock: %#p\n", facs->glock);
printd("acpi: facs: xwakingv: %#p\n", facs->xwakingv);
printd("acpi: facs: vers: %#p\n", facs->vers);
printd("acpi: facs: ospmflags: %#p\n", facs->ospmflags);
return 0;
}
static void loaddsdt(uintptr_t pa)
{
int n;
uint8_t *dsdtp;
dsdtp = sdtmap(pa, &n, 1);
if (dsdtp == NULL) {
return;
}
}
static void gasget(struct Gas *gas, uint8_t * p)
{
gas->spc = p[0];
gas->len = p[1];
gas->off = p[2];
gas->accsz = p[3];
gas->addr = l64get(p + 4);
}
static char *dumpfadt(char *start, char *end, struct Fadt *fp)
{
if (2 == 0) {
return NULL;
}
start = seprintf(start, end, "acpi: fadt: facs: $%p\n", fp->facs);
start = seprintf(start, end, "acpi: fadt: dsdt: $%p\n", fp->dsdt);
start = seprintf(start, end, "acpi: fadt: pmprofile: $%p\n", fp->pmprofile);
start = seprintf(start, end, "acpi: fadt: sciint: $%p\n", fp->sciint);
start = seprintf(start, end, "acpi: fadt: smicmd: $%p\n", fp->smicmd);
start =
seprintf(start, end, "acpi: fadt: acpienable: $%p\n", fp->acpienable);
start =
seprintf(start, end, "acpi: fadt: acpidisable: $%p\n", fp->acpidisable);
start = seprintf(start, end, "acpi: fadt: s4biosreq: $%p\n", fp->s4biosreq);
start = seprintf(start, end, "acpi: fadt: pstatecnt: $%p\n", fp->pstatecnt);
start =
seprintf(start, end, "acpi: fadt: pm1aevtblk: $%p\n", fp->pm1aevtblk);
start =
seprintf(start, end, "acpi: fadt: pm1bevtblk: $%p\n", fp->pm1bevtblk);
start =
seprintf(start, end, "acpi: fadt: pm1acntblk: $%p\n", fp->pm1acntblk);
start =
seprintf(start, end, "acpi: fadt: pm1bcntblk: $%p\n", fp->pm1bcntblk);
start = seprintf(start, end, "acpi: fadt: pm2cntblk: $%p\n", fp->pm2cntblk);
start = seprintf(start, end, "acpi: fadt: pmtmrblk: $%p\n", fp->pmtmrblk);
start = seprintf(start, end, "acpi: fadt: gpe0blk: $%p\n", fp->gpe0blk);
start = seprintf(start, end, "acpi: fadt: gpe1blk: $%p\n", fp->gpe1blk);
start = seprintf(start, end, "acpi: fadt: pm1evtlen: $%p\n", fp->pm1evtlen);
start = seprintf(start, end, "acpi: fadt: pm1cntlen: $%p\n", fp->pm1cntlen);
start = seprintf(start, end, "acpi: fadt: pm2cntlen: $%p\n", fp->pm2cntlen);
start = seprintf(start, end, "acpi: fadt: pmtmrlen: $%p\n", fp->pmtmrlen);
start =
seprintf(start, end, "acpi: fadt: gpe0blklen: $%p\n", fp->gpe0blklen);
start =
seprintf(start, end, "acpi: fadt: gpe1blklen: $%p\n", fp->gpe1blklen);
start = seprintf(start, end, "acpi: fadt: gp1base: $%p\n", fp->gp1base);
start = seprintf(start, end, "acpi: fadt: cstcnt: $%p\n", fp->cstcnt);
start = seprintf(start, end, "acpi: fadt: plvl2lat: $%p\n", fp->plvl2lat);
start = seprintf(start, end, "acpi: fadt: plvl3lat: $%p\n", fp->plvl3lat);
start = seprintf(start, end, "acpi: fadt: flushsz: $%p\n", fp->flushsz);
start =
seprintf(start, end, "acpi: fadt: flushstride: $%p\n", fp->flushstride);
start = seprintf(start, end, "acpi: fadt: dutyoff: $%p\n", fp->dutyoff);
start = seprintf(start, end, "acpi: fadt: dutywidth: $%p\n", fp->dutywidth);
start = seprintf(start, end, "acpi: fadt: dayalrm: $%p\n", fp->dayalrm);
start = seprintf(start, end, "acpi: fadt: monalrm: $%p\n", fp->monalrm);
start = seprintf(start, end, "acpi: fadt: century: $%p\n", fp->century);
start =
seprintf(start, end, "acpi: fadt: iapcbootarch: $%p\n",
fp->iapcbootarch);
start = seprintf(start, end, "acpi: fadt: flags: $%p\n", fp->flags);
