| /*- |
| * Copyright (c) 2007-2014 QLogic Corporation. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS' |
| * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS |
| * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF |
| * THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| //__FBSDID("$FreeBSD: head/sys/dev/bxe/bxe.c 275358 2014-12-01 11:45:24Z hselasky $"); |
| |
| #define BXE_DRIVER_VERSION "1.78.78" |
| |
| #include "bxe.h" |
| #include "ecore_sp.h" |
| #include "ecore_init.h" |
| #include "ecore_init_ops.h" |
| |
| #include "57710_int_offsets.h" |
| #include "57711_int_offsets.h" |
| #include "57712_int_offsets.h" |
| |
| /* |
| * CTLTYPE_U64 and sysctl_handle_64 were added in r217616. Define these |
| * explicitly here for older kernels that don't include this changeset. |
| */ |
| #ifndef CTLTYPE_U64 |
| #define CTLTYPE_U64 CTLTYPE_QUAD |
| #define sysctl_handle_64 sysctl_handle_quad |
| #endif |
| |
| /* |
| * CSUM_TCP_IPV6 and CSUM_UDP_IPV6 were added in r236170. Define these |
| * here as zero(0) for older kernels that don't include this changeset |
| * thereby masking the functionality. |
| */ |
| #ifndef CSUM_TCP_IPV6 |
| #define CSUM_TCP_IPV6 0 |
| #define CSUM_UDP_IPV6 0 |
| #endif |
| |
| #define BXE_DEF_SB_ATT_IDX 0x0001 |
| #define BXE_DEF_SB_IDX 0x0002 |
| |
| /* |
| * FLR Support - bxe_pf_flr_clnup() is called during nic_load in the per |
| * function HW initialization. |
| */ |
| #define FLR_WAIT_USEC 10000 /* 10 msecs */ |
| #define FLR_WAIT_INTERVAL 50 /* usecs */ |
| #define FLR_POLL_CNT (FLR_WAIT_USEC / FLR_WAIT_INTERVAL) /* 200 */ |
| |
| struct pbf_pN_buf_regs { |
| int pN; |
| uint32_t init_crd; |
| uint32_t crd; |
| uint32_t crd_freed; |
| }; |
| |
| struct pbf_pN_cmd_regs { |
| int pN; |
| uint32_t lines_occup; |
| uint32_t lines_freed; |
| }; |
| |
| /* |
| * PCI Device ID Table used by bxe_probe(). |
| */ |
| #define BXE_DEVDESC_MAX 64 |
| static struct bxe_device_type bxe_devs[] = { |
| { |
| BRCM_VENDORID, |
| CHIP_NUM_57710, |
| PCI_ANY_ID, PCI_ANY_ID, |
| "QLogic NetXtreme II BCM57710 10GbE" |
| }, |
| { |
| BRCM_VENDORID, |
| CHIP_NUM_57711, |
| PCI_ANY_ID, PCI_ANY_ID, |
| "QLogic NetXtreme II BCM57711 10GbE" |
| }, |
| { |
| BRCM_VENDORID, |
| CHIP_NUM_57711E, |
| PCI_ANY_ID, PCI_ANY_ID, |
| "QLogic NetXtreme II BCM57711E 10GbE" |
| }, |
| { |
| BRCM_VENDORID, |
| CHIP_NUM_57712, |
| PCI_ANY_ID, PCI_ANY_ID, |
| "QLogic NetXtreme II BCM57712 10GbE" |
| }, |
| { |
| BRCM_VENDORID, |
| CHIP_NUM_57712_MF, |
| PCI_ANY_ID, PCI_ANY_ID, |
| "QLogic NetXtreme II BCM57712 MF 10GbE" |
| }, |
| #if 0 |
| { |
| BRCM_VENDORID, |
| CHIP_NUM_57712_VF, |
| PCI_ANY_ID, PCI_ANY_ID, |
| "QLogic NetXtreme II BCM57712 VF 10GbE" |
| }, |
| #endif |
| { |
| BRCM_VENDORID, |
| CHIP_NUM_57800, |
| PCI_ANY_ID, PCI_ANY_ID, |
| "QLogic NetXtreme II BCM57800 10GbE" |
| }, |
| { |
| BRCM_VENDORID, |
| CHIP_NUM_57800_MF, |
| PCI_ANY_ID, PCI_ANY_ID, |
| "QLogic NetXtreme II BCM57800 MF 10GbE" |
| }, |
| #if 0 |
| { |
| BRCM_VENDORID, |
| CHIP_NUM_57800_VF, |
| PCI_ANY_ID, PCI_ANY_ID, |
| "QLogic NetXtreme II BCM57800 VF 10GbE" |
| }, |
| #endif |
| { |
| BRCM_VENDORID, |
| CHIP_NUM_57810, |
| PCI_ANY_ID, PCI_ANY_ID, |
| "QLogic NetXtreme II BCM57810 10GbE" |
| }, |
| { |
| BRCM_VENDORID, |
| CHIP_NUM_57810_MF, |
| PCI_ANY_ID, PCI_ANY_ID, |
| "QLogic NetXtreme II BCM57810 MF 10GbE" |
| }, |
| #if 0 |
| { |
| BRCM_VENDORID, |
| CHIP_NUM_57810_VF, |
| PCI_ANY_ID, PCI_ANY_ID, |
| "QLogic NetXtreme II BCM57810 VF 10GbE" |
| }, |
| #endif |
| { |
| BRCM_VENDORID, |
| CHIP_NUM_57811, |
| PCI_ANY_ID, PCI_ANY_ID, |
| "QLogic NetXtreme II BCM57811 10GbE" |
| }, |
| { |
| BRCM_VENDORID, |
| CHIP_NUM_57811_MF, |
| PCI_ANY_ID, PCI_ANY_ID, |
| "QLogic NetXtreme II BCM57811 MF 10GbE" |
| }, |
| #if 0 |
| { |
| BRCM_VENDORID, |
| CHIP_NUM_57811_VF, |
| PCI_ANY_ID, PCI_ANY_ID, |
| "QLogic NetXtreme II BCM57811 VF 10GbE" |
| }, |
| #endif |
| { |
| BRCM_VENDORID, |
| CHIP_NUM_57840_4_10, |
| PCI_ANY_ID, PCI_ANY_ID, |
| "QLogic NetXtreme II BCM57840 4x10GbE" |
| }, |
| #if 0 |
| { |
| BRCM_VENDORID, |
| CHIP_NUM_57840_2_20, |
| PCI_ANY_ID, PCI_ANY_ID, |
| "QLogic NetXtreme II BCM57840 2x20GbE" |
| }, |
| #endif |
| { |
| BRCM_VENDORID, |
| CHIP_NUM_57840_MF, |
| PCI_ANY_ID, PCI_ANY_ID, |
| "QLogic NetXtreme II BCM57840 MF 10GbE" |
| }, |
| #if 0 |
| { |
| BRCM_VENDORID, |
| CHIP_NUM_57840_VF, |
| PCI_ANY_ID, PCI_ANY_ID, |
| "QLogic NetXtreme II BCM57840 VF 10GbE" |
| }, |
| #endif |
| { |
| 0, 0, 0, 0, NULL |
| } |
| }; |
| |
| /* This is some sort of malloc zone for BSD. The flag is passed later to |
| * various malloc invocations. */ |
| //MALLOC_DECLARE(M_BXE_ILT); |
| //MALLOC_DEFINE(M_BXE_ILT, "bxe_ilt", "bxe ILT pointer"); |
| |
| #if 0 // AKAROS_PORT brho: can ignore, BSD interface |
| /* |
| * FreeBSD device entry points. |
| */ |
| static int bxe_probe(struct pci_device *); |
| static int bxe_attach(struct pci_device *); |
| static int bxe_detach(struct pci_device *); |
| static int bxe_shutdown(struct pci_device *); |
| |
| /* |
| * FreeBSD KLD module/device interface event handler method. |
| */ |
| static device_method_t bxe_methods[] = { |
| /* Device interface (device_if.h) */ |
| DEVMETHOD(device_probe, bxe_probe), |
| DEVMETHOD(device_attach, bxe_attach), |
| DEVMETHOD(device_detach, bxe_detach), |
| DEVMETHOD(device_shutdown, bxe_shutdown), |
| #if 0 |
| DEVMETHOD(device_suspend, bxe_suspend), |
| DEVMETHOD(device_resume, bxe_resume), |
| #endif |
| /* Bus interface (bus_if.h) */ |
| DEVMETHOD(bus_print_child, bus_generic_print_child), |
| DEVMETHOD(bus_driver_added, bus_generic_driver_added), |
| KOBJMETHOD_END |
| }; |
| |
| #endif |
| #define BXE_PREV_WAIT_NEEDED 1 |
| |
| qlock_t bxe_prev_mtx; |
| struct bxe_prev_list_node { |
| LIST_ENTRY(bxe_prev_list_node) node; |
| uint8_t bus; |
| uint8_t slot; |
| uint8_t path; |
| uint8_t aer; /* XXX automatic error recovery */ |
| uint8_t undi; |
| }; |
| static LIST_HEAD(, bxe_prev_list_node) bxe_prev_list = LIST_HEAD_INITIALIZER(bxe_prev_list); |
| |
| /* Tunable device values... */ |
| |
| //SYSCTL_NODE(_hw, OID_AUTO, bxe, CTLFLAG_RD, 0, "bxe driver parameters"); |
| |
| /* Debug */ |
| unsigned long bxe_debug = 0; |
| //SYSCTL_ULONG(_hw_bxe, OID_AUTO, debug, CTLFLAG_RDTUN, |
| // &bxe_debug, 0, "Debug logging mode"); |
| |
| /* Interrupt Mode: 0 (IRQ), 1 (MSI/IRQ), and 2 (MSI-X/MSI/IRQ) */ |
| static int bxe_interrupt_mode = INTR_MODE_MSIX; |
| //SYSCTL_INT(_hw_bxe, OID_AUTO, interrupt_mode, CTLFLAG_RDTUN, |
| // &bxe_interrupt_mode, 0, "Interrupt (MSI-X/MSI/INTx) mode"); |
| |
| /* Number of Queues: 0 (Auto) or 1 to 16 (fixed queue number) */ |
| static int bxe_queue_count = 0; |
| //SYSCTL_INT(_hw_bxe, OID_AUTO, queue_count, CTLFLAG_RDTUN, |
| // &bxe_queue_count, 0, "Multi-Queue queue count"); |
| |
| /* max number of buffers per queue (default RX_BD_USABLE) */ |
| static int bxe_max_rx_bufs = 0; |
| //SYSCTL_INT(_hw_bxe, OID_AUTO, max_rx_bufs, CTLFLAG_RDTUN, |
| // &bxe_max_rx_bufs, 0, "Maximum Number of Rx Buffers Per Queue"); |
| |
| /* Host interrupt coalescing RX tick timer (usecs) */ |
| static int bxe_hc_rx_ticks = 25; |
| //SYSCTL_INT(_hw_bxe, OID_AUTO, hc_rx_ticks, CTLFLAG_RDTUN, |
| // &bxe_hc_rx_ticks, 0, "Host Coalescing Rx ticks"); |
| |
| /* Host interrupt coalescing TX tick timer (usecs) */ |
| static int bxe_hc_tx_ticks = 50; |
| //SYSCTL_INT(_hw_bxe, OID_AUTO, hc_tx_ticks, CTLFLAG_RDTUN, |
| // &bxe_hc_tx_ticks, 0, "Host Coalescing Tx ticks"); |
| |
| /* Maximum number of Rx packets to process at a time */ |
| static int bxe_rx_budget = 0xffffffff; |
| //SYSCTL_INT(_hw_bxe, OID_AUTO, rx_budget, CTLFLAG_TUN, |
| // &bxe_rx_budget, 0, "Rx processing budget"); |
| |
| /* Maximum LRO aggregation size */ |
| static int bxe_max_aggregation_size = 0; |
| //SYSCTL_INT(_hw_bxe, OID_AUTO, max_aggregation_size, CTLFLAG_TUN, |
| // &bxe_max_aggregation_size, 0, "max aggregation size"); |
| |
| /* PCI MRRS: -1 (Auto), 0 (128B), 1 (256B), 2 (512B), 3 (1KB) */ |
| static int bxe_mrrs = -1; |
| //SYSCTL_INT(_hw_bxe, OID_AUTO, mrrs, CTLFLAG_RDTUN, |
| // &bxe_mrrs, 0, "PCIe maximum read request size"); |
| |
| /* AutoGrEEEn: 0 (hardware default), 1 (force on), 2 (force off) */ |
| static int bxe_autogreeen = 0; |
| //SYSCTL_INT(_hw_bxe, OID_AUTO, autogreeen, CTLFLAG_RDTUN, |
| // &bxe_autogreeen, 0, "AutoGrEEEn support"); |
| |
| /* 4-tuple RSS support for UDP: 0 (disabled), 1 (enabled) */ |
| static int bxe_udp_rss = 0; |
| //SYSCTL_INT(_hw_bxe, OID_AUTO, udp_rss, CTLFLAG_RDTUN, |
| // &bxe_udp_rss, 0, "UDP RSS support"); |
| |
| static int bxe_periodic_alarm = 60; |
| |
| #define STAT_NAME_LEN 32 /* no stat names below can be longer than this */ |
| |
| #define STATS_OFFSET32(stat_name) \ |
| (offsetof(struct bxe_eth_stats, stat_name) / 4) |
| |
| #define Q_STATS_OFFSET32(stat_name) \ |
| (offsetof(struct bxe_eth_q_stats, stat_name) / 4) |
| |
| static const struct { |
| uint32_t offset; |
| uint32_t size; |
| uint32_t flags; |
| #define STATS_FLAGS_PORT 1 |
| #define STATS_FLAGS_FUNC 2 /* MF only cares about function stats */ |
| #define STATS_FLAGS_BOTH (STATS_FLAGS_FUNC | STATS_FLAGS_PORT) |
| char string[STAT_NAME_LEN]; |
| } bxe_eth_stats_arr[] = { |
| { STATS_OFFSET32(total_bytes_received_hi), |
| 8, STATS_FLAGS_BOTH, "rx_bytes" }, |
| { STATS_OFFSET32(error_bytes_received_hi), |
| 8, STATS_FLAGS_BOTH, "rx_error_bytes" }, |
| { STATS_OFFSET32(total_unicast_packets_received_hi), |
| 8, STATS_FLAGS_BOTH, "rx_ucast_packets" }, |
| { STATS_OFFSET32(total_multicast_packets_received_hi), |
| 8, STATS_FLAGS_BOTH, "rx_mcast_packets" }, |
| { STATS_OFFSET32(total_broadcast_packets_received_hi), |
| 8, STATS_FLAGS_BOTH, "rx_bcast_packets" }, |
| { STATS_OFFSET32(rx_stat_dot3statsfcserrors_hi), |
| 8, STATS_FLAGS_PORT, "rx_crc_errors" }, |
| { STATS_OFFSET32(rx_stat_dot3statsalignmenterrors_hi), |
| 8, STATS_FLAGS_PORT, "rx_align_errors" }, |
| { STATS_OFFSET32(rx_stat_etherstatsundersizepkts_hi), |
| 8, STATS_FLAGS_PORT, "rx_undersize_packets" }, |
| { STATS_OFFSET32(etherstatsoverrsizepkts_hi), |
| 8, STATS_FLAGS_PORT, "rx_oversize_packets" }, |
| { STATS_OFFSET32(rx_stat_etherstatsfragments_hi), |
| 8, STATS_FLAGS_PORT, "rx_fragments" }, |
| { STATS_OFFSET32(rx_stat_etherstatsjabbers_hi), |
| 8, STATS_FLAGS_PORT, "rx_jabbers" }, |
| { STATS_OFFSET32(no_buff_discard_hi), |
| 8, STATS_FLAGS_BOTH, "rx_discards" }, |
| { STATS_OFFSET32(mac_filter_discard), |
| 4, STATS_FLAGS_PORT, "rx_filtered_packets" }, |
| { STATS_OFFSET32(mf_tag_discard), |
| 4, STATS_FLAGS_PORT, "rx_mf_tag_discard" }, |
| { STATS_OFFSET32(pfc_frames_received_hi), |
| 8, STATS_FLAGS_PORT, "pfc_frames_received" }, |
| { STATS_OFFSET32(pfc_frames_sent_hi), |
| 8, STATS_FLAGS_PORT, "pfc_frames_sent" }, |
| { STATS_OFFSET32(brb_drop_hi), |
| 8, STATS_FLAGS_PORT, "rx_brb_discard" }, |
| { STATS_OFFSET32(brb_truncate_hi), |
| 8, STATS_FLAGS_PORT, "rx_brb_truncate" }, |
| { STATS_OFFSET32(pause_frames_received_hi), |
| 8, STATS_FLAGS_PORT, "rx_pause_frames" }, |
| { STATS_OFFSET32(rx_stat_maccontrolframesreceived_hi), |
| 8, STATS_FLAGS_PORT, "rx_mac_ctrl_frames" }, |
| { STATS_OFFSET32(nig_timer_max), |
| 4, STATS_FLAGS_PORT, "rx_constant_pause_events" }, |
| { STATS_OFFSET32(total_bytes_transmitted_hi), |
| 8, STATS_FLAGS_BOTH, "tx_bytes" }, |
| { STATS_OFFSET32(tx_stat_ifhcoutbadoctets_hi), |
| 8, STATS_FLAGS_PORT, "tx_error_bytes" }, |
| { STATS_OFFSET32(total_unicast_packets_transmitted_hi), |
| 8, STATS_FLAGS_BOTH, "tx_ucast_packets" }, |
| { STATS_OFFSET32(total_multicast_packets_transmitted_hi), |
| 8, STATS_FLAGS_BOTH, "tx_mcast_packets" }, |
| { STATS_OFFSET32(total_broadcast_packets_transmitted_hi), |
| 8, STATS_FLAGS_BOTH, "tx_bcast_packets" }, |
| { STATS_OFFSET32(tx_stat_dot3statsinternalmactransmiterrors_hi), |
| 8, STATS_FLAGS_PORT, "tx_mac_errors" }, |
| { STATS_OFFSET32(rx_stat_dot3statscarriersenseerrors_hi), |
| 8, STATS_FLAGS_PORT, "tx_carrier_errors" }, |
| { STATS_OFFSET32(tx_stat_dot3statssinglecollisionframes_hi), |
| 8, STATS_FLAGS_PORT, "tx_single_collisions" }, |
| { STATS_OFFSET32(tx_stat_dot3statsmultiplecollisionframes_hi), |
| 8, STATS_FLAGS_PORT, "tx_multi_collisions" }, |
| { STATS_OFFSET32(tx_stat_dot3statsdeferredtransmissions_hi), |
| 8, STATS_FLAGS_PORT, "tx_deferred" }, |
| { STATS_OFFSET32(tx_stat_dot3statsexcessivecollisions_hi), |
| 8, STATS_FLAGS_PORT, "tx_excess_collisions" }, |
| { STATS_OFFSET32(tx_stat_dot3statslatecollisions_hi), |
| 8, STATS_FLAGS_PORT, "tx_late_collisions" }, |
| { STATS_OFFSET32(tx_stat_etherstatscollisions_hi), |
| 8, STATS_FLAGS_PORT, "tx_total_collisions" }, |
| { STATS_OFFSET32(tx_stat_etherstatspkts64octets_hi), |
| 8, STATS_FLAGS_PORT, "tx_64_byte_packets" }, |
| { STATS_OFFSET32(tx_stat_etherstatspkts65octetsto127octets_hi), |
| 8, STATS_FLAGS_PORT, "tx_65_to_127_byte_packets" }, |
| { STATS_OFFSET32(tx_stat_etherstatspkts128octetsto255octets_hi), |
| 8, STATS_FLAGS_PORT, "tx_128_to_255_byte_packets" }, |
| { STATS_OFFSET32(tx_stat_etherstatspkts256octetsto511octets_hi), |
| 8, STATS_FLAGS_PORT, "tx_256_to_511_byte_packets" }, |
| { STATS_OFFSET32(tx_stat_etherstatspkts512octetsto1023octets_hi), |
| 8, STATS_FLAGS_PORT, "tx_512_to_1023_byte_packets" }, |
| { STATS_OFFSET32(etherstatspkts1024octetsto1522octets_hi), |
| 8, STATS_FLAGS_PORT, "tx_1024_to_1522_byte_packets" }, |
| { STATS_OFFSET32(etherstatspktsover1522octets_hi), |
| 8, STATS_FLAGS_PORT, "tx_1523_to_9022_byte_packets" }, |
| { STATS_OFFSET32(pause_frames_sent_hi), |
| 8, STATS_FLAGS_PORT, "tx_pause_frames" }, |
| { STATS_OFFSET32(total_tpa_aggregations_hi), |
| 8, STATS_FLAGS_FUNC, "tpa_aggregations" }, |
| { STATS_OFFSET32(total_tpa_aggregated_frames_hi), |
| 8, STATS_FLAGS_FUNC, "tpa_aggregated_frames"}, |
| { STATS_OFFSET32(total_tpa_bytes_hi), |
| 8, STATS_FLAGS_FUNC, "tpa_bytes"}, |
| #if 0 |
| { STATS_OFFSET32(recoverable_error), |
| 4, STATS_FLAGS_FUNC, "recoverable_errors" }, |
| { STATS_OFFSET32(unrecoverable_error), |
| 4, STATS_FLAGS_FUNC, "unrecoverable_errors" }, |
| #endif |
| { STATS_OFFSET32(eee_tx_lpi), |
| 4, STATS_FLAGS_PORT, "eee_tx_lpi"}, |
| { STATS_OFFSET32(rx_calls), |
| 4, STATS_FLAGS_FUNC, "rx_calls"}, |
| { STATS_OFFSET32(rx_pkts), |
| 4, STATS_FLAGS_FUNC, "rx_pkts"}, |
| { STATS_OFFSET32(rx_tpa_pkts), |
| 4, STATS_FLAGS_FUNC, "rx_tpa_pkts"}, |
| { STATS_OFFSET32(rx_soft_errors), |
| 4, STATS_FLAGS_FUNC, "rx_soft_errors"}, |
| { STATS_OFFSET32(rx_hw_csum_errors), |
| 4, STATS_FLAGS_FUNC, "rx_hw_csum_errors"}, |
| { STATS_OFFSET32(rx_ofld_frames_csum_ip), |
| 4, STATS_FLAGS_FUNC, "rx_ofld_frames_csum_ip"}, |
| { STATS_OFFSET32(rx_ofld_frames_csum_tcp_udp), |
| 4, STATS_FLAGS_FUNC, "rx_ofld_frames_csum_tcp_udp"}, |
| { STATS_OFFSET32(rx_budget_reached), |
| 4, STATS_FLAGS_FUNC, "rx_budget_reached"}, |
| { STATS_OFFSET32(tx_pkts), |
| 4, STATS_FLAGS_FUNC, "tx_pkts"}, |
| { STATS_OFFSET32(tx_soft_errors), |
| 4, STATS_FLAGS_FUNC, "tx_soft_errors"}, |
| { STATS_OFFSET32(tx_ofld_frames_csum_ip), |
| 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_ip"}, |
| { STATS_OFFSET32(tx_ofld_frames_csum_tcp), |
| 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_tcp"}, |
| { STATS_OFFSET32(tx_ofld_frames_csum_udp), |
| 4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_udp"}, |
| { STATS_OFFSET32(tx_ofld_frames_lso), |
| 4, STATS_FLAGS_FUNC, "tx_ofld_frames_lso"}, |
| { STATS_OFFSET32(tx_ofld_frames_lso_hdr_splits), |
| 4, STATS_FLAGS_FUNC, "tx_ofld_frames_lso_hdr_splits"}, |
| { STATS_OFFSET32(tx_encap_failures), |
| 4, STATS_FLAGS_FUNC, "tx_encap_failures"}, |
| { STATS_OFFSET32(tx_hw_queue_full), |
| 4, STATS_FLAGS_FUNC, "tx_hw_queue_full"}, |
| { STATS_OFFSET32(tx_hw_max_queue_depth), |
| 4, STATS_FLAGS_FUNC, "tx_hw_max_queue_depth"}, |
| { STATS_OFFSET32(tx_dma_mapping_failure), |
| 4, STATS_FLAGS_FUNC, "tx_dma_mapping_failure"}, |
| { STATS_OFFSET32(tx_max_drbr_queue_depth), |
| 4, STATS_FLAGS_FUNC, "tx_max_drbr_queue_depth"}, |
| { STATS_OFFSET32(tx_window_violation_std), |
| 4, STATS_FLAGS_FUNC, "tx_window_violation_std"}, |
| { STATS_OFFSET32(tx_window_violation_tso), |
| 4, STATS_FLAGS_FUNC, "tx_window_violation_tso"}, |
| #if 0 |
| { STATS_OFFSET32(tx_unsupported_tso_request_ipv6), |
| 4, STATS_FLAGS_FUNC, "tx_unsupported_tso_request_ipv6"}, |
| { STATS_OFFSET32(tx_unsupported_tso_request_not_tcp), |
| 4, STATS_FLAGS_FUNC, "tx_unsupported_tso_request_not_tcp"}, |
| #endif |
| { STATS_OFFSET32(tx_chain_lost_mbuf), |
| 4, STATS_FLAGS_FUNC, "tx_chain_lost_mbuf"}, |
| { STATS_OFFSET32(tx_frames_deferred), |
| 4, STATS_FLAGS_FUNC, "tx_frames_deferred"}, |
| { STATS_OFFSET32(tx_queue_xoff), |
| 4, STATS_FLAGS_FUNC, "tx_queue_xoff"}, |
| { STATS_OFFSET32(mbuf_defrag_attempts), |
| 4, STATS_FLAGS_FUNC, "mbuf_defrag_attempts"}, |
| { STATS_OFFSET32(mbuf_defrag_failures), |
| 4, STATS_FLAGS_FUNC, "mbuf_defrag_failures"}, |
| { STATS_OFFSET32(mbuf_rx_bd_alloc_failed), |
| 4, STATS_FLAGS_FUNC, "mbuf_rx_bd_alloc_failed"}, |
| { STATS_OFFSET32(mbuf_rx_bd_mapping_failed), |
| 4, STATS_FLAGS_FUNC, "mbuf_rx_bd_mapping_failed"}, |
| { STATS_OFFSET32(mbuf_rx_tpa_alloc_failed), |
| 4, STATS_FLAGS_FUNC, "mbuf_rx_tpa_alloc_failed"}, |
| { STATS_OFFSET32(mbuf_rx_tpa_mapping_failed), |
| 4, STATS_FLAGS_FUNC, "mbuf_rx_tpa_mapping_failed"}, |
| { STATS_OFFSET32(mbuf_rx_sge_alloc_failed), |
| 4, STATS_FLAGS_FUNC, "mbuf_rx_sge_alloc_failed"}, |
| { STATS_OFFSET32(mbuf_rx_sge_mapping_failed), |
| 4, STATS_FLAGS_FUNC, "mbuf_rx_sge_mapping_failed"}, |
| { STATS_OFFSET32(mbuf_alloc_tx), |
| 4, STATS_FLAGS_FUNC, "mbuf_alloc_tx"}, |
| { STATS_OFFSET32(mbuf_alloc_rx), |
| 4, STATS_FLAGS_FUNC, "mbuf_alloc_rx"}, |
| { STATS_OFFSET32(mbuf_alloc_sge), |
| 4, STATS_FLAGS_FUNC, "mbuf_alloc_sge"}, |
| { STATS_OFFSET32(mbuf_alloc_tpa), |
| 4, STATS_FLAGS_FUNC, "mbuf_alloc_tpa"} |
| }; |
| |
| static const struct { |
| uint32_t offset; |
| uint32_t size; |
| char string[STAT_NAME_LEN]; |
| } bxe_eth_q_stats_arr[] = { |
| { Q_STATS_OFFSET32(total_bytes_received_hi), |
| 8, "rx_bytes" }, |
| { Q_STATS_OFFSET32(total_unicast_packets_received_hi), |
| 8, "rx_ucast_packets" }, |
| { Q_STATS_OFFSET32(total_multicast_packets_received_hi), |
| 8, "rx_mcast_packets" }, |
| { Q_STATS_OFFSET32(total_broadcast_packets_received_hi), |
| 8, "rx_bcast_packets" }, |
| { Q_STATS_OFFSET32(no_buff_discard_hi), |
| 8, "rx_discards" }, |
| { Q_STATS_OFFSET32(total_bytes_transmitted_hi), |
| 8, "tx_bytes" }, |
| { Q_STATS_OFFSET32(total_unicast_packets_transmitted_hi), |
| 8, "tx_ucast_packets" }, |
| { Q_STATS_OFFSET32(total_multicast_packets_transmitted_hi), |
| 8, "tx_mcast_packets" }, |
| { Q_STATS_OFFSET32(total_broadcast_packets_transmitted_hi), |
| 8, "tx_bcast_packets" }, |
| { Q_STATS_OFFSET32(total_tpa_aggregations_hi), |
| 8, "tpa_aggregations" }, |
| { Q_STATS_OFFSET32(total_tpa_aggregated_frames_hi), |
| 8, "tpa_aggregated_frames"}, |
| { Q_STATS_OFFSET32(total_tpa_bytes_hi), |
| 8, "tpa_bytes"}, |
| { Q_STATS_OFFSET32(rx_calls), |
| 4, "rx_calls"}, |
| { Q_STATS_OFFSET32(rx_pkts), |
| 4, "rx_pkts"}, |
| { Q_STATS_OFFSET32(rx_tpa_pkts), |
| 4, "rx_tpa_pkts"}, |
| { Q_STATS_OFFSET32(rx_soft_errors), |
| 4, "rx_soft_errors"}, |
| { Q_STATS_OFFSET32(rx_hw_csum_errors), |
| 4, "rx_hw_csum_errors"}, |
| { Q_STATS_OFFSET32(rx_ofld_frames_csum_ip), |
| 4, "rx_ofld_frames_csum_ip"}, |
| { Q_STATS_OFFSET32(rx_ofld_frames_csum_tcp_udp), |
| 4, "rx_ofld_frames_csum_tcp_udp"}, |
| { Q_STATS_OFFSET32(rx_budget_reached), |
| 4, "rx_budget_reached"}, |
| { Q_STATS_OFFSET32(tx_pkts), |
| 4, "tx_pkts"}, |
| { Q_STATS_OFFSET32(tx_soft_errors), |
| 4, "tx_soft_errors"}, |
| { Q_STATS_OFFSET32(tx_ofld_frames_csum_ip), |
| 4, "tx_ofld_frames_csum_ip"}, |
| { Q_STATS_OFFSET32(tx_ofld_frames_csum_tcp), |
| 4, "tx_ofld_frames_csum_tcp"}, |
| { Q_STATS_OFFSET32(tx_ofld_frames_csum_udp), |
| 4, "tx_ofld_frames_csum_udp"}, |
| { Q_STATS_OFFSET32(tx_ofld_frames_lso), |
| 4, "tx_ofld_frames_lso"}, |
| { Q_STATS_OFFSET32(tx_ofld_frames_lso_hdr_splits), |
| 4, "tx_ofld_frames_lso_hdr_splits"}, |
| { Q_STATS_OFFSET32(tx_encap_failures), |
| 4, "tx_encap_failures"}, |
| { Q_STATS_OFFSET32(tx_hw_queue_full), |
| 4, "tx_hw_queue_full"}, |
| { Q_STATS_OFFSET32(tx_hw_max_queue_depth), |
| 4, "tx_hw_max_queue_depth"}, |
| { Q_STATS_OFFSET32(tx_dma_mapping_failure), |
| 4, "tx_dma_mapping_failure"}, |
| { Q_STATS_OFFSET32(tx_max_drbr_queue_depth), |
| 4, "tx_max_drbr_queue_depth"}, |
| { Q_STATS_OFFSET32(tx_window_violation_std), |
| 4, "tx_window_violation_std"}, |
| { Q_STATS_OFFSET32(tx_window_violation_tso), |
| 4, "tx_window_violation_tso"}, |
| #if 0 |
| { Q_STATS_OFFSET32(tx_unsupported_tso_request_ipv6), |
| 4, "tx_unsupported_tso_request_ipv6"}, |
| { Q_STATS_OFFSET32(tx_unsupported_tso_request_not_tcp), |
| 4, "tx_unsupported_tso_request_not_tcp"}, |
| #endif |
| { Q_STATS_OFFSET32(tx_chain_lost_mbuf), |
| 4, "tx_chain_lost_mbuf"}, |
| { Q_STATS_OFFSET32(tx_frames_deferred), |
| 4, "tx_frames_deferred"}, |
| { Q_STATS_OFFSET32(tx_queue_xoff), |
| 4, "tx_queue_xoff"}, |
| { Q_STATS_OFFSET32(mbuf_defrag_attempts), |
| 4, "mbuf_defrag_attempts"}, |
| { Q_STATS_OFFSET32(mbuf_defrag_failures), |
| 4, "mbuf_defrag_failures"}, |
| { Q_STATS_OFFSET32(mbuf_rx_bd_alloc_failed), |
| 4, "mbuf_rx_bd_alloc_failed"}, |
| { Q_STATS_OFFSET32(mbuf_rx_bd_mapping_failed), |
| 4, "mbuf_rx_bd_mapping_failed"}, |
| { Q_STATS_OFFSET32(mbuf_rx_tpa_alloc_failed), |
| 4, "mbuf_rx_tpa_alloc_failed"}, |
| { Q_STATS_OFFSET32(mbuf_rx_tpa_mapping_failed), |
| 4, "mbuf_rx_tpa_mapping_failed"}, |
| { Q_STATS_OFFSET32(mbuf_rx_sge_alloc_failed), |
| 4, "mbuf_rx_sge_alloc_failed"}, |
| { Q_STATS_OFFSET32(mbuf_rx_sge_mapping_failed), |
| 4, "mbuf_rx_sge_mapping_failed"}, |
| { Q_STATS_OFFSET32(mbuf_alloc_tx), |
| 4, "mbuf_alloc_tx"}, |
| { Q_STATS_OFFSET32(mbuf_alloc_rx), |
| 4, "mbuf_alloc_rx"}, |
| { Q_STATS_OFFSET32(mbuf_alloc_sge), |
| 4, "mbuf_alloc_sge"}, |
| { Q_STATS_OFFSET32(mbuf_alloc_tpa), |
| 4, "mbuf_alloc_tpa"} |
| }; |
| |
| #define BXE_NUM_ETH_STATS ARRAY_SIZE(bxe_eth_stats_arr) |
| #define BXE_NUM_ETH_Q_STATS ARRAY_SIZE(bxe_eth_q_stats_arr) |
| |
| |
| static void bxe_cmng_fns_init(struct bxe_adapter *sc, |
| uint8_t read_cfg, |
| uint8_t cmng_type); |
| static int bxe_get_cmng_fns_mode(struct bxe_adapter *sc); |
| static void storm_memset_cmng(struct bxe_adapter *sc, |
| struct cmng_init *cmng, |
| uint8_t port); |
| static void bxe_set_reset_global(struct bxe_adapter *sc); |
| static void bxe_set_reset_in_progress(struct bxe_adapter *sc); |
| static uint8_t bxe_reset_is_done(struct bxe_adapter *sc, |
| int engine); |
| static uint8_t bxe_clear_pf_load(struct bxe_adapter *sc); |
| static uint8_t bxe_chk_parity_attn(struct bxe_adapter *sc, |
| uint8_t *global, |
| uint8_t print); |
| static void bxe_int_disable(struct bxe_adapter *sc); |
| static int bxe_release_leader_lock(struct bxe_adapter *sc); |
| static void bxe_pf_disable(struct bxe_adapter *sc); |
| static void bxe_free_fp_buffers(struct bxe_adapter *sc); |
| static inline void bxe_update_rx_prod(struct bxe_adapter *sc, |
| struct bxe_fastpath *fp, |
| uint16_t rx_bd_prod, |
| uint16_t rx_cq_prod, |
| uint16_t rx_sge_prod); |
| static void bxe_link_report_locked(struct bxe_adapter *sc); |
| static void bxe_link_report(struct bxe_adapter *sc); |
| static void bxe_link_status_update(struct bxe_adapter *sc); |
| static void bxe__alarm_handler(struct alarm_waiter *waiter, |
| struct hw_trapframe *hw_tf); |
| |
| static void bxe_periodic_start(struct bxe_adapter *sc); |
| static void bxe_periodic_stop(struct bxe_adapter *sc); |
| static int bxe_alloc_rx_bd_mbuf(struct bxe_fastpath *fp, |
| uint16_t prev_index, |
| uint16_t index); |
| static int bxe_alloc_rx_tpa_mbuf(struct bxe_fastpath *fp, |
| int queue); |
| static int bxe_alloc_rx_sge_mbuf(struct bxe_fastpath *fp, |
| uint16_t index); |
| static uint8_t bxe_txeof(struct bxe_adapter *sc, |
| struct bxe_fastpath *fp); |
| static void bxe_task_fp(struct bxe_fastpath *fp); |
| static __noinline void bxe_dump_mbuf(struct bxe_adapter *sc, |
| struct mbuf *m, |
| uint8_t contents); |
| static int bxe_alloc_mem(struct bxe_adapter *sc); |
| static void bxe_free_mem(struct bxe_adapter *sc); |
| static int bxe_alloc_fw_stats_mem(struct bxe_adapter *sc); |
| static void bxe_free_fw_stats_mem(struct bxe_adapter *sc); |
| static int bxe_interrupt_attach(struct bxe_adapter *sc); |
| static void bxe_interrupt_detach(struct bxe_adapter *sc); |
| static void bxe_set_rx_mode(struct bxe_adapter *sc); |
| static int bxe_init_locked(struct bxe_adapter *sc); |
| static int bxe_stop_locked(struct bxe_adapter *sc); |
| static __noinline int bxe_nic_load(struct bxe_adapter *sc, |
| int load_mode); |
| static __noinline int bxe_nic_unload(struct bxe_adapter *sc, |
| uint32_t unload_mode, |
| uint8_t keep_link); |
| |
| static void bxe_handle_sp_tq(void *context, int pending); |
| static void bxe_handle_rx_mode_tq(void *context, int pending); |
| static void bxe_handle_fp_tq(void *context, int pending); |
| |
| |
| /* calculate crc32 on a buffer (NOTE: crc32_length MUST be aligned to 8) */ |
| uint32_t |
| calc_crc32(uint8_t *crc32_packet, |
| uint32_t crc32_length, |
| uint32_t crc32_seed, |
| uint8_t complement) |
| { |
| uint32_t byte = 0; |
| uint32_t bit = 0; |
| uint8_t msb = 0; |
| uint32_t temp = 0; |
| uint32_t shft = 0; |
| uint8_t current_byte = 0; |
| uint32_t crc32_result = crc32_seed; |
| const uint32_t CRC32_POLY = 0x1edc6f41; |
| |
| if ((crc32_packet == NULL) || |
| (crc32_length == 0) || |
| ((crc32_length % 8) != 0)) |
| { |
| return (crc32_result); |
| } |
| |
| for (byte = 0; byte < crc32_length; byte = byte + 1) |
| { |
| current_byte = crc32_packet[byte]; |
| for (bit = 0; bit < 8; bit = bit + 1) |
| { |
| /* msb = crc32_result[31]; */ |
| msb = (uint8_t)(crc32_result >> 31); |
| |
| crc32_result = crc32_result << 1; |
| |
| /* it (msb != current_byte[bit]) */ |
| if (msb != (0x1 & (current_byte >> bit))) |
| { |
| crc32_result = crc32_result ^ CRC32_POLY; |
| /* crc32_result[0] = 1 */ |
| crc32_result |= 1; |
| } |
| } |
| } |
| |
| /* Last step is to: |
| * 1. "mirror" every bit |
| * 2. swap the 4 bytes |
| * 3. complement each bit |
| */ |
| |
| /* Mirror */ |
| temp = crc32_result; |
| shft = sizeof(crc32_result) * 8 - 1; |
| |
| for (crc32_result >>= 1; crc32_result; crc32_result >>= 1) |
| { |
| temp <<= 1; |
| temp |= crc32_result & 1; |
| shft-- ; |
| } |
| |
| /* temp[31-bit] = crc32_result[bit] */ |
| temp <<= shft; |
| |
| /* Swap */ |
| /* crc32_result = {temp[7:0], temp[15:8], temp[23:16], temp[31:24]} */ |
| { |
| uint32_t t0, t1, t2, t3; |
| t0 = (0x000000ff & (temp >> 24)); |
| t1 = (0x0000ff00 & (temp >> 8)); |
| t2 = (0x00ff0000 & (temp << 8)); |
| t3 = (0xff000000 & (temp << 24)); |
| crc32_result = t0 | t1 | t2 | t3; |
| } |
| |
| /* Complement */ |
| if (complement) |
| { |
| crc32_result = ~crc32_result; |
| } |
| |
| return (crc32_result); |
| } |
| |
| /* |
| * Get DMA memory from the OS. |
| * |
| * Validates that the OS has provided DMA buffers in response to a |
| * bus_dmamap_load call and saves the physical address of those buffers. |
| * When the callback is used the OS will return 0 for the mapping function |
| * (bus_dmamap_load) so we use the value of map_arg->maxsegs to pass any |
| * failures back to the caller. |
| * |
| * Returns: |
| * Nothing. |
| */ |
| static void |
| bxe_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error) |
| { |
| #if 0 // AKAROS_PORT /* brho: don't uncomment this without checking bus_* */ |
| struct bxe_dma *dma = arg; |
| |
| if (error) { |
| dma->paddr = 0; |
| dma->nseg = 0; |
| BLOGE(dma->sc, "Failed DMA alloc '%s' (%d)!\n", dma->msg, error); |
| } else { |
| dma->paddr = segs->ds_addr; |
| dma->nseg = nseg; |
| #if 0 |
| BLOGD(dma->sc, DBG_LOAD, |
| "DMA alloc '%s': vaddr=%p paddr=%p nseg=%d size=%lu\n", |
| dma->msg, dma->vaddr, (void *)dma->paddr, |
| dma->nseg, dma->size); |
| #endif |
| } |
| #endif |
| } |
| |
| /* |
| * Allocate a block of memory and map it for DMA. No partial completions |
| * allowed and release any resources acquired if we can't acquire all |
| * resources. |
| * |
| * Returns: |
| * 0 = Success, !0 = Failure |
| */ |
| int |
| bxe_dma_alloc(struct bxe_adapter *sc, |
| bus_size_t size, |
| struct bxe_dma *dma, |
| const char *msg) |
| { |
| int rc; |
| if (!dma) { |
| warn("Null ptr for dma!, continuing"); |
| backtrace(); |
| return -1; |
| } |
| if (dma->size > 0) { |
| BLOGE(sc, "dma block '%s' already has size %lu\n", msg, |
| (unsigned long)dma->size); |
| return (1); |
| } |
| |
| memset(dma, 0, sizeof(*dma)); /* sanity, except for size. */ |
| dma->sc = sc; |
| dma->size = size; |
| snprintf(dma->msg, sizeof(dma->msg), "%s", msg); |
| |
| rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */ |
| BCM_PAGE_SIZE, /* alignment */ |
| 0, /* boundary limit */ |
| BUS_SPACE_MAXADDR, /* restricted low */ |
| BUS_SPACE_MAXADDR, /* restricted hi */ |
| NULL, /* addr filter() */ |
| NULL, /* addr filter() arg */ |
| size, /* max map size */ |
| 1, /* num discontinuous */ |
| size, /* max seg size */ |
| BUS_DMA_ALLOCNOW, /* flags */ |
| NULL, /* lock() */ |
| NULL, /* lock() arg */ |
| &dma->tag); /* returned dma tag */ |
| if (rc != 0) { |
| BLOGE(sc, "Failed to create dma tag for '%s' (%d)\n", msg, rc); |
| memset(dma, 0, sizeof(*dma)); |
| return (1); |
| } |
| |
| rc = bus_dmamem_alloc(dma->tag, |
| (void **)&dma->vaddr, |
| (BUS_DMA_NOWAIT | BUS_DMA_ZERO), |
| &dma->map); |
| if (rc != 0) { |
| BLOGE(sc, "Failed to alloc dma mem for '%s' (%d)\n", msg, rc); |
| bus_dma_tag_destroy(dma->tag); |
| memset(dma, 0, sizeof(*dma)); |
| return (1); |
| } |
| |
| rc = bus_dmamap_load(dma->tag, |
| dma->map, |
| dma->vaddr, |
| size, |
| bxe_dma_map_addr, /* BLOGD in here */ |
| dma, |
| BUS_DMA_NOWAIT); |
| if (rc != 0) { |
| BLOGE(sc, "Failed to load dma map for '%s' (%d)\n", msg, rc); |
| bus_dmamem_free(dma->tag, dma->vaddr, dma->map); |
| bus_dma_tag_destroy(dma->tag); |
| memset(dma, 0, sizeof(*dma)); |
| return (1); |
| } |
| |
| /* might catch buggy BSD-compat macros */ |
| assert(dma->paddr == PADDR(dma->vaddr)); |
| return (0); |
| } |
| |
| void |
| bxe_dma_free(struct bxe_adapter *sc, |
| struct bxe_dma *dma) |
| { |
| if (dma->size > 0) { |
| BLOGD(sc, DBG_LOAD, |
| "DMA free '%s': vaddr=%p paddr=%p nseg=%d size=%lu\n", |