start = dumpGas(start, end, "acpi: fadt: resetreg: ", &fp->resetreg);
start = seprintf(start, end, "acpi: fadt: resetval: $%p\n", fp->resetval);
start = seprintf(start, end, "acpi: fadt: xfacs: %p\n", fp->xfacs);
start = seprintf(start, end, "acpi: fadt: xdsdt: %p\n", fp->xdsdt);
start = dumpGas(start, end, "acpi: fadt: xpm1aevtblk:", &fp->xpm1aevtblk);
start = dumpGas(start, end, "acpi: fadt: xpm1bevtblk:", &fp->xpm1bevtblk);
start = dumpGas(start, end, "acpi: fadt: xpm1acntblk:", &fp->xpm1acntblk);
start = dumpGas(start, end, "acpi: fadt: xpm1bcntblk:", &fp->xpm1bcntblk);
start = dumpGas(start, end, "acpi: fadt: xpm2cntblk:", &fp->xpm2cntblk);
start = dumpGas(start, end, "acpi: fadt: xpmtmrblk:", &fp->xpmtmrblk);
start = dumpGas(start, end, "acpi: fadt: xgpe0blk:", &fp->xgpe0blk);
start = dumpGas(start, end, "acpi: fadt: xgpe1blk:", &fp->xgpe1blk);
return start;
}
static struct Atable *acpifadt(uint8_t * p, int len)
{
struct Fadt *fp;
if (len < 116) {
printk("ACPI: unusually short FADT, aborting!\n");
return 0;
}
fp = &fadt;
fp->facs = l32get(p + 36);
fp->dsdt = l32get(p + 40);
fp->pmprofile = p[45];
fp->sciint = l16get(p + 46);
fp->smicmd = l32get(p + 48);
fp->acpienable = p[52];
fp->acpidisable = p[53];
fp->s4biosreq = p[54];
fp->pstatecnt = p[55];
fp->pm1aevtblk = l32get(p + 56);
fp->pm1bevtblk = l32get(p + 60);
fp->pm1acntblk = l32get(p + 64);
fp->pm1bcntblk = l32get(p + 68);
fp->pm2cntblk = l32get(p + 72);
fp->pmtmrblk = l32get(p + 76);
fp->gpe0blk = l32get(p + 80);
fp->gpe1blk = l32get(p + 84);
fp->pm1evtlen = p[88];
fp->pm1cntlen = p[89];
fp->pm2cntlen = p[90];
fp->pmtmrlen = p[91];
fp->gpe0blklen = p[92];
fp->gpe1blklen = p[93];
fp->gp1base = p[94];
fp->cstcnt = p[95];
fp->plvl2lat = l16get(p + 96);
fp->plvl3lat = l16get(p + 98);
fp->flushsz = l16get(p + 100);
fp->flushstride = l16get(p + 102);
fp->dutyoff = p[104];
fp->dutywidth = p[105];
fp->dayalrm = p[106];
fp->monalrm = p[107];
fp->century = p[108];
fp->iapcbootarch = l16get(p + 109);
fp->flags = l32get(p + 112);
/* qemu gives us a 116 byte fadt, though i haven't seen any HW do that. */
if (len < 244)
return 0;
gasget(&fp->resetreg, p + 116);
fp->resetval = p[128];
fp->xfacs = l64get(p + 132);
fp->xdsdt = l64get(p + 140);
gasget(&fp->xpm1aevtblk, p + 148);
gasget(&fp->xpm1bevtblk, p + 160);
gasget(&fp->xpm1acntblk, p + 172);
gasget(&fp->xpm1bcntblk, p + 184);
gasget(&fp->xpm2cntblk, p + 196);
gasget(&fp->xpmtmrblk, p + 208);
gasget(&fp->xgpe0blk, p + 220);
gasget(&fp->xgpe1blk, p + 232);
if (fp->xfacs != 0)
loadfacs(fp->xfacs);
else
loadfacs(fp->facs);
if (fp->xdsdt == ((uint64_t) fp->dsdt)) /* acpica */
loaddsdt(fp->xdsdt);
else
loaddsdt(fp->dsdt);
return NULL; /* can be unmapped once parsed */
}
static char *dumpmsct(char *start, char *end, struct Msct *msct)
{
struct Mdom *st;
if (!msct)
return start;
start = seprintf(start, end, "acpi: msct: %d doms %d clkdoms %#p maxpa\n",
msct->ndoms, msct->nclkdoms, msct->maxpa);
for (st = msct->dom; st != NULL; st = st->next)
start = seprintf(start, end, "\t[%d:%d] %d maxproc %#p maxmmem\n",
st->start, st->end, st->maxproc, st->maxmem);
start = seprintf(start, end, "\n");
return start;
}
/*
* XXX: should perhaps update our idea of available memory.
* Else we should remove this code.