| dma->msg, dma->vaddr, (void *)dma->paddr, |
| dma->nseg, dma->size); |
| |
| DBASSERT(sc, (dma->tag != NULL), ("dma tag is NULL")); |
| |
| bus_dmamap_sync(dma->tag, dma->map, |
| (BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE)); |
| bus_dmamap_unload(dma->tag, dma->map); |
| bus_dmamem_free(dma->tag, dma->vaddr, dma->map); |
| bus_dma_tag_destroy(dma->tag); |
| } |
| memset(dma, 0, sizeof(*dma)); |
| } |
| |
| /* |
| * These indirect read and write routines are only during init. |
| * The locking is handled by the MCP. |
| */ |
| |
| void |
| bxe_reg_wr_ind(struct bxe_adapter *sc, |
| uint32_t addr, |
| uint32_t val) |
| { |
| pcidev_write32(sc->pcidev, PCICFG_GRC_ADDRESS, addr); |
| pcidev_write32(sc->pcidev, PCICFG_GRC_DATA, val); |
| pcidev_write32(sc->pcidev, PCICFG_GRC_ADDRESS, 0); |
| } |
| |
| uint32_t |
| bxe_reg_rd_ind(struct bxe_adapter *sc, |
| uint32_t addr) |
| { |
| uint32_t val; |
| |
| pcidev_write32(sc->pcidev, PCICFG_GRC_ADDRESS, addr); |
| val = pcidev_read32(sc->pcidev, PCICFG_GRC_DATA); |
| pcidev_write32(sc->pcidev, PCICFG_GRC_ADDRESS, 0); |
| |
| return (val); |
| } |
| |
| #if 0 |
| void bxe_dp_dmae(struct bxe_adapter *sc, struct dmae_command *dmae, int msglvl) |
| { |
| uint32_t src_type = dmae->opcode & DMAE_COMMAND_SRC; |
| |
| switch (dmae->opcode & DMAE_COMMAND_DST) { |
| case DMAE_CMD_DST_PCI: |
| if (src_type == DMAE_CMD_SRC_PCI) |
| DP(msglvl, "DMAE: opcode 0x%08x\n" |
| "src [%x:%08x], len [%d*4], dst [%x:%08x]\n" |
| "comp_addr [%x:%08x], comp_val 0x%08x\n", |
| dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo, |
| dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo, |
| dmae->comp_addr_hi, dmae->comp_addr_lo, |
| dmae->comp_val); |
| else |
| DP(msglvl, "DMAE: opcode 0x%08x\n" |
| "src [%08x], len [%d*4], dst [%x:%08x]\n" |
| "comp_addr [%x:%08x], comp_val 0x%08x\n", |
| dmae->opcode, dmae->src_addr_lo >> 2, |
| dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo, |
| dmae->comp_addr_hi, dmae->comp_addr_lo, |
| dmae->comp_val); |
| break; |
| case DMAE_CMD_DST_GRC: |
| if (src_type == DMAE_CMD_SRC_PCI) |
| DP(msglvl, "DMAE: opcode 0x%08x\n" |
| "src [%x:%08x], len [%d*4], dst_addr [%08x]\n" |
| "comp_addr [%x:%08x], comp_val 0x%08x\n", |
| dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo, |
| dmae->len, dmae->dst_addr_lo >> 2, |
| dmae->comp_addr_hi, dmae->comp_addr_lo, |
| dmae->comp_val); |
| else |
| DP(msglvl, "DMAE: opcode 0x%08x\n" |
| "src [%08x], len [%d*4], dst [%08x]\n" |
| "comp_addr [%x:%08x], comp_val 0x%08x\n", |
| dmae->opcode, dmae->src_addr_lo >> 2, |
| dmae->len, dmae->dst_addr_lo >> 2, |
| dmae->comp_addr_hi, dmae->comp_addr_lo, |
| dmae->comp_val); |
| break; |
| default: |
| if (src_type == DMAE_CMD_SRC_PCI) |
| DP(msglvl, "DMAE: opcode 0x%08x\n" |
| "src_addr [%x:%08x] len [%d * 4] dst_addr [none]\n" |
| "comp_addr [%x:%08x] comp_val 0x%08x\n", |
| dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo, |
| dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo, |
| dmae->comp_val); |
| else |
| DP(msglvl, "DMAE: opcode 0x%08x\n" |
| "src_addr [%08x] len [%d * 4] dst_addr [none]\n" |
| "comp_addr [%x:%08x] comp_val 0x%08x\n", |
| dmae->opcode, dmae->src_addr_lo >> 2, |
| dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo, |
| dmae->comp_val); |
| break; |
| } |
| |
| } |
| #endif |
| |
| static int |
| bxe_acquire_hw_lock(struct bxe_adapter *sc, |
| uint32_t resource) |
| { |
| uint32_t lock_status; |
| uint32_t resource_bit = (1 << resource); |
| int func = SC_FUNC(sc); |
| uint32_t hw_lock_control_reg; |
| int cnt; |
| |
| /* validate the resource is within range */ |
| if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { |
| BLOGE(sc, "resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE\n", resource); |
| return (-1); |
| } |
| |
| if (func <= 5) { |
| hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8)); |
| } else { |
| hw_lock_control_reg = |
| (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8)); |
| } |
| |
| /* validate the resource is not already taken */ |
| lock_status = REG_RD(sc, hw_lock_control_reg); |
| if (lock_status & resource_bit) { |
| BLOGE(sc, "resource in use (status 0x%x bit 0x%x)\n", |
| lock_status, resource_bit); |
| return (-1); |
| } |
| |
| /* try every 5ms for 5 seconds */ |
| for (cnt = 0; cnt < 1000; cnt++) { |
| REG_WR(sc, (hw_lock_control_reg + 4), resource_bit); |
| lock_status = REG_RD(sc, hw_lock_control_reg); |
| if (lock_status & resource_bit) { |
| return (0); |
| } |
| udelay(5000); |
| } |
| |
| BLOGE(sc, "Resource lock timeout!\n"); |
| return (-1); |
| } |
| |
| static int |
| bxe_release_hw_lock(struct bxe_adapter *sc, |
| uint32_t resource) |
| { |
| uint32_t lock_status; |
| uint32_t resource_bit = (1 << resource); |
| int func = SC_FUNC(sc); |
| uint32_t hw_lock_control_reg; |
| |
| /* validate the resource is within range */ |
| if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { |
| BLOGE(sc, "resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE\n", resource); |
| return (-1); |
| } |
| |
| if (func <= 5) { |
| hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8)); |
| } else { |
| hw_lock_control_reg = |
| (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8)); |
| } |
| |
| /* validate the resource is currently taken */ |
| lock_status = REG_RD(sc, hw_lock_control_reg); |
| if (!(lock_status & resource_bit)) { |
| BLOGE(sc, "resource not in use (status 0x%x bit 0x%x)\n", |
| lock_status, resource_bit); |
| return (-1); |
| } |
| |
| REG_WR(sc, hw_lock_control_reg, resource_bit); |
| return (0); |
| } |
| |
| /* |
| * Per pf misc lock must be acquired before the per port mcp lock. Otherwise, |
| * had we done things the other way around, if two pfs from the same port |
| * would attempt to access nvram at the same time, we could run into a |
| * scenario such as: |
| * pf A takes the port lock. |
| * pf B succeeds in taking the same lock since they are from the same port. |
| * pf A takes the per pf misc lock. Performs eeprom access. |
| * pf A finishes. Unlocks the per pf misc lock. |
| * Pf B takes the lock and proceeds to perform it's own access. |
| * pf A unlocks the per port lock, while pf B is still working (!). |
| * mcp takes the per port lock and corrupts pf B's access (and/or has it's own |
| * access corrupted by pf B).* |
| */ |
| static int |
| bxe_acquire_nvram_lock(struct bxe_adapter *sc) |
| { |
| int port = SC_PORT(sc); |
| int count, i; |
| uint32_t val = 0; |
| |
| /* acquire HW lock: protect against other PFs in PF Direct Assignment */ |
| bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_NVRAM); |
| |
| /* adjust timeout for emulation/FPGA */ |
| count = NVRAM_TIMEOUT_COUNT; |
| if (CHIP_REV_IS_SLOW(sc)) { |
| count *= 100; |
| } |
| |
| /* request access to nvram interface */ |
| REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB, |
| (MCPR_NVM_SW_ARB_ARB_REQ_SET1 << port)); |
| |
| for (i = 0; i < count*10; i++) { |
| val = REG_RD(sc, MCP_REG_MCPR_NVM_SW_ARB); |
| if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) { |
| break; |
| } |
| |
| udelay(5); |
| } |
| |
| if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) { |
| BLOGE(sc, "Cannot get access to nvram interface\n"); |
| return (-1); |
| } |
| |
| return (0); |
| } |
| |
| static int |
| bxe_release_nvram_lock(struct bxe_adapter *sc) |
| { |
| int port = SC_PORT(sc); |
| int count, i; |
| uint32_t val = 0; |
| |
| /* adjust timeout for emulation/FPGA */ |
| count = NVRAM_TIMEOUT_COUNT; |
| if (CHIP_REV_IS_SLOW(sc)) { |
| count *= 100; |
| } |
| |
| /* relinquish nvram interface */ |
| REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB, |
| (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << port)); |
| |
| for (i = 0; i < count*10; i++) { |
| val = REG_RD(sc, MCP_REG_MCPR_NVM_SW_ARB); |
| if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) { |
| break; |
| } |
| |
| udelay(5); |
| } |
| |
| if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) { |
| BLOGE(sc, "Cannot free access to nvram interface\n"); |
| return (-1); |
| } |
| |
| /* release HW lock: protect against other PFs in PF Direct Assignment */ |
| bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_NVRAM); |
| |
| return (0); |
| } |
| |
| static void |
| bxe_enable_nvram_access(struct bxe_adapter *sc) |
| { |
| uint32_t val; |
| |
| val = REG_RD(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE); |
| |
| /* enable both bits, even on read */ |
| REG_WR(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE, |
| (val | MCPR_NVM_ACCESS_ENABLE_EN | MCPR_NVM_ACCESS_ENABLE_WR_EN)); |
| } |
| |
| static void |
| bxe_disable_nvram_access(struct bxe_adapter *sc) |
| { |
| uint32_t val; |
| |
| val = REG_RD(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE); |
| |
| /* disable both bits, even after read */ |
| REG_WR(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE, |
| (val & ~(MCPR_NVM_ACCESS_ENABLE_EN | |
| MCPR_NVM_ACCESS_ENABLE_WR_EN))); |
| } |
| |
| static int |
| bxe_nvram_read_dword(struct bxe_adapter *sc, |
| uint32_t offset, |
| uint32_t *ret_val, |
| uint32_t cmd_flags) |
| { |
| int count, i, rc; |
| uint32_t val; |
| |
| /* build the command word */ |
| cmd_flags |= MCPR_NVM_COMMAND_DOIT; |
| |
| /* need to clear DONE bit separately */ |
| REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE); |
| |
| /* address of the NVRAM to read from */ |
| REG_WR(sc, MCP_REG_MCPR_NVM_ADDR, |
| (offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE)); |
| |
| /* issue a read command */ |
| REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, cmd_flags); |
| |
| /* adjust timeout for emulation/FPGA */ |
| count = NVRAM_TIMEOUT_COUNT; |
| if (CHIP_REV_IS_SLOW(sc)) { |
| count *= 100; |
| } |
| |
| /* wait for completion */ |
| *ret_val = 0; |
| rc = -1; |
| for (i = 0; i < count; i++) { |
| udelay(5); |
| val = REG_RD(sc, MCP_REG_MCPR_NVM_COMMAND); |
| |
| if (val & MCPR_NVM_COMMAND_DONE) { |
| val = REG_RD(sc, MCP_REG_MCPR_NVM_READ); |
| /* we read nvram data in cpu order |
| * but ethtool sees it as an array of bytes |
| * converting to big-endian will do the work |
| */ |
| *ret_val = cpu_to_be32(val); |
| rc = 0; |
| break; |
| } |
| } |
| |
| if (rc == -1) { |
| BLOGE(sc, "nvram read timeout expired\n"); |
| } |
| |
| return (rc); |
| } |
| |
| static int |
| bxe_nvram_read(struct bxe_adapter *sc, |
| uint32_t offset, |
| uint8_t *ret_buf, |
| int buf_size) |
| { |
| uint32_t cmd_flags; |
| uint32_t val; |
| int rc; |
| |
| if ((offset & 0x03) || (buf_size & 0x03) || (buf_size == 0)) { |
| BLOGE(sc, "Invalid parameter, offset 0x%x buf_size 0x%x\n", |
| offset, buf_size); |
| return (-1); |
| } |
| |
| if ((offset + buf_size) > sc->devinfo.flash_size) { |
| BLOGE(sc, "Invalid parameter, " |
| "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n", |
| offset, buf_size, sc->devinfo.flash_size); |
| return (-1); |
| } |
| |
| /* request access to nvram interface */ |
| rc = bxe_acquire_nvram_lock(sc); |
| if (rc) { |
| return (rc); |
| } |
| |
| /* enable access to nvram interface */ |
| bxe_enable_nvram_access(sc); |
| |
| /* read the first word(s) */ |
| cmd_flags = MCPR_NVM_COMMAND_FIRST; |
| while ((buf_size > sizeof(uint32_t)) && (rc == 0)) { |
| rc = bxe_nvram_read_dword(sc, offset, &val, cmd_flags); |
| memcpy(ret_buf, &val, 4); |
| |
| /* advance to the next dword */ |
| offset += sizeof(uint32_t); |
| ret_buf += sizeof(uint32_t); |
| buf_size -= sizeof(uint32_t); |
| cmd_flags = 0; |
| } |
| |
| if (rc == 0) { |
| cmd_flags |= MCPR_NVM_COMMAND_LAST; |
| rc = bxe_nvram_read_dword(sc, offset, &val, cmd_flags); |
| memcpy(ret_buf, &val, 4); |
| } |
| |
| /* disable access to nvram interface */ |
| bxe_disable_nvram_access(sc); |
| bxe_release_nvram_lock(sc); |
| |
| return (rc); |
| } |
| |
| static int |
| bxe_nvram_write_dword(struct bxe_adapter *sc, |
| uint32_t offset, |
| uint32_t val, |
| uint32_t cmd_flags) |
| { |
| int count, i, rc; |
| |
| /* build the command word */ |
| cmd_flags |= (MCPR_NVM_COMMAND_DOIT | MCPR_NVM_COMMAND_WR); |
| |
| /* need to clear DONE bit separately */ |
| REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE); |
| |
| /* write the data */ |
| REG_WR(sc, MCP_REG_MCPR_NVM_WRITE, val); |
| |
| /* address of the NVRAM to write to */ |
| REG_WR(sc, MCP_REG_MCPR_NVM_ADDR, |
| (offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE)); |
| |
| /* issue the write command */ |
| REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, cmd_flags); |
| |
| /* adjust timeout for emulation/FPGA */ |
| count = NVRAM_TIMEOUT_COUNT; |
| if (CHIP_REV_IS_SLOW(sc)) { |
| count *= 100; |
| } |
| |
| /* wait for completion */ |
| rc = -1; |
| for (i = 0; i < count; i++) { |
| udelay(5); |
| val = REG_RD(sc, MCP_REG_MCPR_NVM_COMMAND); |
| if (val & MCPR_NVM_COMMAND_DONE) { |
| rc = 0; |
| break; |
| } |
| } |
| |
| if (rc == -1) { |
| BLOGE(sc, "nvram write timeout expired\n"); |
| } |
| |
| return (rc); |
| } |
| |
| #define BYTE_OFFSET(offset) (8 * (offset & 0x03)) |
| |
| static int |
| bxe_nvram_write1(struct bxe_adapter *sc, |
| uint32_t offset, |
| uint8_t *data_buf, |
| int buf_size) |
| { |
| uint32_t cmd_flags; |
| uint32_t align_offset; |
| uint32_t val; |
| int rc; |
| |
| if ((offset + buf_size) > sc->devinfo.flash_size) { |
| BLOGE(sc, "Invalid parameter, " |
| "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n", |
| offset, buf_size, sc->devinfo.flash_size); |
| return (-1); |
| } |
| |
| /* request access to nvram interface */ |
| rc = bxe_acquire_nvram_lock(sc); |
| if (rc) { |
| return (rc); |
| } |
| |
| /* enable access to nvram interface */ |
| bxe_enable_nvram_access(sc); |
| |
| cmd_flags = (MCPR_NVM_COMMAND_FIRST | MCPR_NVM_COMMAND_LAST); |
| align_offset = (offset & ~0x03); |
| rc = bxe_nvram_read_dword(sc, align_offset, &val, cmd_flags); |
| |
| if (rc == 0) { |
| val &= ~(0xff << BYTE_OFFSET(offset)); |
| val |= (*data_buf << BYTE_OFFSET(offset)); |
| |
| /* nvram data is returned as an array of bytes |
| * convert it back to cpu order |
| */ |
| val = be32_to_cpu(val); |
| |
| rc = bxe_nvram_write_dword(sc, align_offset, val, cmd_flags); |
| } |
| |
| /* disable access to nvram interface */ |
| bxe_disable_nvram_access(sc); |
| bxe_release_nvram_lock(sc); |
| |
| return (rc); |
| } |
| |
| static int |
| bxe_nvram_write(struct bxe_adapter *sc, |
| uint32_t offset, |
| uint8_t *data_buf, |
| int buf_size) |
| { |
| uint32_t cmd_flags; |
| uint32_t val; |
| uint32_t written_so_far; |
| int rc; |
| |
| if (buf_size == 1) { |
| return (bxe_nvram_write1(sc, offset, data_buf, buf_size)); |
| } |
| |
| if ((offset & 0x03) || (buf_size & 0x03) /* || (buf_size == 0) */) { |
| BLOGE(sc, "Invalid parameter, offset 0x%x buf_size 0x%x\n", |
| offset, buf_size); |
| return (-1); |
| } |
| |
| if (buf_size == 0) { |
| return (0); /* nothing to do */ |
| } |
| |
| if ((offset + buf_size) > sc->devinfo.flash_size) { |
| BLOGE(sc, "Invalid parameter, " |
| "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n", |
| offset, buf_size, sc->devinfo.flash_size); |
| return (-1); |
| } |
| |
| /* request access to nvram interface */ |
| rc = bxe_acquire_nvram_lock(sc); |
| if (rc) { |
| return (rc); |
| } |
| |
| /* enable access to nvram interface */ |
| bxe_enable_nvram_access(sc); |
| |
| written_so_far = 0; |
| cmd_flags = MCPR_NVM_COMMAND_FIRST; |
| while ((written_so_far < buf_size) && (rc == 0)) { |
| if (written_so_far == (buf_size - sizeof(uint32_t))) { |
| cmd_flags |= MCPR_NVM_COMMAND_LAST; |
| } else if (((offset + 4) % NVRAM_PAGE_SIZE) == 0) { |
| cmd_flags |= MCPR_NVM_COMMAND_LAST; |
| } else if ((offset % NVRAM_PAGE_SIZE) == 0) { |
| cmd_flags |= MCPR_NVM_COMMAND_FIRST; |
| } |
| |
| memcpy(&val, data_buf, 4); |
| |
| rc = bxe_nvram_write_dword(sc, offset, val, cmd_flags); |
| |
| /* advance to the next dword */ |
| offset += sizeof(uint32_t); |
| data_buf += sizeof(uint32_t); |
| written_so_far += sizeof(uint32_t); |
| cmd_flags = 0; |
| } |
| |
| /* disable access to nvram interface */ |
| bxe_disable_nvram_access(sc); |
| bxe_release_nvram_lock(sc); |
| |
| return (rc); |
| } |
| |
| /* copy command into DMAE command memory and set DMAE command Go */ |
| void |
| bxe_post_dmae(struct bxe_adapter *sc, |
| struct dmae_command *dmae, |
| int idx) |
| { |
| uint32_t cmd_offset; |
| int i; |
| |
| cmd_offset = (DMAE_REG_CMD_MEM + (sizeof(struct dmae_command) * idx)); |
| for (i = 0; i < ((sizeof(struct dmae_command) / 4)); i++) { |
| REG_WR(sc, (cmd_offset + (i * 4)), *(((uint32_t *)dmae) + i)); |
| } |
| |
| REG_WR(sc, dmae_reg_go_c[idx], 1); |
| } |
| |
| uint32_t |
| bxe_dmae_opcode_add_comp(uint32_t opcode, |
| uint8_t comp_type) |
| { |
| return (opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) | |
| DMAE_COMMAND_C_TYPE_ENABLE)); |
| } |
| |
| uint32_t |
| bxe_dmae_opcode_clr_src_reset(uint32_t opcode) |
| { |
| return (opcode & ~DMAE_COMMAND_SRC_RESET); |
| } |
| |
| uint32_t |
| bxe_dmae_opcode(struct bxe_adapter *sc, |
| uint8_t src_type, |
| uint8_t dst_type, |
| uint8_t with_comp, |
| uint8_t comp_type) |
| { |
| uint32_t opcode = 0; |
| |
| opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) | |
| (dst_type << DMAE_COMMAND_DST_SHIFT)); |
| |
| opcode |= (DMAE_COMMAND_SRC_RESET | DMAE_COMMAND_DST_RESET); |
| |
| opcode |= (SC_PORT(sc) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0); |
| |
| opcode |= ((SC_VN(sc) << DMAE_COMMAND_E1HVN_SHIFT) | |
| (SC_VN(sc) << DMAE_COMMAND_DST_VN_SHIFT)); |
| |
| opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT); |
| |
| #ifdef __BIG_ENDIAN |
| opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP; |
| #else |
| opcode |= DMAE_CMD_ENDIANITY_DW_SWAP; |
| #endif |
| |
| if (with_comp) { |
| opcode = bxe_dmae_opcode_add_comp(opcode, comp_type); |
| } |
| |
| return (opcode); |
| } |
| |
| static void |
| bxe_prep_dmae_with_comp(struct bxe_adapter *sc, |
| struct dmae_command *dmae, |
| uint8_t src_type, |
| uint8_t dst_type) |
| { |
| memset(dmae, 0, sizeof(struct dmae_command)); |
| |
| /* set the opcode */ |
| dmae->opcode = bxe_dmae_opcode(sc, src_type, dst_type, |
| TRUE, DMAE_COMP_PCI); |
| |
| /* fill in the completion parameters */ |
| dmae->comp_addr_lo = U64_LO(BXE_SP_MAPPING(sc, wb_comp)); |
| dmae->comp_addr_hi = U64_HI(BXE_SP_MAPPING(sc, wb_comp)); |
| dmae->comp_val = DMAE_COMP_VAL; |
| } |
| |
| /* issue a DMAE command over the init channel and wait for completion */ |
| static int |
| bxe_issue_dmae_with_comp(struct bxe_adapter *sc, |
| struct dmae_command *dmae) |
| { |
| uint32_t *wb_comp = BXE_SP(sc, wb_comp); |
| int timeout = CHIP_REV_IS_SLOW(sc) ? 400000 : 4000; |
| |
| BXE_DMAE_LOCK(sc); |
| |
| /* reset completion */ |
| *wb_comp = 0; |
| |
| /* post the command on the channel used for initializations */ |
| bxe_post_dmae(sc, dmae, INIT_DMAE_C(sc)); |
| |
| /* wait for completion */ |
| udelay(5); |
| |
| while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) { |
| if (!timeout || |
| (sc->recovery_state != BXE_RECOVERY_DONE && |
| sc->recovery_state != BXE_RECOVERY_NIC_LOADING)) { |
| BLOGE(sc, "DMAE timeout!\n"); |
| BXE_DMAE_UNLOCK(sc); |
| return (DMAE_TIMEOUT); |
| } |
| |
| timeout--; |
| udelay(50); |
| } |
| |
| if (*wb_comp & DMAE_PCI_ERR_FLAG) { |
| BLOGE(sc, "DMAE PCI error!\n"); |
| BXE_DMAE_UNLOCK(sc); |
| return (DMAE_PCI_ERROR); |
| } |
| |
| BXE_DMAE_UNLOCK(sc); |
| return (0); |
| } |
| |
| void |
| bxe_read_dmae(struct bxe_adapter *sc, |
| uint32_t src_addr, |
| uint32_t len32) |
| { |
| struct dmae_command dmae; |
| uint32_t *data; |
| int i, rc; |
| |
| DBASSERT(sc, (len32 <= 4), ("DMAE read length is %d", len32)); |
| |
| if (!sc->dmae_ready) { |
| data = BXE_SP(sc, wb_data[0]); |
| |
| for (i = 0; i < len32; i++) { |
| data[i] = (CHIP_IS_E1(sc)) ? |
| bxe_reg_rd_ind(sc, (src_addr + (i * 4))) : |
| REG_RD(sc, (src_addr + (i * 4))); |
| } |
| |
| return; |
| } |
| |
| /* set opcode and fixed command fields */ |
| bxe_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI); |
| |
| /* fill in addresses and len */ |
| dmae.src_addr_lo = (src_addr >> 2); /* GRC addr has dword resolution */ |
| dmae.src_addr_hi = 0; |
| dmae.dst_addr_lo = U64_LO(BXE_SP_MAPPING(sc, wb_data)); |
| dmae.dst_addr_hi = U64_HI(BXE_SP_MAPPING(sc, wb_data)); |
| dmae.len = len32; |
| |
| /* issue the command and wait for completion */ |
| if ((rc = bxe_issue_dmae_with_comp(sc, &dmae)) != 0) { |
| bxe_panic(sc, ("DMAE failed (%d)\n", rc)); |
| }; |
| } |
| |
| void |
| bxe_write_dmae(struct bxe_adapter *sc, |
| bus_addr_t dma_addr, |
| uint32_t dst_addr, |
| uint32_t len32) |
| { |
| struct dmae_command dmae; |
| int rc; |
| |
| if (!sc->dmae_ready) { |
| DBASSERT(sc, (len32 <= 4), ("DMAE not ready and length is %d", len32)); |
| |
| if (CHIP_IS_E1(sc)) { |
| ecore_init_ind_wr(sc, dst_addr, BXE_SP(sc, wb_data[0]), len32); |
| } else { |
| ecore_init_str_wr(sc, dst_addr, BXE_SP(sc, wb_data[0]), len32); |
| } |
| |
| return; |
| } |
| |
| /* set opcode and fixed command fields */ |
| bxe_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC); |
| |
| /* fill in addresses and len */ |
| dmae.src_addr_lo = U64_LO(dma_addr); |
| dmae.src_addr_hi = U64_HI(dma_addr); |
| dmae.dst_addr_lo = (dst_addr >> 2); /* GRC addr has dword resolution */ |
| dmae.dst_addr_hi = 0; |
| dmae.len = len32; |
| |
| /* issue the command and wait for completion */ |
| if ((rc = bxe_issue_dmae_with_comp(sc, &dmae)) != 0) { |
| bxe_panic(sc, ("DMAE failed (%d)\n", rc)); |
| } |
| } |
| |
| void |
| bxe_write_dmae_phys_len(struct bxe_adapter *sc, |
| bus_addr_t phys_addr, |
| uint32_t addr, |
| uint32_t len) |
| { |
| int dmae_wr_max = DMAE_LEN32_WR_MAX(sc); |
| int offset = 0; |
| |
| while (len > dmae_wr_max) { |
| bxe_write_dmae(sc, |
| (phys_addr + offset), /* src DMA address */ |
| (addr + offset), /* dst GRC address */ |
| dmae_wr_max); |
| offset += (dmae_wr_max * 4); |
| len -= dmae_wr_max; |
| } |
| |
| bxe_write_dmae(sc, |
| (phys_addr + offset), /* src DMA address */ |
| (addr + offset), /* dst GRC address */ |
| len); |
| } |
| |
| void |
| bxe_set_ctx_validation(struct bxe_adapter *sc, |
| struct eth_context *cxt, |
| uint32_t cid) |
| { |
| /* ustorm cxt validation */ |
| cxt->ustorm_ag_context.cdu_usage = |
| CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid), |
| CDU_REGION_NUMBER_UCM_AG, ETH_CONNECTION_TYPE); |
| /* xcontext validation */ |
| cxt->xstorm_ag_context.cdu_reserved = |
| CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid), |
| CDU_REGION_NUMBER_XCM_AG, ETH_CONNECTION_TYPE); |
| } |
| |
| static void |
| bxe_storm_memset_hc_timeout(struct bxe_adapter *sc, |
| uint8_t port, |
| uint8_t fw_sb_id, |
| uint8_t sb_index, |
| uint8_t ticks) |
| { |
| uint32_t addr = |
| (BAR_CSTRORM_INTMEM + |
| CSTORM_STATUS_BLOCK_DATA_TIMEOUT_OFFSET(fw_sb_id, sb_index)); |
| |
| REG_WR8(sc, addr, ticks); |
| |
| BLOGD(sc, DBG_LOAD, |
| "port %d fw_sb_id %d sb_index %d ticks %d\n", |
| port, fw_sb_id, sb_index, ticks); |
| } |
| |
| static void |
| bxe_storm_memset_hc_disable(struct bxe_adapter *sc, |
| uint8_t port, |
| uint16_t fw_sb_id, |
| uint8_t sb_index, |
| uint8_t disable) |
| { |
| uint32_t enable_flag = |
| (disable) ? 0 : (1 << HC_INDEX_DATA_HC_ENABLED_SHIFT); |
| uint32_t addr = |
| (BAR_CSTRORM_INTMEM + |
| CSTORM_STATUS_BLOCK_DATA_FLAGS_OFFSET(fw_sb_id, sb_index)); |
| uint8_t flags; |
| |
| /* clear and set */ |
| flags = REG_RD8(sc, addr); |
| flags &= ~HC_INDEX_DATA_HC_ENABLED; |
| flags |= enable_flag; |
| REG_WR8(sc, addr, flags); |
| |
| BLOGD(sc, DBG_LOAD, |
| "port %d fw_sb_id %d sb_index %d disable %d\n", |
| port, fw_sb_id, sb_index, disable); |
| } |
| |
| void |
| bxe_update_coalesce_sb_index(struct bxe_adapter *sc, |
| uint8_t fw_sb_id, |
| uint8_t sb_index, |
| uint8_t disable, |
| uint16_t usec) |
| { |
| int port = SC_PORT(sc); |
| uint8_t ticks = (usec / 4); /* XXX ??? */ |
| |
| bxe_storm_memset_hc_timeout(sc, port, fw_sb_id, sb_index, ticks); |
| |
| disable = (disable) ? 1 : ((usec) ? 0 : 1); |
| bxe_storm_memset_hc_disable(sc, port, fw_sb_id, sb_index, disable); |
| } |
| |
| void |
| elink_cb_udelay(struct bxe_adapter *sc, |
| uint32_t usecs) |
| { |
| udelay(usecs); |
| } |
| |
| uint32_t |
| elink_cb_reg_read(struct bxe_adapter *sc, |
| uint32_t reg_addr) |
| { |
| return (REG_RD(sc, reg_addr)); |
| } |
| |
| void |
| elink_cb_reg_write(struct bxe_adapter *sc, |
| uint32_t reg_addr, |
| uint32_t val) |
| { |
| REG_WR(sc, reg_addr, val); |
| } |
| |
| void |
| elink_cb_reg_wb_write(struct bxe_adapter *sc, |
| uint32_t offset, |
| uint32_t *wb_write, |
| uint16_t len) |
| { |
| REG_WR_DMAE(sc, offset, wb_write, len); |
| } |
| |
| void |
| elink_cb_reg_wb_read(struct bxe_adapter *sc, |
| uint32_t offset, |
| uint32_t *wb_write, |
| uint16_t len) |
| { |
| REG_RD_DMAE(sc, offset, wb_write, len); |
| } |
| |
| uint8_t |
| elink_cb_path_id(struct bxe_adapter *sc) |
| { |
| return (SC_PATH(sc)); |
| } |
| |
| void |
| elink_cb_event_log(struct bxe_adapter *sc, |
| const elink_log_id_t elink_log_id, |
| ...) |
| { |
| /* XXX */ |
| #if 0 |
| //va_list ap; |
| va_start(ap, elink_log_id); |
| _XXX_(sc, lm_log_id, ap); |
| va_end(ap); |
| #endif |
| BLOGI(sc, "ELINK EVENT LOG (%d)\n", elink_log_id); |
| } |
| |
| static int |
| bxe_set_spio(struct bxe_adapter *sc, |
| int spio, |
| uint32_t mode) |
| { |
| uint32_t spio_reg; |
| |
| /* Only 2 SPIOs are configurable */ |
| if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) { |
| BLOGE(sc, "Invalid SPIO 0x%x\n", spio); |
| return (-1); |
| } |
| |
| bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_SPIO); |
| |
| /* read SPIO and mask except the float bits */ |
| spio_reg = (REG_RD(sc, MISC_REG_SPIO) & MISC_SPIO_FLOAT); |
| |
| switch (mode) { |
| case MISC_SPIO_OUTPUT_LOW: |
| BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> output low\n", spio); |
| /* clear FLOAT and set CLR */ |
| spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS); |
| spio_reg |= (spio << MISC_SPIO_CLR_POS); |
| break; |
| |
| case MISC_SPIO_OUTPUT_HIGH: |
| BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> output high\n", spio); |
| /* clear FLOAT and set SET */ |
| spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS); |
| spio_reg |= (spio << MISC_SPIO_SET_POS); |
| break; |
| |
| case MISC_SPIO_INPUT_HI_Z: |
| BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> input\n", spio); |
| /* set FLOAT */ |
| spio_reg |= (spio << MISC_SPIO_FLOAT_POS); |
| break; |
| |
| default: |
| break; |
| } |
| |
| REG_WR(sc, MISC_REG_SPIO, spio_reg); |
| bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_SPIO); |
| |
| return (0); |
| } |
| |
| static int |
| bxe_gpio_read(struct bxe_adapter *sc, |
| int gpio_num, |
| uint8_t port) |
| { |
| /* The GPIO should be swapped if swap register is set and active */ |
| int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) && |
| REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port); |
| int gpio_shift = (gpio_num + |
| (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0)); |
| uint32_t gpio_mask = (1 << gpio_shift); |
| uint32_t gpio_reg; |
| |
| if (gpio_num > MISC_REGISTERS_GPIO_3) { |
| BLOGE(sc, "Invalid GPIO %d\n", gpio_num); |
| return (-1); |
| } |
| |
| /* read GPIO value */ |
| gpio_reg = REG_RD(sc, MISC_REG_GPIO); |
| |
| /* get the requested pin value */ |
| return ((gpio_reg & gpio_mask) == gpio_mask) ? 1 : 0; |
| } |
| |
| static int |
| bxe_gpio_write(struct bxe_adapter *sc, |
| int gpio_num, |
| uint32_t mode, |
| uint8_t port) |
| { |
| /* The GPIO should be swapped if swap register is set and active */ |
| int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) && |
| REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port); |
| int gpio_shift = (gpio_num + |
| (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0)); |
| uint32_t gpio_mask = (1 << gpio_shift); |
| uint32_t gpio_reg; |
| |
| if (gpio_num > MISC_REGISTERS_GPIO_3) { |
| BLOGE(sc, "Invalid GPIO %d\n", gpio_num); |
| return (-1); |
| } |
| |
| bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); |
| |
| /* read GPIO and mask except the float bits */ |
| gpio_reg = (REG_RD(sc, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT); |
| |
| switch (mode) { |
| case MISC_REGISTERS_GPIO_OUTPUT_LOW: |
| BLOGD(sc, DBG_PHY, |
| "Set GPIO %d (shift %d) -> output low\n", |
| gpio_num, gpio_shift); |
| /* clear FLOAT and set CLR */ |
| gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); |
| gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS); |
| break; |
| |
| case MISC_REGISTERS_GPIO_OUTPUT_HIGH: |
| BLOGD(sc, DBG_PHY, |
| "Set GPIO %d (shift %d) -> output high\n", |
| gpio_num, gpio_shift); |
| /* clear FLOAT and set SET */ |
| gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); |
| gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_SET_POS); |
| break; |
| |
| case MISC_REGISTERS_GPIO_INPUT_HI_Z: |
| BLOGD(sc, DBG_PHY, |
| "Set GPIO %d (shift %d) -> input\n", |
| gpio_num, gpio_shift); |
| /* set FLOAT */ |
| gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS); |
| break; |
| |
| default: |
| break; |
| } |
| |
| REG_WR(sc, MISC_REG_GPIO, gpio_reg); |
| bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); |
| |
| return (0); |
| } |
| |
| static int |
| bxe_gpio_mult_write(struct bxe_adapter *sc, |
| uint8_t pins, |
| uint32_t mode) |
| { |
| uint32_t gpio_reg; |
| |
| /* any port swapping should be handled by caller */ |
| |
| bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); |
| |
| /* read GPIO and mask except the float bits */ |
| gpio_reg = REG_RD(sc, MISC_REG_GPIO); |
| gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS); |
| gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS); |
| gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS); |
| |
| switch (mode) { |
| case MISC_REGISTERS_GPIO_OUTPUT_LOW: |
| BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> output low\n", pins); |
| /* set CLR */ |
| gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS); |
| break; |
| |
| case MISC_REGISTERS_GPIO_OUTPUT_HIGH: |
| BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> output high\n", pins); |
| /* set SET */ |
| gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS); |
| break; |
| |
| case MISC_REGISTERS_GPIO_INPUT_HI_Z: |
| BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> input\n", pins); |
| /* set FLOAT */ |
| gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS); |
| break; |
| |
| default: |
| BLOGE(sc, "Invalid GPIO mode assignment %d\n", mode); |
| bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); |
| return (-1); |
| } |
| |
| REG_WR(sc, MISC_REG_GPIO, gpio_reg); |
| bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); |
| |
| return (0); |
| } |
| |
| static int |
| bxe_gpio_int_write(struct bxe_adapter *sc, |
| int gpio_num, |
| uint32_t mode, |
| uint8_t port) |
| { |
| /* The GPIO should be swapped if swap register is set and active */ |
| int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) && |
| REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port); |
| int gpio_shift = (gpio_num + |
| (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0)); |
| uint32_t gpio_mask = (1 << gpio_shift); |
| uint32_t gpio_reg; |
| |
| if (gpio_num > MISC_REGISTERS_GPIO_3) { |
| BLOGE(sc, "Invalid GPIO %d\n", gpio_num); |
| return (-1); |
| } |
| |
| bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); |
| |
| /* read GPIO int */ |
| gpio_reg = REG_RD(sc, MISC_REG_GPIO_INT); |
| |
| switch (mode) { |
| case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR: |
| BLOGD(sc, DBG_PHY, |
| "Clear GPIO INT %d (shift %d) -> output low\n", |
| gpio_num, gpio_shift); |
| /* clear SET and set CLR */ |
| gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS); |
| gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS); |
| break; |
| |
| case MISC_REGISTERS_GPIO_INT_OUTPUT_SET: |
| BLOGD(sc, DBG_PHY, |
| "Set GPIO INT %d (shift %d) -> output high\n", |
| gpio_num, gpio_shift); |
| /* clear CLR and set SET */ |
| gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS); |
| gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS); |
| break; |
| |
| default: |
| break; |
| } |
| |
| REG_WR(sc, MISC_REG_GPIO_INT, gpio_reg); |
| bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO); |
| |
| return (0); |
| } |
| |
| uint32_t |
| elink_cb_gpio_read(struct bxe_adapter *sc, |
| uint16_t gpio_num, |
| uint8_t port) |
| { |
| return (bxe_gpio_read(sc, gpio_num, port)); |
| } |
| |
| uint8_t |
| elink_cb_gpio_write(struct bxe_adapter *sc, |
| uint16_t gpio_num, |
| uint8_t mode, /* 0=low 1=high */ |
| uint8_t port) |
| { |
| return (bxe_gpio_write(sc, gpio_num, mode, port)); |
| } |
| |
| uint8_t |
| elink_cb_gpio_mult_write(struct bxe_adapter *sc, |
| uint8_t pins, |
| uint8_t mode) /* 0=low 1=high */ |
| { |
| return (bxe_gpio_mult_write(sc, pins, mode)); |
| } |
| |
| uint8_t |
| elink_cb_gpio_int_write(struct bxe_adapter *sc, |
| uint16_t gpio_num, |
| uint8_t mode, /* 0=low 1=high */ |
| uint8_t port) |
| { |
| return (bxe_gpio_int_write(sc, gpio_num, mode, port)); |
| } |
| |
| void |
| elink_cb_notify_link_changed(struct bxe_adapter *sc) |
| { |
| REG_WR(sc, (MISC_REG_AEU_GENERAL_ATTN_12 + |
| (SC_FUNC(sc) * sizeof(uint32_t))), 1); |
| } |
| |
| /* send the MCP a request, block until there is a reply */ |
| uint32_t |
| elink_cb_fw_command(struct bxe_adapter *sc, |
| uint32_t command, |
| uint32_t param) |
| { |
| int mb_idx = SC_FW_MB_IDX(sc); |
| uint32_t seq; |
| uint32_t rc = 0; |
| uint32_t cnt = 1; |
| uint8_t delay = CHIP_REV_IS_SLOW(sc) ? 100 : 10; |
| |
| BXE_FWMB_LOCK(sc); |
| |
| seq = ++sc->fw_seq; |
| SHMEM_WR(sc, func_mb[mb_idx].drv_mb_param, param); |
| SHMEM_WR(sc, func_mb[mb_idx].drv_mb_header, (command | seq)); |
| |
| BLOGD(sc, DBG_PHY, |
| "wrote command 0x%08x to FW MB param 0x%08x\n", |
| (command | seq), param); |
| |
| /* Let the FW do it's magic. GIve it up to 5 seconds... */ |
| do { |
| udelay(delay * 1000); |
| rc = SHMEM_RD(sc, func_mb[mb_idx].fw_mb_header); |
| } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500)); |
| |
| BLOGD(sc, DBG_PHY, |
| "[after %d ms] read 0x%x seq 0x%x from FW MB\n", |
| cnt*delay, rc, seq); |
| |
| /* is this a reply to our command? */ |
| if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK)) { |
| rc &= FW_MSG_CODE_MASK; |
| } else { |
| /* Ruh-roh! */ |
| BLOGE(sc, "FW failed to respond!\n"); |
| // XXX bxe_fw_dump(sc); |
| rc = 0; |
| } |
| |
| BXE_FWMB_UNLOCK(sc); |
| return (rc); |
| } |
| |
| static uint32_t |
| bxe_fw_command(struct bxe_adapter *sc, |
| uint32_t command, |
| uint32_t param) |
| { |
| return (elink_cb_fw_command(sc, command, param)); |
| } |
| |
| static void |
| __storm_memset_dma_mapping(struct bxe_adapter *sc, |
| uint32_t addr, |
| bus_addr_t mapping) |
| { |
| REG_WR(sc, addr, U64_LO(mapping)); |
| REG_WR(sc, (addr + 4), U64_HI(mapping)); |
| } |
| |
| static void |
| storm_memset_spq_addr(struct bxe_adapter *sc, |
| bus_addr_t mapping, |
| uint16_t abs_fid) |
| { |
| uint32_t addr = (XSEM_REG_FAST_MEMORY + |
| XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid)); |
| __storm_memset_dma_mapping(sc, addr, mapping); |
| } |
| |
| static void |
| storm_memset_vf_to_pf(struct bxe_adapter *sc, |
| uint16_t abs_fid, |
| uint16_t pf_id) |
| { |
| REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id); |
| REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id); |
| REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id); |
| REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id); |
| } |
| |
| static void |
| storm_memset_func_en(struct bxe_adapter *sc, |
| uint16_t abs_fid, |
| uint8_t enable) |
| { |
| REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid)), enable); |
| REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid)), enable); |
| REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid)), enable); |
| REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid)), enable); |
| } |
| |
| static void |
| storm_memset_eq_data(struct bxe_adapter *sc, |
| struct event_ring_data *eq_data, |
| uint16_t pfid) |
| { |
| uint32_t addr; |
| size_t size; |
| |
| addr = (BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid)); |
| size = sizeof(struct event_ring_data); |
| ecore_storm_memset_struct(sc, addr, size, (uint32_t *)eq_data); |
| } |
| |
| static void |
| storm_memset_eq_prod(struct bxe_adapter *sc, |
| uint16_t eq_prod, |
| uint16_t pfid) |
| { |
| uint32_t addr = (BAR_CSTRORM_INTMEM + |
| CSTORM_EVENT_RING_PROD_OFFSET(pfid)); |
| REG_WR16(sc, addr, eq_prod); |
| } |
| |
| /* |
| * Post a slowpath command. |
| * |
| * A slowpath command is used to propogate a configuration change through |
| * the controller in a controlled manner, allowing each STORM processor and |
| * other H/W blocks to phase in the change. The commands sent on the |
| * slowpath are referred to as ramrods. Depending on the ramrod used the |
| * completion of the ramrod will occur in different ways. Here's a |
| * breakdown of ramrods and how they complete: |
| * |
| * RAMROD_CMD_ID_ETH_PORT_SETUP |
| * Used to setup the leading connection on a port. Completes on the |
| * Receive Completion Queue (RCQ) of that port (typically fp[0]). |
| * |
| * RAMROD_CMD_ID_ETH_CLIENT_SETUP |
| * Used to setup an additional connection on a port. Completes on the |
| * RCQ of the multi-queue/RSS connection being initialized. |
| * |
| * RAMROD_CMD_ID_ETH_STAT_QUERY |
| * Used to force the storm processors to update the statistics database |
| * in host memory. This ramrod is send on the leading connection CID and |
| * completes as an index increment of the CSTORM on the default status |
| * block. |
| * |
| * RAMROD_CMD_ID_ETH_UPDATE |
| * Used to update the state of the leading connection, usually to udpate |
| * the RSS indirection table. Completes on the RCQ of the leading |
| * connection. (Not currently used under FreeBSD until OS support becomes |
| * available.) |
| * |
| * RAMROD_CMD_ID_ETH_HALT |
| * Used when tearing down a connection prior to driver unload. Completes |
| * on the RCQ of the multi-queue/RSS connection being torn down. Don't |
| * use this on the leading connection. |
| * |
| * RAMROD_CMD_ID_ETH_SET_MAC |
| * Sets the Unicast/Broadcast/Multicast used by the port. Completes on |
| * the RCQ of the leading connection. |
| * |
| * RAMROD_CMD_ID_ETH_CFC_DEL |
| * Used when tearing down a conneciton prior to driver unload. Completes |
| * on the RCQ of the leading connection (since the current connection |
| * has been completely removed from controller memory). |
| * |
| * RAMROD_CMD_ID_ETH_PORT_DEL |
| * Used to tear down the leading connection prior to driver unload, |
| * typically fp[0]. Completes as an index increment of the CSTORM on the |
| * default status block. |
| * |
| * RAMROD_CMD_ID_ETH_FORWARD_SETUP |
| * Used for connection offload. Completes on the RCQ of the multi-queue |
| * RSS connection that is being offloaded. (Not currently used under |
| * FreeBSD.) |
| * |
| * There can only be one command pending per function. |
| * |
| * Returns: |
| * 0 = Success, !0 = Failure. |
| */ |
| |
| /* must be called under the spq lock */ |
| static inline |
| struct eth_spe *bxe_sp_get_next(struct bxe_adapter *sc) |
| { |
| struct eth_spe *next_spe = sc->spq_prod_bd; |
| |
| if (sc->spq_prod_bd == sc->spq_last_bd) { |
| /* wrap back to the first eth_spq */ |
| sc->spq_prod_bd = sc->spq; |
| sc->spq_prod_idx = 0; |
| } else { |
| sc->spq_prod_bd++; |
| sc->spq_prod_idx++; |
| } |
| |
| return (next_spe); |
| } |
| |
| /* must be called under the spq lock */ |
| static inline |
| void bxe_sp_prod_update(struct bxe_adapter *sc) |
| { |
| int func = SC_FUNC(sc); |
| |
| /* |
| * Make sure that BD data is updated before writing the producer. |
| * BD data is written to the memory, the producer is read from the |
| * memory, thus we need a full memory barrier to ensure the ordering. |
| */ |
| mb(); |
| |
| REG_WR16(sc, (BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func)), |
| sc->spq_prod_idx); |
| |
| bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0, |
| BUS_SPACE_BARRIER_WRITE); |
| } |
| |
| /** |
| * bxe_is_contextless_ramrod - check if the current command ends on EQ |
| * |
| * @cmd: command to check |
| * @cmd_type: command type |
| */ |
| static inline |
| int bxe_is_contextless_ramrod(int cmd, |
| int cmd_type) |
| { |
| if ((cmd_type == NONE_CONNECTION_TYPE) || |
| (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) || |
| (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) || |
| (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) || |
| (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) || |
| (cmd == RAMROD_CMD_ID_ETH_SET_MAC) || |
| (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE)) { |
| return (TRUE); |
| } else { |
| return (FALSE); |
| } |
| } |
| |
| /** |
| * bxe_sp_post - place a single command on an SP ring |
| * |
| * @sc: driver handle |
| * @command: command to place (e.g. SETUP, FILTER_RULES, etc.) |
| * @cid: SW CID the command is related to |
| * @data_hi: command private data address (high 32 bits) |
| * @data_lo: command private data address (low 32 bits) |
| * @cmd_type: command type (e.g. NONE, ETH) |
| * |
| * SP data is handled as if it's always an address pair, thus data fields are |
| * not swapped to little endian in upper functions. Instead this function swaps |
| * data as if it's two uint32 fields. |
| */ |
| int |
| bxe_sp_post(struct bxe_adapter *sc, |
| int command, |
| int cid, |
| uint32_t data_hi, |
| uint32_t data_lo, |
| int cmd_type) |
| { |
| struct eth_spe *spe; |
| uint16_t type; |
| int common; |
| |
| common = bxe_is_contextless_ramrod(command, cmd_type); |
| |
| BXE_SP_LOCK(sc); |
| |
| if (common) { |
| if (!atomic_read(&sc->eq_spq_left)) { |
| BLOGE(sc, "EQ ring is full!\n"); |
| BXE_SP_UNLOCK(sc); |
| return (-1); |
| } |
| } else { |
| if (!atomic_read(&sc->cq_spq_left)) { |
| BLOGE(sc, "SPQ ring is full!\n"); |
| BXE_SP_UNLOCK(sc); |
| return (-1); |
| } |
| } |
| |
| spe = bxe_sp_get_next(sc); |
| |
| /* CID needs port number to be encoded int it */ |
| spe->hdr.conn_and_cmd_data = |
| cpu_to_le32((command << SPE_HDR_CMD_ID_SHIFT) | HW_CID(sc, cid)); |
| |
| type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) & SPE_HDR_CONN_TYPE; |
| |
| /* TBD: Check if it works for VFs */ |
| type |= ((SC_FUNC(sc) << SPE_HDR_FUNCTION_ID_SHIFT) & |
| SPE_HDR_FUNCTION_ID); |
| |
| spe->hdr.type = cpu_to_le16(type); |
| |
| spe->data.update_data_addr.hi = cpu_to_le32(data_hi); |
| spe->data.update_data_addr.lo = cpu_to_le32(data_lo); |
| |
| /* |
| * It's ok if the actual decrement is issued towards the memory |
| * somewhere between the lock and unlock. Thus no more explict |
| * memory barrier is needed. |
| */ |
| if (common) { |
| atomic_add(&sc->eq_spq_left, -1); |
| } else { |
| atomic_add(&sc->cq_spq_left, -1); |
| } |
| |
| BLOGD(sc, DBG_SP, "SPQE -> %#jx\n", (uintmax_t)sc->spq_dma.paddr); |
| BLOGD(sc, DBG_SP, "FUNC_RDATA -> %p / %#jx\n", |
| BXE_SP(sc, func_rdata), (uintmax_t)BXE_SP_MAPPING(sc, func_rdata)); |
| BLOGD(sc, DBG_SP, |
| "SPQE[%x] (%x:%x) (cmd, common?) (%d,%d) hw_cid %x data (%x:%x) type(0x%x) left (CQ, EQ) (%lx,%lx)\n", |
| sc->spq_prod_idx, |
| (uint32_t)U64_HI(sc->spq_dma.paddr), |
| (uint32_t)(U64_LO(sc->spq_dma.paddr) + (uint8_t *)sc->spq_prod_bd - (uint8_t *)sc->spq), |
| command, |
| common, |
| HW_CID(sc, cid), |
| data_hi, |
| data_lo, |
| type, |
| atomic_read(&sc->cq_spq_left), |
| atomic_read(&sc->eq_spq_left)); |
| |
| bxe_sp_prod_update(sc); |
| |
| BXE_SP_UNLOCK(sc); |
| return (0); |
| } |
| |
| /** |
| * bxe_debug_print_ind_table - prints the indirection table configuration. |
| * |
| * @sc: driver hanlde |
| * @p: pointer to rss configuration |
| */ |
| #if 0 |
| static void |
| bxe_debug_print_ind_table(struct bxe_adapter *sc, |
| struct ecore_config_rss_params *p) |
| { |
| int i; |
| |
| BLOGD(sc, DBG_LOAD, "Setting indirection table to:\n"); |
| BLOGD(sc, DBG_LOAD, " 0x0000: "); |
| for (i = 0; i < T_ETH_INDIRECTION_TABLE_SIZE; i++) { |
| BLOGD(sc, DBG_LOAD, "0x%02x ", p->ind_table[i]); |
| |
| /* Print 4 bytes in a line */ |
| if ((i + 1 < T_ETH_INDIRECTION_TABLE_SIZE) && |
| (((i + 1) & 0x3) == 0)) { |
| BLOGD(sc, DBG_LOAD, "\n"); |
| BLOGD(sc, DBG_LOAD, "0x%04x: ", i + 1); |
| } |
| } |
| |
| BLOGD(sc, DBG_LOAD, "\n"); |
| } |
| #endif |
| |
| /* |
| * FreeBSD Device probe function. |
| * |
| * Compares the device found to the driver's list of supported devices and |
| * reports back to the bsd loader whether this is the right driver for the device. |
| * This is the driver entry function called from the "kldload" command. |
| * |
| * Returns: |
| * 0 on success, positive value on failure. |
| */ |
| |
| int bxe_probe(struct pci_device *dev) |
| { |
| struct bxe_adapter *sc; |
| struct bxe_device_type *t; |
| char *descbuf; |
| uint16_t did, sdid, svid, vid; |
| |
| /* Find our device structure */ |
| // BSD had the controllers already alloced. Plan 9 does it after they |
| // are probed |
| // sc = device_get_softc(dev); |
| // sc->pcidev= dev; |
| t = bxe_devs; |
| |
| /* Get the data for the device to be probed. */ |
| vid = pci_get_vendor(dev); |
| did = pci_get_device(dev); |
| svid = pci_get_subvendor(dev); |
| sdid = pci_get_subdevice(dev); |
| |
| /* Look through the list of known devices for a match. */ |
| while (t->bxe_name != NULL) { |
| if ((vid == t->bxe_vid) && (did == t->bxe_did) && |
| ((svid == t->bxe_svid) || (t->bxe_svid == PCI_ANY_ID)) && |
| ((sdid == t->bxe_sdid) || (t->bxe_sdid == PCI_ANY_ID))) { |
| descbuf = kmalloc(BXE_DEVDESC_MAX, 0); /* M_TEMP */ |
| if (descbuf == NULL) |
| return (ENOMEM); |
| |
| /* Print out the device identity. */ |
| snprintf(descbuf, BXE_DEVDESC_MAX, |
| "%s (%c%d) BXE v:%s\n", t->bxe_name, |
| (((pcidev_read32(dev, PCI_REVID_REG) & |
| 0xf0) >> 4) + 'A'), |
| (pcidev_read32(dev, PCI_REVID_REG) & 0xf), |
| BXE_DRIVER_VERSION); |
| |
| /* Could add this field to our pcidevs, might be useful */ |
| //device_set_desc_copy(dev, descbuf); |
| printk(descbuf); |
| kfree(descbuf); /* M_TEMP */ |
| return 0; |
| } |
| t++; |
| } |
| return (ENXIO); |
| } |
| |
| static void |
| bxe_init_mutexes(struct bxe_adapter *sc) |
| { |
| #ifdef BXE_CORE_LOCK_SX |
| snprintf(sc->core_sx_name, sizeof(sc->core_sx_name), |
| "bxe%d_core_lock", sc->unit); |
| sx_init(&sc->core_sx, sc->core_sx_name); |
| #else |
| snprintf(sc->core_mtx_name, sizeof(sc->core_mtx_name), |
| "bxe%d_core_lock", sc->unit); |
| qlock_init(&sc->core_mtx); |
| |
| snprintf(sc->sp_mtx_name, sizeof(sc->sp_mtx_name), |
| "bxe%d_sp_lock", sc->unit); |
| qlock_init(&sc->sp_mtx); |
| |
| snprintf(sc->dmae_mtx_name, sizeof(sc->dmae_mtx_name), |
| "bxe%d_dmae_lock", sc->unit); |
| qlock_init(&sc->dmae_mtx); |
| |
| snprintf(sc->port.phy_mtx_name, sizeof(sc->port.phy_mtx_name), |
| "bxe%d_phy_lock", sc->unit); |
| qlock_init(&sc->port.phy_mtx); |
| |
| snprintf(sc->fwmb_mtx_name, sizeof(sc->fwmb_mtx_name), |
| "bxe%d_fwmb_lock", sc->unit); |
| qlock_init(&sc->fwmb_mtx); |
| |
| snprintf(sc->print_mtx_name, sizeof(sc->print_mtx_name), |
| "bxe%d_print_lock", sc->unit); |
| qlock_init(&(sc->print_mtx)); |
| |
| snprintf(sc->stats_mtx_name, sizeof(sc->stats_mtx_name), |
| "bxe%d_stats_lock", sc->unit); |
| qlock_init(&(sc->stats_mtx)); |
| |
| snprintf(sc->mcast_mtx_name, sizeof(sc->mcast_mtx_name), |
| "bxe%d_mcast_lock", sc->unit); |
| qlock_init(&(sc->mcast_mtx)); |
| #endif |
| } |
| |
| static void |
| bxe_release_mutexes(struct bxe_adapter *sc) |
| { |
| #if 0 // AKAROS_PORT brho: no need to uncomment, we don't destroy qlocks |
| #ifdef BXE_CORE_LOCK_SX |
| sx_destroy(&sc->core_sx); |
| #else |
| if (mtx_initialized(&sc->core_mtx)) { |
| mtx_destroy(&sc->core_mtx); |
| } |
| #endif |
| |
| if (mtx_initialized(&sc->sp_mtx)) { |
| mtx_destroy(&sc->sp_mtx); |
| } |
| |
| if (mtx_initialized(&sc->dmae_mtx)) { |
| mtx_destroy(&sc->dmae_mtx); |
| } |
| |
| if (mtx_initialized(&sc->port.phy_mtx)) { |
| mtx_destroy(&sc->port.phy_mtx); |
| } |
| |
| if (mtx_initialized(&sc->fwmb_mtx)) { |
| mtx_destroy(&sc->fwmb_mtx); |
| } |
| |
| if (mtx_initialized(&sc->print_mtx)) { |
| mtx_destroy(&sc->print_mtx); |
| } |
| |
| if (mtx_initialized(&sc->stats_mtx)) { |
| mtx_destroy(&sc->stats_mtx); |
| } |
| |
| if (mtx_initialized(&sc->mcast_mtx)) { |
| mtx_destroy(&sc->mcast_mtx); |
| } |
| #endif |
| } |
| |
| static void |
| bxe_tx_disable(struct bxe_adapter* sc) |
| { |
| if_t ifp = sc->ifp; |
| |
| assert(0); |
| // TODO: is there a way to do this in this stack? I think it just pauses ... |
| #if 0 // AKAROS_PORT |
| /* tell the stack the driver is stopped and TX queue is full */ |
| if (ifp != NULL) { |
| /if_setdrvflags(ifp, 0); |
| } |
| #endif |
| } |
| |
| static void |
| bxe_drv_pulse(struct bxe_adapter *sc) |
| { |
| SHMEM_WR(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb, |
| sc->fw_drv_pulse_wr_seq); |
| } |
| |
| static inline uint16_t |
| bxe_tx_avail(struct bxe_adapter *sc, |
| struct bxe_fastpath *fp) |
| { |
| int16_t used; |
| uint16_t prod; |
| uint16_t cons; |
| |
| prod = fp->tx_bd_prod; |
| cons = fp->tx_bd_cons; |
| |
| used = SUB_S16(prod, cons); |
| |
| #if 0 |
| KASSERT((used < 0), ("used tx bds < 0")); |
| KASSERT((used > sc->tx_ring_size), ("used tx bds > tx_ring_size")); |
| KASSERT(((sc->tx_ring_size - used) > MAX_TX_AVAIL), |
| ("invalid number of tx bds used")); |
| #endif |
| |
| return (int16_t)(sc->tx_ring_size) - used; |
| } |
| |
| static inline int |
| bxe_tx_queue_has_work(struct bxe_fastpath *fp) |
| { |
| uint16_t hw_cons; |
| |
| mb(); /* status block fields can change */ |
| hw_cons = le16_to_cpu(*fp->tx_cons_sb); |
| return (hw_cons != fp->tx_pkt_cons); |
| } |
| |
| static inline uint8_t |
| bxe_has_tx_work(struct bxe_fastpath *fp) |
| { |
| /* expand this for multi-cos if ever supported */ |
| return (bxe_tx_queue_has_work(fp)) ? TRUE : FALSE; |
| } |
| |
| static inline int |
| bxe_has_rx_work(struct bxe_fastpath *fp) |
| { |
| uint16_t rx_cq_cons_sb; |
| |
| mb(); /* status block fields can change */ |
| rx_cq_cons_sb = le16_to_cpu(*fp->rx_cq_cons_sb); |
| if ((rx_cq_cons_sb & RCQ_MAX) == RCQ_MAX) |
| rx_cq_cons_sb++; |
| return (fp->rx_cq_cons != rx_cq_cons_sb); |
| } |
| |
| static void |
| bxe_sp_event(struct bxe_adapter *sc, |
| struct bxe_fastpath *fp, |
| union eth_rx_cqe *rr_cqe) |
| { |
| int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data); |
| int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data); |
| enum ecore_queue_cmd drv_cmd = ECORE_Q_CMD_MAX; |
| struct ecore_queue_sp_obj *q_obj = &BXE_SP_OBJ(sc, fp).q_obj; |
| |
| BLOGD(sc, DBG_SP, "fp=%d cid=%d got ramrod #%d state is %x type is %d\n", |
| fp->index, cid, command, sc->state, rr_cqe->ramrod_cqe.ramrod_type); |
| |
| #if 0 |
| /* |
| * If cid is within VF range, replace the slowpath object with the |
| * one corresponding to this VF |
| */ |
| if ((cid >= BXE_FIRST_VF_CID) && (cid < BXE_FIRST_VF_CID + BXE_VF_CIDS)) { |
| bxe_iov_set_queue_sp_obj(sc, cid, &q_obj); |
| } |
| #endif |
| |
| switch (command) { |
| case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE): |
| BLOGD(sc, DBG_SP, "got UPDATE ramrod. CID %d\n", cid); |
| drv_cmd = ECORE_Q_CMD_UPDATE; |
| break; |
| |
| case (RAMROD_CMD_ID_ETH_CLIENT_SETUP): |
| BLOGD(sc, DBG_SP, "got MULTI[%d] setup ramrod\n", cid); |
| drv_cmd = ECORE_Q_CMD_SETUP; |
| break; |
| |
| case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP): |
| BLOGD(sc, DBG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid); |
| drv_cmd = ECORE_Q_CMD_SETUP_TX_ONLY; |
| break; |
| |
| case (RAMROD_CMD_ID_ETH_HALT): |
| BLOGD(sc, DBG_SP, "got MULTI[%d] halt ramrod\n", cid); |
| drv_cmd = ECORE_Q_CMD_HALT; |
| break; |
| |
| case (RAMROD_CMD_ID_ETH_TERMINATE): |
| BLOGD(sc, DBG_SP, "got MULTI[%d] teminate ramrod\n", cid); |
| drv_cmd = ECORE_Q_CMD_TERMINATE; |
| break; |
| |
| case (RAMROD_CMD_ID_ETH_EMPTY): |
| BLOGD(sc, DBG_SP, "got MULTI[%d] empty ramrod\n", cid); |
| drv_cmd = ECORE_Q_CMD_EMPTY; |
| break; |
| |
| default: |
| BLOGD(sc, DBG_SP, "ERROR: unexpected MC reply (%d) on fp[%d]\n", |
| command, fp->index); |
| return; |
| } |
| |
| if ((drv_cmd != ECORE_Q_CMD_MAX) && |
| q_obj->complete_cmd(sc, q_obj, drv_cmd)) { |
| /* |
| * q_obj->complete_cmd() failure means that this was |
| * an unexpected completion. |
| * |
| * In this case we don't want to increase the sc->spq_left |
| * because apparently we haven't sent this command the first |
| * place. |
| */ |
| // bxe_panic(sc, ("Unexpected SP completion\n")); |
| return; |
| } |
| |
| #if 0 |
| /* SRIOV: reschedule any 'in_progress' operations */ |
| bxe_iov_sp_event(sc, cid, TRUE); |
| #endif |
| |
| atomic_add(&sc->cq_spq_left, 1); |
| |
| BLOGD(sc, DBG_SP, "sc->cq_spq_left 0x%lx\n", |
| atomic_read(&sc->cq_spq_left)); |
| |
| #if 0 |
| if ((drv_cmd == ECORE_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) && |
| (!!bxe_test_bit(ECORE_AFEX_FCOE_Q_UPDATE_PENDING, &sc->sp_state))) { |
| /* |
| * If Queue update ramrod is completed for last Queue in AFEX VIF set |
| * flow, then ACK MCP at the end. Mark pending ACK to MCP bit to |
| * prevent case that both bits are cleared. At the end of load/unload |
| * driver checks that sp_state is cleared and this order prevents |
| * races. |
| */ |
| bxe_set_bit(ECORE_AFEX_PENDING_VIFSET_MCP_ACK, &sc->sp_state); |
| wmb(); |
| bxe_clear_bit(ECORE_AFEX_FCOE_Q_UPDATE_PENDING, &sc->sp_state); |
| |
| /* schedule the sp task as MCP ack is required */ |
| bxe_schedule_sp_task(sc); |
| } |
| #endif |
| } |
| |
| /* |
| * The current mbuf is part of an aggregation. Move the mbuf into the TPA |
| * aggregation queue, put an empty mbuf back onto the receive chain, and mark |
| * the current aggregation queue as in-progress. |
| */ |
| static void |
| bxe_tpa_start(struct bxe_adapter *sc, |
| struct bxe_fastpath *fp, |
| uint16_t queue, |
| uint16_t cons, |
| uint16_t prod, |
| struct eth_fast_path_rx_cqe *cqe) |
| { |
| assert(0); |
| #if 0 // AKAROS_PORT |
| struct bxe_sw_rx_bd tmp_bd; |
| struct bxe_sw_rx_bd *rx_buf; |
| struct eth_rx_bd *rx_bd; |
| int max_agg_queues; |
| struct bxe_sw_tpa_info *tpa_info = &fp->rx_tpa_info[queue]; |
| uint16_t index; |
| |
| BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA START " |
| "cons=%d prod=%d\n", |
| fp->index, queue, cons, prod); |
| |
| max_agg_queues = MAX_AGG_QS(sc); |
| |
| KASSERT((queue < max_agg_queues), |
| ("fp[%02d] invalid aggr queue (%d >= %d)!", |
| fp->index, queue, max_agg_queues)); |
| |
| KASSERT((tpa_info->state == BXE_TPA_STATE_STOP), |
| ("fp[%02d].tpa[%02d] starting aggr on queue not stopped!", |
| fp->index, queue)); |
| |
| /* copy the existing mbuf and mapping from the TPA pool */ |
| tmp_bd = tpa_info->bd; |
| |
| if (tmp_bd.m == NULL) { |
| BLOGE(sc, "fp[%02d].tpa[%02d] mbuf not allocated!\n", |
| fp->index, queue); |
| /* XXX Error handling? */ |
| return; |
| } |
| |
| /* change the TPA queue to the start state */ |
| tpa_info->state = BXE_TPA_STATE_START; |
| tpa_info->placement_offset = cqe->placement_offset; |
| tpa_info->parsing_flags = le16_to_cpu(cqe->pars_flags.flags); |
| tpa_info->vlan_tag = le16_to_cpu(cqe->vlan_tag); |
| tpa_info->len_on_bd = le16_to_cpu(cqe->len_on_bd); |
| |
| fp->rx_tpa_queue_used |= (1 << queue); |
| |
| /* |
| * If all the buffer descriptors are filled with mbufs then fill in |
| * the current consumer index with a new BD. Else if a maximum Rx |
| * buffer limit is imposed then fill in the next producer index. |
| */ |
| index = (sc->max_rx_bufs != RX_BD_USABLE) ? |
| prod : cons; |
| |
| /* move the received mbuf and mapping to TPA pool */ |
| tpa_info->bd = fp->rx_mbuf_chain[cons]; |
| |
| /* release any existing RX BD mbuf mappings */ |
| if (cons != index) { |
| rx_buf = &fp->rx_mbuf_chain[cons]; |
| |
| if (rx_buf->m_map != NULL) { |
| bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map, |
| BUS_DMASYNC_POSTREAD); |
| bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map); |
| } |
| |
| /* |
| * We get here when the maximum number of rx buffers is less than |
| * RX_BD_USABLE. The mbuf is already saved above so it's OK to NULL |
| * it out here without concern of a memory leak. |
| */ |
| fp->rx_mbuf_chain[cons].m = NULL; |
| } |
| |
| /* update the Rx SW BD with the mbuf info from the TPA pool */ |
| fp->rx_mbuf_chain[index] = tmp_bd; |
| |
| /* update the Rx BD with the empty mbuf phys address from the TPA pool */ |
| rx_bd = &fp->rx_chain[index]; |
| rx_bd->addr_hi = cpu_to_le32(U64_HI(tpa_info->seg.ds_addr)); |
| rx_bd->addr_lo = cpu_to_le32(U64_LO(tpa_info->seg.ds_addr)); |
| #endif |
| } |
| #if 0 // AKAROS_PORT |
| /* |
| * When a TPA aggregation is completed, loop through the individual mbufs |
| * of the aggregation, combining them into a single mbuf which will be sent |
| * up the stack. Refill all freed SGEs with mbufs as we go along. |
| */ |
| static int |
| bxe_fill_frag_mbuf(struct bxe_adapter *sc, |
| struct bxe_fastpath *fp, |
| struct bxe_sw_tpa_info *tpa_info, |
| uint16_t queue, |
| uint16_t pages, |
| struct mbuf *m, |
| struct eth_end_agg_rx_cqe *cqe, |
| uint16_t cqe_idx) |
| { |
| struct mbuf *m_frag; |
| uint32_t frag_len, frag_size, i; |
| uint16_t sge_idx; |
| int rc = 0; |
| int j; |
| |
| frag_size = le16_to_cpu(cqe->pkt_len) - tpa_info->len_on_bd; |
| |
| BLOGD(sc, DBG_LRO, |
| "fp[%02d].tpa[%02d] TPA fill len_on_bd=%d frag_size=%d pages=%d\n", |
| fp->index, queue, tpa_info->len_on_bd, frag_size, pages); |
| |
| /* make sure the aggregated frame is not too big to handle */ |
| if (pages > 8 * PAGES_PER_SGE) { |
| BLOGE(sc, "fp[%02d].sge[0x%04x] has too many pages (%d)! " |
| "pkt_len=%d len_on_bd=%d frag_size=%d\n", |
| fp->index, cqe_idx, pages, le16_to_cpu(cqe->pkt_len), |
| tpa_info->len_on_bd, frag_size); |
| bxe_panic(sc, ("sge page count error\n")); |
| return (EINVAL); |
| } |
| |
| /* |
| * Scan through the scatter gather list pulling individual mbufs into a |
| * single mbuf for the host stack. |
| */ |
| for (i = 0, j = 0; i < pages; i += PAGES_PER_SGE, j++) { |
| sge_idx = RX_SGE(le16_to_cpu(cqe->sgl_or_raw_data.sgl[j])); |
| |
| /* |
| * Firmware gives the indices of the SGE as if the ring is an array |
| * (meaning that the "next" element will consume 2 indices). |
| */ |
| frag_len = MIN(frag_size, (uint32_t)(SGE_PAGES)); |
| |
| BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA fill i=%d j=%d " |
| "sge_idx=%d frag_size=%d frag_len=%d\n", |
| fp->index, queue, i, j, sge_idx, frag_size, frag_len); |
| |
| m_frag = fp->rx_sge_mbuf_chain[sge_idx].m; |
| |
| /* allocate a new mbuf for the SGE */ |
| rc = bxe_alloc_rx_sge_mbuf(fp, sge_idx); |
| if (rc) { |
| /* Leave all remaining SGEs in the ring! */ |
| return (rc); |
| } |
| |
| /* update the fragment length */ |
| m_frag->m_len = frag_len; |
| |
| /* concatenate the fragment to the head mbuf */ |
| m_cat(m, m_frag); |
| fp->eth_q_stats.mbuf_alloc_sge--; |
| |
| /* update the TPA mbuf size and remaining fragment size */ |
| m->m_pkthdr.len += frag_len; |
| frag_size -= frag_len; |
| } |
| |
| BLOGD(sc, DBG_LRO, |
| "fp[%02d].tpa[%02d] TPA fill done frag_size=%d\n", |
| fp->index, queue, frag_size); |
| |
| return (rc); |
| } |
| #endif |
| static inline void |
| bxe_clear_sge_mask_next_elems(struct bxe_fastpath *fp) |
| { |
| int i, j; |
| |
| for (i = 1; i <= RX_SGE_NUM_PAGES; i++) { |
| int idx = RX_SGE_TOTAL_PER_PAGE * i - 1; |
| |
| for (j = 0; j < 2; j++) { |
| BIT_VEC64_CLEAR_BIT(fp->sge_mask, idx); |
| idx--; |
| } |
| } |
| } |
| |
| static inline void |
| bxe_init_sge_ring_bit_mask(struct bxe_fastpath *fp) |
| { |
| /* set the mask to all 1's, it's faster to compare to 0 than to 0xf's */ |
| memset(fp->sge_mask, 0xff, sizeof(fp->sge_mask)); |
| |
| /* |
| * Clear the two last indices in the page to 1. These are the indices that |
| * correspond to the "next" element, hence will never be indicated and |
| * should be removed from the calculations. |
| */ |
| bxe_clear_sge_mask_next_elems(fp); |
| } |
| |
| static inline void |
| bxe_update_last_max_sge(struct bxe_fastpath *fp, |
| uint16_t idx) |
| { |
| uint16_t last_max = fp->last_max_sge; |
| |
| if (SUB_S16(idx, last_max) > 0) { |
| fp->last_max_sge = idx; |
| } |
| } |
| |
| static inline void |
| bxe_update_sge_prod(struct bxe_adapter *sc, |
| struct bxe_fastpath *fp, |
| uint16_t sge_len, |
| struct eth_end_agg_rx_cqe *cqe) |
| { |
| uint16_t last_max, last_elem, first_elem; |
| uint16_t delta = 0; |