*/
static struct Atable *acpimsct(uint8_t * p, int len)
{
uint8_t *pe;
struct Mdom **stl, *st;
int off;
msct = kzmalloc(sizeof(struct Msct), 0);
msct->ndoms = l32get(p + 40) + 1;
msct->nclkdoms = l32get(p + 44) + 1;
msct->maxpa = l64get(p + 48);
msct->dom = NULL;
stl = &msct->dom;
pe = p + len;
off = l32get(p + 36);
for (p += off; p < pe; p += 22) {
st = kzmalloc(sizeof(struct Mdom), 0);
st->next = NULL;
st->start = l32get(p + 2);
st->end = l32get(p + 6);
st->maxproc = l32get(p + 10);
st->maxmem = l64get(p + 14);
*stl = st;
stl = &st->next;
}
return NULL; /* can be unmapped once parsed */
}
static char *dumpsrat(char *start, char *end, struct Srat *st)
{
start = seprintf(start, end, "acpi: srat:\n");
for (; st != NULL; st = st->next)
switch (st->type) {
case SRlapic:
start =
seprintf(start, end,
"\tlapic: dom %d apic %d sapic %d clk %d\n",
st->lapic.dom, st->lapic.apic, st->lapic.sapic,
st->lapic.clkdom);
break;
case SRmem:
start = seprintf(start, end, "\tmem: dom %d %#p %#p %c%c\n",
st->mem.dom, st->mem.addr, st->mem.len,
st->mem.hplug ? 'h' : '-',
st->mem.nvram ? 'n' : '-');
break;
case SRlx2apic:
start =
seprintf(start, end, "\tlx2apic: dom %d apic %d clk %d\n",
st->lx2apic.dom, st->lx2apic.apic,
st->lx2apic.clkdom);
break;
default:
start = seprintf(start, end, "\t<unknown srat entry>\n");
}
start = seprintf(start, end, "\n");
return start;
}
static struct Atable *acpisrat(uint8_t * p, int len)
{
struct Srat **stl, *st;
uint8_t *pe;
int stlen, flags;
if (srat != NULL) {
printd("acpi: two SRATs?\n");
return NULL;
}
stl = &srat;
pe = p + len;
for (p += 48; p < pe; p += stlen) {
st = kzmalloc(sizeof(struct Srat), 1);
st->type = p[0];
st->next = NULL;
stlen = p[1];
switch (st->type) {
case SRlapic:
st->lapic.dom = p[2] | p[9] << 24 | p[10] << 16 | p[11] << 8;
st->lapic.apic = p[3];
st->lapic.sapic = p[8];
st->lapic.clkdom = l32get(p + 12);
if (l32get(p + 4) == 0) {
kfree(st);
st = NULL;
}
break;
case SRmem:
st->mem.dom = l32get(p + 2);
st->mem.addr = l64get(p + 8);
st->mem.len = l64get(p + 16);
flags = l32get(p + 28);
if ((flags & 1) == 0) { /* not enabled */
kfree(st);
st = NULL;
} else {
st->mem.hplug = flags & 2;
st->mem.nvram = flags & 4;
}
break;
case SRlx2apic:
st->lx2apic.dom = l32get(p + 4);
st->lx2apic.apic = l32get(p + 8);
st->lx2apic.clkdom = l32get(p + 16);
if (l32get(p + 12) == 0) {
kfree(st);
st = NULL;
}
break;
default:
printd("unknown SRAT structure\n");
kfree(st);
st = NULL;
}
if (st != NULL) {
*stl = st;
stl = &st->next;
}
}
return NULL; /* can be unmapped once parsed */
}
static char *dumpslit(char *start, char *end, struct Slit *sl)
{
int i;
if (!sl)
return start;
start = seprintf(start, end, "acpi slit:\n");
for (i = 0; i < sl->rowlen * sl->rowlen; i++) {
start = seprintf(start, end,
"slit: %ux\n",
sl->e[i / sl->rowlen][i % sl->rowlen].dist);
}
start = seprintf(start, end, "\n");
return start;
}
static int cmpslitent(void *v1, void *v2)
{
struct SlEntry *se1, *se2;
se1 = v1;
se2 = v2;
return se1->dist - se2->dist;
}
static struct Atable *acpislit(uint8_t * p, int len)
{
uint8_t *pe;
int i, j, k;
struct SlEntry *se;
pe = p + len;
slit = kzmalloc(sizeof(*slit), 0);
slit->rowlen = l64get(p + 36);
slit->e = kzmalloc(slit->rowlen * sizeof(struct SlEntry *), 0);
for (i = 0; i < slit->rowlen; i++)
slit->e[i] = kzmalloc(sizeof(struct SlEntry) * slit->rowlen, 0);
i = 0;
for (p += 44; p < pe; p++, i++) {
j = i / slit->rowlen;
k = i % slit->rowlen;
se = &slit->e[j][k];
se->dom = k;
se->dist = *p;
}
#if 0
/* TODO: might need to sort this shit */
for (i = 0; i < slit->rowlen; i++)
qsort(slit->e[i], slit->rowlen, sizeof(slit->e[0][0]), cmpslitent);
#endif
return NULL; /* can be unmapped once parsed */
}
uintptr_t acpimblocksize(uintptr_t addr, int *dom)
{
struct Srat *sl;
for (sl = srat; sl != NULL; sl = sl->next)
if (sl->type == SRmem)