| uint16_t i; |
| |
| if (!sge_len) { |
| return; |
| } |
| |
| /* first mark all used pages */ |
| for (i = 0; i < sge_len; i++) { |
| BIT_VEC64_CLEAR_BIT(fp->sge_mask, |
| RX_SGE(le16_to_cpu(cqe->sgl_or_raw_data.sgl[i]))); |
| } |
| |
| BLOGD(sc, DBG_LRO, |
| "fp[%02d] fp_cqe->sgl[%d] = %d\n", |
| fp->index, sge_len - 1, |
| le16_to_cpu(cqe->sgl_or_raw_data.sgl[sge_len - 1])); |
| |
| /* assume that the last SGE index is the biggest */ |
| bxe_update_last_max_sge(fp, |
| le16_to_cpu(cqe->sgl_or_raw_data.sgl[sge_len - 1])); |
| |
| last_max = RX_SGE(fp->last_max_sge); |
| last_elem = last_max >> BIT_VEC64_ELEM_SHIFT; |
| first_elem = RX_SGE(fp->rx_sge_prod) >> BIT_VEC64_ELEM_SHIFT; |
| |
| /* if ring is not full */ |
| if (last_elem + 1 != first_elem) { |
| last_elem++; |
| } |
| |
| /* now update the prod */ |
| for (i = first_elem; i != last_elem; i = RX_SGE_NEXT_MASK_ELEM(i)) { |
| if (fp->sge_mask[i]) { |
| break; |
| } |
| |
| fp->sge_mask[i] = BIT_VEC64_ELEM_ONE_MASK; |
| delta += BIT_VEC64_ELEM_SZ; |
| } |
| |
| if (delta > 0) { |
| fp->rx_sge_prod += delta; |
| /* clear page-end entries */ |
| bxe_clear_sge_mask_next_elems(fp); |
| } |
| |
| BLOGD(sc, DBG_LRO, |
| "fp[%02d] fp->last_max_sge=%d fp->rx_sge_prod=%d\n", |
| fp->index, fp->last_max_sge, fp->rx_sge_prod); |
| } |
| |
| /* |
| * The aggregation on the current TPA queue has completed. Pull the individual |
| * mbuf fragments together into a single mbuf, perform all necessary checksum |
| * calculations, and send the resuting mbuf to the stack. |
| */ |
| static void |
| bxe_tpa_stop(struct bxe_adapter *sc, |
| struct bxe_fastpath *fp, |
| struct bxe_sw_tpa_info *tpa_info, |
| uint16_t queue, |
| uint16_t pages, |
| struct eth_end_agg_rx_cqe *cqe, |
| uint16_t cqe_idx) |
| { |
| assert(0); |
| #if 0 // AKAROS_PORT |
| if_t ifp = sc->ifp; |
| struct mbuf *m; |
| int rc = 0; |
| |
| BLOGD(sc, DBG_LRO, |
| "fp[%02d].tpa[%02d] pad=%d pkt_len=%d pages=%d vlan=%d\n", |
| fp->index, queue, tpa_info->placement_offset, |
| le16_to_cpu(cqe->pkt_len), pages, tpa_info->vlan_tag); |
| |
| m = tpa_info->bd.m; |
| |
| /* allocate a replacement before modifying existing mbuf */ |
| rc = bxe_alloc_rx_tpa_mbuf(fp, queue); |
| if (rc) { |
| /* drop the frame and log an error */ |
| fp->eth_q_stats.rx_soft_errors++; |
| goto bxe_tpa_stop_exit; |
| } |
| |
| /* we have a replacement, fixup the current mbuf */ |
| m_adj(m, tpa_info->placement_offset); |
| m->m_pkthdr.len = m->m_len = tpa_info->len_on_bd; |
| |
| /* mark the checksums valid (taken care of by the firmware) */ |
| fp->eth_q_stats.rx_ofld_frames_csum_ip++; |
| fp->eth_q_stats.rx_ofld_frames_csum_tcp_udp++; |
| m->m_pkthdr.csum_data = 0xffff; |
| m->m_pkthdr.csum_flags |= (CSUM_IP_CHECKED | |
| CSUM_IP_VALID | |
| CSUM_DATA_VALID | |
| CSUM_PSEUDO_HDR); |
| |
| /* aggregate all of the SGEs into a single mbuf */ |
| rc = bxe_fill_frag_mbuf(sc, fp, tpa_info, queue, pages, m, cqe, cqe_idx); |
| if (rc) { |
| /* drop the packet and log an error */ |
| fp->eth_q_stats.rx_soft_errors++; |
| m_freem(m); |
| } else { |
| if (tpa_info->parsing_flags & PARSING_FLAGS_VLAN) { |
| m->m_pkthdr.ether_vtag = tpa_info->vlan_tag; |
| m->m_flags |= M_VLANTAG; |
| } |
| |
| /* assign packet to this interface interface */ |
| if_setrcvif(m, ifp); |
| |
| #if __FreeBSD_version >= 800000 |
| /* specify what RSS queue was used for this flow */ |
| m->m_pkthdr.flowid = fp->index; |
| M_HASHTYPE_SET(m, M_HASHTYPE_OPAQUE); |
| #endif |
| |
| if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1); |
| fp->eth_q_stats.rx_tpa_pkts++; |
| |
| /* pass the frame to the stack */ |
| if_input(ifp, m); |
| } |
| |
| /* we passed an mbuf up the stack or dropped the frame */ |
| fp->eth_q_stats.mbuf_alloc_tpa--; |
| |
| bxe_tpa_stop_exit: |
| |
| fp->rx_tpa_info[queue].state = BXE_TPA_STATE_STOP; |
| fp->rx_tpa_queue_used &= ~(1 << queue); |
| #endif |
| } |
| |
| static uint8_t |
| bxe_rxeof(struct bxe_adapter *sc, |
| struct bxe_fastpath *fp) |
| { |
| assert(0); |
| return 0xaa; |
| #if 0 // AKAROS_PORT |
| if_t ifp = sc->ifp; |
| uint16_t bd_cons, bd_prod, bd_prod_fw, comp_ring_cons; |
| uint16_t hw_cq_cons, sw_cq_cons, sw_cq_prod; |
| int rx_pkts = 0; |
| int rc; |
| |
| BXE_FP_RX_LOCK(fp); |
| |
| /* CQ "next element" is of the size of the regular element */ |
| hw_cq_cons = le16_to_cpu(*fp->rx_cq_cons_sb); |
| if ((hw_cq_cons & RCQ_USABLE_PER_PAGE) == RCQ_USABLE_PER_PAGE) { |
| hw_cq_cons++; |
| } |
| |
| bd_cons = fp->rx_bd_cons; |
| bd_prod = fp->rx_bd_prod; |
| bd_prod_fw = bd_prod; |
| sw_cq_cons = fp->rx_cq_cons; |
| sw_cq_prod = fp->rx_cq_prod; |
| |
| /* |
| * Memory barrier necessary as speculative reads of the rx |
| * buffer can be ahead of the index in the status block |
| */ |
| rmb(); |
| |
| BLOGD(sc, DBG_RX, |
| "fp[%02d] Rx START hw_cq_cons=%u sw_cq_cons=%u\n", |
| fp->index, hw_cq_cons, sw_cq_cons); |
| |
| while (sw_cq_cons != hw_cq_cons) { |
| struct bxe_sw_rx_bd *rx_buf = NULL; |
| union eth_rx_cqe *cqe; |
| struct eth_fast_path_rx_cqe *cqe_fp; |
| uint8_t cqe_fp_flags; |
| enum eth_rx_cqe_type cqe_fp_type; |
| uint16_t len, pad; |
| struct mbuf *m = NULL; |
| |
| comp_ring_cons = RCQ(sw_cq_cons); |
| bd_prod = RX_BD(bd_prod); |
| bd_cons = RX_BD(bd_cons); |
| |
| cqe = &fp->rcq_chain[comp_ring_cons]; |
| cqe_fp = &cqe->fast_path_cqe; |
| cqe_fp_flags = cqe_fp->type_error_flags; |
| cqe_fp_type = cqe_fp_flags & ETH_FAST_PATH_RX_CQE_TYPE; |
| |
| BLOGD(sc, DBG_RX, |
| "fp[%02d] Rx hw_cq_cons=%d hw_sw_cons=%d " |
| "BD prod=%d cons=%d CQE type=0x%x err=0x%x " |
| "status=0x%x rss_hash=0x%x vlan=0x%x len=%u\n", |
| fp->index, |
| hw_cq_cons, |
| sw_cq_cons, |
| bd_prod, |
| bd_cons, |
| CQE_TYPE(cqe_fp_flags), |
| cqe_fp_flags, |
| cqe_fp->status_flags, |
| le32_to_cpu(cqe_fp->rss_hash_result), |
| le16_to_cpu(cqe_fp->vlan_tag), |
| le16_to_cpu(cqe_fp->pkt_len_or_gro_seg_len)); |
| |
| /* is this a slowpath msg? */ |
| if (__predict_false(CQE_TYPE_SLOW(cqe_fp_type))) { |
| bxe_sp_event(sc, fp, cqe); |
| goto next_cqe; |
| } |
| |
| rx_buf = &fp->rx_mbuf_chain[bd_cons]; |
| |
| if (!CQE_TYPE_FAST(cqe_fp_type)) { |
| struct bxe_sw_tpa_info *tpa_info; |
| uint16_t frag_size, pages; |
| uint8_t queue; |
| |
| #if 0 |
| /* sanity check */ |
| if (!fp->tpa_enable && |
| (CQE_TYPE_START(cqe_fp_type) || CQE_TYPE_STOP(cqe_fp_type))) { |
| BLOGE(sc, "START/STOP packet while !tpa_enable type (0x%x)\n", |
| CQE_TYPE(cqe_fp_type)); |
| } |
| #endif |
| |
| if (CQE_TYPE_START(cqe_fp_type)) { |
| bxe_tpa_start(sc, fp, cqe_fp->queue_index, |
| bd_cons, bd_prod, cqe_fp); |
| m = NULL; /* packet not ready yet */ |
| goto next_rx; |
| } |
| |
| KASSERT(CQE_TYPE_STOP(cqe_fp_type), |
| ("CQE type is not STOP! (0x%x)\n", cqe_fp_type)); |
| |
| queue = cqe->end_agg_cqe.queue_index; |
| tpa_info = &fp->rx_tpa_info[queue]; |
| |
| BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA STOP\n", |
| fp->index, queue); |
| |
| frag_size = (le16_to_cpu(cqe->end_agg_cqe.pkt_len) - |
| tpa_info->len_on_bd); |
| pages = SGE_PAGE_ALIGN(frag_size) >> SGE_PAGE_SHIFT; |
| |
| bxe_tpa_stop(sc, fp, tpa_info, queue, pages, |
| &cqe->end_agg_cqe, comp_ring_cons); |
| |
| bxe_update_sge_prod(sc, fp, pages, &cqe->end_agg_cqe); |
| |
| goto next_cqe; |
| } |
| |
| /* non TPA */ |
| |
| /* is this an error packet? */ |
| if (__predict_false(cqe_fp_flags & |
| ETH_FAST_PATH_RX_CQE_PHY_DECODE_ERR_FLG)) { |
| BLOGE(sc, "flags 0x%x rx packet %u\n", cqe_fp_flags, sw_cq_cons); |
| fp->eth_q_stats.rx_soft_errors++; |
| goto next_rx; |
| } |
| |
| len = le16_to_cpu(cqe_fp->pkt_len_or_gro_seg_len); |
| pad = cqe_fp->placement_offset; |
| |
| m = rx_buf->m; |
| |
| if (__predict_false(m == NULL)) { |
| BLOGE(sc, "No mbuf in rx chain descriptor %d for fp[%02d]\n", |
| bd_cons, fp->index); |
| goto next_rx; |
| } |
| |
| /* XXX double copy if packet length under a threshold */ |
| |
| /* |
| * If all the buffer descriptors are filled with mbufs then fill in |
| * the current consumer index with a new BD. Else if a maximum Rx |
| * buffer limit is imposed then fill in the next producer index. |
| */ |
| rc = bxe_alloc_rx_bd_mbuf(fp, bd_cons, |
| (sc->max_rx_bufs != RX_BD_USABLE) ? |
| bd_prod : bd_cons); |
| if (rc != 0) { |
| BLOGE(sc, "mbuf alloc fail for fp[%02d] rx chain (%d)\n", |
| fp->index, rc); |
| fp->eth_q_stats.rx_soft_errors++; |
| |
| if (sc->max_rx_bufs != RX_BD_USABLE) { |
| /* copy this consumer index to the producer index */ |
| memcpy(&fp->rx_mbuf_chain[bd_prod], rx_buf, |
| sizeof(struct bxe_sw_rx_bd)); |
| memset(rx_buf, 0, sizeof(struct bxe_sw_rx_bd)); |
| } |
| |
| goto next_rx; |
| } |
| |
| /* current mbuf was detached from the bd */ |
| fp->eth_q_stats.mbuf_alloc_rx--; |
| |
| /* we allocated a replacement mbuf, fixup the current one */ |
| m_adj(m, pad); |
| m->m_pkthdr.len = m->m_len = len; |
| |
| /* assign packet to this interface interface */ |
| if_setrcvif(m, ifp); |
| |
| /* assume no hardware checksum has complated */ |
| m->m_pkthdr.csum_flags = 0; |
| |
| /* validate checksum if offload enabled */ |
| if (if_getcapenable(ifp) & IFCAP_RXCSUM) { |
| /* check for a valid IP frame */ |
| if (!(cqe->fast_path_cqe.status_flags & |
| ETH_FAST_PATH_RX_CQE_IP_XSUM_NO_VALIDATION_FLG)) { |
| m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED; |
| if (__predict_false(cqe_fp_flags & |
| ETH_FAST_PATH_RX_CQE_IP_BAD_XSUM_FLG)) { |
| fp->eth_q_stats.rx_hw_csum_errors++; |
| } else { |
| fp->eth_q_stats.rx_ofld_frames_csum_ip++; |
| m->m_pkthdr.csum_flags |= CSUM_IP_VALID; |
| } |
| } |
| |
| /* check for a valid TCP/UDP frame */ |
| if (!(cqe->fast_path_cqe.status_flags & |
| ETH_FAST_PATH_RX_CQE_L4_XSUM_NO_VALIDATION_FLG)) { |
| if (__predict_false(cqe_fp_flags & |
| ETH_FAST_PATH_RX_CQE_L4_BAD_XSUM_FLG)) { |
| fp->eth_q_stats.rx_hw_csum_errors++; |
| } else { |
| fp->eth_q_stats.rx_ofld_frames_csum_tcp_udp++; |
| m->m_pkthdr.csum_data = 0xFFFF; |
| m->m_pkthdr.csum_flags |= (CSUM_DATA_VALID | |
| CSUM_PSEUDO_HDR); |
| } |
| } |
| } |
| |
| /* if there is a VLAN tag then flag that info */ |
| if (cqe->fast_path_cqe.pars_flags.flags & PARSING_FLAGS_VLAN) { |
| m->m_pkthdr.ether_vtag = cqe->fast_path_cqe.vlan_tag; |
| m->m_flags |= M_VLANTAG; |
| } |
| |
| #if __FreeBSD_version >= 800000 |
| /* specify what RSS queue was used for this flow */ |
| m->m_pkthdr.flowid = fp->index; |
| M_HASHTYPE_SET(m, M_HASHTYPE_OPAQUE); |
| #endif |
| |
| next_rx: |
| |
| bd_cons = RX_BD_NEXT(bd_cons); |
| bd_prod = RX_BD_NEXT(bd_prod); |
| bd_prod_fw = RX_BD_NEXT(bd_prod_fw); |
| |
| /* pass the frame to the stack */ |
| if (m != NULL) { |
| if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1); |
| rx_pkts++; |
| if_input(ifp, m); |
| } |
| |
| next_cqe: |
| |
| sw_cq_prod = RCQ_NEXT(sw_cq_prod); |
| sw_cq_cons = RCQ_NEXT(sw_cq_cons); |
| |
| /* limit spinning on the queue */ |
| if (rx_pkts == sc->rx_budget) { |
| fp->eth_q_stats.rx_budget_reached++; |
| break; |
| } |
| } /* while work to do */ |
| |
| fp->rx_bd_cons = bd_cons; |
| fp->rx_bd_prod = bd_prod_fw; |
| fp->rx_cq_cons = sw_cq_cons; |
| fp->rx_cq_prod = sw_cq_prod; |
| |
| /* Update producers */ |
| bxe_update_rx_prod(sc, fp, bd_prod_fw, sw_cq_prod, fp->rx_sge_prod); |
| |
| fp->eth_q_stats.rx_pkts += rx_pkts; |
| fp->eth_q_stats.rx_calls++; |
| |
| BXE_FP_RX_UNLOCK(fp); |
| |
| return (sw_cq_cons != hw_cq_cons); |
| #endif |
| } |
| |
| static uint16_t |
| bxe_free_tx_pkt(struct bxe_adapter *sc, |
| struct bxe_fastpath *fp, |
| uint16_t idx) |
| { |
| assert(0); |
| return 0xaa; |
| #if 0 // AKAROS_PORT |
| struct bxe_sw_tx_bd *tx_buf = &fp->tx_mbuf_chain[idx]; |
| struct eth_tx_start_bd *tx_start_bd; |
| uint16_t bd_idx = TX_BD(tx_buf->first_bd); |
| uint16_t new_cons; |
| int nbd; |
| |
| /* unmap the mbuf from non-paged memory */ |
| bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map); |
| |
| tx_start_bd = &fp->tx_chain[bd_idx].start_bd; |
| nbd = le16_to_cpu(tx_start_bd->nbd) - 1; |
| // this #if 0 was already here in fbsd |
| #if 0 |
| if ((nbd - 1) > (MAX_MBUF_FRAGS + 2)) { |
| bxe_panic(sc, ("BAD nbd!\n")); |
| } |
| #endif |
| |
| new_cons = (tx_buf->first_bd + nbd); |
| // this #if 0 was already here in fbsd |
| #if 0 |
| struct eth_tx_bd *tx_data_bd; |
| |
| /* |
| * The following code doesn't do anything but is left here |
| * for clarity on what the new value of new_cons skipped. |
| */ |
| |
| /* get the next bd */ |
| bd_idx = TX_BD(TX_BD_NEXT(bd_idx)); |
| |
| /* skip the parse bd */ |
| --nbd; |
| bd_idx = TX_BD(TX_BD_NEXT(bd_idx)); |
| |
| /* skip the TSO split header bd since they have no mapping */ |
| if (tx_buf->flags & BXE_TSO_SPLIT_BD) { |
| --nbd; |
| bd_idx = TX_BD(TX_BD_NEXT(bd_idx)); |
| } |
| |
| /* now free frags */ |
| while (nbd > 0) { |
| tx_data_bd = &fp->tx_chain[bd_idx].reg_bd; |
| if (--nbd) { |
| bd_idx = TX_BD(TX_BD_NEXT(bd_idx)); |
| } |
| } |
| #endif |
| |
| /* free the mbuf */ |
| if (tx_buf->m != NULL) { |
| m_freem(tx_buf->m); |
| fp->eth_q_stats.mbuf_alloc_tx--; |
| } else { |
| fp->eth_q_stats.tx_chain_lost_mbuf++; |
| } |
| |
| tx_buf->m = NULL; |
| tx_buf->first_bd = 0; |
| |
| return (new_cons); |
| #endif |
| } |
| |
| /* transmit timeout watchdog */ |
| static int |
| bxe_watchdog(struct bxe_adapter *sc, |
| struct bxe_fastpath *fp) |
| { |
| BXE_FP_TX_LOCK(fp); |
| |
| if ((fp->watchdog_timer == 0) || (--fp->watchdog_timer)) { |
| BXE_FP_TX_UNLOCK(fp); |
| return (0); |
| } |
| |
| BLOGE(sc, "TX watchdog timeout on fp[%02d], resetting!\n", fp->index); |
| |
| BXE_FP_TX_UNLOCK(fp); |
| |
| atomic_set(&sc->chip_tq_flags, CHIP_TQ_REINIT); |
| taskqueue_enqueue(sc->chip_tq, &sc->chip_tq_task); |
| return (-1); |
| } |
| |
| /* processes transmit completions */ |
| static uint8_t |
| bxe_txeof(struct bxe_adapter *sc, |
| struct bxe_fastpath *fp) |
| { |
| assert(0); |
| return 0xaa; |
| #if 0 // AKAROS_PORT |
| if_t ifp = sc->ifp; |
| uint16_t bd_cons, hw_cons, sw_cons, pkt_cons; |
| uint16_t tx_bd_avail; |
| |
| BXE_FP_TX_LOCK_ASSERT(fp); |
| |
| bd_cons = fp->tx_bd_cons; |
| hw_cons = le16_to_cpu(*fp->tx_cons_sb); |
| sw_cons = fp->tx_pkt_cons; |
| |
| while (sw_cons != hw_cons) { |
| pkt_cons = TX_BD(sw_cons); |
| |
| BLOGD(sc, DBG_TX, |
| "TX: fp[%d]: hw_cons=%u sw_cons=%u pkt_cons=%u\n", |
| fp->index, hw_cons, sw_cons, pkt_cons); |
| |
| bd_cons = bxe_free_tx_pkt(sc, fp, pkt_cons); |
| |
| sw_cons++; |
| } |
| |
| fp->tx_pkt_cons = sw_cons; |
| fp->tx_bd_cons = bd_cons; |
| |
| BLOGD(sc, DBG_TX, |
| "TX done: fp[%d]: hw_cons=%u sw_cons=%u sw_prod=%u\n", |
| fp->index, hw_cons, fp->tx_pkt_cons, fp->tx_pkt_prod); |
| |
| mb(); |
| |
| tx_bd_avail = bxe_tx_avail(sc, fp); |
| |
| if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) { |
| if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0); |
| } else { |
| if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE); |
| } |
| |
| if (fp->tx_pkt_prod != fp->tx_pkt_cons) { |
| /* reset the watchdog timer if there are pending transmits */ |
| fp->watchdog_timer = BXE_TX_TIMEOUT; |
| return (TRUE); |
| } else { |
| /* clear watchdog when there are no pending transmits */ |
| fp->watchdog_timer = 0; |
| return (FALSE); |
| } |
| #endif |
| } |
| |
| static void |
| bxe_drain_tx_queues(struct bxe_adapter *sc) |
| { |
| assert(0); |
| #if 0 // AKAROS_PORT |
| struct bxe_fastpath *fp; |
| int i, count; |
| |
| /* wait until all TX fastpath tasks have completed */ |
| for (i = 0; i < sc->num_queues; i++) { |
| fp = &sc->fp[i]; |
| |
| count = 1000; |
| |
| while (bxe_has_tx_work(fp)) { |
| |
| BXE_FP_TX_LOCK(fp); |
| bxe_txeof(sc, fp); |
| BXE_FP_TX_UNLOCK(fp); |
| |
| if (count == 0) { |
| BLOGE(sc, "Timeout waiting for fp[%d] " |
| "transmits to complete!\n", i); |
| bxe_panic(sc, ("tx drain failure\n")); |
| return; |
| } |
| |
| count--; |
| udelay(1000); |
| rmb(); |
| } |
| } |
| #endif |
| } |
| |
| static int |
| bxe_del_all_macs(struct bxe_adapter *sc, |
| struct ecore_vlan_mac_obj *mac_obj, |
| int mac_type, |
| uint8_t wait_for_comp) |
| { |
| assert(0); |
| #if 0 // AKAROS_PORT |
| unsigned long ramrod_flags = 0, vlan_mac_flags = 0; |
| int rc; |
| |
| /* wait for completion of requested */ |
| if (wait_for_comp) { |
| bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags); |
| } |
| |
| /* Set the mac type of addresses we want to clear */ |
| bxe_set_bit(mac_type, &vlan_mac_flags); |
| |
| rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags, &ramrod_flags); |
| if (rc < 0) { |
| BLOGE(sc, "Failed to delete MACs (%d)\n", rc); |
| } |
| |
| return (rc); |
| #endif |
| return -1; |
| } |
| |
| static int |
| bxe_fill_accept_flags(struct bxe_adapter *sc, |
| uint32_t rx_mode, |
| unsigned long *rx_accept_flags, |
| unsigned long *tx_accept_flags) |
| { |
| /* Clear the flags first */ |
| *rx_accept_flags = 0; |
| *tx_accept_flags = 0; |
| |
| switch (rx_mode) { |
| case BXE_RX_MODE_NONE: |
| /* |
| * 'drop all' supersedes any accept flags that may have been |
| * passed to the function. |
| */ |
| break; |
| |
| case BXE_RX_MODE_NORMAL: |
| bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags); |
| bxe_set_bit(ECORE_ACCEPT_MULTICAST, rx_accept_flags); |
| bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags); |
| |
| /* internal switching mode */ |
| bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags); |
| bxe_set_bit(ECORE_ACCEPT_MULTICAST, tx_accept_flags); |
| bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags); |
| |
| break; |
| |
| case BXE_RX_MODE_ALLMULTI: |
| bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags); |
| bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags); |
| bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags); |
| |
| /* internal switching mode */ |
| bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags); |
| bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags); |
| bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags); |
| |
| break; |
| |
| case BXE_RX_MODE_PROMISC: |
| /* |
| * According to deffinition of SI mode, iface in promisc mode |
| * should receive matched and unmatched (in resolution of port) |
| * unicast packets. |
| */ |
| bxe_set_bit(ECORE_ACCEPT_UNMATCHED, rx_accept_flags); |
| bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags); |
| bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags); |
| bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags); |
| |
| /* internal switching mode */ |
| bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags); |
| bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags); |
| |
| if (IS_MF_SI(sc)) { |
| bxe_set_bit(ECORE_ACCEPT_ALL_UNICAST, tx_accept_flags); |
| } else { |
| bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags); |
| } |
| |
| break; |
| |
| default: |
| BLOGE(sc, "Unknown rx_mode (%d)\n", rx_mode); |
| return (-1); |
| } |
| |
| /* Set ACCEPT_ANY_VLAN as we do not enable filtering by VLAN */ |
| if (rx_mode != BXE_RX_MODE_NONE) { |
| bxe_set_bit(ECORE_ACCEPT_ANY_VLAN, rx_accept_flags); |
| bxe_set_bit(ECORE_ACCEPT_ANY_VLAN, tx_accept_flags); |
| } |
| return (0); |
| } |
| |
| static int |
| bxe_set_q_rx_mode(struct bxe_adapter *sc, |
| uint8_t cl_id, |
| unsigned long rx_mode_flags, |
| unsigned long rx_accept_flags, |
| unsigned long tx_accept_flags, |
| unsigned long ramrod_flags) |
| { |
| assert(0); |
| #if 0 // AKAROS_PORT |
| struct ecore_rx_mode_ramrod_params ramrod_param; |
| int rc; |
| |
| memset(&ramrod_param, 0, sizeof(ramrod_param)); |
| |
| /* Prepare ramrod parameters */ |
| ramrod_param.cid = 0; |
| ramrod_param.cl_id = cl_id; |
| ramrod_param.rx_mode_obj = &sc->rx_mode_obj; |
| ramrod_param.func_id = SC_FUNC(sc); |
| |
| ramrod_param.pstate = &sc->sp_state; |
| ramrod_param.state = ECORE_FILTER_RX_MODE_PENDING; |
| |
| ramrod_param.rdata = BXE_SP(sc, rx_mode_rdata); |
| ramrod_param.rdata_mapping = BXE_SP_MAPPING(sc, rx_mode_rdata); |
| |
| bxe_set_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state); |
| |
| ramrod_param.ramrod_flags = ramrod_flags; |
| ramrod_param.rx_mode_flags = rx_mode_flags; |
| |
| ramrod_param.rx_accept_flags = rx_accept_flags; |
| ramrod_param.tx_accept_flags = tx_accept_flags; |
| |
| rc = ecore_config_rx_mode(sc, &ramrod_param); |
| if (rc < 0) { |
| BLOGE(sc, "Set rx_mode %d failed\n", sc->rx_mode); |
| return (rc); |
| } |
| #endif |
| return (0); |
| } |
| |
| static int |
| bxe_set_storm_rx_mode(struct bxe_adapter *sc) |
| { |
| unsigned long rx_mode_flags = 0, ramrod_flags = 0; |
| unsigned long rx_accept_flags = 0, tx_accept_flags = 0; |
| int rc; |
| |
| rc = bxe_fill_accept_flags(sc, sc->rx_mode, &rx_accept_flags, |
| &tx_accept_flags); |
| if (rc) { |
| return (rc); |
| } |
| |
| bxe_set_bit(RAMROD_RX, &ramrod_flags); |
| bxe_set_bit(RAMROD_TX, &ramrod_flags); |
| |
| /* XXX ensure all fastpath have same cl_id and/or move it to bxe_adapter */ |
| return (bxe_set_q_rx_mode(sc, sc->fp[0].cl_id, rx_mode_flags, |
| rx_accept_flags, tx_accept_flags, |
| ramrod_flags)); |
| } |
| |
| /* returns the "mcp load_code" according to global load_count array */ |
| static int |
| bxe_nic_load_no_mcp(struct bxe_adapter *sc) |
| { |
| assert(0); |
| return 0xaa; |
| #if 0 // AKAROS_PORT |
| int path = SC_PATH(sc); |
| int port = SC_PORT(sc); |
| |
| BLOGI(sc, "NO MCP - load counts[%d] %d, %d, %d\n", |
| path, load_count[path][0], load_count[path][1], |
| load_count[path][2]); |
| load_count[path][0]++; |
| load_count[path][1 + port]++; |
| BLOGI(sc, "NO MCP - new load counts[%d] %d, %d, %d\n", |
| path, load_count[path][0], load_count[path][1], |
| load_count[path][2]); |
| if (load_count[path][0] == 1) { |
| return (FW_MSG_CODE_DRV_LOAD_COMMON); |
| } else if (load_count[path][1 + port] == 1) { |
| return (FW_MSG_CODE_DRV_LOAD_PORT); |
| } else { |
| return (FW_MSG_CODE_DRV_LOAD_FUNCTION); |
| } |
| #endif |
| } |
| |
| /* returns the "mcp load_code" according to global load_count array */ |
| static int |
| bxe_nic_unload_no_mcp(struct bxe_adapter *sc) |
| { |
| assert(0); |
| return 0xaa; |
| #if 0 // AKAROS_PORT |
| int port = SC_PORT(sc); |
| int path = SC_PATH(sc); |
| |
| BLOGI(sc, "NO MCP - load counts[%d] %d, %d, %d\n", |
| path, load_count[path][0], load_count[path][1], |
| load_count[path][2]); |
| load_count[path][0]--; |
| load_count[path][1 + port]--; |
| BLOGI(sc, "NO MCP - new load counts[%d] %d, %d, %d\n", |
| path, load_count[path][0], load_count[path][1], |
| load_count[path][2]); |
| if (load_count[path][0] == 0) { |
| return (FW_MSG_CODE_DRV_UNLOAD_COMMON); |
| } else if (load_count[path][1 + port] == 0) { |
| return (FW_MSG_CODE_DRV_UNLOAD_PORT); |
| } else { |
| return (FW_MSG_CODE_DRV_UNLOAD_FUNCTION); |
| } |
| #endif |
| } |
| |
| /* request unload mode from the MCP: COMMON, PORT or FUNCTION */ |
| static uint32_t |
| bxe_send_unload_req(struct bxe_adapter *sc, |
| int unload_mode) |
| { |
| assert(0); |
| #if 0 // AKAROS_PORT |
| uint32_t reset_code = 0; |
| #if 0 |
| int port = SC_PORT(sc); |
| int path = SC_PATH(sc); |
| #endif |
| |
| /* Select the UNLOAD request mode */ |
| if (unload_mode == UNLOAD_NORMAL) { |
| reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS; |
| } |
| #if 0 |
| else if (sc->flags & BXE_NO_WOL_FLAG) { |
| reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP; |
| } else if (sc->wol) { |
| uint32_t emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0; |
| uint8_t *mac_addr = sc->pcidev->dev_addr; |
| uint32_t val; |
| uint16_t pmc; |
| |
| /* |
| * The mac address is written to entries 1-4 to |
| * preserve entry 0 which is used by the PMF |
| */ |
| uint8_t entry = (SC_VN(sc) + 1)*8; |
| |
| val = (mac_addr[0] << 8) | mac_addr[1]; |
| EMAC_WR(sc, EMAC_REG_EMAC_MAC_MATCH + entry, val); |
| |
| val = (mac_addr[2] << 24) | (mac_addr[3] << 16) | |
| (mac_addr[4] << 8) | mac_addr[5]; |
| EMAC_WR(sc, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val); |
| |
| /* Enable the PME and clear the status */ |
| pmc = pcidev_read16(sc->pcidev, |
| (sc->devinfo.pcie_pm_cap_reg + |
| PCIR_POWER_STATUS)); |
| pmc |= PCIM_PSTAT_PMEENABLE | PCIM_PSTAT_PME; |
| pcidev_write32(sc->pcidev, |
| (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS), pmc); |
| |
| reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN; |
| } |
| #endif |
| else { |
| reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS; |
| } |
| |
| /* Send the request to the MCP */ |
| if (!BXE_NOMCP(sc)) { |
| reset_code = bxe_fw_command(sc, reset_code, 0); |
| } else { |
| reset_code = bxe_nic_unload_no_mcp(sc); |
| } |
| |
| return (reset_code); |
| #endif |
| return 0; |
| } |
| |
| /* send UNLOAD_DONE command to the MCP */ |
| static void |
| bxe_send_unload_done(struct bxe_adapter *sc, |
| uint8_t keep_link) |
| { |
| uint32_t reset_param = |
| keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0; |
| |
| /* Report UNLOAD_DONE to MCP */ |
| if (!BXE_NOMCP(sc)) { |
| bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, reset_param); |
| } |
| } |
| |
| static int |
| bxe_func_wait_started(struct bxe_adapter *sc) |
| { |
| assert(0); |
| #if 0 // AKAROS_PORT |
| int tout = 50; |
| |
| if (!sc->port.pmf) { |
| return (0); |
| } |
| |
| /* |
| * (assumption: No Attention from MCP at this stage) |
| * PMF probably in the middle of TX disable/enable transaction |
| * 1. Sync IRS for default SB |
| * 2. Sync SP queue - this guarantees us that attention handling started |
| * 3. Wait, that TX disable/enable transaction completes |
| * |
| * 1+2 guarantee that if DCBX attention was scheduled it already changed |
| * pending bit of transaction from STARTED-->TX_STOPPED, if we already |
| * received completion for the transaction the state is TX_STOPPED. |
| * State will return to STARTED after completion of TX_STOPPED-->STARTED |
| * transaction. |
| */ |
| |
| /* XXX make sure default SB ISR is done */ |
| /* need a way to synchronize an irq (intr_mtx?) */ |
| |
| /* XXX flush any work queues */ |
| |
| while (ecore_func_get_state(sc, &sc->func_obj) != |
| ECORE_F_STATE_STARTED && tout--) { |
| udelay(20000); |
| } |
| |
| if (ecore_func_get_state(sc, &sc->func_obj) != ECORE_F_STATE_STARTED) { |
| /* |
| * Failed to complete the transaction in a "good way" |
| * Force both transactions with CLR bit. |
| */ |
| struct ecore_func_state_params func_params = { NULL }; |
| |
| BLOGE(sc, "Unexpected function state! " |
| "Forcing STARTED-->TX_STOPPED-->STARTED\n"); |
| |
| func_params.f_obj = &sc->func_obj; |
| bxe_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags); |
| |
| /* STARTED-->TX_STOPPED */ |
| func_params.cmd = ECORE_F_CMD_TX_STOP; |
| ecore_func_state_change(sc, &func_params); |
| |
| /* TX_STOPPED-->STARTED */ |
| func_params.cmd = ECORE_F_CMD_TX_START; |
| return (ecore_func_state_change(sc, &func_params)); |
| } |
| #endif |
| return (0); |
| } |
| |
| static int |
| bxe_stop_queue(struct bxe_adapter *sc, |
| int index) |
| { |
| assert(0); |
| #if 0 // AKAROS_PORT |
| struct bxe_fastpath *fp = &sc->fp[index]; |
| struct ecore_queue_state_params q_params = { NULL }; |
| int rc; |
| |
| BLOGD(sc, DBG_LOAD, "stopping queue %d cid %d\n", index, fp->index); |
| |
| q_params.q_obj = &sc->sp_objs[fp->index].q_obj; |
| /* We want to wait for completion in this context */ |
| bxe_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags); |
| |
| /* Stop the primary connection: */ |
| |
| /* ...halt the connection */ |
| q_params.cmd = ECORE_Q_CMD_HALT; |
| rc = ecore_queue_state_change(sc, &q_params); |
| if (rc) { |
| return (rc); |
| } |
| |
| /* ...terminate the connection */ |
| q_params.cmd = ECORE_Q_CMD_TERMINATE; |
| memset(&q_params.params.terminate, 0, sizeof(q_params.params.terminate)); |
| q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX; |
| rc = ecore_queue_state_change(sc, &q_params); |
| if (rc) { |
| return (rc); |
| } |
| |
| /* ...delete cfc entry */ |
| q_params.cmd = ECORE_Q_CMD_CFC_DEL; |
| memset(&q_params.params.cfc_del, 0, sizeof(q_params.params.cfc_del)); |
| q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX; |
| return (ecore_queue_state_change(sc, &q_params)); |
| #endif |
| return -1; |
| } |
| |
| /* wait for the outstanding SP commands */ |
| static inline uint8_t |
| bxe_wait_sp_comp(struct bxe_adapter *sc, |
| unsigned long mask) |
| { |
| unsigned long tmp; |
| int tout = 5000; /* wait for 5 secs tops */ |
| |
| while (tout--) { |
| mb(); |
| if (!(ACCESS_ONCE(sc->sp_state) & mask)) { |
| return (TRUE); |
| } |
| |
| udelay(1000); |
| } |
| |
| mb(); |
| |
| tmp = ACCESS_ONCE(sc->sp_state); |
| if (tmp & mask) { |
| BLOGE(sc, "Filtering completion timed out: " |
| "sp_state 0x%lx, mask 0x%lx\n", |
| tmp, mask); |
| return (FALSE); |
| } |
| |
| return (FALSE); |
| } |
| |
| static int |
| bxe_func_stop(struct bxe_adapter *sc) |
| { |
| assert(0); |
| #if 0 // AKAROS_PORT |
| struct ecore_func_state_params func_params = { NULL }; |
| int rc; |
| |
| /* prepare parameters for function state transitions */ |
| bxe_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); |
| func_params.f_obj = &sc->func_obj; |
| func_params.cmd = ECORE_F_CMD_STOP; |
| |
| /* |
| * Try to stop the function the 'good way'. If it fails (in case |
| * of a parity error during bxe_chip_cleanup()) and we are |
| * not in a debug mode, perform a state transaction in order to |
| * enable further HW_RESET transaction. |
| */ |
| rc = ecore_func_state_change(sc, &func_params); |
| if (rc) { |
| BLOGE(sc, "FUNC_STOP ramrod failed. " |
| "Running a dry transaction\n"); |
| bxe_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags); |
| return (ecore_func_state_change(sc, &func_params)); |
| } |
| #endif |
| return (0); |
| } |
| |
| static int |
| bxe_reset_hw(struct bxe_adapter *sc, |
| uint32_t load_code) |
| { |
| assert(0); |
| #if 0 // AKAROS_PORT |
| struct ecore_func_state_params func_params = { NULL }; |
| |
| /* Prepare parameters for function state transitions */ |
| bxe_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); |
| |
| func_params.f_obj = &sc->func_obj; |
| func_params.cmd = ECORE_F_CMD_HW_RESET; |
| |
| func_params.params.hw_init.load_phase = load_code; |
| |
| return (ecore_func_state_change(sc, &func_params)); |
| #endif |
| return 0; |
| } |
| |
| static void |
| bxe_int_disable_sync(struct bxe_adapter *sc, |
| int disable_hw) |
| { |
| if (disable_hw) { |