if (sl->mem.addr <= addr && sl->mem.addr + sl->mem.len > addr) {
*dom = sl->mem.dom;
return sl->mem.len - (addr - sl->mem.addr);
}
return 0;
}
int pickcore(int mycolor, int index)
{
int color;
int ncorepercol;
if (slit == NULL) {
return 0;
}
ncorepercol = num_cpus / slit->rowlen;
color = slit->e[mycolor][index / ncorepercol].dom;
return color * ncorepercol + index % ncorepercol;
}
static char *polarity[4] = {
"polarity/trigger like in ISA",
"active high",
"BOGUS POLARITY",
"active low"
};
static char *trigger[] = {
"BOGUS TRIGGER",
"edge",
"BOGUS TRIGGER",
"level"
};
static char *printiflags(char *start, char *end, int flags)
{
return seprintf(start, end, "[%s,%s]",
polarity[flags & AFpmask], trigger[(flags & AFtmask) >> 2]);
}
static char *dumpmadt(char *start, char *end, struct Madt *apics)
{
struct Apicst *st;
start =
seprintf(start, end, "acpi: madt lapic paddr %llux pcat %d:\n",
apics->lapicpa, apics->pcat);
for (st = apics->st; st != NULL; st = st->next)
switch (st->type) {
case ASlapic:
start =
seprintf(start, end, "\tlapic pid %d id %d\n",
st->lapic.pid, st->lapic.id);
break;
case ASioapic:
case ASiosapic:
start =
seprintf(start, end,
"\tioapic id %d addr %#llux ibase %d\n",
st->ioapic.id, st->ioapic.addr, st->ioapic.ibase);
break;
case ASintovr:
start =
seprintf(start, end, "\tintovr irq %d intr %d flags $%p",
st->intovr.irq, st->intovr.intr, st->intovr.flags);
start = printiflags(start, end, st->intovr.flags);
start = seprintf(start, end, "\n");
break;
case ASnmi:
start = seprintf(start, end, "\tnmi intr %d flags $%p\n",
st->nmi.intr, st->nmi.flags);
break;
case ASlnmi:
start =
seprintf(start, end, "\tlnmi pid %d lint %d flags $%p\n",
st->lnmi.pid, st->lnmi.lint, st->lnmi.flags);
break;
case ASlsapic:
start =
seprintf(start, end,
"\tlsapic pid %d id %d eid %d puid %d puids %s\n",
st->lsapic.pid, st->lsapic.id, st->lsapic.eid,
st->lsapic.puid, st->lsapic.puids);
break;
case ASintsrc:
start =
seprintf(start, end,
"\tintr type %d pid %d peid %d iosv %d intr %d %#x\n",
st->type, st->intsrc.pid, st->intsrc.peid,
st->intsrc.iosv, st->intsrc.intr,
st->intsrc.flags);
start = printiflags(start, end, st->intsrc.flags);
start = seprintf(start, end, "\n");
break;
case ASlx2apic:
start =
seprintf(start, end, "\tlx2apic puid %d id %d\n",
st->lx2apic.puid, st->lx2apic.id);
break;
case ASlx2nmi:
start =
seprintf(start, end, "\tlx2nmi puid %d intr %d flags $%p\n",
st->lx2nmi.puid, st->lx2nmi.intr,
st->lx2nmi.flags);
break;
default:
start = seprintf(start, end, "\t<unknown madt entry>\n");
}
start = seprintf(start, end, "\n");
return start;
}
static struct Atable *acpimadt(uint8_t * p, int len)
{
uint8_t *pe;
struct Apicst *st, *l, **stl;
int stlen, id;
apics = kzmalloc(sizeof(struct Madt), 1);
apics->lapicpa = l32get(p + 36);
apics->pcat = l32get(p + 40);
apics->st = NULL;
stl = &apics->st;
pe = p + len;
for (p += 44; p < pe; p += stlen) {
st = kzmalloc(sizeof(struct Apicst), 1);
st->type = p[0];
st->next = NULL;
stlen = p[1];
switch (st->type) {
case ASlapic:
st->lapic.pid = p[2];
st->lapic.id = p[3];
if (l32get(p + 4) == 0) {
kfree(st);
st = NULL;
}
break;
case ASioapic:
st->ioapic.id = id = p[2];
st->ioapic.addr = l32get(p + 4);
st->ioapic.ibase = l32get(p + 8);
/* ioapic overrides any ioapic entry for the same id */
for (l = apics->st; l != NULL; l = l->next)
if (l->type == ASiosapic && l->iosapic.id == id) {
st->ioapic = l->iosapic;
/* we leave it linked; could be removed */
break;
}
break;
case ASintovr:
st->intovr.irq = p[3];
st->intovr.intr = l32get(p + 4);
st->intovr.flags = l16get(p + 8);
break;
case ASnmi:
st->nmi.flags = l16get(p + 2);
st->nmi.intr = l32get(p + 4);
break;
case ASlnmi:
st->lnmi.pid = p[2];
st->lnmi.flags = l16get(p + 3);
st->lnmi.lint = p[5];
break;
case ASladdr:
/* This is for 64 bits, perhaps we should not
* honor it on 32 bits.