| /* prevent the HW from sending interrupts */ |
| bxe_int_disable(sc); |
| } |
| |
| /* XXX need a way to synchronize ALL irqs (intr_mtx?) */ |
| /* make sure all ISRs are done */ |
| |
| /* XXX make sure sp_task is not running */ |
| /* cancel and flush work queues */ |
| } |
| |
| static void |
| bxe_chip_cleanup(struct bxe_adapter *sc, |
| uint32_t unload_mode, |
| uint8_t keep_link) |
| { |
| int port = SC_PORT(sc); |
| struct ecore_mcast_ramrod_params rparam = { NULL }; |
| uint32_t reset_code; |
| int i, rc = 0; |
| |
| bxe_drain_tx_queues(sc); |
| |
| /* give HW time to discard old tx messages */ |
| udelay(1000); |
| |
| /* Clean all ETH MACs */ |
| rc = bxe_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_ETH_MAC, FALSE); |
| if (rc < 0) { |
| BLOGE(sc, "Failed to delete all ETH MACs (%d)\n", rc); |
| } |
| |
| /* Clean up UC list */ |
| rc = bxe_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_UC_LIST_MAC, TRUE); |
| if (rc < 0) { |
| BLOGE(sc, "Failed to delete UC MACs list (%d)\n", rc); |
| } |
| |
| /* Disable LLH */ |
| if (!CHIP_IS_E1(sc)) { |
| REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 0); |
| } |
| |
| /* Set "drop all" to stop Rx */ |
| |
| /* |
| * We need to take the BXE_MCAST_LOCK() here in order to prevent |
| * a race between the completion code and this code. |
| */ |
| BXE_MCAST_LOCK(sc); |
| |
| if (bxe_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) { |
| bxe_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state); |
| } else { |
| bxe_set_storm_rx_mode(sc); |
| } |
| |
| /* Clean up multicast configuration */ |
| rparam.mcast_obj = &sc->mcast_obj; |
| rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL); |
| if (rc < 0) { |
| BLOGE(sc, "Failed to send DEL MCAST command (%d)\n", rc); |
| } |
| |
| BXE_MCAST_UNLOCK(sc); |
| |
| // XXX bxe_iov_chip_cleanup(sc); |
| |
| /* |
| * Send the UNLOAD_REQUEST to the MCP. This will return if |
| * this function should perform FUNCTION, PORT, or COMMON HW |
| * reset. |
| */ |
| reset_code = bxe_send_unload_req(sc, unload_mode); |
| |
| /* |
| * (assumption: No Attention from MCP at this stage) |
| * PMF probably in the middle of TX disable/enable transaction |
| */ |
| rc = bxe_func_wait_started(sc); |
| if (rc) { |
| BLOGE(sc, "bxe_func_wait_started failed\n"); |
| } |
| |
| /* |
| * Close multi and leading connections |
| * Completions for ramrods are collected in a synchronous way |
| */ |
| for (i = 0; i < sc->num_queues; i++) { |
| if (bxe_stop_queue(sc, i)) { |
| goto unload_error; |
| } |
| } |
| |
| /* |
| * If SP settings didn't get completed so far - something |
| * very wrong has happen. |
| */ |
| if (!bxe_wait_sp_comp(sc, ~0x0UL)) { |
| BLOGE(sc, "Common slow path ramrods got stuck!\n"); |
| } |
| |
| unload_error: |
| |
| rc = bxe_func_stop(sc); |
| if (rc) { |
| BLOGE(sc, "Function stop failed!\n"); |
| } |
| |
| /* disable HW interrupts */ |
| bxe_int_disable_sync(sc, TRUE); |
| |
| /* detach interrupts */ |
| bxe_interrupt_detach(sc); |
| |
| /* Reset the chip */ |
| rc = bxe_reset_hw(sc, reset_code); |
| if (rc) { |
| BLOGE(sc, "Hardware reset failed\n"); |
| } |
| |
| /* Report UNLOAD_DONE to MCP */ |
| bxe_send_unload_done(sc, keep_link); |
| } |
| |
| static void |
| bxe_disable_close_the_gate(struct bxe_adapter *sc) |
| { |
| uint32_t val; |
| int port = SC_PORT(sc); |
| |
| BLOGD(sc, DBG_LOAD, |
| "Disabling 'close the gates'\n"); |
| |
| if (CHIP_IS_E1(sc)) { |
| uint32_t addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 : |
| MISC_REG_AEU_MASK_ATTN_FUNC_0; |
| val = REG_RD(sc, addr); |
| val &= ~(0x300); |
| REG_WR(sc, addr, val); |
| } else { |
| val = REG_RD(sc, MISC_REG_AEU_GENERAL_MASK); |
| val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK | |
| MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK); |
| REG_WR(sc, MISC_REG_AEU_GENERAL_MASK, val); |
| } |
| } |
| |
| /* |
| * Cleans the object that have internal lists without sending |
| * ramrods. Should be run when interrutps are disabled. |
| */ |
| static void |
| bxe_squeeze_objects(struct bxe_adapter *sc) |
| { |
| unsigned long ramrod_flags = 0, vlan_mac_flags = 0; |
| struct ecore_mcast_ramrod_params rparam = { NULL }; |
| struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj; |
| int rc; |
| |
| /* Cleanup MACs' object first... */ |
| |
| /* Wait for completion of requested */ |
| bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags); |
| /* Perform a dry cleanup */ |
| bxe_set_bit(RAMROD_DRV_CLR_ONLY, &ramrod_flags); |
| |
| /* Clean ETH primary MAC */ |
| bxe_set_bit(ECORE_ETH_MAC, &vlan_mac_flags); |
| rc = mac_obj->delete_all(sc, &sc->sp_objs->mac_obj, &vlan_mac_flags, |
| &ramrod_flags); |
| if (rc != 0) { |
| BLOGE(sc, "Failed to clean ETH MACs (%d)\n", rc); |
| } |
| |
| /* Cleanup UC list */ |
| vlan_mac_flags = 0; |
| bxe_set_bit(ECORE_UC_LIST_MAC, &vlan_mac_flags); |
| rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags, |
| &ramrod_flags); |
| if (rc != 0) { |
| BLOGE(sc, "Failed to clean UC list MACs (%d)\n", rc); |
| } |
| |
| /* Now clean mcast object... */ |
| |
| rparam.mcast_obj = &sc->mcast_obj; |
| bxe_set_bit(RAMROD_DRV_CLR_ONLY, &rparam.ramrod_flags); |
| |
| /* Add a DEL command... */ |
| rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL); |
| if (rc < 0) { |
| BLOGE(sc, "Failed to send DEL MCAST command (%d)\n", rc); |
| } |
| |
| /* now wait until all pending commands are cleared */ |
| |
| rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT); |
| while (rc != 0) { |
| if (rc < 0) { |
| BLOGE(sc, "Failed to clean MCAST object (%d)\n", rc); |
| return; |
| } |
| |
| rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT); |
| } |
| } |
| |
| /* stop the controller */ |
| static __noinline int |
| bxe_nic_unload(struct bxe_adapter *sc, |
| uint32_t unload_mode, |
| uint8_t keep_link) |
| { |
| uint8_t global = FALSE; |
| uint32_t val; |
| |
| BXE_CORE_LOCK_ASSERT(sc); |
| |
| BLOGD(sc, DBG_LOAD, "Starting NIC unload...\n"); |
| |
| /* mark driver as unloaded in shmem2 */ |
| if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) { |
| val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]); |
| SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)], |
| val & ~DRV_FLAGS_CAPABILITIES_LOADED_L2); |
| } |
| |
| if (IS_PF(sc) && sc->recovery_state != BXE_RECOVERY_DONE && |
| (sc->state == BXE_STATE_CLOSED || sc->state == BXE_STATE_ERROR)) { |
| /* |
| * We can get here if the driver has been unloaded |
| * during parity error recovery and is either waiting for a |
| * leader to complete or for other functions to unload and |
| * then ifconfig down has been issued. In this case we want to |
| * unload and let other functions to complete a recovery |
| * process. |
| */ |
| sc->recovery_state = BXE_RECOVERY_DONE; |
| sc->is_leader = 0; |
| bxe_release_leader_lock(sc); |
| mb(); |
| |
| BLOGD(sc, DBG_LOAD, "Releasing a leadership...\n"); |
| BLOGE(sc, "Can't unload in closed or error state\n"); |
| return (-1); |
| } |
| |
| /* |
| * Nothing to do during unload if previous bxe_nic_load() |
| * did not completed succesfully - all resourses are released. |
| */ |
| if ((sc->state == BXE_STATE_CLOSED) || |
| (sc->state == BXE_STATE_ERROR)) { |
| return (0); |
| } |
| |
| sc->state = BXE_STATE_CLOSING_WAITING_HALT; |
| mb(); |
| |
| /* stop tx */ |
| bxe_tx_disable(sc); |
| |
| sc->rx_mode = BXE_RX_MODE_NONE; |
| /* XXX set rx mode ??? */ |
| |
| if (IS_PF(sc)) { |
| /* set ALWAYS_ALIVE bit in shmem */ |
| sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE; |
| |
| bxe_drv_pulse(sc); |
| |
| bxe_stats_handle(sc, STATS_EVENT_STOP); |
| bxe_save_statistics(sc); |
| } |
| |
| /* wait till consumers catch up with producers in all queues */ |
| bxe_drain_tx_queues(sc); |
| |
| /* if VF indicate to PF this function is going down (PF will delete sp |
| * elements and clear initializations |
| */ |
| if (IS_VF(sc)) { |
| ; /* bxe_vfpf_close_vf(sc); */ |
| } else if (unload_mode != UNLOAD_RECOVERY) { |
| /* if this is a normal/close unload need to clean up chip */ |
| bxe_chip_cleanup(sc, unload_mode, keep_link); |
| } else { |
| /* Send the UNLOAD_REQUEST to the MCP */ |
| bxe_send_unload_req(sc, unload_mode); |
| |
| /* |
| * Prevent transactions to host from the functions on the |
| * engine that doesn't reset global blocks in case of global |
| * attention once gloabl blocks are reset and gates are opened |
| * (the engine which leader will perform the recovery |
| * last). |
| */ |
| if (!CHIP_IS_E1x(sc)) { |
| bxe_pf_disable(sc); |
| } |
| |
| /* disable HW interrupts */ |
| bxe_int_disable_sync(sc, TRUE); |
| |
| /* detach interrupts */ |
| bxe_interrupt_detach(sc); |
| |
| /* Report UNLOAD_DONE to MCP */ |
| bxe_send_unload_done(sc, FALSE); |
| } |
| |
| /* |
| * At this stage no more interrupts will arrive so we may safely clean |
| * the queue'able objects here in case they failed to get cleaned so far. |
| */ |
| if (IS_PF(sc)) { |
| bxe_squeeze_objects(sc); |
| } |
| |
| /* There should be no more pending SP commands at this stage */ |
| sc->sp_state = 0; |
| |
| sc->port.pmf = 0; |
| |
| bxe_free_fp_buffers(sc); |
| |
| if (IS_PF(sc)) { |
| bxe_free_mem(sc); |
| } |
| |
| bxe_free_fw_stats_mem(sc); |
| |
| sc->state = BXE_STATE_CLOSED; |
| |
| /* |
| * Check if there are pending parity attentions. If there are - set |
| * RECOVERY_IN_PROGRESS. |
| */ |
| if (IS_PF(sc) && bxe_chk_parity_attn(sc, &global, FALSE)) { |
| bxe_set_reset_in_progress(sc); |
| |
| /* Set RESET_IS_GLOBAL if needed */ |
| if (global) { |
| bxe_set_reset_global(sc); |
| } |
| } |
| |
| /* |
| * The last driver must disable a "close the gate" if there is no |
| * parity attention or "process kill" pending. |
| */ |
| if (IS_PF(sc) && !bxe_clear_pf_load(sc) && |
| bxe_reset_is_done(sc, SC_PATH(sc))) { |
| bxe_disable_close_the_gate(sc); |
| } |
| |
| BLOGD(sc, DBG_LOAD, "Ended NIC unload\n"); |
| return (0); |
| } |
| |
| /* |
| * Called by the OS to set various media options (i.e. link, speed, etc.) when |
| * the user runs "ifconfig bxe media ..." or "ifconfig bxe mediaopt ...". |
| */ |
| static int |
| bxe_ifmedia_update(struct bxe_adapter *sc) |
| { |
| // and we don't support changing the media type anyway. Pointless. |
| error("No media type change support in bxe"); |
| } |
| |
| // TODO: make this work as a write to ctl. |
| static int |
| bxe_ioctl_nvram(struct bxe_adapter *sc, |
| uint32_t priv_op, |
| void *data) |
| { |
| struct bxe_nvram_data nvdata_base; |
| struct bxe_nvram_data *nvdata; |
| int len; |
| int error = 0; |
| |
| memcpy_from_user(current, &nvdata_base, data, sizeof(nvdata_base)); |
| |
| len = (sizeof(struct bxe_nvram_data) + |
| nvdata_base.len - |
| sizeof(uint32_t)); |
| |
| if (len > sizeof(struct bxe_nvram_data)) { |
| if ((nvdata = (struct bxe_nvram_data *) |
| kzmalloc(len, KMALLOC_WAIT)) == NULL) { |
| BLOGE(sc, "BXE_IOC_RD_NVRAM malloc failed\n"); |
| return (1); |
| } |
| memcpy(nvdata, &nvdata_base, sizeof(struct bxe_nvram_data)); |
| } else { |
| nvdata = &nvdata_base; |
| } |
| |
| if (priv_op == BXE_IOC_RD_NVRAM) { |
| BLOGD(sc, DBG_IOCTL, "IOC_RD_NVRAM 0x%x %d\n", |
| nvdata->offset, nvdata->len); |
| error = bxe_nvram_read(sc, |
| nvdata->offset, |
| (uint8_t *)nvdata->value, |
| nvdata->len); |
| memcpy_to_user(current, data, nvdata, len); |
| } else { /* BXE_IOC_WR_NVRAM */ |
| BLOGD(sc, DBG_IOCTL, "IOC_WR_NVRAM 0x%x %d\n", |
| nvdata->offset, nvdata->len); |
| memcpy_from_user(current, nvdata, data, len); |
| error = bxe_nvram_write(sc, |
| nvdata->offset, |
| (uint8_t *)nvdata->value, |
| nvdata->len); |
| } |
| |
| if (len > sizeof(struct bxe_nvram_data)) { |
| kfree(nvdata); |
| } |
| |
| return (error); |
| } |
| |
| static int |
| bxe_ioctl_stats_show(struct bxe_adapter *sc, |
| uint32_t priv_op, |
| void *data) |
| { |
| assert(0); |
| return 0xaa; |
| #if 0 // AKAROS_PORT |
| const size_t str_size = (BXE_NUM_ETH_STATS * STAT_NAME_LEN); |
| const size_t stats_size = (BXE_NUM_ETH_STATS * sizeof(uint64_t)); |
| caddr_t p_tmp; |
| uint32_t *offset; |
| int i; |
| |
| switch (priv_op) |
| { |
| case BXE_IOC_STATS_SHOW_NUM: |
| memset(ifr->ifr_data, 0, sizeof(union bxe_stats_show_data)); |
| ((union bxe_stats_show_data *)ifr->ifr_data)->desc.num = |
| BXE_NUM_ETH_STATS; |
| ((union bxe_stats_show_data *)ifr->ifr_data)->desc.len = |
| STAT_NAME_LEN; |
| return (0); |
| |
| case BXE_IOC_STATS_SHOW_STR: |
| memset(ifr->ifr_data, 0, str_size); |
| p_tmp = ifr->ifr_data; |
| for (i = 0; i < BXE_NUM_ETH_STATS; i++) { |
| strcpy(p_tmp, bxe_eth_stats_arr[i].string); |
| p_tmp += STAT_NAME_LEN; |
| } |
| return (0); |
| |
| case BXE_IOC_STATS_SHOW_CNT: |
| memset(ifr->ifr_data, 0, stats_size); |
| p_tmp = ifr->ifr_data; |
| for (i = 0; i < BXE_NUM_ETH_STATS; i++) { |
| offset = ((uint32_t *)&sc->eth_stats + |
| bxe_eth_stats_arr[i].offset); |
| switch (bxe_eth_stats_arr[i].size) { |
| case 4: |
| *((uint64_t *)p_tmp) = (uint64_t)*offset; |
| break; |
| case 8: |
| *((uint64_t *)p_tmp) = HILO_U64(*offset, *(offset + 1)); |
| break; |
| default: |
| *((uint64_t *)p_tmp) = 0; |
| } |
| p_tmp += sizeof(uint64_t); |
| } |
| return (0); |
| |
| default: |
| return (-1); |
| } |
| #endif |
| } |
| |
| static void |
| bxe_handle_chip_tq(void *context, |
| int pending) |
| { |
| assert(0); |
| #if 0 // AKAROS_PORT |
| struct bxe_adapter *sc = (struct bxe_adapter *)context; |
| long work = atomic_read(&sc->chip_tq_flags); |
| |
| switch (work) |
| { |
| case CHIP_TQ_START: |
| if ((if_getflags(sc->ifp) & IFF_UP) && |
| !(if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING)) { |
| /* start the interface */ |
| BLOGD(sc, DBG_LOAD, "Starting the interface...\n"); |
| BXE_CORE_LOCK(sc); |
| bxe_init_locked(sc); |
| BXE_CORE_UNLOCK(sc); |
| } |
| break; |
| |
| case CHIP_TQ_STOP: |
| if (!(if_getflags(sc->ifp) & IFF_UP) && |
| (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING)) { |
| /* bring down the interface */ |
| BLOGD(sc, DBG_LOAD, "Stopping the interface...\n"); |
| bxe_periodic_stop(sc); |
| BXE_CORE_LOCK(sc); |
| bxe_stop_locked(sc); |
| BXE_CORE_UNLOCK(sc); |
| } |
| break; |
| |
| case CHIP_TQ_REINIT: |
| if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) { |
| /* restart the interface */ |
| BLOGD(sc, DBG_LOAD, "Restarting the interface...\n"); |
| bxe_periodic_stop(sc); |
| BXE_CORE_LOCK(sc); |
| bxe_stop_locked(sc); |
| bxe_init_locked(sc); |
| BXE_CORE_UNLOCK(sc); |
| } |
| break; |
| |
| default: |
| break; |
| } |
| #endif |
| } |
| |
| /* |
| * Handles any IOCTL calls from the operating system. |
| * |
| * Returns: |
| * 0 = Success, >0 Failure |
| */ |
| static int |
| bxe_ioctl(if_t ifp, |
| unsigned long command, |
| void * data) |
| { |
| assert(0); |
| #if 0 // AKAROS_PORT |
| struct bxe_adapter *sc = if_getsoftc(ifp); |
| struct bxe_nvram_data *nvdata; |
| uint32_t priv_op; |
| int mask = 0; |
| int reinit = 0; |
| int error = 0; |
| |
| int mtu_min = (ETH_MIN_PACKET_SIZE - ETH_HLEN); |
| int mtu_max = (MJUM9BYTES - ETH_OVERHEAD - IP_HEADER_ALIGNMENT_PADDING); |
| |
| switch (command) |
| { |
| case SIOCSIFMTU: |
| BLOGD(sc, DBG_IOCTL, "Received SIOCSIFMTU ioctl (mtu=%d)\n", |
| ifr->ifr_mtu); |
| |
| if (sc->mtu == ifr->ifr_mtu) { |
| /* nothing to change */ |
| break; |
| } |
| |
| if ((ifr->ifr_mtu < mtu_min) || (ifr->ifr_mtu > mtu_max)) { |
| BLOGE(sc, "Unsupported MTU size %d (range is %d-%d)\n", |
| ifr->ifr_mtu, mtu_min, mtu_max); |
| error = EINVAL; |
| break; |
| } |
| |
| atomic_set(volatile unsigned int *)&sc->mtu, |
| (unsigned long)ifr->ifr_mtu); |
| /* |
| atomic_set((volatile unsigned long *)&if_getmtu(ifp), |
| (unsigned long)ifr->ifr_mtu); |
| XXX - Not sure why it needs to be atomic |
| */ |
| if_setmtu(ifp, ifr->ifr_mtu); |
| reinit = 1; |
| break; |
| |
| case SIOCSIFFLAGS: |
| /* toggle the interface state up or down */ |
| BLOGD(sc, DBG_IOCTL, "Received SIOCSIFFLAGS ioctl\n"); |
| |
| /* check if the interface is up */ |
| if (if_getflags(ifp) & IFF_UP) { |
| if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { |
| /* set the receive mode flags */ |
| bxe_set_rx_mode(sc); |
| } else { |
| atomic_set(&sc->chip_tq_flags, CHIP_TQ_START); |
| taskqueue_enqueue(sc->chip_tq, &sc->chip_tq_task); |
| } |
| } else { |
| if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { |
| atomic_set(&sc->chip_tq_flags, CHIP_TQ_STOP); |
| taskqueue_enqueue(sc->chip_tq, &sc->chip_tq_task); |
| } |
| } |
| |
| break; |
| |
| case SIOCADDMULTI: |
| case SIOCDELMULTI: |
| /* add/delete multicast addresses */ |
| BLOGD(sc, DBG_IOCTL, "Received SIOCADDMULTI/SIOCDELMULTI ioctl\n"); |
| |
| /* check if the interface is up */ |
| if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { |
| /* set the receive mode flags */ |
| bxe_set_rx_mode(sc); |
| } |
| |
| break; |
| |
| case SIOCSIFCAP: |
| /* find out which capabilities have changed */ |
| mask = (ifr->ifr_reqcap ^ if_getcapenable(ifp)); |
| |
| BLOGD(sc, DBG_IOCTL, "Received SIOCSIFCAP ioctl (mask=0x%08x)\n", |
| mask); |
| |
| /* toggle the LRO capabilites enable flag */ |
| if (mask & IFCAP_LRO) { |
| if_togglecapenable(ifp, IFCAP_LRO); |
| BLOGD(sc, DBG_IOCTL, "Turning LRO %s\n", |
| (if_getcapenable(ifp) & IFCAP_LRO) ? "ON" : "OFF"); |
| reinit = 1; |
| } |
| |
| /* toggle the TXCSUM checksum capabilites enable flag */ |
| if (mask & IFCAP_TXCSUM) { |
| if_togglecapenable(ifp, IFCAP_TXCSUM); |
| BLOGD(sc, DBG_IOCTL, "Turning TXCSUM %s\n", |
| (if_getcapenable(ifp) & IFCAP_TXCSUM) ? "ON" : "OFF"); |
| if (if_getcapenable(ifp) & IFCAP_TXCSUM) { |
| if_sethwassistbits(ifp, (CSUM_IP | |
| CSUM_TCP | |
| CSUM_UDP | |
| CSUM_TSO | |
| CSUM_TCP_IPV6 | |
| CSUM_UDP_IPV6), 0); |
| } else { |
| if_clearhwassist(ifp); /* XXX */ |
| } |
| } |
| |
| /* toggle the RXCSUM checksum capabilities enable flag */ |
| if (mask & IFCAP_RXCSUM) { |
| if_togglecapenable(ifp, IFCAP_RXCSUM); |
| BLOGD(sc, DBG_IOCTL, "Turning RXCSUM %s\n", |
| (if_getcapenable(ifp) & IFCAP_RXCSUM) ? "ON" : "OFF"); |
| if (if_getcapenable(ifp) & IFCAP_RXCSUM) { |
| if_sethwassistbits(ifp, (CSUM_IP | |
| CSUM_TCP | |
| CSUM_UDP | |
| CSUM_TSO | |
| CSUM_TCP_IPV6 | |
| CSUM_UDP_IPV6), 0); |
| } else { |
| if_clearhwassist(ifp); /* XXX */ |
| } |
| } |
| |
| /* toggle TSO4 capabilities enabled flag */ |
| if (mask & IFCAP_TSO4) { |
| if_togglecapenable(ifp, IFCAP_TSO4); |
| BLOGD(sc, DBG_IOCTL, "Turning TSO4 %s\n", |
| (if_getcapenable(ifp) & IFCAP_TSO4) ? "ON" : "OFF"); |
| } |
| |
| /* toggle TSO6 capabilities enabled flag */ |
| if (mask & IFCAP_TSO6) { |
| if_togglecapenable(ifp, IFCAP_TSO6); |
| BLOGD(sc, DBG_IOCTL, "Turning TSO6 %s\n", |
| (if_getcapenable(ifp) & IFCAP_TSO6) ? "ON" : "OFF"); |
| } |
| |
| /* toggle VLAN_HWTSO capabilities enabled flag */ |
| if (mask & IFCAP_VLAN_HWTSO) { |
| |
| if_togglecapenable(ifp, IFCAP_VLAN_HWTSO); |
| BLOGD(sc, DBG_IOCTL, "Turning VLAN_HWTSO %s\n", |
| (if_getcapenable(ifp) & IFCAP_VLAN_HWTSO) ? "ON" : "OFF"); |
| } |
| |
| /* toggle VLAN_HWCSUM capabilities enabled flag */ |
| if (mask & IFCAP_VLAN_HWCSUM) { |
| /* XXX investigate this... */ |
| BLOGE(sc, "Changing VLAN_HWCSUM is not supported!\n"); |
| error = EINVAL; |
| } |
| |
| /* toggle VLAN_MTU capabilities enable flag */ |
| if (mask & IFCAP_VLAN_MTU) { |
| /* XXX investigate this... */ |
| BLOGE(sc, "Changing VLAN_MTU is not supported!\n"); |
| error = EINVAL; |
| } |
| |
| /* toggle VLAN_HWTAGGING capabilities enabled flag */ |
| if (mask & IFCAP_VLAN_HWTAGGING) { |
| /* XXX investigate this... */ |
| BLOGE(sc, "Changing VLAN_HWTAGGING is not supported!\n"); |
| error = EINVAL; |
| } |
| |
| /* toggle VLAN_HWFILTER capabilities enabled flag */ |
| if (mask & IFCAP_VLAN_HWFILTER) { |
| /* XXX investigate this... */ |
| BLOGE(sc, "Changing VLAN_HWFILTER is not supported!\n"); |
| error = EINVAL; |
| } |
| |
| /* XXX not yet... |
| * IFCAP_WOL_MAGIC |
| */ |
| |
| break; |
| |
| case SIOCSIFMEDIA: |
| case SIOCGIFMEDIA: |
| /* set/get interface media */ |
| BLOGD(sc, DBG_IOCTL, |
| "Received SIOCSIFMEDIA/SIOCGIFMEDIA ioctl (cmd=%lu)\n", |
| (command & 0xff)); |
| error = ifmedia_ioctl(ifp, ifr, &sc->media, command); |
| break; |
| |
| case SIOCGPRIVATE_0: |
| copyin(ifr->ifr_data, &priv_op, sizeof(priv_op)); |
| |
| switch (priv_op) |
| { |
| case BXE_IOC_RD_NVRAM: |
| case BXE_IOC_WR_NVRAM: |
| nvdata = (struct bxe_nvram_data *)ifr->ifr_data; |
| BLOGD(sc, DBG_IOCTL, |
| "Received Private NVRAM ioctl addr=0x%x size=%u\n", |
| nvdata->offset, nvdata->len); |
| error = bxe_ioctl_nvram(sc, priv_op, ifr); |
| break; |
| |
| case BXE_IOC_STATS_SHOW_NUM: |
| case BXE_IOC_STATS_SHOW_STR: |
| case BXE_IOC_STATS_SHOW_CNT: |
| BLOGD(sc, DBG_IOCTL, "Received Private Stats ioctl (%d)\n", |
| priv_op); |
| error = bxe_ioctl_stats_show(sc, priv_op, ifr); |
| break; |
| |
| default: |
| BLOGW(sc, "Received Private Unknown ioctl (%d)\n", priv_op); |
| error = EINVAL; |
| break; |
| } |
| |
| break; |
| |
| default: |
| BLOGD(sc, DBG_IOCTL, "Received Unknown Ioctl (cmd=%lu)\n", |
| (command & 0xff)); |
| error = ether_ioctl(ifp, command, data); |
| break; |
| } |
| |
| if (reinit && (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING)) { |
| BLOGD(sc, DBG_LOAD | DBG_IOCTL, |
| "Re-initializing hardware from IOCTL change\n"); |
| atomic_set(&sc->chip_tq_flags, CHIP_TQ_REINIT); |
| taskqueue_enqueue(sc->chip_tq, &sc->chip_tq_task); |
| } |
| |
| return (error); |
| #endif |
| return -1; |
| } |
| |
| static __noinline void |
| bxe_dump_mbuf(struct bxe_adapter *sc, |
| struct mbuf *m, |
| uint8_t contents) |
| { |
| assert(0); |
| #if 0 // AKAROS_PORT |
| char * type; |
| int i = 0; |
| |
| if (!(sc->debug & DBG_MBUF)) { |
| return; |
| } |
| |
| if (m == NULL) { |
| BLOGD(sc, DBG_MBUF, "mbuf: null pointer\n"); |
| return; |
| } |
| |
| while (m) { |
| BLOGD(sc, DBG_MBUF, |
| "%02d: mbuf=%p m_len=%d m_flags=0x%b m_data=%p\n", |
| i, m, m->m_len, m->m_flags, M_FLAG_BITS, m->m_data); |
| |
| if (m->m_flags & M_PKTHDR) { |
| BLOGD(sc, DBG_MBUF, |
| "%02d: - m_pkthdr: tot_len=%d flags=0x%b csum_flags=%b\n", |
| i, m->m_pkthdr.len, m->m_flags, M_FLAG_BITS, |
| (int)m->m_pkthdr.csum_flags, CSUM_BITS); |
| } |
| |
| if (m->m_flags & M_EXT) { |
| switch (m->m_ext.ext_type) { |
| case EXT_CLUSTER: type = "EXT_CLUSTER"; break; |
| case EXT_SFBUF: type = "EXT_SFBUF"; break; |
| case EXT_JUMBOP: type = "EXT_JUMBOP"; break; |
| case EXT_JUMBO9: type = "EXT_JUMBO9"; break; |
| case EXT_JUMBO16: type = "EXT_JUMBO16"; break; |
| case EXT_PACKET: type = "EXT_PACKET"; break; |
| case EXT_MBUF: type = "EXT_MBUF"; break; |
| case EXT_NET_DRV: type = "EXT_NET_DRV"; break; |
| case EXT_MOD_TYPE: type = "EXT_MOD_TYPE"; break; |
| case EXT_DISPOSABLE: type = "EXT_DISPOSABLE"; break; |
| case EXT_EXTREF: type = "EXT_EXTREF"; break; |
| default: type = "UNKNOWN"; break; |
| } |
| |
| BLOGD(sc, DBG_MBUF, |
| "%02d: - m_ext: %p ext_size=%d type=%s\n", |
| i, m->m_ext.ext_buf, m->m_ext.ext_size, type); |
| } |
| |
| if (contents) { |
| bxe_dump_mbuf_data(sc, "mbuf data", m, TRUE); |
| } |
| |
| m = m->m_next; |
| i++; |
| } |
| #endif |
| } |
| /* this is a huge comment out! */ |
| #if 0 // AKAROS_PORT |
| /* |
| * Checks to ensure the 13 bd sliding window is >= MSS for TSO. |
| * Check that (13 total bds - 3 bds) = 10 bd window >= MSS. |
| * The window: 3 bds are = 1 for headers BD + 2 for parse BD and last BD |
| * The headers comes in a seperate bd in FreeBSD so 13-3=10. |
| * Returns: 0 if OK to send, 1 if packet needs further defragmentation |
| */ |
| static int |
| bxe_chktso_window(struct bxe_adapter *sc, |
| int nsegs, |
| bus_dma_segment_t *segs, |
| struct mbuf *m) |
| { |
| uint32_t num_wnds, wnd_size, wnd_sum; |
| int32_t frag_idx, wnd_idx; |
| unsigned short lso_mss; |
| int defrag; |
| |
| defrag = 0; |
| wnd_sum = 0; |
| wnd_size = 10; |
| num_wnds = nsegs - wnd_size; |
| lso_mss = cpu_to_le16(m->m_pkthdr.tso_segsz); |
| |
| /* |
| * Total header lengths Eth+IP+TCP in first FreeBSD mbuf so calculate the |
| * first window sum of data while skipping the first assuming it is the |
| * header in FreeBSD. |
| */ |
| for (frag_idx = 1; (frag_idx <= wnd_size); frag_idx++) { |
| wnd_sum += cpu_to_le16(segs[frag_idx].ds_len); |
| } |
| |
| /* check the first 10 bd window size */ |
| if (wnd_sum < lso_mss) { |
| return (1); |
| } |
| |
| /* run through the windows */ |
| for (wnd_idx = 0; wnd_idx < num_wnds; wnd_idx++, frag_idx++) { |
| /* subtract the first mbuf->m_len of the last wndw(-header) */ |
| wnd_sum -= cpu_to_le16(segs[wnd_idx+1].ds_len); |
| /* add the next mbuf len to the len of our new window */ |
| wnd_sum += cpu_to_le16(segs[frag_idx].ds_len); |
| if (wnd_sum < lso_mss) { |
| return (1); |
| } |
| } |
| |
| return (0); |
| } |
| |
| static uint8_t |
| bxe_set_pbd_csum_e2(struct bxe_fastpath *fp, |
| struct mbuf *m, |
| uint32_t *parsing_data) |
| { |
| struct ether_vlan_header *eh = NULL; |
| struct ip *ip4 = NULL; |
| struct ip6_hdr *ip6 = NULL; |
| caddr_t ip = NULL; |
| struct tcphdr *th = NULL; |
| int e_hlen, ip_hlen, l4_off; |
| uint16_t proto; |
| |
| if (m->m_pkthdr.csum_flags == CSUM_IP) { |
| /* no L4 checksum offload needed */ |
| return (0); |
| } |
| |
| /* get the Ethernet header */ |
| eh = mtod(m, struct ether_vlan_header *); |
| |
| /* handle VLAN encapsulation if present */ |
| if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) { |
| e_hlen = (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN); |
| proto = ntohs(eh->evl_proto); |
| } else { |
| e_hlen = ETHER_HDR_LEN; |
| proto = ntohs(eh->evl_encap_proto); |
| } |
| |
| switch (proto) { |
| case ETHERTYPE_IP: |
| /* get the IP header, if mbuf len < 20 then header in next mbuf */ |
| ip4 = (m->m_len < sizeof(struct ip)) ? |
| (struct ip *)m->m_next->m_data : |
| (struct ip *)(m->m_data + e_hlen); |
| /* ip_hl is number of 32-bit words */ |
| ip_hlen = (ip4->ip_hl << 2); |
| ip = (caddr_t)ip4; |
| break; |
| case ETHERTYPE_IPV6: |
| /* get the IPv6 header, if mbuf len < 40 then header in next mbuf */ |
| ip6 = (m->m_len < sizeof(struct ip6_hdr)) ? |
| (struct ip6_hdr *)m->m_next->m_data : |
| (struct ip6_hdr *)(m->m_data + e_hlen); |
| /* XXX cannot support offload with IPv6 extensions */ |
| ip_hlen = sizeof(struct ip6_hdr); |
| ip = (caddr_t)ip6; |
| break; |
| default: |
| /* We can't offload in this case... */ |
| /* XXX error stat ??? */ |
| return (0); |
| } |
| |
| /* XXX assuming L4 header is contiguous to IPv4/IPv6 in the same mbuf */ |
| l4_off = (e_hlen + ip_hlen); |
| |
| *parsing_data |= |
| (((l4_off >> 1) << ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) & |
| ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W); |
| |
| if (m->m_pkthdr.csum_flags & (CSUM_TCP | |
| CSUM_TSO | |
| CSUM_TCP_IPV6)) { |
| fp->eth_q_stats.tx_ofld_frames_csum_tcp++; |
| th = (struct tcphdr *)(ip + ip_hlen); |
| /* th_off is number of 32-bit words */ |
| *parsing_data |= ((th->th_off << |
| ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) & |
| ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW); |
| return (l4_off + (th->th_off << 2)); /* entire header length */ |
| } else if (m->m_pkthdr.csum_flags & (CSUM_UDP | |
| CSUM_UDP_IPV6)) { |
| fp->eth_q_stats.tx_ofld_frames_csum_udp++; |
| return (l4_off + sizeof(struct udphdr)); /* entire header length */ |
| } else { |
| /* XXX error stat ??? */ |
| return (0); |
| } |
| } |
| |
| static uint8_t |
| bxe_set_pbd_csum(struct bxe_fastpath *fp, |
| struct mbuf *m, |
| struct eth_tx_parse_bd_e1x *pbd) |
| { |
| struct ether_vlan_header *eh = NULL; |
| struct ip *ip4 = NULL; |
| struct ip6_hdr *ip6 = NULL; |
| caddr_t ip = NULL; |
| struct tcphdr *th = NULL; |
| struct udphdr *uh = NULL; |
| int e_hlen, ip_hlen; |
| uint16_t proto; |
| uint8_t hlen; |
| uint16_t tmp_csum; |
| uint32_t *tmp_uh; |
| |
| /* get the Ethernet header */ |
| eh = mtod(m, struct ether_vlan_header *); |
| |
| /* handle VLAN encapsulation if present */ |
| if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) { |
| e_hlen = (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN); |
| proto = ntohs(eh->evl_proto); |
| } else { |
| e_hlen = ETHER_HDR_LEN; |
| proto = ntohs(eh->evl_encap_proto); |
| } |
| |
| switch (proto) { |
| case ETHERTYPE_IP: |
| /* get the IP header, if mbuf len < 20 then header in next mbuf */ |
| ip4 = (m->m_len < sizeof(struct ip)) ? |
| (struct ip *)m->m_next->m_data : |
| (struct ip *)(m->m_data + e_hlen); |
| /* ip_hl is number of 32-bit words */ |
| ip_hlen = (ip4->ip_hl << 1); |
| ip = (caddr_t)ip4; |
| break; |
| case ETHERTYPE_IPV6: |
| /* get the IPv6 header, if mbuf len < 40 then header in next mbuf */ |
| ip6 = (m->m_len < sizeof(struct ip6_hdr)) ? |
| (struct ip6_hdr *)m->m_next->m_data : |
| (struct ip6_hdr *)(m->m_data + e_hlen); |
| /* XXX cannot support offload with IPv6 extensions */ |
| ip_hlen = (sizeof(struct ip6_hdr) >> 1); |
| ip = (caddr_t)ip6; |
| break; |
| default: |
| /* We can't offload in this case... */ |
| /* XXX error stat ??? */ |
| return (0); |
| } |
| |
| hlen = (e_hlen >> 1); |
| |
| /* note that rest of global_data is indirectly zeroed here */ |
| if (m->m_flags & M_VLANTAG) { |
| pbd->global_data = |
| cpu_to_le16(hlen | (1 << ETH_TX_PARSE_BD_E1X_LLC_SNAP_EN_SHIFT)); |
| } else { |
| pbd->global_data = cpu_to_le16(hlen); |
| } |
| |
| pbd->ip_hlen_w = ip_hlen; |
| |
| hlen += pbd->ip_hlen_w; |
| |
| /* XXX assuming L4 header is contiguous to IPv4/IPv6 in the same mbuf */ |
| |
| if (m->m_pkthdr.csum_flags & (CSUM_TCP | |
| CSUM_TSO | |
| CSUM_TCP_IPV6)) { |
| th = (struct tcphdr *)(ip + (ip_hlen << 1)); |
| /* th_off is number of 32-bit words */ |
| hlen += (uint16_t)(th->th_off << 1); |
| } else if (m->m_pkthdr.csum_flags & (CSUM_UDP | |
| CSUM_UDP_IPV6)) { |
| uh = (struct udphdr *)(ip + (ip_hlen << 1)); |
| hlen += (sizeof(struct udphdr) / 2); |
| } else { |
| /* valid case as only CSUM_IP was set */ |
| return (0); |
| } |
| |
| pbd->total_hlen_w = cpu_to_le16(hlen); |
| |
| if (m->m_pkthdr.csum_flags & (CSUM_TCP | |
| CSUM_TSO | |
| CSUM_TCP_IPV6)) { |
| fp->eth_q_stats.tx_ofld_frames_csum_tcp++; |
| pbd->tcp_pseudo_csum = ntohs(th->th_sum); |
| } else if (m->m_pkthdr.csum_flags & (CSUM_UDP | |
| CSUM_UDP_IPV6)) { |
| fp->eth_q_stats.tx_ofld_frames_csum_udp++; |
| |
| /* |
| * Everest1 (i.e. 57710, 57711, 57711E) does not natively support UDP |