*/
apics->lapicpa = l64get(p + 8);
break;
case ASiosapic:
id = st->iosapic.id = p[2];
st->iosapic.ibase = l32get(p + 4);
st->iosapic.addr = l64get(p + 8);
/* iosapic overrides any ioapic entry for the same id */
for (l = apics->st; l != NULL; l = l->next)
if (l->type == ASioapic && l->ioapic.id == id) {
l->ioapic = st->iosapic;
kfree(st);
st = NULL;
break;
}
break;
case ASlsapic:
st->lsapic.pid = p[2];
st->lsapic.id = p[3];
st->lsapic.eid = p[4];
st->lsapic.puid = l32get(p + 12);
if (l32get(p + 8) == 0) {
kfree(st);
st = NULL;
} else
kstrdup(&st->lsapic.puids, (char *)p + 16);
break;
case ASintsrc:
st->intsrc.flags = l16get(p + 2);
st->type = p[4];
st->intsrc.pid = p[5];
st->intsrc.peid = p[6];
st->intsrc.iosv = p[7];
st->intsrc.intr = l32get(p + 8);
st->intsrc.any = l32get(p + 12);
break;
case ASlx2apic:
st->lx2apic.id = l32get(p + 4);
st->lx2apic.puid = l32get(p + 12);
if (l32get(p + 8) == 0) {
kfree(st);
st = NULL;
}
break;
case ASlx2nmi:
st->lx2nmi.flags = l16get(p + 2);
st->lx2nmi.puid = l32get(p + 4);
st->lx2nmi.intr = p[8];
break;
default:
printd("unknown APIC structure\n");
kfree(st);
st = NULL;
}
if (st != NULL) {
*stl = st;
stl = &st->next;
}
}
return NULL; /* can be unmapped once parsed */
}
/*
* Map the table and keep it there.
*/
static struct Atable *acpitable(uint8_t * p, int len)
{
if (len < Sdthdrsz) {
return NULL;
}
return new_acpi_table(p);
}
static char *dumptable(char *start, char *end, char *sig, uint8_t * p, int l)
{
int n, i;
if (2 > 1) {
start = seprintf(start, end, "%s @ %#p\n", sig, p);
if (2 > 2)
n = l;
else
n = 256;
for (i = 0; i < n; i++) {
if ((i % 16) == 0)
start = seprintf(start, end, "%x: ", i);
start = seprintf(start, end, " %2.2ux", p[i]);
if ((i % 16) == 15)
start = seprintf(start, end, "\n");
}
start = seprintf(start, end, "\n");
start = seprintf(start, end, "\n");
}
return start;
}
static char *seprinttable(char *s, char *e, struct Atable *t)
{
uint8_t *p;
int i, n;
p = (uint8_t *) t->tbl; /* include header */
n = Sdthdrsz + t->dlen;
s = seprintf(s, e, "%s @ %#p\n", t->sig, p);
for (i = 0; i < n; i++) {
if ((i % 16) == 0)
s = seprintf(s, e, "%x: ", i);
s = seprintf(s, e, " %2.2ux", p[i]);
if ((i % 16) == 15)
s = seprintf(s, e, "\n");
}
return seprintf(s, e, "\n\n");
}
/*
* process xsdt table and load tables with sig, or all if NULL.
* (XXX: should be able to search for sig, oemid, oemtblid)
*/
static int acpixsdtload(char *sig)
{
int i, l, t, found;
uintptr_t dhpa;
uint8_t *sdt;
char tsig[5];
char table[128];
found = 0;
for (i = 0; i < xsdt->len; i += xsdt->asize) {
if (xsdt->asize == 8)
dhpa = l64get(xsdt->p + i);
else
dhpa = l32get(xsdt->p + i);
if ((sdt = sdtmap(dhpa, &l, 1)) == NULL)
continue;
memmove(tsig, sdt, 4);
tsig[4] = 0;
if (sig == NULL || strcmp(sig, tsig) == 0) {
printd("acpi: %s addr %#p\n", tsig, sdt);
for (t = 0; t < ARRAY_SIZE(ptables); t++)
if (strcmp(tsig, ptables[t].sig) == 0) {
//dumptable(table, &table[127], tsig, sdt, l);
ptables[t].f(sdt, l);
found = 1;
break;
}
}
}
return found;
}
static void *rsdsearch(char *signature)
{
uintptr_t p;
uint8_t *bda;
void *rsd;
/*
* Search for the data structure signature:
* 1) in the BIOS ROM between 0xE0000 and 0xFFFFF.
*/
return sigscan(KADDR(0xE0000), 0x20000, signature);
}
static void acpirsdptr(void)
{
struct Rsdp *rsd;
int asize;
uintptr_t sdtpa;
if ((rsd = rsdsearch("RSD PTR ")) == NULL) {
return;
}
assert(sizeof(struct Sdthdr) == 36);
printd("acpi: RSD PTR@ %#p, physaddr $%p length %ud %#llux rev %d\n",
rsd, l32get(rsd->raddr), l32get(rsd->length),
l64get(rsd->xaddr), rsd->revision);
if (rsd->revision >= 2) {
if (sdtchecksum(rsd, 36) == NULL) {
printk("acpi: RSD: bad checksum\n");
return;
}
sdtpa = l64get(rsd->xaddr);
asize = 8;
} else {
if (sdtchecksum(rsd, 20) == NULL) {
printk("acpi: RSD: bad checksum\n");
return;
}
sdtpa = l32get(rsd->raddr);
asize = 4;
}
/*
* process the RSDT or XSDT table.
*/
xsdt = kzmalloc(sizeof(struct Xsdt), 0);
if (xsdt == NULL) {
printk("acpi: malloc failed\n");
return;
}
if ((xsdt->p = sdtmap(sdtpa, &xsdt->len, 1)) == NULL) {
printk("acpi: sdtmap failed\n");
return;
}
if ((xsdt->p[0] != 'R' && xsdt->p[0] != 'X')
|| memcmp(xsdt->p + 1, "SDT", 3) != 0) {
printd("acpi: xsdt sig: %c%c%c%c\n", xsdt->p[0], xsdt->p[1], xsdt->p[2],
xsdt->p[3]);
kfree(xsdt);
xsdt = NULL;
return;
}
xsdt->p += sizeof(struct Sdthdr);
xsdt->len -= sizeof(struct Sdthdr);
xsdt->asize = asize;
printd("acpi: XSDT %#p\n", xsdt);
acpixsdtload(NULL);
/* xsdt is kept and not unmapped */
}
static int
acpigen(struct chan *c, char *unused_char_p_t, struct dirtab *tab, int ntab,
int i, struct dir *dp)
{
struct qid qid;
if (i == DEVDOTDOT) {
mkqid(&qid, Qdir, 0, QTDIR);
devdir(c, qid, ".", 0, eve, 0555, dp);
return 1;
}
i++; /* skip first element for . itself */
if (tab == 0 || i >= ntab) {
return -1;
}
tab += i;
qid = tab->qid;
qid.path &= ~Qdir;
qid.vers = 0;
devdir(c, qid, tab->name, tab->length, eve, tab->perm, dp);
return 1;
}
static char *dumpGas(char *start, char *end, char *prefix, struct Gas *g)
{
static char *rnames[] = {
"mem", "io", "pcicfg", "embed",
"smb", "cmos", "pcibar", "ipmi"
};
start = seprintf(start, end, "%s", prefix);
switch (g->spc) {
case Rsysmem:
case Rsysio:
case Rembed:
case Rsmbus:
case Rcmos:
case Rpcibar:
case Ripmi:
start = seprintf(start, end, "[%s ", rnames[g->spc]);
break;
case Rpcicfg:
start = seprintf(start, end, "[pci ");
start =
seprintf(start, end, "dev %#p ",
(uint32_t) (g->addr >> 32) & 0xFFFF);
start =
seprintf(start, end, "fn %#p ",
(uint32_t) (g->addr & 0xFFFF0000) >> 16);
start =
seprintf(start, end, "adr %#p ", (uint32_t) (g->addr & 0xFFFF));
break;
case Rfixedhw:
start = seprintf(start, end, "[hw ");
break;
default:
start = seprintf(start, end, "[spc=%#p ", g->spc);
}
start = seprintf(start, end, "off %d len %d addr %#p sz%d]",
g->off, g->len, g->addr, g->accsz);
start = seprintf(start, end, "\n");
return start;
}
static unsigned int getbanked(uintptr_t ra, uintptr_t rb, int sz)
{
unsigned int r;
r = 0;
switch (sz) {
case 1:
if (ra != 0)
r |= inb(ra);
if (rb != 0)
r |= inb(rb);
break;
case 2:
if (ra != 0)
r |= inw(ra);
if (rb != 0)
r |= inw(rb);
break;
case 4:
if (ra != 0)
r |= inl(ra);
if (rb != 0)
r |= inl(rb);
break;
default:
printd("getbanked: wrong size\n");
}
return r;
}
static unsigned int setbanked(uintptr_t ra, uintptr_t rb, int sz, int v)
{
unsigned int r;
r = -1;
switch (sz) {
case 1:
if (ra != 0)
outb(ra, v);
if (rb != 0)
outb(rb, v);
break;
case 2:
if (ra != 0)
outw(ra, v);
if (rb != 0)
outw(rb, v);
break;
case 4:
if (ra != 0)
outl(ra, v);
if (rb != 0)
outl(rb, v);
break;
default:
printd("setbanked: wrong size\n");
}
return r;
}
static unsigned int getpm1ctl(void)
{
return getbanked(fadt.pm1acntblk, fadt.pm1bcntblk, fadt.pm1cntlen);
}
static void setpm1sts(unsigned int v)
{
setbanked(fadt.pm1aevtblk, fadt.pm1bevtblk, fadt.pm1evtlen / 2, v);
}
static unsigned int getpm1sts(void)
{
return getbanked(fadt.pm1aevtblk, fadt.pm1bevtblk, fadt.pm1evtlen / 2);
}
static unsigned int getpm1en(void)
{
int sz;
sz = fadt.pm1evtlen / 2;
return getbanked(fadt.pm1aevtblk + sz, fadt.pm1bevtblk + sz, sz);
}
static int getgpeen(int n)
{
return inb(gpes[n].enio) & 1 << gpes[n].enbit;
}
static void setgpeen(int n, unsigned int v)
{
int old;
old = inb(gpes[n].enio);
if (v)
outb(gpes[n].enio, old | 1 << gpes[n].enbit);
else
outb(gpes[n].enio, old & ~(1 << gpes[n].enbit));
}
static void clrgpests(int n)
{
outb(gpes[n].stsio, 1 << gpes[n].stsbit);
}
static unsigned int getgpests(int n)
{
return inb(gpes[n].stsio) & 1 << gpes[n].stsbit;
}
#if 0
static void acpiintr(Ureg *, void *)
{
int i;
unsigned int sts, en;
printd("acpi: intr\n");
for (i = 0; i < ngpes; i++)
if (getgpests(i)) {
printd("gpe %d on\n", i);
en = getgpeen(i);
setgpeen(i, 0);
clrgpests(i);
if (en != 0)
printd("acpiitr: calling gpe %d\n", i);
// queue gpe for calling gpe->ho in the
// aml process.