| * checksums and does not know anything about the UDP header and where |
| * the checksum field is located. It only knows about TCP. Therefore |
| * we "lie" to the hardware for outgoing UDP packets w/ checksum |
| * offload. Since the checksum field offset for TCP is 16 bytes and |
| * for UDP it is 6 bytes we pass a pointer to the hardware that is 10 |
| * bytes less than the start of the UDP header. This allows the |
| * hardware to write the checksum in the correct spot. But the |
| * hardware will compute a checksum which includes the last 10 bytes |
| * of the IP header. To correct this we tweak the stack computed |
| * pseudo checksum by folding in the calculation of the inverse |
| * checksum for those final 10 bytes of the IP header. This allows |
| * the correct checksum to be computed by the hardware. |
| */ |
| |
| /* set pointer 10 bytes before UDP header */ |
| tmp_uh = (uint32_t *)((uint8_t *)uh - 10); |
| |
| /* calculate a pseudo header checksum over the first 10 bytes */ |
| tmp_csum = in_pseudo(*tmp_uh, |
| *(tmp_uh + 1), |
| *(uint16_t *)(tmp_uh + 2)); |
| |
| pbd->tcp_pseudo_csum = ntohs(in_addword(uh->uh_sum, ~tmp_csum)); |
| } |
| |
| return (hlen * 2); /* entire header length, number of bytes */ |
| } |
| |
| static void |
| bxe_set_pbd_lso_e2(struct mbuf *m, |
| uint32_t *parsing_data) |
| { |
| *parsing_data |= ((m->m_pkthdr.tso_segsz << |
| ETH_TX_PARSE_BD_E2_LSO_MSS_SHIFT) & |
| ETH_TX_PARSE_BD_E2_LSO_MSS); |
| |
| /* XXX test for IPv6 with extension header... */ |
| #if 0 |
| struct ip6_hdr *ip6; |
| if (ip6 && ip6->ip6_nxt == 'some ipv6 extension header') |
| *parsing_data |= ETH_TX_PARSE_BD_E2_IPV6_WITH_EXT_HDR; |
| #endif |
| } |
| |
| static void |
| bxe_set_pbd_lso(struct mbuf *m, |
| struct eth_tx_parse_bd_e1x *pbd) |
| { |
| struct ether_vlan_header *eh = NULL; |
| struct ip *ip = NULL; |
| struct tcphdr *th = NULL; |
| int e_hlen; |
| |
| /* get the Ethernet header */ |
| eh = mtod(m, struct ether_vlan_header *); |
| |
| /* handle VLAN encapsulation if present */ |
| e_hlen = (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) ? |
| (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN) : ETHER_HDR_LEN; |
| |
| /* get the IP and TCP header, with LSO entire header in first mbuf */ |
| /* XXX assuming IPv4 */ |
| ip = (struct ip *)(m->m_data + e_hlen); |
| th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2)); |
| |
| pbd->lso_mss = cpu_to_le16(m->m_pkthdr.tso_segsz); |
| pbd->tcp_send_seq = ntohl(th->th_seq); |
| pbd->tcp_flags = ((ntohl(((uint32_t *)th)[3]) >> 16) & 0xff); |
| |
| #if 1 |
| /* XXX IPv4 */ |
| pbd->ip_id = ntohs(ip->ip_id); |
| pbd->tcp_pseudo_csum = |
| ntohs(in_pseudo(ip->ip_src.s_addr, |
| ip->ip_dst.s_addr, |
| htons(IPPROTO_TCP))); |
| #else |
| /* XXX IPv6 */ |
| pbd->tcp_pseudo_csum = |
| ntohs(in_pseudo(&ip6->ip6_src, |
| &ip6->ip6_dst, |
| htons(IPPROTO_TCP))); |
| #endif |
| |
| pbd->global_data |= |
| cpu_to_le16(ETH_TX_PARSE_BD_E1X_PSEUDO_CS_WITHOUT_LEN); |
| } |
| |
| /* |
| * Encapsulte an mbuf cluster into the tx bd chain and makes the memory |
| * visible to the controller. |
| * |
| * If an mbuf is submitted to this routine and cannot be given to the |
| * controller (e.g. it has too many fragments) then the function may free |
| * the mbuf and return to the caller. |
| * |
| * Returns: |
| * 0 = Success, !0 = Failure |
| * Note the side effect that an mbuf may be freed if it causes a problem. |
| */ |
| static int |
| bxe_tx_encap(struct bxe_fastpath *fp, struct mbuf **m_head) |
| { |
| bus_dma_segment_t segs[32]; |
| struct mbuf *m0; |
| struct bxe_sw_tx_bd *tx_buf; |
| struct eth_tx_parse_bd_e1x *pbd_e1x = NULL; |
| struct eth_tx_parse_bd_e2 *pbd_e2 = NULL; |
| /* struct eth_tx_parse_2nd_bd *pbd2 = NULL; */ |
| struct eth_tx_bd *tx_data_bd; |
| struct eth_tx_bd *tx_total_pkt_size_bd; |
| struct eth_tx_start_bd *tx_start_bd; |
| uint16_t bd_prod, pkt_prod, total_pkt_size; |
| uint8_t mac_type; |
| int defragged, error, nsegs, rc, nbds, vlan_off, ovlan; |
| struct bxe_adapter *sc; |
| uint16_t tx_bd_avail; |
| struct ether_vlan_header *eh; |
| uint32_t pbd_e2_parsing_data = 0; |
| uint8_t hlen = 0; |
| int tmp_bd; |
| int i; |
| |
| sc = fp->sc; |
| |
| M_ASSERTPKTHDR(*m_head); |
| |
| m0 = *m_head; |
| rc = defragged = nbds = ovlan = vlan_off = total_pkt_size = 0; |
| tx_start_bd = NULL; |
| tx_data_bd = NULL; |
| tx_total_pkt_size_bd = NULL; |
| |
| /* get the H/W pointer for packets and BDs */ |
| pkt_prod = fp->tx_pkt_prod; |
| bd_prod = fp->tx_bd_prod; |
| |
| mac_type = UNICAST_ADDRESS; |
| |
| /* map the mbuf into the next open DMAable memory */ |
| tx_buf = &fp->tx_mbuf_chain[TX_BD(pkt_prod)]; |
| error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag, |
| tx_buf->m_map, m0, |
| segs, &nsegs, BUS_DMA_NOWAIT); |
| |
| /* mapping errors */ |
| if(__predict_false(error != 0)) { |
| fp->eth_q_stats.tx_dma_mapping_failure++; |
| if (error == ENOMEM) { |
| /* resource issue, try again later */ |
| rc = ENOMEM; |
| } else if (error == EFBIG) { |
| /* possibly recoverable with defragmentation */ |
| fp->eth_q_stats.mbuf_defrag_attempts++; |
| m0 = m_defrag(*m_head, M_NOWAIT); |
| if (m0 == NULL) { |
| fp->eth_q_stats.mbuf_defrag_failures++; |
| rc = ENOBUFS; |
| } else { |
| /* defrag successful, try mapping again */ |
| *m_head = m0; |
| error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag, |
| tx_buf->m_map, m0, |
| segs, &nsegs, BUS_DMA_NOWAIT); |
| if (error) { |
| fp->eth_q_stats.tx_dma_mapping_failure++; |
| rc = error; |
| } |
| } |
| } else { |
| /* unknown, unrecoverable mapping error */ |
| BLOGE(sc, "Unknown TX mapping error rc=%d\n", error); |
| bxe_dump_mbuf(sc, m0, FALSE); |
| rc = error; |
| } |
| |
| goto bxe_tx_encap_continue; |
| } |
| |
| tx_bd_avail = bxe_tx_avail(sc, fp); |
| |
| /* make sure there is enough room in the send queue */ |
| if (__predict_false(tx_bd_avail < (nsegs + 2))) { |
| /* Recoverable, try again later. */ |
| fp->eth_q_stats.tx_hw_queue_full++; |
| bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map); |
| rc = ENOMEM; |
| goto bxe_tx_encap_continue; |
| } |
| |
| /* capture the current H/W TX chain high watermark */ |
| if (__predict_false(fp->eth_q_stats.tx_hw_max_queue_depth < |
| (TX_BD_USABLE - tx_bd_avail))) { |
| fp->eth_q_stats.tx_hw_max_queue_depth = (TX_BD_USABLE - tx_bd_avail); |
| } |
| |
| /* make sure it fits in the packet window */ |
| if (__predict_false(nsegs > BXE_MAX_SEGMENTS)) { |
| /* |
| * The mbuf may be to big for the controller to handle. If the frame |
| * is a TSO frame we'll need to do an additional check. |
| */ |
| if (m0->m_pkthdr.csum_flags & CSUM_TSO) { |
| if (bxe_chktso_window(sc, nsegs, segs, m0) == 0) { |
| goto bxe_tx_encap_continue; /* OK to send */ |
| } else { |
| fp->eth_q_stats.tx_window_violation_tso++; |
| } |
| } else { |
| fp->eth_q_stats.tx_window_violation_std++; |
| } |
| |
| /* lets try to defragment this mbuf and remap it */ |
| fp->eth_q_stats.mbuf_defrag_attempts++; |
| bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map); |
| |
| m0 = m_defrag(*m_head, M_NOWAIT); |
| if (m0 == NULL) { |
| fp->eth_q_stats.mbuf_defrag_failures++; |
| /* Ugh, just drop the frame... :( */ |
| rc = ENOBUFS; |
| } else { |
| /* defrag successful, try mapping again */ |
| *m_head = m0; |
| error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag, |
| tx_buf->m_map, m0, |
| segs, &nsegs, BUS_DMA_NOWAIT); |
| if (error) { |
| fp->eth_q_stats.tx_dma_mapping_failure++; |
| /* No sense in trying to defrag/copy chain, drop it. :( */ |
| rc = error; |
| } |
| else { |
| /* if the chain is still too long then drop it */ |
| if (__predict_false(nsegs > BXE_MAX_SEGMENTS)) { |
| bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map); |
| rc = ENODEV; |
| } |
| } |
| } |
| } |
| |
| bxe_tx_encap_continue: |
| |
| /* Check for errors */ |
| if (rc) { |
| if (rc == ENOMEM) { |
| /* recoverable try again later */ |
| } else { |
| fp->eth_q_stats.tx_soft_errors++; |
| fp->eth_q_stats.mbuf_alloc_tx--; |
| m_freem(*m_head); |
| *m_head = NULL; |
| } |
| |
| return (rc); |
| } |
| |
| /* set flag according to packet type (UNICAST_ADDRESS is default) */ |
| if (m0->m_flags & M_BCAST) { |
| mac_type = BROADCAST_ADDRESS; |
| } else if (m0->m_flags & M_MCAST) { |
| mac_type = MULTICAST_ADDRESS; |
| } |
| |
| /* store the mbuf into the mbuf ring */ |
| tx_buf->m = m0; |
| tx_buf->first_bd = fp->tx_bd_prod; |
| tx_buf->flags = 0; |
| |
| /* prepare the first transmit (start) BD for the mbuf */ |
| tx_start_bd = &fp->tx_chain[TX_BD(bd_prod)].start_bd; |
| |
| BLOGD(sc, DBG_TX, |
| "sending pkt_prod=%u tx_buf=%p next_idx=%u bd=%u tx_start_bd=%p\n", |
| pkt_prod, tx_buf, fp->tx_pkt_prod, bd_prod, tx_start_bd); |
| |
| tx_start_bd->addr_lo = cpu_to_le32(U64_LO(segs[0].ds_addr)); |
| tx_start_bd->addr_hi = cpu_to_le32(U64_HI(segs[0].ds_addr)); |
| tx_start_bd->nbytes = cpu_to_le16(segs[0].ds_len); |
| total_pkt_size += tx_start_bd->nbytes; |
| tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD; |
| |
| tx_start_bd->general_data = (1 << ETH_TX_START_BD_HDR_NBDS_SHIFT); |
| |
| /* all frames have at least Start BD + Parsing BD */ |
| nbds = nsegs + 1; |
| tx_start_bd->nbd = cpu_to_le16(nbds); |
| |
| if (m0->m_flags & M_VLANTAG) { |
| tx_start_bd->vlan_or_ethertype = cpu_to_le16(m0->m_pkthdr.ether_vtag); |
| tx_start_bd->bd_flags.as_bitfield |= |
| (X_ETH_OUTBAND_VLAN << ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT); |
| } else { |
| /* vf tx, start bd must hold the ethertype for fw to enforce it */ |
| if (IS_VF(sc)) { |
| /* map ethernet header to find type and header length */ |
| eh = mtod(m0, struct ether_vlan_header *); |
| tx_start_bd->vlan_or_ethertype = eh->evl_encap_proto; |
| } else { |
| /* used by FW for packet accounting */ |
| tx_start_bd->vlan_or_ethertype = cpu_to_le16(fp->tx_pkt_prod); |
| #if 0 |
| /* |
| * If NPAR-SD is active then FW should do the tagging regardless |
| * of value of priority. Otherwise, if priority indicates this is |
| * a control packet we need to indicate to FW to avoid tagging. |
| */ |
| if (!IS_MF_AFEX(sc) && (mbuf priority == PRIO_CONTROL)) { |
| SET_FLAG(tx_start_bd->general_data, |
| ETH_TX_START_BD_FORCE_VLAN_MODE, 1); |
| } |
| #endif |
| } |
| } |
| |
| /* |
| * add a parsing BD from the chain. The parsing BD is always added |
| * though it is only used for TSO and chksum |
| */ |
| bd_prod = TX_BD_NEXT(bd_prod); |
| |
| if (m0->m_pkthdr.csum_flags) { |
| if (m0->m_pkthdr.csum_flags & CSUM_IP) { |
| fp->eth_q_stats.tx_ofld_frames_csum_ip++; |
| tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IP_CSUM; |
| } |
| |
| if (m0->m_pkthdr.csum_flags & CSUM_TCP_IPV6) { |
| tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_IPV6 | |
| ETH_TX_BD_FLAGS_L4_CSUM); |
| } else if (m0->m_pkthdr.csum_flags & CSUM_UDP_IPV6) { |
| tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_IPV6 | |
| ETH_TX_BD_FLAGS_IS_UDP | |
| ETH_TX_BD_FLAGS_L4_CSUM); |
| } else if ((m0->m_pkthdr.csum_flags & CSUM_TCP) || |
| (m0->m_pkthdr.csum_flags & CSUM_TSO)) { |
| tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_L4_CSUM; |
| } else if (m0->m_pkthdr.csum_flags & CSUM_UDP) { |
| tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_L4_CSUM | |
| ETH_TX_BD_FLAGS_IS_UDP); |
| } |
| } |
| |
| if (!CHIP_IS_E1x(sc)) { |
| pbd_e2 = &fp->tx_chain[TX_BD(bd_prod)].parse_bd_e2; |
| memset(pbd_e2, 0, sizeof(struct eth_tx_parse_bd_e2)); |
| |
| if (m0->m_pkthdr.csum_flags) { |
| hlen = bxe_set_pbd_csum_e2(fp, m0, &pbd_e2_parsing_data); |
| } |
| |
| #if 0 |
| /* |
| * Add the MACs to the parsing BD if the module param was |
| * explicitly set, if this is a vf, or in switch independent |
| * mode. |
| */ |
| if (sc->flags & BXE_TX_SWITCHING || IS_VF(sc) || IS_MF_SI(sc)) { |
| eh = mtod(m0, struct ether_vlan_header *); |
| bxe_set_fw_mac_addr(&pbd_e2->data.mac_addr.src_hi, |
| &pbd_e2->data.mac_addr.src_mid, |
| &pbd_e2->data.mac_addr.src_lo, |
| eh->evl_shost); |
| bxe_set_fw_mac_addr(&pbd_e2->data.mac_addr.dst_hi, |
| &pbd_e2->data.mac_addr.dst_mid, |
| &pbd_e2->data.mac_addr.dst_lo, |
| eh->evl_dhost); |
| } |
| #endif |
| |
| SET_FLAG(pbd_e2_parsing_data, ETH_TX_PARSE_BD_E2_ETH_ADDR_TYPE, |
| mac_type); |
| } else { |
| uint16_t global_data = 0; |
| |
| pbd_e1x = &fp->tx_chain[TX_BD(bd_prod)].parse_bd_e1x; |
| memset(pbd_e1x, 0, sizeof(struct eth_tx_parse_bd_e1x)); |
| |
| if (m0->m_pkthdr.csum_flags) { |
| hlen = bxe_set_pbd_csum(fp, m0, pbd_e1x); |
| } |
| |
| SET_FLAG(global_data, |
| ETH_TX_PARSE_BD_E1X_ETH_ADDR_TYPE, mac_type); |
| pbd_e1x->global_data |= cpu_to_le16(global_data); |
| } |
| |
| /* setup the parsing BD with TSO specific info */ |
| if (m0->m_pkthdr.csum_flags & CSUM_TSO) { |
| fp->eth_q_stats.tx_ofld_frames_lso++; |
| tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_SW_LSO; |
| |
| if (__predict_false(tx_start_bd->nbytes > hlen)) { |
| fp->eth_q_stats.tx_ofld_frames_lso_hdr_splits++; |
| |
| /* split the first BD into header/data making the fw job easy */ |
| nbds++; |
| tx_start_bd->nbd = cpu_to_le16(nbds); |
| tx_start_bd->nbytes = cpu_to_le16(hlen); |
| |
| bd_prod = TX_BD_NEXT(bd_prod); |
| |
| /* new transmit BD after the tx_parse_bd */ |
| tx_data_bd = &fp->tx_chain[TX_BD(bd_prod)].reg_bd; |
| tx_data_bd->addr_hi = cpu_to_le32(U64_HI(segs[0].ds_addr + hlen)); |
| tx_data_bd->addr_lo = cpu_to_le32(U64_LO(segs[0].ds_addr + hlen)); |
| tx_data_bd->nbytes = cpu_to_le16(segs[0].ds_len - hlen); |
| if (tx_total_pkt_size_bd == NULL) { |
| tx_total_pkt_size_bd = tx_data_bd; |
| } |
| |
| BLOGD(sc, DBG_TX, |
| "TSO split header size is %d (%x:%x) nbds %d\n", |
| le16_to_cpu(tx_start_bd->nbytes), |
| le32_to_cpu(tx_start_bd->addr_hi), |
| le32_to_cpu(tx_start_bd->addr_lo), |
| nbds); |
| } |
| |
| if (!CHIP_IS_E1x(sc)) { |
| bxe_set_pbd_lso_e2(m0, &pbd_e2_parsing_data); |
| } else { |
| bxe_set_pbd_lso(m0, pbd_e1x); |
| } |
| } |
| |
| if (pbd_e2_parsing_data) { |
| pbd_e2->parsing_data = cpu_to_le32(pbd_e2_parsing_data); |
| } |
| |
| /* prepare remaining BDs, start tx bd contains first seg/frag */ |
| for (i = 1; i < nsegs ; i++) { |
| bd_prod = TX_BD_NEXT(bd_prod); |
| tx_data_bd = &fp->tx_chain[TX_BD(bd_prod)].reg_bd; |
| tx_data_bd->addr_lo = cpu_to_le32(U64_LO(segs[i].ds_addr)); |
| tx_data_bd->addr_hi = cpu_to_le32(U64_HI(segs[i].ds_addr)); |
| tx_data_bd->nbytes = cpu_to_le16(segs[i].ds_len); |
| if (tx_total_pkt_size_bd == NULL) { |
| tx_total_pkt_size_bd = tx_data_bd; |
| } |
| total_pkt_size += tx_data_bd->nbytes; |
| } |
| |
| BLOGD(sc, DBG_TX, "last bd %p\n", tx_data_bd); |
| |
| if (tx_total_pkt_size_bd != NULL) { |
| tx_total_pkt_size_bd->total_pkt_bytes = total_pkt_size; |
| } |
| |
| if (__predict_false(sc->debug & DBG_TX)) { |
| tmp_bd = tx_buf->first_bd; |
| for (i = 0; i < nbds; i++) |
| { |
| if (i == 0) { |
| BLOGD(sc, DBG_TX, |
| "TX Strt: %p bd=%d nbd=%d vlan=0x%x " |
| "bd_flags=0x%x hdr_nbds=%d\n", |
| tx_start_bd, |
| tmp_bd, |
| le16_to_cpu(tx_start_bd->nbd), |
| le16_to_cpu(tx_start_bd->vlan_or_ethertype), |
| tx_start_bd->bd_flags.as_bitfield, |
| (tx_start_bd->general_data & ETH_TX_START_BD_HDR_NBDS)); |
| } else if (i == 1) { |
| if (pbd_e1x) { |
| BLOGD(sc, DBG_TX, |
| "-> Prse: %p bd=%d global=0x%x ip_hlen_w=%u " |
| "ip_id=%u lso_mss=%u tcp_flags=0x%x csum=0x%x " |
| "tcp_seq=%u total_hlen_w=%u\n", |
| pbd_e1x, |
| tmp_bd, |
| pbd_e1x->global_data, |
| pbd_e1x->ip_hlen_w, |
| pbd_e1x->ip_id, |
| pbd_e1x->lso_mss, |
| pbd_e1x->tcp_flags, |
| pbd_e1x->tcp_pseudo_csum, |
| pbd_e1x->tcp_send_seq, |
| le16_to_cpu(pbd_e1x->total_hlen_w)); |
| } else { /* if (pbd_e2) */ |
| BLOGD(sc, DBG_TX, |
| "-> Parse: %p bd=%d dst=%02x:%02x:%02x " |
| "src=%02x:%02x:%02x parsing_data=0x%x\n", |
| pbd_e2, |
| tmp_bd, |
| pbd_e2->data.mac_addr.dst_hi, |
| pbd_e2->data.mac_addr.dst_mid, |
| pbd_e2->data.mac_addr.dst_lo, |
| pbd_e2->data.mac_addr.src_hi, |
| pbd_e2->data.mac_addr.src_mid, |
| pbd_e2->data.mac_addr.src_lo, |
| pbd_e2->parsing_data); |
| } |
| } |
| |
| if (i != 1) { /* skip parse db as it doesn't hold data */ |
| tx_data_bd = &fp->tx_chain[TX_BD(tmp_bd)].reg_bd; |
| BLOGD(sc, DBG_TX, |
| "-> Frag: %p bd=%d nbytes=%d hi=0x%x lo: 0x%x\n", |
| tx_data_bd, |
| tmp_bd, |
| le16_to_cpu(tx_data_bd->nbytes), |
| le32_to_cpu(tx_data_bd->addr_hi), |
| le32_to_cpu(tx_data_bd->addr_lo)); |
| } |
| |
| tmp_bd = TX_BD_NEXT(tmp_bd); |
| } |
| } |
| |
| BLOGD(sc, DBG_TX, "doorbell: nbds=%d bd=%u\n", nbds, bd_prod); |
| |
| /* update TX BD producer index value for next TX */ |
| bd_prod = TX_BD_NEXT(bd_prod); |
| |
| /* |
| * If the chain of tx_bd's describing this frame is adjacent to or spans |
| * an eth_tx_next_bd element then we need to increment the nbds value. |
| */ |
| if (TX_BD_IDX(bd_prod) < nbds) { |
| nbds++; |
| } |
| |
| /* don't allow reordering of writes for nbd and packets */ |
| mb(); |
| |
| fp->tx_db.data.prod += nbds; |
| |
| /* producer points to the next free tx_bd at this point */ |
| fp->tx_pkt_prod++; |
| fp->tx_bd_prod = bd_prod; |
| |
| DOORBELL(sc, fp->index, fp->tx_db.raw); |
| |
| fp->eth_q_stats.tx_pkts++; |
| |
| /* Prevent speculative reads from getting ahead of the status block. */ |
| bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, |
| 0, 0, BUS_SPACE_BARRIER_READ); |
| |
| /* Prevent speculative reads from getting ahead of the doorbell. */ |
| bus_space_barrier(sc->bar[BAR2].tag, sc->bar[BAR2].handle, |
| 0, 0, BUS_SPACE_BARRIER_READ); |
| |
| return (0); |
| } |
| #endif |
| |
| static void |
| bxe_tx_start_locked(struct bxe_adapter *sc, |
| if_t ifp, |
| struct bxe_fastpath *fp) |
| { |
| assert(0); |
| #if 0 // AKAROS_PORT |
| struct mbuf *m = NULL; |
| int tx_count = 0; |
| uint16_t tx_bd_avail; |
| |
| BXE_FP_TX_LOCK_ASSERT(fp); |
| |
| /* keep adding entries while there are frames to send */ |
| while (!if_sendq_empty(ifp)) { |
| |
| /* |
| * check for any frames to send |
| * dequeue can still be NULL even if queue is not empty |
| */ |
| m = if_dequeue(ifp); |
| if (__predict_false(m == NULL)) { |
| break; |
| } |
| |
| /* the mbuf now belongs to us */ |
| fp->eth_q_stats.mbuf_alloc_tx++; |
| |
| /* |
| * Put the frame into the transmit ring. If we don't have room, |
| * place the mbuf back at the head of the TX queue, set the |
| * OACTIVE flag, and wait for the NIC to drain the chain. |
| */ |
| if (__predict_false(bxe_tx_encap(fp, &m))) { |
| fp->eth_q_stats.tx_encap_failures++; |
| if (m != NULL) { |
| /* mark the TX queue as full and return the frame */ |
| if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0); |
| if_sendq_prepend(ifp, m); |
| fp->eth_q_stats.mbuf_alloc_tx--; |
| fp->eth_q_stats.tx_queue_xoff++; |
| } |
| |
| /* stop looking for more work */ |
| break; |
| } |
| |
| /* the frame was enqueued successfully */ |
| tx_count++; |
| |
| /* send a copy of the frame to any BPF listeners. */ |
| if_etherbpfmtap(ifp, m); |
| |
| tx_bd_avail = bxe_tx_avail(sc, fp); |
| |
| /* handle any completions if we're running low */ |
| if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) { |
| /* bxe_txeof will set IFF_DRV_OACTIVE appropriately */ |
| bxe_txeof(sc, fp); |
| if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) { |
| break; |
| } |
| } |
| } |
| |
| /* all TX packets were dequeued and/or the tx ring is full */ |
| if (tx_count > 0) { |
| /* reset the TX watchdog timeout timer */ |
| fp->watchdog_timer = BXE_TX_TIMEOUT; |
| } |
| #endif |
| } |
| |
| /* Legacy (non-RSS) dispatch routine */ |
| static void |
| bxe_tx_start(if_t ifp) |
| { |
| assert(0); |
| #if 0 // AKAROS_PORT |
| struct bxe_adapter *sc; |
| struct bxe_fastpath *fp; |
| |
| sc = if_getsoftc(ifp); |
| |
| if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) { |
| BLOGW(sc, "Interface not running, ignoring transmit request\n"); |
| return; |
| } |
| |
| if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) { |
| BLOGW(sc, "Interface TX queue is full, ignoring transmit request\n"); |
| return; |
| } |
| |
| if (!sc->link_vars.link_up) { |
| BLOGW(sc, "Interface link is down, ignoring transmit request\n"); |
| return; |
| } |
| |
| fp = &sc->fp[0]; |
| |
| BXE_FP_TX_LOCK(fp); |
| bxe_tx_start_locked(sc, ifp, fp); |
| BXE_FP_TX_UNLOCK(fp); |
| #endif |
| } |
| |
| #if 0 // AKAROS_PORT |
| #if __FreeBSD_version >= 800000 |
| |
| static int |
| bxe_tx_mq_start_locked(struct bxe_adapter *sc, |
| if_t ifp, |
| struct bxe_fastpath *fp, |
| struct mbuf *m) |
| { |
| struct buf_ring *tx_br = fp->tx_br; |
| struct mbuf *next; |
| int depth, rc, tx_count; |
| uint16_t tx_bd_avail; |
| |
| rc = tx_count = 0; |
| |
| if (!tx_br) { |
| BLOGE(sc, "Multiqueue TX and no buf_ring!\n"); |
| return (EINVAL); |
| } |
| |
| /* fetch the depth of the driver queue */ |
| depth = drbr_inuse_drv(ifp, tx_br); |
| if (depth > fp->eth_q_stats.tx_max_drbr_queue_depth) { |
| fp->eth_q_stats.tx_max_drbr_queue_depth = depth; |
| } |
| |
| BXE_FP_TX_LOCK_ASSERT(fp); |
| |
| if (m == NULL) { |
| /* no new work, check for pending frames */ |
| next = drbr_dequeue_drv(ifp, tx_br); |
| } else if (drbr_needs_enqueue_drv(ifp, tx_br)) { |
| /* have both new and pending work, maintain packet order */ |
| rc = drbr_enqueue_drv(ifp, tx_br, m); |
| if (rc != 0) { |
| fp->eth_q_stats.tx_soft_errors++; |
| goto bxe_tx_mq_start_locked_exit; |
| } |
| next = drbr_dequeue_drv(ifp, tx_br); |
| } else { |
| /* new work only and nothing pending */ |
| next = m; |
| } |
| |
| /* keep adding entries while there are frames to send */ |
| while (next != NULL) { |
| |
| /* the mbuf now belongs to us */ |
| fp->eth_q_stats.mbuf_alloc_tx++; |
| |
| /* |
| * Put the frame into the transmit ring. If we don't have room, |
| * place the mbuf back at the head of the TX queue, set the |
| * OACTIVE flag, and wait for the NIC to drain the chain. |
| */ |
| rc = bxe_tx_encap(fp, &next); |
| if (__predict_false(rc != 0)) { |
| fp->eth_q_stats.tx_encap_failures++; |
| if (next != NULL) { |
| /* mark the TX queue as full and save the frame */ |
| if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0); |
| /* XXX this may reorder the frame */ |
| rc = drbr_enqueue_drv(ifp, tx_br, next); |
| fp->eth_q_stats.mbuf_alloc_tx--; |
| fp->eth_q_stats.tx_frames_deferred++; |
| } |
| |
| /* stop looking for more work */ |
| break; |
| } |
| |
| /* the transmit frame was enqueued successfully */ |
| tx_count++; |
| |
| /* send a copy of the frame to any BPF listeners */ |
| if_etherbpfmtap(ifp, next); |
| |
| tx_bd_avail = bxe_tx_avail(sc, fp); |
| |
| /* handle any completions if we're running low */ |
| if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) { |
| /* bxe_txeof will set IFF_DRV_OACTIVE appropriately */ |
| bxe_txeof(sc, fp); |
| if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) { |
| break; |
| } |
| } |
| |
| next = drbr_dequeue_drv(ifp, tx_br); |
| } |
| |
| /* all TX packets were dequeued and/or the tx ring is full */ |
| if (tx_count > 0) { |
| /* reset the TX watchdog timeout timer */ |
| fp->watchdog_timer = BXE_TX_TIMEOUT; |
| } |
| |
| bxe_tx_mq_start_locked_exit: |
| |
| return (rc); |
| } |
| |
| /* Multiqueue (TSS) dispatch routine. */ |
| static int |
| bxe_tx_mq_start(struct ifnet *ifp, |
| struct mbuf *m) |
| { |
| struct bxe_adapter *sc = if_getsoftc(ifp); |
| struct bxe_fastpath *fp; |
| int fp_index, rc; |
| |
| fp_index = 0; /* default is the first queue */ |
| |
| /* check if flowid is set */ |
| if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) |
| fp_index = (m->m_pkthdr.flowid % sc->num_queues); |
| |
| fp = &sc->fp[fp_index]; |
| |
| if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) { |
| BLOGW(sc, "Interface not running, ignoring transmit request\n"); |
| return (ENETDOWN); |
| } |
| |
| if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) { |
| BLOGW(sc, "Interface TX queue is full, ignoring transmit request\n"); |
| return (EBUSY); |
| } |
| |
| if (!sc->link_vars.link_up) { |
| BLOGW(sc, "Interface link is down, ignoring transmit request\n"); |
| return (ENETDOWN); |
| } |
| |
| /* XXX change to TRYLOCK here and if failed then schedule taskqueue */ |
| |
| BXE_FP_TX_LOCK(fp); |
| rc = bxe_tx_mq_start_locked(sc, ifp, fp, m); |
| BXE_FP_TX_UNLOCK(fp); |
| |
| return (rc); |
| } |
| |
| static void |
| bxe_mq_flush(struct ifnet *ifp) |
| { |
| struct bxe_adapter *sc = if_getsoftc(ifp); |
| struct bxe_fastpath *fp; |
| struct mbuf *m; |
| int i; |
| |
| for (i = 0; i < sc->num_queues; i++) { |
| fp = &sc->fp[i]; |
| |
| if (fp->state != BXE_FP_STATE_OPEN) { |
| BLOGD(sc, DBG_LOAD, "Not clearing fp[%02d] buf_ring (state=%d)\n", |
| fp->index, fp->state); |
| continue; |
| } |
| |
| if (fp->tx_br != NULL) { |
| BLOGD(sc, DBG_LOAD, "Clearing fp[%02d] buf_ring\n", fp->index); |
| BXE_FP_TX_LOCK(fp); |
| while ((m = buf_ring_dequeue_sc(fp->tx_br)) != NULL) { |
| m_freem(m); |
| } |
| BXE_FP_TX_UNLOCK(fp); |
| } |
| } |
| |
| if_qflush(ifp); |
| } |
| |
| #endif /* FreeBSD_version >= 800000 */ |
| #endif |
| static uint16_t |
| bxe_cid_ilt_lines(struct bxe_adapter *sc) |
| { |
| if (IS_SRIOV(sc)) { |
| return ((BXE_FIRST_VF_CID + BXE_VF_CIDS) / ILT_PAGE_CIDS); |
| } |
| return (L2_ILT_LINES(sc)); |
| } |
| |
| static void |
| bxe_ilt_set_info(struct bxe_adapter *sc) |
| { |
| struct ilt_client_info *ilt_client; |
| struct ecore_ilt *ilt = sc->ilt; |
| uint16_t line = 0; |
| |
| ilt->start_line = FUNC_ILT_BASE(SC_FUNC(sc)); |
| BLOGD(sc, DBG_LOAD, "ilt starts at line %d\n", ilt->start_line); |
| |
| /* CDU */ |
| ilt_client = &ilt->clients[ILT_CLIENT_CDU]; |
| ilt_client->client_num = ILT_CLIENT_CDU; |
| ilt_client->page_size = CDU_ILT_PAGE_SZ; |
| ilt_client->flags = ILT_CLIENT_SKIP_MEM; |
| ilt_client->start = line; |
| line += bxe_cid_ilt_lines(sc); |
| |
| if (CNIC_SUPPORT(sc)) { |
| line += CNIC_ILT_LINES; |
| } |
| |
| ilt_client->end = (line - 1); |
| |
| BLOGD(sc, DBG_LOAD, |
| "ilt client[CDU]: start %d, end %d, " |
| "psz 0x%x, flags 0x%x, hw psz %d\n", |
| ilt_client->start, ilt_client->end, |
| ilt_client->page_size, |
| ilt_client->flags, |
| LOG2_UP(ilt_client->page_size >> 12)); |
| |
| /* QM */ |
| if (QM_INIT(sc->qm_cid_count)) { |
| ilt_client = &ilt->clients[ILT_CLIENT_QM]; |
| ilt_client->client_num = ILT_CLIENT_QM; |
| ilt_client->page_size = QM_ILT_PAGE_SZ; |
| ilt_client->flags = 0; |
| ilt_client->start = line; |
| |
| /* 4 bytes for each cid */ |
| line += DIV_ROUND_UP(sc->qm_cid_count * QM_QUEUES_PER_FUNC * 4, |
| QM_ILT_PAGE_SZ); |
| |
| ilt_client->end = (line - 1); |
| |
| BLOGD(sc, DBG_LOAD, |
| "ilt client[QM]: start %d, end %d, " |
| "psz 0x%x, flags 0x%x, hw psz %d\n", |
| ilt_client->start, ilt_client->end, |
| ilt_client->page_size, ilt_client->flags, |
| LOG2_UP(ilt_client->page_size >> 12)); |
| } |
| |
| if (CNIC_SUPPORT(sc)) { |
| /* SRC */ |
| ilt_client = &ilt->clients[ILT_CLIENT_SRC]; |
| ilt_client->client_num = ILT_CLIENT_SRC; |
| ilt_client->page_size = SRC_ILT_PAGE_SZ; |
| ilt_client->flags = 0; |
| ilt_client->start = line; |
| line += SRC_ILT_LINES; |
| ilt_client->end = (line - 1); |
| |
| BLOGD(sc, DBG_LOAD, |
| "ilt client[SRC]: start %d, end %d, " |
| "psz 0x%x, flags 0x%x, hw psz %d\n", |
| ilt_client->start, ilt_client->end, |
| ilt_client->page_size, ilt_client->flags, |
| LOG2_UP(ilt_client->page_size >> 12)); |
| |
| /* TM */ |
| ilt_client = &ilt->clients[ILT_CLIENT_TM]; |
| ilt_client->client_num = ILT_CLIENT_TM; |
| ilt_client->page_size = TM_ILT_PAGE_SZ; |
| ilt_client->flags = 0; |
| ilt_client->start = line; |
| line += TM_ILT_LINES; |
| ilt_client->end = (line - 1); |
| |
| BLOGD(sc, DBG_LOAD, |
| "ilt client[TM]: start %d, end %d, " |
| "psz 0x%x, flags 0x%x, hw psz %d\n", |
| ilt_client->start, ilt_client->end, |
| ilt_client->page_size, ilt_client->flags, |
| LOG2_UP(ilt_client->page_size >> 12)); |
| } |
| |
| //assert((line <= ILT_MAX_LINES), ("Invalid number of ILT lines!")); |
| } |
| |
| static void |
| bxe_set_fp_rx_buf_size(struct bxe_adapter *sc) |
| { |
| int i; |
| |
| BLOGD(sc, DBG_LOAD, "mtu = %d\n", sc->mtu); |
| |
| for (i = 0; i < sc->num_queues; i++) { |
| /* get the Rx buffer size for RX frames */ |
| sc->fp[i].rx_buf_size = |
| (IP_HEADER_ALIGNMENT_PADDING + |
| ETH_OVERHEAD + |
| sc->mtu); |
| |
| BLOGD(sc, DBG_LOAD, "rx_buf_size for fp[%02d] = %d\n", |
| i, sc->fp[i].rx_buf_size); |
| |
| /* get the mbuf allocation size for RX frames */ |
| if (sc->fp[i].rx_buf_size <= MCLBYTES) { |
| sc->fp[i].mbuf_alloc_size = MCLBYTES; |
| } else if (sc->fp[i].rx_buf_size <= BCM_PAGE_SIZE) { |
| sc->fp[i].mbuf_alloc_size = PAGE_SIZE; |
| } else { |
| sc->fp[i].mbuf_alloc_size = MJUM9BYTES; |
| } |
| |
| BLOGD(sc, DBG_LOAD, "mbuf_alloc_size for fp[%02d] = %d\n", |
| i, sc->fp[i].mbuf_alloc_size); |
| } |
| } |
| |
| static int |
| bxe_alloc_ilt_mem(struct bxe_adapter *sc) |
| { |
| int rc = 0; |
| if ((sc->ilt = |
| (struct ecore_ilt *)kzmalloc(sizeof(struct ecore_ilt), |
| /*M_BXE_ILT,*/ 0)) == NULL) { |
| rc = 1; |
| } |
| return (rc); |
| } |
| |
| static int |
| bxe_alloc_ilt_lines_mem(struct bxe_adapter *sc) |
| { |
| int rc = 0; |
| if ((sc->ilt->lines = |
| (struct ilt_line *)kzmalloc((sizeof(struct ilt_line) * ILT_MAX_LINES), |
| /*M_BXE_ILT,*/ 0)) == NULL) { |
| rc = 1; |
| } |
| return (rc); |
| } |
| |
| static void |
| bxe_free_ilt_mem(struct bxe_adapter *sc) |
| { |
| if (sc->ilt != NULL) { |
| kfree(sc->ilt); |
| sc->ilt = NULL; |
| } |
| } |
| |
| static void |
| bxe_free_ilt_lines_mem(struct bxe_adapter *sc) |
| { |
| if (sc->ilt->lines != NULL) { |
| kfree(sc->ilt->lines); |
| sc->ilt->lines = NULL; |
| } |
| } |
| |
| static void |
| bxe_free_mem(struct bxe_adapter *sc) |
| { |
| int i; |
| |
| #if 0 |
| if (!CONFIGURE_NIC_MODE(sc)) { |
| /* free searcher T2 table */ |
| bxe_dma_free(sc, &sc->t2); |
| } |
| #endif |
| |
| for (i = 0; i < L2_ILT_LINES(sc); i++) { |
| bxe_dma_free(sc, &sc->context[i].vcxt_dma); |
| sc->context[i].vcxt = NULL; |
| sc->context[i].size = 0; |
| } |
| |
| ecore_ilt_mem_op(sc, ILT_MEMOP_FREE); |
| |
| bxe_free_ilt_lines_mem(sc); |
| |
| #if 0 |
| bxe_iov_free_mem(sc); |
| #endif |
| } |
| |
| static int |
| bxe_alloc_mem(struct bxe_adapter *sc) |
| { |
| int context_size; |
| int allocated; |
| int i; |
| |
| #if 0 |
| if (!CONFIGURE_NIC_MODE(sc)) { |
| /* allocate searcher T2 table */ |
| if (bxe_dma_alloc(sc, SRC_T2_SZ, |