// enable it again when it returns.
}
sts = getpm1sts();
en = getpm1en();
printd("acpiitr: pm1sts %#p pm1en %#p\n", sts, en);
if (sts & en)
printd("have enabled events\n");
if (sts & 1)
printd("power button\n");
// XXX serve other interrupts here.
setpm1sts(sts);
}
#endif
static void initgpes(void)
{
int i, n0, n1;
n0 = fadt.gpe0blklen / 2;
n1 = fadt.gpe1blklen / 2;
ngpes = n0 + n1;
gpes = kzmalloc(sizeof(struct Gpe) * ngpes, 1);
for (i = 0; i < n0; i++) {
gpes[i].nb = i;
gpes[i].stsbit = i & 7;
gpes[i].stsio = fadt.gpe0blk + (i >> 3);
gpes[i].enbit = (n0 + i) & 7;
gpes[i].enio = fadt.gpe0blk + ((n0 + i) >> 3);
}
for (i = 0; i + n0 < ngpes; i++) {
gpes[i + n0].nb = fadt.gp1base + i;
gpes[i + n0].stsbit = i & 7;
gpes[i + n0].stsio = fadt.gpe1blk + (i >> 3);
gpes[i + n0].enbit = (n1 + i) & 7;
gpes[i + n0].enio = fadt.gpe1blk + ((n1 + i) >> 3);
}
for (i = 0; i < ngpes; i++) {
setgpeen(i, 0);
clrgpests(i);
}
}
static void acpiioalloc(unsigned int addr, int len)
{
if (addr != 0) {
printk("Just TAKING port %016lx to %016lx\n", addr, addr + len);
//ioalloc(addr, len, 0, "acpi");
}
}
int acpiinit(void)
{
/* this smicmd test implements 'run once' for now. */
if (fadt.smicmd == 0) {
//fmtinstall('G', Gfmt);
acpirsdptr();
if (fadt.smicmd == 0) {
return -1;
}
}
printk("ACPI initialized\n");
return 0;
}
static struct chan *acpiattach(char *spec)
{
int i;
/*
* This was written for the stock kernel.
* This code must use 64 registers to be acpi ready in nix.
*/
if (acpiinit() < 0) {
error("no acpi");
}
/*
* should use fadt->xpm* and fadt->xgpe* registers for 64 bits.
* We are not ready in this kernel for that.
*/
acpiioalloc(fadt.smicmd, 1);
acpiioalloc(fadt.pm1aevtblk, fadt.pm1evtlen);
acpiioalloc(fadt.pm1bevtblk, fadt.pm1evtlen);
acpiioalloc(fadt.pm1acntblk, fadt.pm1cntlen);
acpiioalloc(fadt.pm1bcntblk, fadt.pm1cntlen);
acpiioalloc(fadt.pm2cntblk, fadt.pm2cntlen);
acpiioalloc(fadt.pmtmrblk, fadt.pmtmrlen);
acpiioalloc(fadt.gpe0blk, fadt.gpe0blklen);
acpiioalloc(fadt.gpe1blk, fadt.gpe1blklen);
initgpes();
/*
* This starts ACPI, which may require we handle
* power mgmt events ourselves. Use with care.
*/
outb(fadt.smicmd, fadt.acpienable);
for (i = 0; i < 10; i++)
if (getpm1ctl() & Pm1SciEn)
break;
if (i == 10)
error("acpi: failed to enable\n");
// if(fadt.sciint != 0)
// intrenable(fadt.sciint, acpiintr, 0, BUSUNKNOWN, "acpi");
return devattach('a', spec);
}
static struct walkqid *acpiwalk(struct chan *c, struct chan *nc, char **name,
int nname)
{
return devwalk(c, nc, name, nname, acpidir, ARRAY_SIZE(acpidir), acpigen);
}
static int acpistat(struct chan *c, uint8_t * dp, int n)
{
return devstat(c, dp, n, acpidir, ARRAY_SIZE(acpidir), acpigen);
}
static struct chan *acpiopen(struct chan *c, int omode)
{
return devopen(c, omode, acpidir, ARRAY_SIZE(acpidir), acpigen);
}
static void acpiclose(struct chan *unused)
{
}
static char *ttext;
static int tlen;
static long acpiread(struct chan *c, void *a, long n, int64_t off)
{
long q;
struct Atable *t;
char *ns, *s, *e, *ntext;
if (ttext == NULL) {
tlen = 32768;
ttext = kzmalloc(tlen, 0);
}
if (ttext == NULL) {
error("acpiread: no memory");
}
q = c->qid.path;
switch (q) {
case Qdir:
return devdirread(c, a, n, acpidir, ARRAY_SIZE(acpidir), acpigen);
case Qtbl:
s = ttext;
e = ttext + tlen;
strncpy(s, "no tables\n", sizeof(s));
for (t = tfirst; t != NULL; t = t->next) {
ns = seprinttable(s, e, t);
while (ns == e - 1) {
ntext = krealloc(ttext, tlen * 2, 0);
if (ntext == NULL)
panic("acpi: no memory\n");
s = ntext + (ttext - s);
ttext = ntext;
tlen *= 2;
e = ttext + tlen;
ns = seprinttable(s, e, t);
}
s = ns;
}
return readstr(off, a, n, ttext);
case Qpretty:
s = ttext;
e = ttext + tlen;
s = dumpfadt(s, e, &fadt);
s = dumpmadt(s, e, apics);
s = dumpslit(s, e, slit);
s = dumpsrat(s, e, srat);
dumpmsct(s, e, msct);
return readstr(off, a, n, ttext);
case Qioapic:
s = ioapicdump(ttext, ttext + tlen);
return readstr(off, a, n, ttext);
case Qapic:
s = apicdump(ttext, ttext + tlen);
return readstr(off, a, n, ttext);
case Qio:
if (reg == NULL)
error("region not configured");
return regio(reg, a, n, off, 0);
}
error(Eperm);
return -1;
}
static long acpiwrite(struct chan *c, void *a, long n, int64_t off)
{
ERRSTACK(2);
struct cmdtab *ct;
struct cmdbuf *cb;
struct Reg *r;
unsigned int rno, fun, dev, bus, i;
if (c->qid.path == Qio) {
if (reg == NULL)
error("region not configured");
return regio(reg, a, n, off, 1);
}
if (c->qid.path != Qctl)
error(Eperm);
cb = parsecmd(a, n);
if (waserror()) {
kfree(cb);
nexterror();
}
ct = lookupcmd(cb, ctls, ARRAY_SIZE(ctls));
switch (ct->index) {
case CMregion:
/* TODO: this block is racy on reg (global) */
r = reg;
if (r == NULL) {
r = kzmalloc(sizeof(struct Reg), 0);
r->name = NULL;
}
kstrdup(&r->name, cb->f[1]);
r->spc = acpiregid(cb->f[2]);
if (r->spc < 0) {
kfree(r);
reg = NULL;
error("bad region type");
}
if (r->spc == Rpcicfg || r->spc == Rpcibar) {
rno = r->base >> Rpciregshift & Rpciregmask;
fun = r->base >> Rpcifunshift & Rpcifunmask;
dev = r->base >> Rpcidevshift & Rpcidevmask;
bus = r->base >> Rpcibusshift & Rpcibusmask;
#ifdef CONFIG_X86
r->tbdf = MKBUS(BusPCI, bus, dev, fun);
#else
r->tbdf = 0
#endif
r->base = rno; /* register ~ our base addr */
}
r->base = strtoul(cb->f[3], NULL, 0);
r->len = strtoul(cb->f[4], NULL, 0);
r->accsz = strtoul(cb->f[5], NULL, 0);
if (r->accsz < 1 || r->accsz > 4) {
kfree(r);
reg = NULL;
error("bad region access size");
}
reg = r;
printd("region %s %s %p %p sz%d",
r->name, acpiregstr(r->spc), r->base, r->len, r->accsz);
break;
case CMgpe:
i = strtoul(cb->f[1], NULL, 0);
if (i >= ngpes)
error("gpe out of range");
kstrdup(&gpes[i].obj, cb->f[2]);
setgpeen(i, 1);
break;
default:
panic("acpi: unknown ctl");
}
poperror();
kfree(cb);
return n;
}
struct dev acpidevtab __devtab = {
'a',
"acpi",
devreset,
devinit,
devshutdown,
acpiattach,
acpiwalk,
acpistat,
acpiopen,
devcreate,
acpiclose,
acpiread,
devbread,
acpiwrite,
devbwrite,
devremove,
devwstat,
};