| &sc->t2, "searcher t2 table") != 0) { |
| return (-1); |
| } |
| } |
| #endif |
| |
| /* |
| * Allocate memory for CDU context: |
| * This memory is allocated separately and not in the generic ILT |
| * functions because CDU differs in few aspects: |
| * 1. There can be multiple entities allocating memory for context - |
| * regular L2, CNIC, and SRIOV drivers. Each separately controls |
| * its own ILT lines. |
| * 2. Since CDU page-size is not a single 4KB page (which is the case |
| * for the other ILT clients), to be efficient we want to support |
| * allocation of sub-page-size in the last entry. |
| * 3. Context pointers are used by the driver to pass to FW / update |
| * the context (for the other ILT clients the pointers are used just to |
| * free the memory during unload). |
| */ |
| context_size = (sizeof(union cdu_context) * BXE_L2_CID_COUNT(sc)); |
| for (i = 0, allocated = 0; allocated < context_size; i++) { |
| sc->context[i].size = MIN(CDU_ILT_PAGE_SZ, |
| (context_size - allocated)); |
| |
| if (bxe_dma_alloc(sc, sc->context[i].size, |
| &sc->context[i].vcxt_dma, |
| "cdu context") != 0) { |
| bxe_free_mem(sc); |
| return (-1); |
| } |
| |
| sc->context[i].vcxt = |
| (union cdu_context *)sc->context[i].vcxt_dma.vaddr; |
| |
| allocated += sc->context[i].size; |
| } |
| |
| bxe_alloc_ilt_lines_mem(sc); |
| |
| BLOGD(sc, DBG_LOAD, "ilt=%p start_line=%u lines=%p\n", |
| sc->ilt, sc->ilt->start_line, sc->ilt->lines); |
| { |
| for (i = 0; i < 4; i++) { |
| BLOGD(sc, DBG_LOAD, |
| "c%d page_size=%u start=%u end=%u num=%u flags=0x%x\n", |
| i, |
| sc->ilt->clients[i].page_size, |
| sc->ilt->clients[i].start, |
| sc->ilt->clients[i].end, |
| sc->ilt->clients[i].client_num, |
| sc->ilt->clients[i].flags); |
| } |
| } |
| if (ecore_ilt_mem_op(sc, ILT_MEMOP_ALLOC)) { |
| BLOGE(sc, "ecore_ilt_mem_op ILT_MEMOP_ALLOC failed\n"); |
| bxe_free_mem(sc); |
| return (-1); |
| } |
| |
| #if 0 |
| if (bxe_iov_alloc_mem(sc)) { |
| BLOGE(sc, "Failed to allocate memory for SRIOV\n"); |
| bxe_free_mem(sc); |
| return (-1); |
| } |
| #endif |
| |
| return (0); |
| } |
| |
| static void |
| bxe_free_rx_bd_chain(struct bxe_fastpath *fp) |
| { |
| struct bxe_adapter *sc; |
| int i; |
| |
| sc = fp->sc; |
| |
| if (fp->rx_mbuf_tag == NULL) { |
| return; |
| } |
| assert(0); |
| #if 0 // AKAROS_PORT |
| /* free all mbufs and unload all maps */ |
| for (i = 0; i < RX_BD_TOTAL; i++) { |
| if (fp->rx_mbuf_chain[i].m_map != NULL) { |
| bus_dmamap_sync(fp->rx_mbuf_tag, |
| fp->rx_mbuf_chain[i].m_map, |
| BUS_DMASYNC_POSTREAD); |
| bus_dmamap_unload(fp->rx_mbuf_tag, |
| fp->rx_mbuf_chain[i].m_map); |
| } |
| |
| if (fp->rx_mbuf_chain[i].m != NULL) { |
| m_freem(fp->rx_mbuf_chain[i].m); |
| fp->rx_mbuf_chain[i].m = NULL; |
| fp->eth_q_stats.mbuf_alloc_rx--; |
| } |
| } |
| #endif |
| } |
| |
| static void |
| bxe_free_tpa_pool(struct bxe_fastpath *fp) |
| { |
| struct bxe_adapter *sc; |
| int i, max_agg_queues; |
| |
| sc = fp->sc; |
| |
| if (fp->rx_mbuf_tag == NULL) { |
| return; |
| } |
| |
| assert(0); |
| max_agg_queues = MAX_AGG_QS(sc); |
| #if 0 // AKAROS_PORT |
| /* release all mbufs and unload all DMA maps in the TPA pool */ |
| for (i = 0; i < max_agg_queues; i++) { |
| if (fp->rx_tpa_info[i].bd.m_map != NULL) { |
| bus_dmamap_sync(fp->rx_mbuf_tag, |
| fp->rx_tpa_info[i].bd.m_map, |
| BUS_DMASYNC_POSTREAD); |
| bus_dmamap_unload(fp->rx_mbuf_tag, |
| fp->rx_tpa_info[i].bd.m_map); |
| } |
| |
| if (fp->rx_tpa_info[i].bd.m != NULL) { |
| m_freem(fp->rx_tpa_info[i].bd.m); |
| fp->rx_tpa_info[i].bd.m = NULL; |
| fp->eth_q_stats.mbuf_alloc_tpa--; |
| } |
| } |
| #endif |
| } |
| |
| static void |
| bxe_free_sge_chain(struct bxe_fastpath *fp) |
| { |
| struct bxe_adapter *sc; |
| int i; |
| |
| sc = fp->sc; |
| |
| if (fp->rx_sge_mbuf_tag == NULL) { |
| return; |
| } |
| assert(0); |
| #if 0 // AKAROS_PORT |
| /* rree all mbufs and unload all maps */ |
| for (i = 0; i < RX_SGE_TOTAL; i++) { |
| if (fp->rx_sge_mbuf_chain[i].m_map != NULL) { |
| bus_dmamap_sync(fp->rx_sge_mbuf_tag, |
| fp->rx_sge_mbuf_chain[i].m_map, |
| BUS_DMASYNC_POSTREAD); |
| bus_dmamap_unload(fp->rx_sge_mbuf_tag, |
| fp->rx_sge_mbuf_chain[i].m_map); |
| } |
| |
| if (fp->rx_sge_mbuf_chain[i].m != NULL) { |
| m_freem(fp->rx_sge_mbuf_chain[i].m); |
| fp->rx_sge_mbuf_chain[i].m = NULL; |
| fp->eth_q_stats.mbuf_alloc_sge--; |
| } |
| } |
| #endif |
| } |
| |
| static void |
| bxe_free_fp_buffers(struct bxe_adapter *sc) |
| { |
| assert(0); |
| #if 0 // AKAROS_PORT |
| struct bxe_fastpath *fp; |
| int i; |
| |
| for (i = 0; i < sc->num_queues; i++) { |
| fp = &sc->fp[i]; |
| |
| #if __FreeBSD_version >= 800000 |
| if (fp->tx_br != NULL) { |
| struct mbuf *m; |
| /* just in case bxe_mq_flush() wasn't called */ |
| while ((m = buf_ring_dequeue_sc(fp->tx_br)) != NULL) { |
| m_freem(m); |
| } |
| buf_ring_free(fp->tx_br, M_DEVBUF); |
| fp->tx_br = NULL; |
| } |
| #endif |
| |
| /* free all RX buffers */ |
| bxe_free_rx_bd_chain(fp); |
| bxe_free_tpa_pool(fp); |
| bxe_free_sge_chain(fp); |
| |
| if (fp->eth_q_stats.mbuf_alloc_rx != 0) { |
| BLOGE(sc, "failed to claim all rx mbufs (%d left)\n", |
| fp->eth_q_stats.mbuf_alloc_rx); |
| } |
| |
| if (fp->eth_q_stats.mbuf_alloc_sge != 0) { |
| BLOGE(sc, "failed to claim all sge mbufs (%d left)\n", |
| fp->eth_q_stats.mbuf_alloc_sge); |
| } |
| |
| if (fp->eth_q_stats.mbuf_alloc_tpa != 0) { |
| BLOGE(sc, "failed to claim all sge mbufs (%d left)\n", |
| fp->eth_q_stats.mbuf_alloc_tpa); |
| } |
| |
| if (fp->eth_q_stats.mbuf_alloc_tx != 0) { |
| BLOGE(sc, "failed to release tx mbufs (%d left)\n", |
| fp->eth_q_stats.mbuf_alloc_tx); |
| } |
| |
| /* XXX verify all mbufs were reclaimed */ |
| |
| if (mtx_initialized(&fp->tx_mtx)) { |
| mtx_destroy(&fp->tx_mtx); |
| } |
| |
| if (mtx_initialized(&fp->rx_mtx)) { |
| mtx_destroy(&fp->rx_mtx); |
| } |
| } |
| #endif |
| } |
| |
| static int |
| bxe_alloc_rx_bd_mbuf(struct bxe_fastpath *fp, |
| uint16_t prev_index, |
| uint16_t index) |
| { |
| struct bxe_sw_rx_bd *rx_buf; |
| struct eth_rx_bd *rx_bd; |
| bus_dma_segment_t segs[1]; |
| bus_dmamap_t map; |
| struct mbuf *m; |
| int nsegs, rc; |
| |
| rc = 0; |
| |
| /* allocate the new RX BD mbuf */ |
| m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, fp->mbuf_alloc_size); |
| if (__predict_false(m == NULL)) { |
| fp->eth_q_stats.mbuf_rx_bd_alloc_failed++; |
| return (ENOBUFS); |
| } |
| |
| fp->eth_q_stats.mbuf_alloc_rx++; |
| |
| /* initialize the mbuf buffer length */ |
| //m->m_pkthdr.len = m->m_len = fp->rx_buf_size; |
| |
| /* map the mbuf into non-paged pool */ |
| rc = bus_dmamap_load_mbuf_sg(fp->rx_mbuf_tag, |
| fp->rx_mbuf_spare_map, |
| m, segs, &nsegs, BUS_DMA_NOWAIT); |
| if (__predict_false(rc != 0)) { |
| fp->eth_q_stats.mbuf_rx_bd_mapping_failed++; |
| m_freem(m); |
| fp->eth_q_stats.mbuf_alloc_rx--; |
| return (rc); |
| } |
| |
| /* all mbufs must map to a single segment */ |
| assert(nsegs == 1); |
| |
| /* release any existing RX BD mbuf mappings */ |
| |
| if (prev_index != index) { |
| rx_buf = &fp->rx_mbuf_chain[prev_index]; |
| |
| if (rx_buf->m_map != NULL) { |
| bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map, |
| BUS_DMASYNC_POSTREAD); |
| bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map); |
| } |
| |
| /* |
| * We only get here from bxe_rxeof() when the maximum number |
| * of rx buffers is less than RX_BD_USABLE. bxe_rxeof() already |
| * holds the mbuf in the prev_index so it's OK to NULL it out |
| * here without concern of a memory leak. |
| */ |
| fp->rx_mbuf_chain[prev_index].m = NULL; |
| } |
| |
| rx_buf = &fp->rx_mbuf_chain[index]; |
| |
| if (rx_buf->m_map != NULL) { |
| bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map, |
| BUS_DMASYNC_POSTREAD); |
| bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map); |
| } |
| |
| /* save the mbuf and mapping info for a future packet */ |
| map = (prev_index != index) ? |
| fp->rx_mbuf_chain[prev_index].m_map : rx_buf->m_map; |
| rx_buf->m_map = fp->rx_mbuf_spare_map; |
| fp->rx_mbuf_spare_map = map; |
| bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map, |
| BUS_DMASYNC_PREREAD); |
| rx_buf->m = m; |
| |
| rx_bd = &fp->rx_chain[index]; |
| rx_bd->addr_hi = cpu_to_le32(U64_HI(segs)); |
| rx_bd->addr_lo = cpu_to_le32(U64_LO(segs)); |
| |
| return (rc); |
| } |
| |
| static int |
| bxe_alloc_rx_tpa_mbuf(struct bxe_fastpath *fp, |
| int queue) |
| { |
| struct bxe_sw_tpa_info *tpa_info = &fp->rx_tpa_info[queue]; |
| bus_dma_segment_t segs[1]; |
| bus_dmamap_t map; |
| struct mbuf *m; |
| int nsegs; |
| int rc = 0; |
| |
| /* allocate the new TPA mbuf */ |
| m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, fp->mbuf_alloc_size); |
| if (__predict_false(m == NULL)) { |
| fp->eth_q_stats.mbuf_rx_tpa_alloc_failed++; |
| return (ENOBUFS); |
| } |
| |
| fp->eth_q_stats.mbuf_alloc_tpa++; |
| |
| /* initialize the mbuf buffer length */ |
| //m->m_pkthdr.len = m->m_len = fp->rx_buf_size; |
| |
| /* map the mbuf into non-paged pool */ |
| rc = bus_dmamap_load_mbuf_sg(fp->rx_mbuf_tag, |
| fp->rx_tpa_info_mbuf_spare_map, |
| m, segs, &nsegs, BUS_DMA_NOWAIT); |
| if (__predict_false(rc != 0)) { |
| fp->eth_q_stats.mbuf_rx_tpa_mapping_failed++; |
| m_free(m); |
| fp->eth_q_stats.mbuf_alloc_tpa--; |
| return (rc); |
| } |
| |
| /* all mbufs must map to a single segment */ |
| assert(nsegs == 1); |
| |
| /* release any existing TPA mbuf mapping */ |
| if (tpa_info->bd.m_map != NULL) { |
| bus_dmamap_sync(fp->rx_mbuf_tag, tpa_info->bd.m_map, |
| BUS_DMASYNC_POSTREAD); |
| bus_dmamap_unload(fp->rx_mbuf_tag, tpa_info->bd.m_map); |
| } |
| |
| /* save the mbuf and mapping info for the TPA mbuf */ |
| map = tpa_info->bd.m_map; |
| tpa_info->bd.m_map = fp->rx_tpa_info_mbuf_spare_map; |
| fp->rx_tpa_info_mbuf_spare_map = map; |
| bus_dmamap_sync(fp->rx_mbuf_tag, tpa_info->bd.m_map, |
| BUS_DMASYNC_PREREAD); |
| tpa_info->bd.m = m; |
| tpa_info->seg = segs[0]; |
| |
| return (rc); |
| } |
| |
| /* |
| * Allocate an mbuf and assign it to the receive scatter gather chain. The |
| * caller must take care to save a copy of the existing mbuf in the SG mbuf |
| * chain. |
| */ |
| static int |
| bxe_alloc_rx_sge_mbuf(struct bxe_fastpath *fp, |
| uint16_t index) |
| { |
| struct bxe_sw_rx_bd *sge_buf; |
| struct eth_rx_sge *sge; |
| bus_dma_segment_t segs[1]; |
| bus_dmamap_t map; |
| struct mbuf *m; |
| int nsegs; |
| int rc = 0; |
| |
| /* allocate a new SGE mbuf */ |
| m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, SGE_PAGE_SIZE); |
| if (__predict_false(m == NULL)) { |
| fp->eth_q_stats.mbuf_rx_sge_alloc_failed++; |
| return (ENOMEM); |
| } |
| |
| fp->eth_q_stats.mbuf_alloc_sge++; |
| |
| /* initialize the mbuf buffer length */ |
| //m->m_pkthdr.len = m->m_len = SGE_PAGE_SIZE; |
| |
| /* map the SGE mbuf into non-paged pool */ |
| rc = bus_dmamap_load_mbuf_sg(fp->rx_sge_mbuf_tag, |
| fp->rx_sge_mbuf_spare_map, |
| m, segs, &nsegs, BUS_DMA_NOWAIT); |
| if (__predict_false(rc != 0)) { |
| fp->eth_q_stats.mbuf_rx_sge_mapping_failed++; |
| m_freem(m); |
| fp->eth_q_stats.mbuf_alloc_sge--; |
| return (rc); |
| } |
| |
| /* all mbufs must map to a single segment */ |
| assert(nsegs == 1); |
| |
| sge_buf = &fp->rx_sge_mbuf_chain[index]; |
| |
| /* release any existing SGE mbuf mapping */ |
| if (sge_buf->m_map != NULL) { |
| bus_dmamap_sync(fp->rx_sge_mbuf_tag, sge_buf->m_map, |
| BUS_DMASYNC_POSTREAD); |
| bus_dmamap_unload(fp->rx_sge_mbuf_tag, sge_buf->m_map); |
| } |
| |
| /* save the mbuf and mapping info for a future packet */ |
| map = sge_buf->m_map; |
| sge_buf->m_map = fp->rx_sge_mbuf_spare_map; |
| fp->rx_sge_mbuf_spare_map = map; |
| bus_dmamap_sync(fp->rx_sge_mbuf_tag, sge_buf->m_map, |
| BUS_DMASYNC_PREREAD); |
| sge_buf->m = m; |
| |
| sge = &fp->rx_sge_chain[index]; |
| sge->addr_hi = cpu_to_le32(U64_HI(segs)); |
| sge->addr_lo = cpu_to_le32(U64_LO(segs)); |
| |
| return (rc); |
| } |
| |
| static __noinline int |
| bxe_alloc_fp_buffers(struct bxe_adapter *sc) |
| { |
| struct bxe_fastpath *fp; |
| int i, j, rc = 0; |
| int ring_prod, cqe_ring_prod; |
| int max_agg_queues; |
| |
| for (i = 0; i < sc->num_queues; i++) { |
| fp = &sc->fp[i]; |
| |
| #if __FreeBSD_version >= 800000 |
| fp->tx_br = buf_ring_alloc(BXE_BR_SIZE, M_DEVBUF, |
| M_NOWAIT, &fp->tx_mtx); |
| if (fp->tx_br == NULL) { |
| BLOGE(sc, "buf_ring alloc fail for fp[%02d]\n", i); |
| goto bxe_alloc_fp_buffers_error; |
| } |
| #endif |
| |
| ring_prod = cqe_ring_prod = 0; |
| fp->rx_bd_cons = 0; |
| fp->rx_cq_cons = 0; |
| |
| /* allocate buffers for the RX BDs in RX BD chain */ |
| for (j = 0; j < sc->max_rx_bufs; j++) { |
| rc = bxe_alloc_rx_bd_mbuf(fp, ring_prod, ring_prod); |
| if (rc != 0) { |
| BLOGE(sc, "mbuf alloc fail for fp[%02d] rx chain (%d)\n", |
| i, rc); |
| goto bxe_alloc_fp_buffers_error; |
| } |
| |
| ring_prod = RX_BD_NEXT(ring_prod); |
| cqe_ring_prod = RCQ_NEXT(cqe_ring_prod); |
| } |
| |
| fp->rx_bd_prod = ring_prod; |
| fp->rx_cq_prod = cqe_ring_prod; |
| fp->eth_q_stats.rx_calls = fp->eth_q_stats.rx_pkts = 0; |
| |
| if (if_getcapenable(sc->ifp) & IFCAP_LRO) { |
| max_agg_queues = MAX_AGG_QS(sc); |
| |
| fp->tpa_enable = TRUE; |
| |
| /* fill the TPA pool */ |
| for (j = 0; j < max_agg_queues; j++) { |
| rc = bxe_alloc_rx_tpa_mbuf(fp, j); |
| if (rc != 0) { |
| BLOGE(sc, "mbuf alloc fail for fp[%02d] TPA queue %d\n", |
| i, j); |
| fp->tpa_enable = FALSE; |
| goto bxe_alloc_fp_buffers_error; |
| } |
| |
| fp->rx_tpa_info[j].state = BXE_TPA_STATE_STOP; |
| } |
| |
| if (fp->tpa_enable) { |
| /* fill the RX SGE chain */ |
| ring_prod = 0; |
| for (j = 0; j < RX_SGE_USABLE; j++) { |
| rc = bxe_alloc_rx_sge_mbuf(fp, ring_prod); |
| if (rc != 0) { |
| BLOGE(sc, "mbuf alloc fail for fp[%02d] SGE %d\n", |
| i, ring_prod); |
| fp->tpa_enable = FALSE; |
| ring_prod = 0; |
| goto bxe_alloc_fp_buffers_error; |
| } |
| |
| ring_prod = RX_SGE_NEXT(ring_prod); |
| } |
| |
| fp->rx_sge_prod = ring_prod; |
| } |
| } |
| } |
| |
| return (0); |
| |
| bxe_alloc_fp_buffers_error: |
| |
| /* unwind what was already allocated */ |
| bxe_free_rx_bd_chain(fp); |
| bxe_free_tpa_pool(fp); |
| bxe_free_sge_chain(fp); |
| |
| return (ENOBUFS); |
| } |
| |
| static void |
| bxe_free_fw_stats_mem(struct bxe_adapter *sc) |
| { |
| // null XME |
| bxe_dma_free(sc, &sc->fw_stats_dma); |
| |
| sc->fw_stats_num = 0; |
| |
| sc->fw_stats_req_size = 0; |
| // sc->fw_stats_req = NULL; |
| sc->fw_stats_req_mapping = 0; |
| |
| sc->fw_stats_data_size = 0; |
| //sc->fw_stats_data = NULL; |
| sc->fw_stats_data_mapping = 0; |
| } |
| |
| static int |
| bxe_alloc_fw_stats_mem(struct bxe_adapter *sc) |
| { |
| uint8_t num_queue_stats; |
| int num_groups; |
| |
| /* number of queues for statistics is number of eth queues */ |
| num_queue_stats = BXE_NUM_ETH_QUEUES(sc); |
| |
| /* |
| * Total number of FW statistics requests = |
| * 1 for port stats + 1 for PF stats + num of queues |
| */ |
| sc->fw_stats_num = (2 + num_queue_stats); |
| |
| /* |
| * Request is built from stats_query_header and an array of |
| * stats_query_cmd_group each of which contains STATS_QUERY_CMD_COUNT |
| * rules. The real number or requests is configured in the |
| * stats_query_header. |
| */ |
| num_groups = |
| ((sc->fw_stats_num / STATS_QUERY_CMD_COUNT) + |
| ((sc->fw_stats_num % STATS_QUERY_CMD_COUNT) ? 1 : 0)); |
| |
| BLOGD(sc, DBG_LOAD, "stats fw_stats_num %d num_groups %d\n", |
| sc->fw_stats_num, num_groups); |
| |
| sc->fw_stats_req_size = |
| (sizeof(struct stats_query_header) + |
| (num_groups * sizeof(struct stats_query_cmd_group))); |
| |
| /* |
| * Data for statistics requests + stats_counter. |
| * stats_counter holds per-STORM counters that are incremented when |
| * STORM has finished with the current request. Memory for FCoE |
| * offloaded statistics are counted anyway, even if they will not be sent. |
| * VF stats are not accounted for here as the data of VF stats is stored |
| * in memory allocated by the VF, not here. |
| */ |
| sc->fw_stats_data_size = |
| (sizeof(struct stats_counter) + |
| sizeof(struct per_port_stats) + |
| sizeof(struct per_pf_stats) + |
| /* sizeof(struct fcoe_statistics_params) + */ |
| (sizeof(struct per_queue_stats) * num_queue_stats)); |
| |
| if (bxe_dma_alloc(sc, (sc->fw_stats_req_size + sc->fw_stats_data_size), |
| &sc->fw_stats_dma, "fw stats") != 0) { |
| bxe_free_fw_stats_mem(sc); |
| return (-1); |
| } |
| |
| /* set up the shortcuts */ |
| |
| sc->fw_stats_req = |
| (struct bxe_fw_stats_req *)sc->fw_stats_dma.vaddr; |
| sc->fw_stats_req_mapping = sc->fw_stats_dma.paddr; |
| |
| sc->fw_stats_data = |
| (struct bxe_fw_stats_data *)((uint8_t *)sc->fw_stats_dma.vaddr + |
| sc->fw_stats_req_size); |
| sc->fw_stats_data_mapping = (sc->fw_stats_dma.paddr + |
| sc->fw_stats_req_size); |
| |
| BLOGD(sc, DBG_LOAD, "statistics request base address set to %#jx\n", |
| (uintmax_t)sc->fw_stats_req_mapping); |
| |
| BLOGD(sc, DBG_LOAD, "statistics data base address set to %#jx\n", |
| (uintmax_t)sc->fw_stats_data_mapping); |
| return (0); |
| } |
| |
| /* |
| * Bits map: |
| * 0-7 - Engine0 load counter. |
| * 8-15 - Engine1 load counter. |
| * 16 - Engine0 RESET_IN_PROGRESS bit. |
| * 17 - Engine1 RESET_IN_PROGRESS bit. |
| * 18 - Engine0 ONE_IS_LOADED. Set when there is at least one active |
| * function on the engine |
| * 19 - Engine1 ONE_IS_LOADED. |
| * 20 - Chip reset flow bit. When set none-leader must wait for both engines |
| * leader to complete (check for both RESET_IN_PROGRESS bits and not |
| * for just the one belonging to its engine). |
| */ |
| #define BXE_RECOVERY_GLOB_REG MISC_REG_GENERIC_POR_1 |
| #define BXE_PATH0_LOAD_CNT_MASK 0x000000ff |
| #define BXE_PATH0_LOAD_CNT_SHIFT 0 |
| #define BXE_PATH1_LOAD_CNT_MASK 0x0000ff00 |
| #define BXE_PATH1_LOAD_CNT_SHIFT 8 |
| #define BXE_PATH0_RST_IN_PROG_BIT 0x00010000 |
| #define BXE_PATH1_RST_IN_PROG_BIT 0x00020000 |
| #define BXE_GLOBAL_RESET_BIT 0x00040000 |
| |
| /* set the GLOBAL_RESET bit, should be run under rtnl lock */ |
| static void |
| bxe_set_reset_global(struct bxe_adapter *sc) |
| { |
| uint32_t val; |
| bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); |
| val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); |
| REG_WR(sc, BXE_RECOVERY_GLOB_REG, val | BXE_GLOBAL_RESET_BIT); |
| bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); |
| } |
| |
| /* clear the GLOBAL_RESET bit, should be run under rtnl lock */ |
| static void |
| bxe_clear_reset_global(struct bxe_adapter *sc) |
| { |
| uint32_t val; |
| bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); |
| val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); |
| REG_WR(sc, BXE_RECOVERY_GLOB_REG, val & (~BXE_GLOBAL_RESET_BIT)); |
| bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); |
| } |
| |
| /* checks the GLOBAL_RESET bit, should be run under rtnl lock */ |
| static uint8_t |
| bxe_reset_is_global(struct bxe_adapter *sc) |
| { |
| uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); |
| BLOGD(sc, DBG_LOAD, "GLOB_REG=0x%08x\n", val); |
| return (val & BXE_GLOBAL_RESET_BIT) ? TRUE : FALSE; |
| } |
| |
| /* clear RESET_IN_PROGRESS bit for the engine, should be run under rtnl lock */ |
| static void |
| bxe_set_reset_done(struct bxe_adapter *sc) |
| { |
| uint32_t val; |
| uint32_t bit = SC_PATH(sc) ? BXE_PATH1_RST_IN_PROG_BIT : |
| BXE_PATH0_RST_IN_PROG_BIT; |
| |
| bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); |
| |
| val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); |
| /* Clear the bit */ |
| val &= ~bit; |
| REG_WR(sc, BXE_RECOVERY_GLOB_REG, val); |
| |
| bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); |
| } |
| |
| /* set RESET_IN_PROGRESS for the engine, should be run under rtnl lock */ |
| static void |
| bxe_set_reset_in_progress(struct bxe_adapter *sc) |
| { |
| uint32_t val; |
| uint32_t bit = SC_PATH(sc) ? BXE_PATH1_RST_IN_PROG_BIT : |
| BXE_PATH0_RST_IN_PROG_BIT; |
| |
| bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); |
| |
| val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); |
| /* Set the bit */ |
| val |= bit; |
| REG_WR(sc, BXE_RECOVERY_GLOB_REG, val); |
| |
| bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); |
| } |
| |
| /* check RESET_IN_PROGRESS bit for an engine, should be run under rtnl lock */ |
| static uint8_t |
| bxe_reset_is_done(struct bxe_adapter *sc, |
| int engine) |
| { |
| uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); |
| uint32_t bit = engine ? BXE_PATH1_RST_IN_PROG_BIT : |
| BXE_PATH0_RST_IN_PROG_BIT; |
| |
| /* return false if bit is set */ |
| return (val & bit) ? FALSE : TRUE; |
| } |
| |
| /* get the load status for an engine, should be run under rtnl lock */ |
| static uint8_t |
| bxe_get_load_status(struct bxe_adapter *sc, |
| int engine) |
| { |
| uint32_t mask = engine ? BXE_PATH1_LOAD_CNT_MASK : |
| BXE_PATH0_LOAD_CNT_MASK; |
| uint32_t shift = engine ? BXE_PATH1_LOAD_CNT_SHIFT : |
| BXE_PATH0_LOAD_CNT_SHIFT; |
| uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); |
| |
| BLOGD(sc, DBG_LOAD, "Old value for GLOB_REG=0x%08x\n", val); |
| |
| val = ((val & mask) >> shift); |
| |
| BLOGD(sc, DBG_LOAD, "Load mask engine %d = 0x%08x\n", engine, val); |
| |
| return (val != 0); |
| } |
| |
| /* set pf load mark */ |
| /* XXX needs to be under rtnl lock */ |
| static void |
| bxe_set_pf_load(struct bxe_adapter *sc) |
| { |
| uint32_t val; |
| uint32_t val1; |
| uint32_t mask = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_MASK : |
| BXE_PATH0_LOAD_CNT_MASK; |
| uint32_t shift = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_SHIFT : |
| BXE_PATH0_LOAD_CNT_SHIFT; |
| |
| bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); |
| |
| val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); |
| BLOGD(sc, DBG_LOAD, "Old value for GLOB_REG=0x%08x\n", val); |
| |
| /* get the current counter value */ |
| val1 = ((val & mask) >> shift); |
| |
| /* set bit of this PF */ |
| val1 |= (1 << SC_ABS_FUNC(sc)); |
| |
| /* clear the old value */ |
| val &= ~mask; |
| |
| /* set the new one */ |
| val |= ((val1 << shift) & mask); |
| |
| REG_WR(sc, BXE_RECOVERY_GLOB_REG, val); |
| |
| bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); |
| } |
| |
| /* clear pf load mark */ |
| /* XXX needs to be under rtnl lock */ |
| static uint8_t |
| bxe_clear_pf_load(struct bxe_adapter *sc) |
| { |
| uint32_t val1, val; |
| uint32_t mask = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_MASK : |
| BXE_PATH0_LOAD_CNT_MASK; |
| uint32_t shift = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_SHIFT : |
| BXE_PATH0_LOAD_CNT_SHIFT; |
| |
| bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); |
| val = REG_RD(sc, BXE_RECOVERY_GLOB_REG); |
| BLOGD(sc, DBG_LOAD, "Old GEN_REG_VAL=0x%08x\n", val); |
| |
| /* get the current counter value */ |
| val1 = (val & mask) >> shift; |
| |
| /* clear bit of that PF */ |
| val1 &= ~(1 << SC_ABS_FUNC(sc)); |
| |
| /* clear the old value */ |
| val &= ~mask; |
| |
| /* set the new one */ |
| val |= ((val1 << shift) & mask); |
| |
| REG_WR(sc, BXE_RECOVERY_GLOB_REG, val); |
| bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG); |
| return (val1 != 0); |
| } |
| |
| /* send load requrest to mcp and analyze response */ |
| static int |
| bxe_nic_load_request(struct bxe_adapter *sc, |
| int *load_code) |
| { |
| /* init fw_seq */ |
| sc->fw_seq = |
| (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) & |
| DRV_MSG_SEQ_NUMBER_MASK); |
| |
| BLOGD(sc, DBG_LOAD, "initial fw_seq 0x%04x\n", sc->fw_seq); |
| |
| /* get the current FW pulse sequence */ |
| sc->fw_drv_pulse_wr_seq = |
| (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb) & |
| DRV_PULSE_SEQ_MASK); |
| |
| BLOGD(sc, DBG_LOAD, "initial drv_pulse 0x%04x\n", |
| sc->fw_drv_pulse_wr_seq); |
| |
| /* load request */ |
| (*load_code) = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_REQ, |
| DRV_MSG_CODE_LOAD_REQ_WITH_LFA); |
| |
| /* if the MCP fails to respond we must abort */ |
| if (!(*load_code)) { |
| BLOGE(sc, "MCP response failure!\n"); |
| return (-1); |
| } |
| |
| /* if MCP refused then must abort */ |
| if ((*load_code) == FW_MSG_CODE_DRV_LOAD_REFUSED) { |
| BLOGE(sc, "MCP refused load request\n"); |
| return (-1); |
| } |
| |
| return (0); |
| } |
| |
| /* |
| * Check whether another PF has already loaded FW to chip. In virtualized |
| * environments a pf from anoth VM may have already initialized the device |
| * including loading FW. |
| */ |
| static int |
| bxe_nic_load_analyze_req(struct bxe_adapter *sc, |
| uint32_t load_code) |
| { |
| uint32_t my_fw, loaded_fw; |
| |
| /* is another pf loaded on this engine? */ |
| if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) && |
| (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) { |
| /* build my FW version dword */ |
| my_fw = (BCM_5710_FW_MAJOR_VERSION + |
| (BCM_5710_FW_MINOR_VERSION << 8 ) + |
| (BCM_5710_FW_REVISION_VERSION << 16) + |
| (BCM_5710_FW_ENGINEERING_VERSION << 24)); |
| |
| /* read loaded FW from chip */ |
| loaded_fw = REG_RD(sc, XSEM_REG_PRAM); |
| BLOGD(sc, DBG_LOAD, "loaded FW 0x%08x / my FW 0x%08x\n", |
| loaded_fw, my_fw); |
| |
| /* abort nic load if version mismatch */ |
| if (my_fw != loaded_fw) { |
| BLOGE(sc, "FW 0x%08x already loaded (mine is 0x%08x)", |
| loaded_fw, my_fw); |
| return (-1); |
| } |
| } |
| |
| return (0); |
| } |
| |
| /* mark PMF if applicable */ |
| static void |
| bxe_nic_load_pmf(struct bxe_adapter *sc, |
| uint32_t load_code) |
| { |
| uint32_t ncsi_oem_data_addr; |
| |
| if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) || |
| (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) || |
| (load_code == FW_MSG_CODE_DRV_LOAD_PORT)) { |
| /* |
| * Barrier here for ordering between the writing to sc->port.pmf here |
| * and reading it from the periodic task. |
| */ |
| sc->port.pmf = 1; |
| mb(); |
| } else { |
| sc->port.pmf = 0; |
| } |
| |
| BLOGD(sc, DBG_LOAD, "pmf %d\n", sc->port.pmf); |
| |
| /* XXX needed? */ |
| if (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) { |
| if (SHMEM2_HAS(sc, ncsi_oem_data_addr)) { |
| ncsi_oem_data_addr = SHMEM2_RD(sc, ncsi_oem_data_addr); |
| if (ncsi_oem_data_addr) { |
| REG_WR(sc, |
| (ncsi_oem_data_addr + |
| offsetof(struct glob_ncsi_oem_data, driver_version)), |
| 0); |
| } |
| } |
| } |
| } |
| |
| static void |
| bxe_read_mf_cfg(struct bxe_adapter *sc) |
| { |
| int n = (CHIP_IS_MODE_4_PORT(sc) ? 2 : 1); |
| int abs_func; |
| int vn; |
| |
| if (BXE_NOMCP(sc)) { |
| return; /* what should be the default bvalue in this case */ |
| } |
| |
| /* |
| * The formula for computing the absolute function number is... |
| * For 2 port configuration (4 functions per port): |
| * abs_func = 2 * vn + SC_PORT + SC_PATH |
| * For 4 port configuration (2 functions per port): |
| * abs_func = 4 * vn + 2 * SC_PORT + SC_PATH |
| */ |
| for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) { |
| abs_func = (n * (2 * vn + SC_PORT(sc)) + SC_PATH(sc)); |
| if (abs_func >= E1H_FUNC_MAX) { |
| break; |
| } |
| sc->devinfo.mf_info.mf_config[vn] = |
| MFCFG_RD(sc, func_mf_config[abs_func].config); |
| } |
| |
| if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] & |
| FUNC_MF_CFG_FUNC_DISABLED) { |
| BLOGD(sc, DBG_LOAD, "mf_cfg function disabled\n"); |
| sc->flags |= BXE_MF_FUNC_DIS; |
| } else { |
| BLOGD(sc, DBG_LOAD, "mf_cfg function enabled\n"); |
| sc->flags &= ~BXE_MF_FUNC_DIS; |
| } |
| } |
| |
| /* acquire split MCP access lock register */ |
| static int bxe_acquire_alr(struct bxe_adapter *sc) |
| { |
| uint32_t j, val; |
| |
| for (j = 0; j < 1000; j++) { |
| val = (1UL << 31); |
| REG_WR(sc, GRCBASE_MCP + 0x9c, val); |
| val = REG_RD(sc, GRCBASE_MCP + 0x9c); |
| if (val & (1L << 31)) |
| break; |
| |
| udelay(5000); |
| } |
| |
| if (!(val & (1L << 31))) { |
| BLOGE(sc, "Cannot acquire MCP access lock register\n"); |
| return (-1); |
| } |
| |
| return (0); |
| } |
| |
| /* release split MCP access lock register */ |
| static void bxe_release_alr(struct bxe_adapter *sc) |
| { |
| REG_WR(sc, GRCBASE_MCP + 0x9c, 0); |
| } |
| |
| static void |
| bxe_fan_failure(struct bxe_adapter *sc) |
| { |
| int port = SC_PORT(sc); |
| uint32_t ext_phy_config; |
| |
| /* mark the failure */ |
| ext_phy_config = |
| SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config); |
| |
| ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK; |
| ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE; |
| SHMEM_WR(sc, dev_info.port_hw_config[port].external_phy_config, |
| ext_phy_config); |
| |
| /* log the failure */ |
| BLOGW(sc, "Fan Failure has caused the driver to shutdown " |
| "the card to prevent permanent damage. " |
| "Please contact OEM Support for assistance\n"); |
| |
| /* XXX */ |
| #if 1 |
| bxe_panic(sc, ("Schedule task to handle fan failure\n")); |
| #else |
| /* |
| * Schedule device reset (unload) |
| * This is due to some boards consuming sufficient power when driver is |
| * up to overheat if fan fails. |
| */ |
| bxe_set_bit(BXE_SP_RTNL_FAN_FAILURE, &sc->sp_rtnl_state); |
| schedule_delayed_work(&sc->sp_rtnl_task, 0); |
| #endif |
| } |
| |
| /* this function is called upon a link interrupt */ |
| static void |
| bxe_link_attn(struct bxe_adapter *sc) |
| { |
| uint32_t pause_enabled = 0; |
| struct host_port_stats *pstats; |
| int cmng_fns; |
| |
| /* Make sure that we are synced with the current statistics */ |
| bxe_stats_handle(sc, STATS_EVENT_STOP); |
| |
| elink_link_update(&sc->link_params, &sc->link_vars); |
| |
| if (sc->link_vars.link_up) { |
| |
| /* dropless flow control */ |
| if (!CHIP_IS_E1(sc) && sc->dropless_fc) { |
| pause_enabled = 0; |
| |
| if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) { |
| pause_enabled = 1; |
| } |
| |
| REG_WR(sc, |
| (BAR_USTRORM_INTMEM + |
| USTORM_ETH_PAUSE_ENABLED_OFFSET(SC_PORT(sc))), |
| pause_enabled); |
| } |
| |
| if (sc->link_vars.mac_type != ELINK_MAC_TYPE_EMAC) { |
| pstats = BXE_SP(sc, port_stats); |
| /* reset old mac stats */ |
| memset(&(pstats->mac_stx[0]), 0, sizeof(struct mac_stx)); |
| } |
| |
| if (sc->state == BXE_STATE_OPEN) { |
| bxe_stats_handle(sc, STATS_EVENT_LINK_UP); |
| } |
| } |
| |
| if (sc->link_vars.link_up && sc->link_vars.line_speed) { |
| cmng_fns = bxe_get_cmng_fns_mode(sc); |
| |
| if (cmng_fns != CMNG_FNS_NONE) { |
| bxe_cmng_fns_init(sc, FALSE, cmng_fns); |
| storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc)); |
| } else { |
| /* rate shaping and fairness are disabled */ |
| BLOGD(sc, DBG_LOAD, "single function mode without fairness\n"); |
| } |
| } |
| |
| bxe_link_report_locked(sc); |
| |
| if (IS_MF(sc)) { |
| ; // XXX bxe_link_sync_notify(sc); |
| } |
| } |
| |
| static void |
| bxe_attn_int_asserted(struct bxe_adapter *sc, |
| uint32_t asserted) |
| { |
| int port = SC_PORT(sc); |
| uint32_t aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 : |
| MISC_REG_AEU_MASK_ATTN_FUNC_0; |
| uint32_t nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 : |
| NIG_REG_MASK_INTERRUPT_PORT0; |
| uint32_t aeu_mask; |
| uint32_t nig_mask = 0; |
| uint32_t reg_addr; |
| uint32_t igu_acked; |
| uint32_t cnt; |
| |
| if (sc->attn_state & asserted) { |
| BLOGE(sc, "IGU ERROR attn=0x%08x\n", asserted); |
| } |
| |
| bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); |
| |
| aeu_mask = REG_RD(sc, aeu_addr); |
| |
| BLOGD(sc, DBG_INTR, "aeu_mask 0x%08x newly asserted 0x%08x\n", |
| aeu_mask, asserted); |
| |
| aeu_mask &= ~(asserted & 0x3ff); |
| |
| BLOGD(sc, DBG_INTR, "new mask 0x%08x\n", aeu_mask); |
| |
| REG_WR(sc, aeu_addr, aeu_mask); |
| |
| bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); |
| |
| BLOGD(sc, DBG_INTR, "attn_state 0x%08x\n", sc->attn_state); |
| sc->attn_state |= asserted; |
| BLOGD(sc, DBG_INTR, "new state 0x%08x\n", sc->attn_state); |
| |
| if (asserted & ATTN_HARD_WIRED_MASK) { |
| if (asserted & ATTN_NIG_FOR_FUNC) { |
| |
| BXE_PHY_LOCK(sc); |
| |
| /* save nig interrupt mask */ |
| nig_mask = REG_RD(sc, nig_int_mask_addr); |
| |
| /* If nig_mask is not set, no need to call the update function */ |
| if (nig_mask) { |
| REG_WR(sc, nig_int_mask_addr, 0); |
| |
| bxe_link_attn(sc); |
| } |
| |
| /* handle unicore attn? */ |
| } |
| |
| if (asserted & ATTN_SW_TIMER_4_FUNC) { |
| BLOGD(sc, DBG_INTR, "ATTN_SW_TIMER_4_FUNC!\n"); |
| } |
| |
| if (asserted & GPIO_2_FUNC) { |
| BLOGD(sc, DBG_INTR, "GPIO_2_FUNC!\n"); |
| } |
| |
| if (asserted & GPIO_3_FUNC) { |
| BLOGD(sc, DBG_INTR, "GPIO_3_FUNC!\n"); |
| } |
| |
| if (asserted & GPIO_4_FUNC) { |
| BLOGD(sc, DBG_INTR, "GPIO_4_FUNC!\n"); |
| } |
| |
| if (port == 0) { |
| if (asserted & ATTN_GENERAL_ATTN_1) { |
| BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_1!\n"); |
| REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_1, 0x0); |
| } |
| if (asserted & ATTN_GENERAL_ATTN_2) { |
| BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_2!\n"); |
| REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_2, 0x0); |
| } |
| if (asserted & ATTN_GENERAL_ATTN_3) { |
| BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_3!\n"); |
| REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_3, 0x0); |
| } |
| } else { |
| if (asserted & ATTN_GENERAL_ATTN_4) { |
| BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_4!\n"); |
| REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_4, 0x0); |
| } |
| if (asserted & ATTN_GENERAL_ATTN_5) { |
| BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_5!\n"); |
| REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_5, 0x0); |
| } |
| if (asserted & ATTN_GENERAL_ATTN_6) { |
| BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_6!\n"); |
| REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_6, 0x0); |
| } |
| } |
| } /* hardwired */ |
| |
| if (sc->devinfo.int_block == INT_BLOCK_HC) { |
| reg_addr = (HC_REG_COMMAND_REG + port*32 + COMMAND_REG_ATTN_BITS_SET); |
| } else { |
| reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8); |
| } |
| |
| BLOGD(sc, DBG_INTR, "about to mask 0x%08x at %s addr 0x%08x\n", |
| asserted, |
| (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr); |
| REG_WR(sc, reg_addr, asserted); |
| |
| /* now set back the mask */ |
| if (asserted & ATTN_NIG_FOR_FUNC) { |
| /* |
| * Verify that IGU ack through BAR was written before restoring |
| * NIG mask. This loop should exit after 2-3 iterations max. |
| */ |
| if (sc->devinfo.int_block != INT_BLOCK_HC) { |
| cnt = 0; |
| |
| do { |
| igu_acked = REG_RD(sc, IGU_REG_ATTENTION_ACK_BITS); |
| } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) && |
| (++cnt < MAX_IGU_ATTN_ACK_TO)); |
| |
| if (!igu_acked) { |
| BLOGE(sc, "Failed to verify IGU ack on time\n"); |
| } |
| |
| mb(); |
| } |
| |
| REG_WR(sc, nig_int_mask_addr, nig_mask); |
| |
| BXE_PHY_UNLOCK(sc); |
| } |
| } |
| |
| static void |
| bxe_print_next_block(struct bxe_adapter *sc, |
| int idx, |
| const char *blk) |
| { |
| BLOGI(sc, "%s%s", idx ? ", " : "", blk); |
| } |
| |
| static int |
| bxe_check_blocks_with_parity0(struct bxe_adapter *sc, |
| uint32_t sig, |
| int par_num, |
| uint8_t print) |
| { |
| uint32_t cur_bit = 0; |
| int i = 0; |
| |
| for (i = 0; sig; i++) { |
| cur_bit = ((uint32_t)0x1 << i); |
| if (sig & cur_bit) { |
| switch (cur_bit) { |
| case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR: |
| if (print) |
| bxe_print_next_block(sc, par_num++, "BRB"); |
| break; |
| case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR: |
| if (print) |
| bxe_print_next_block(sc, par_num++, "PARSER"); |
| break; |
| case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR: |
| if (print) |
| bxe_print_next_block(sc, par_num++, "TSDM"); |
| break; |
| case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR: |
| if (print) |
| bxe_print_next_block(sc, par_num++, "SEARCHER"); |
| break; |
| case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR: |
| if (print) |
| bxe_print_next_block(sc, par_num++, "TCM"); |
| break; |
| case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR: |
| if (print) |
| bxe_print_next_block(sc, par_num++, "TSEMI"); |
| break; |
| case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR: |
| if (print) |
| bxe_print_next_block(sc, par_num++, "XPB"); |
| break; |
| } |
| |
| /* Clear the bit */ |
| sig &= ~cur_bit; |
| } |
| } |
| |
| return (par_num); |
| } |
| |
| static int |
| bxe_check_blocks_with_parity1(struct bxe_adapter *sc, |
| uint32_t sig, |
| int par_num, |
| uint8_t *global, |
| uint8_t print) |
| { |
| int i = 0; |
| uint32_t cur_bit = 0; |
| for (i = 0; sig; i++) { |
| cur_bit = ((uint32_t)0x1 << i); |
| if (sig & cur_bit) { |
| switch (cur_bit) { |
| case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR: |
| if (print) |
| bxe_print_next_block(sc, par_num++, "PBF"); |
| break; |
| case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR: |
| if (print) |
| bxe_print_next_block(sc, par_num++, "QM"); |
| break; |
| case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR: |
| if (print) |
| bxe_print_next_block(sc, par_num++, "TM"); |
| break; |
| case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR: |
| if (print) |
| bxe_print_next_block(sc, par_num++, "XSDM"); |
| break; |
| case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR: |
| if (print) |
| bxe_print_next_block(sc, par_num++, "XCM"); |
| break; |
| case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR: |
| if (print) |
| bxe_print_next_block(sc, par_num++, "XSEMI"); |
| break; |
| case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR: |
| if (print) |
| bxe_print_next_block(sc, par_num++, "DOORBELLQ"); |
| break; |
| case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR: |
| if (print) |
| bxe_print_next_block(sc, par_num++, "NIG"); |
| break; |
| case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR: |
| if (print) |
| bxe_print_next_block(sc, par_num++, "VAUX PCI CORE"); |
| *global = TRUE; |
| break; |
| case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR: |
| if (print) |
| bxe_print_next_block(sc, par_num++, "DEBUG"); |
| break; |
| case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR: |
| if (print) |
| bxe_print_next_block(sc, par_num++, "USDM"); |
| break; |
| case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR: |
| if (print) |
| bxe_print_next_block(sc, par_num++, "UCM"); |
| break; |
| case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR: |
| if (print) |
| bxe_print_next_block(sc, par_num++, "USEMI"); |
| break; |
| case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR: |
| if (print) |
| bxe_print_next_block(sc, par_num++, "UPB"); |
| break; |
| case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR: |
| if (print) |
| bxe_print_next_block(sc, par_num++, "CSDM"); |
| break; |
| case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR: |
| if (print) |
| bxe_print_next_block(sc, par_num++, "CCM"); |
| break; |
| } |
| |
| /* Clear the bit */ |
| sig &= ~cur_bit; |
| } |
| } |
| |
| return (par_num); |
| } |
| |
| static int |
| bxe_check_blocks_with_parity2(struct bxe_adapter *sc, |
| uint32_t sig, |
| int par_num, |
| uint8_t print) |
| { |
| uint32_t cur_bit = 0; |
| int i = 0; |
| |
| for (i = 0; sig; i++) { |
| cur_bit = ((uint32_t)0x1 << i); |
| if (sig & cur_bit) { |
| switch (cur_bit) { |
| case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR: |
| if (print) |
| bxe_print_next_block(sc, par_num++, "CSEMI"); |
| break; |
| case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR: |
| if (print) |
| bxe_print_next_block(sc, par_num++, "PXP"); |
| break; |
| case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR: |
| if (print) |
| bxe_print_next_block(sc, par_num++, "PXPPCICLOCKCLIENT"); |
| break; |
| case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR: |
| if (print) |
| bxe_print_next_block(sc, par_num++, "CFC"); |
| break; |
| case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR: |
| if (print) |
| bxe_print_next_block(sc, par_num++, "CDU"); |
| break; |
| case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR: |
| if (print) |
| bxe_print_next_block(sc, par_num++, "DMAE"); |
| break; |
| case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR: |
| if (print) |
| bxe_print_next_block(sc, par_num++, "IGU"); |
| break; |
| case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR: |
| if (print) |
| bxe_print_next_block(sc, par_num++, "MISC"); |
| break; |
| } |
| |
| /* Clear the bit */ |
| sig &= ~cur_bit; |
| } |
| } |
| |
| return (par_num); |
| } |
| |
| static int |
| bxe_check_blocks_with_parity3(struct bxe_adapter *sc, |
| uint32_t sig, |
| int par_num, |
| uint8_t *global, |
| uint8_t print) |
| { |
| uint32_t cur_bit = 0; |
| int i = 0; |
| |
| for (i = 0; sig; i++) { |
| cur_bit = ((uint32_t)0x1 << i); |
| if (sig & cur_bit) { |
| switch (cur_bit) { |
| case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY: |
| if (print) |
| bxe_print_next_block(sc, par_num++, "MCP ROM"); |
| *global = TRUE; |
| break; |
| case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY: |
| if (print) |
| bxe_print_next_block(sc, par_num++, |
| "MCP UMP RX"); |
| *global = TRUE; |
| break; |
| case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY: |
| if (print) |
| bxe_print_next_block(sc, par_num++, |
| "MCP UMP TX"); |
| *global = TRUE; |
| break; |
| case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY: |
| if (print) |
| bxe_print_next_block(sc, par_num++, |
| "MCP SCPAD"); |
| *global = TRUE; |
| break; |
| } |
| |
| /* Clear the bit */ |
| sig &= ~cur_bit; |
| } |
| } |
| |
| return (par_num); |
| } |
| |
| static int |
| bxe_check_blocks_with_parity4(struct bxe_adapter *sc, |
| uint32_t sig, |
| int par_num, |
| uint8_t print) |
| { |
| uint32_t cur_bit = 0; |
| int i = 0; |
| |
| for (i = 0; sig; i++) { |
| cur_bit = ((uint32_t)0x1 << i); |
| if (sig & cur_bit) { |
| switch (cur_bit) { |
| case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR: |
| if (print) |
| bxe_print_next_block(sc, par_num++, "PGLUE_B"); |
| break; |
| case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR: |
| if (print) |
| bxe_print_next_block(sc, par_num++, "ATC"); |
| break; |
| } |
| |
| /* Clear the bit */ |
| sig &= ~cur_bit; |
| } |
| } |
| |
| return (par_num); |
| } |
| |
| static uint8_t |
| bxe_parity_attn(struct bxe_adapter *sc, |
| uint8_t *global, |
| uint8_t print, |
| uint32_t *sig) |
| { |
| int par_num = 0; |
| |
| if ((sig[0] & HW_PRTY_ASSERT_SET_0) || |
| (sig[1] & HW_PRTY_ASSERT_SET_1) || |
| (sig[2] & HW_PRTY_ASSERT_SET_2) || |
| (sig[3] & HW_PRTY_ASSERT_SET_3) || |
| (sig[4] & HW_PRTY_ASSERT_SET_4)) { |
| BLOGE(sc, "Parity error: HW block parity attention:\n" |
| "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n", |
| (uint32_t)(sig[0] & HW_PRTY_ASSERT_SET_0), |
| (uint32_t)(sig[1] & HW_PRTY_ASSERT_SET_1), |
| (uint32_t)(sig[2] & HW_PRTY_ASSERT_SET_2), |
| (uint32_t)(sig[3] & HW_PRTY_ASSERT_SET_3), |
| (uint32_t)(sig[4] & HW_PRTY_ASSERT_SET_4)); |
| |
| if (print) |
| BLOGI(sc, "Parity errors detected in blocks: "); |
| |
| par_num = |
| bxe_check_blocks_with_parity0(sc, sig[0] & |
| HW_PRTY_ASSERT_SET_0, |
| par_num, print); |
| par_num = |
| bxe_check_blocks_with_parity1(sc, sig[1] & |
| HW_PRTY_ASSERT_SET_1, |
| par_num, global, print); |
| par_num = |
| bxe_check_blocks_with_parity2(sc, sig[2] & |
| HW_PRTY_ASSERT_SET_2, |
| par_num, print); |
| par_num = |
| bxe_check_blocks_with_parity3(sc, sig[3] & |
| HW_PRTY_ASSERT_SET_3, |
| par_num, global, print); |
| par_num = |
| bxe_check_blocks_with_parity4(sc, sig[4] & |
| HW_PRTY_ASSERT_SET_4, |
| par_num, print); |
| |
| if (print) |
| BLOGI(sc, "\n"); |
| |
| return (TRUE); |
| } |
| |
| return (FALSE); |
| } |
| |
| static uint8_t |
| bxe_chk_parity_attn(struct bxe_adapter *sc, |
| uint8_t *global, |
| uint8_t print) |
| { |
| struct attn_route attn = { {0} }; |
| int port = SC_PORT(sc); |
| |
| attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4); |
| attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4); |
| attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4); |
| attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4); |
| |
| if (!CHIP_IS_E1x(sc)) |
| attn.sig[4] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4); |
| |
| return (bxe_parity_attn(sc, global, print, attn.sig)); |
| } |
| |
| static void |
| bxe_attn_int_deasserted4(struct bxe_adapter *sc, |
| uint32_t attn) |
| { |
| uint32_t val; |
| |
| if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) { |
| val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS_CLR); |
| BLOGE(sc, "PGLUE hw attention 0x%08x\n", val); |
| if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR) |
| BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n"); |
| if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR) |
| BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n"); |
| if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) |
| BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n"); |
| if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN) |
| BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n"); |
| if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN) |
| BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n"); |
| if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN) |
| BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n"); |
| if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN) |
| BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n"); |
| if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN) |
| BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n"); |
| if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW) |
| BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n"); |
| } |
| |
| if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) { |
| val = REG_RD(sc, ATC_REG_ATC_INT_STS_CLR); |
| BLOGE(sc, "ATC hw attention 0x%08x\n", val); |
| if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR) |
| BLOGE(sc, "ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n"); |
| if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND) |
| BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n"); |
| if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS) |
| BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n"); |
| if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT) |
| BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n"); |
| if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR) |
| BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n"); |
| if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU) |
| BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n"); |
| } |
| |
| if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR | |
| AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) { |
| BLOGE(sc, "FATAL parity attention set4 0x%08x\n", |
| (uint32_t)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR | |
| AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR))); |
| } |
| } |
| |
| static void |
| bxe_e1h_disable(struct bxe_adapter *sc) |
| { |
| int port = SC_PORT(sc); |
| |
| bxe_tx_disable(sc); |
| |
| REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 0); |
| } |
| |
| static void |
| bxe_e1h_enable(struct bxe_adapter *sc) |
| { |
| int port = SC_PORT(sc); |
| |
| REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 1); |
| |
| // XXX bxe_tx_enable(sc); |
| } |
| |
| /* |
| * called due to MCP event (on pmf): |
| * reread new bandwidth configuration |
| * configure FW |
| * notify others function about the change |
| */ |
| static void |
| bxe_config_mf_bw(struct bxe_adapter *sc) |
| { |
| if (sc->link_vars.link_up) { |
| bxe_cmng_fns_init(sc, TRUE, CMNG_FNS_MINMAX); |
| // XXX bxe_link_sync_notify(sc); |
| } |
| |
| storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc)); |
| } |
| |
| static void |
| bxe_set_mf_bw(struct bxe_adapter *sc) |
| { |
| bxe_config_mf_bw(sc); |
| bxe_fw_command(sc, DRV_MSG_CODE_SET_MF_BW_ACK, 0); |
| } |
| |
| static void |
| bxe_handle_eee_event(struct bxe_adapter *sc) |
| { |
| BLOGD(sc, DBG_INTR, "EEE - LLDP event\n"); |
| bxe_fw_command(sc, DRV_MSG_CODE_EEE_RESULTS_ACK, 0); |
| } |
| |
| #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3 |
| |
| static void |
| bxe_drv_info_ether_stat(struct bxe_adapter *sc) |
| { |
| struct eth_stats_info *ether_stat = |
| &sc->sp->drv_info_to_mcp.ether_stat; |
| |
| strlcpy((char*)ether_stat->version, BXE_DRIVER_VERSION, |
| ETH_STAT_INFO_VERSION_LEN); |
| |
| /* XXX (+ MAC_PAD) taken from other driver... verify this is right */ |
| sc->sp_objs[0].mac_obj.get_n_elements(sc, &sc->sp_objs[0].mac_obj, |
| DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED, |
| ether_stat->mac_local + MAC_PAD, |
| MAC_PAD, ETH_ALEN); |
| |
| ether_stat->mtu_size = sc->mtu; |
| |
| ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK; |
| if (if_getcapenable(sc->ifp) & (IFCAP_TSO4 | IFCAP_TSO6)) { |
| ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK; |
| } |
| |
| // XXX ether_stat->feature_flags |= ???; |
| |
| ether_stat->promiscuous_mode = 0; // (flags & PROMISC) ? 1 : 0; |
| |
| ether_stat->txq_size = sc->tx_ring_size; |
| ether_stat->rxq_size = sc->rx_ring_size; |
| } |
| |
| static void |
| bxe_handle_drv_info_req(struct bxe_adapter *sc) |
| { |
| enum drv_info_opcode op_code; |
| uint32_t drv_info_ctl = SHMEM2_RD(sc, drv_info_control); |
| |
| /* if drv_info version supported by MFW doesn't match - send NACK */ |
| if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) { |
| bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0); |
| return; |
| } |
| |
| op_code = ((drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >> |
| DRV_INFO_CONTROL_OP_CODE_SHIFT); |
| |
| memset(&sc->sp->drv_info_to_mcp, 0, sizeof(union drv_info_to_mcp)); |
| |
| switch (op_code) { |
| case ETH_STATS_OPCODE: |
| bxe_drv_info_ether_stat(sc); |
| break; |
| case FCOE_STATS_OPCODE: |
| case ISCSI_STATS_OPCODE: |
| default: |
| /* if op code isn't supported - send NACK */ |
| bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0); |
| return; |
| } |
| |
| /* |
| * If we got drv_info attn from MFW then these fields are defined in |
| * shmem2 for sure |
| */ |
| SHMEM2_WR(sc, drv_info_host_addr_lo, |
| U64_LO(BXE_SP_MAPPING(sc, drv_info_to_mcp))); |
| SHMEM2_WR(sc, drv_info_host_addr_hi, |
| U64_HI(BXE_SP_MAPPING(sc, drv_info_to_mcp))); |
| |
| bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_ACK, 0); |
| } |
| |
| static void |
| bxe_dcc_event(struct bxe_adapter *sc, |
| uint32_t dcc_event) |
| { |
| BLOGD(sc, DBG_INTR, "dcc_event 0x%08x\n", dcc_event); |
| |
| if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) { |
| /* |
| * This is the only place besides the function initialization |
| * where the sc->flags can change so it is done without any |
| * locks |
| */ |
| if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_DISABLED) { |
| BLOGD(sc, DBG_INTR, "mf_cfg function disabled\n"); |
| sc->flags |= BXE_MF_FUNC_DIS; |
| bxe_e1h_disable(sc); |
| } else { |
| BLOGD(sc, DBG_INTR, "mf_cfg function enabled\n"); |
| sc->flags &= ~BXE_MF_FUNC_DIS; |
| bxe_e1h_enable(sc); |
| } |
| dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF; |
| } |
| |
| if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) { |
| bxe_config_mf_bw(sc); |
| dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION; |
| } |
| |
| /* Report results to MCP */ |
| if (dcc_event) |
| bxe_fw_command(sc, DRV_MSG_CODE_DCC_FAILURE, 0); |
| else |
| bxe_fw_command(sc, DRV_MSG_CODE_DCC_OK, 0); |
| } |
| |
| static void |
| bxe_pmf_update(struct bxe_adapter *sc) |
| { |
| int port = SC_PORT(sc); |
| uint32_t val; |
| |
| sc->port.pmf = 1; |
| BLOGD(sc, DBG_INTR, "pmf %d\n", sc->port.pmf); |
| |
| /* |
| * We need the mb() to ensure the ordering between the writing to |
| * sc->port.pmf here and reading it from the bxe_periodic_task(). |
| */ |
| mb(); |
| |
| /* queue a periodic task */ |
| // XXX schedule task... |
| |
| // XXX bxe_dcbx_pmf_update(sc); |
| |
| /* enable nig attention */ |
| val = (0xff0f | (1 << (SC_VN(sc) + 4))); |
| if (sc->devinfo.int_block == INT_BLOCK_HC) { |
| REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, val); |
| REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, val); |
| } else if (!CHIP_IS_E1x(sc)) { |
| REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val); |
| REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val); |
| } |
| |
| bxe_stats_handle(sc, STATS_EVENT_PMF); |
| } |
| |
| static int |
| bxe_mc_assert(struct bxe_adapter *sc) |
| { |
| char last_idx; |
| int i, rc = 0; |
| uint32_t row0, row1, row2, row3; |
| |
| /* XSTORM */ |
| last_idx = REG_RD8(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_INDEX_OFFSET); |
| if (last_idx) |
| BLOGE(sc, "XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx); |
| |
| /* print the asserts */ |
| for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) { |
| |
| row0 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i)); |
| row1 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 4); |
| row2 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 8); |
| row3 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 12); |
| |
| if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { |
| BLOGE(sc, "XSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", |
| i, row3, row2, row1, row0); |
| rc++; |
| } else { |
| break; |
| } |
| } |
| |
| /* TSTORM */ |
| last_idx = REG_RD8(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_INDEX_OFFSET); |
| if (last_idx) { |
| BLOGE(sc, "TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx); |
| } |
| |
| /* print the asserts */ |
| for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) { |
| |
| row0 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i)); |
| row1 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 4); |
| row2 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 8); |
| row3 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 12); |
| |
| if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { |
| BLOGE(sc, "TSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", |
| i, row3, row2, row1, row0); |
| rc++; |
| } else { |
| break; |
| } |
| } |
| |
| /* CSTORM */ |
| last_idx = REG_RD8(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_INDEX_OFFSET); |
| if (last_idx) { |
| BLOGE(sc, "CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx); |
| } |
| |
| /* print the asserts */ |
| for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) { |
| |
| row0 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i)); |
| row1 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 4); |
| row2 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 8); |
| row3 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 12); |
| |
| if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { |
| BLOGE(sc, "CSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", |
| i, row3, row2, row1, row0); |
| rc++; |
| } else { |
| break; |
| } |
| } |
| |
| /* USTORM */ |
| last_idx = REG_RD8(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_INDEX_OFFSET); |
| if (last_idx) { |
| BLOGE(sc, "USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx); |
| } |
| |
| /* print the asserts */ |
| for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) { |
| |
| row0 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i)); |
| row1 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 4); |
| row2 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 8); |
| row3 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 12); |
| |
| if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) { |
| BLOGE(sc, "USTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n", |
| i, row3, row2, row1, row0); |
| rc++; |
| } else { |
| break; |
| } |
| } |
| |
| return (rc); |
| } |
| |
| static void |
| bxe_attn_int_deasserted3(struct bxe_adapter *sc, |
| uint32_t attn) |
| { |
| int func = SC_FUNC(sc); |
| uint32_t val; |
| |
| if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) { |
| |
| if (attn & BXE_PMF_LINK_ASSERT(sc)) { |
| |
| REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0); |
| bxe_read_mf_cfg(sc); |
| sc->devinfo.mf_info.mf_config[SC_VN(sc)] = |
| MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config); |
| val = SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_status); |
| |
| if (val & DRV_STATUS_DCC_EVENT_MASK) |
| bxe_dcc_event(sc, (val & DRV_STATUS_DCC_EVENT_MASK)); |
| |
| if (val & DRV_STATUS_SET_MF_BW) |
| bxe_set_mf_bw(sc); |
| |
| if (val & DRV_STATUS_DRV_INFO_REQ) |
| bxe_handle_drv_info_req(sc); |
| |
| #if 0 |
| if (val & DRV_STATUS_VF_DISABLED) |
| bxe_vf_handle_flr_event(sc); |
| #endif |
| |
| if ((sc->port.pmf == 0) && (val & DRV_STATUS_PMF)) |
| bxe_pmf_update(sc); |
| |
| #if 0 |
| if (sc->port.pmf && |
| (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) && |
| (sc->dcbx_enabled > 0)) |
| /* start dcbx state machine */ |
| bxe_dcbx_set_params(sc, BXE_DCBX_STATE_NEG_RECEIVED); |
| #endif |
| |
| #if 0 |
| if (val & DRV_STATUS_AFEX_EVENT_MASK) |
| bxe_handle_afex_cmd(sc, val & DRV_STATUS_AFEX_EVENT_MASK); |
| #endif |
| |
| if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS) |
| bxe_handle_eee_event(sc); |
| |
| if (sc->link_vars.periodic_flags & |
| ELINK_PERIODIC_FLAGS_LINK_EVENT) { |
| /* sync with link */ |
| BXE_PHY_LOCK(sc); |
| sc->link_vars.periodic_flags &= |
| ~ELINK_PERIODIC_FLAGS_LINK_EVENT; |
| BXE_PHY_UNLOCK(sc); |
| if (IS_MF(sc)) |
| ; // XXX bxe_link_sync_notify(sc); |
| bxe_link_report(sc); |
| } |
| |
| /* |
| * Always call it here: bxe_link_report() will |
| * prevent the link indication duplication. |
| */ |
| bxe_link_status_update(sc); |
| |
| } else if (attn & BXE_MC_ASSERT_BITS) { |
| |
| BLOGE(sc, "MC assert!\n"); |
| bxe_mc_assert(sc); |
| REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_10, 0); |
| REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_9, 0); |
| REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_8, 0); |
| REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_7, 0); |
| bxe_panic(sc, ("MC assert!\n")); |
| |
| } else if (attn & BXE_MCP_ASSERT) { |
| |
| BLOGE(sc, "MCP assert!\n"); |
| REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_11, 0); |
| // XXX bxe_fw_dump(sc); |
| |
| } else { |
| BLOGE(sc, "Unknown HW assert! (attn 0x%08x)\n", attn); |
| } |
| } |
| |
| if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) { |
| BLOGE(sc, "LATCHED attention 0x%08x (masked)\n", attn); |
| if (attn & BXE_GRC_TIMEOUT) { |
| val = CHIP_IS_E1(sc) ? 0 : REG_RD(sc, MISC_REG_GRC_TIMEOUT_ATTN); |
| BLOGE(sc, "GRC time-out 0x%08x\n", val); |
| } |
| if (attn & BXE_GRC_RSV) { |
| val = CHIP_IS_E1(sc) ? 0 : REG_RD(sc, MISC_REG_GRC_RSV_ATTN); |
| BLOGE(sc, "GRC reserved 0x%08x\n", val); |
| } |
| REG_WR(sc, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff); |
| } |
| } |
| |
| static void |
| bxe_attn_int_deasserted2(struct bxe_adapter *sc, |
| uint32_t attn) |
| { |
| int port = SC_PORT(sc); |
| int reg_offset; |
| uint32_t val0, mask0, val1, mask1; |
| uint32_t val; |
| |
| if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) { |
| val = REG_RD(sc, CFC_REG_CFC_INT_STS_CLR); |
| BLOGE(sc, "CFC hw attention 0x%08x\n", val); |
| /* CFC error attention */ |
| if (val & 0x2) { |
| BLOGE(sc, "FATAL error from CFC\n"); |
| } |
| } |
| |
| if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) { |
| val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_0); |
| BLOGE(sc, "PXP hw attention-0 0x%08x\n", val); |
| /* RQ_USDMDP_FIFO_OVERFLOW */ |
| if (val & 0x18000) { |
| BLOGE(sc, "FATAL error from PXP\n"); |
| } |
| |
| if (!CHIP_IS_E1x(sc)) { |
| val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_1); |
| BLOGE(sc, "PXP hw attention-1 0x%08x\n", val); |
| } |
| } |
| |
| #define PXP2_EOP_ERROR_BIT PXP2_PXP2_INT_STS_CLR_0_REG_WR_PGLUE_EOP_ERROR |
| #define AEU_PXP2_HW_INT_BIT AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_HW_INTERRUPT |
| |
| if (attn & AEU_PXP2_HW_INT_BIT) { |
| /* CQ47854 workaround do not panic on |
| * PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR |
| */ |
| if (!CHIP_IS_E1x(sc)) { |
| mask0 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_0); |
| val1 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_1); |
| mask1 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_1); |
| val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_0); |
| /* |
| * If the olny PXP2_EOP_ERROR_BIT is set in |
| * STS0 and STS1 - clear it |
| * |
| * probably we lose additional attentions between |
| * STS0 and STS_CLR0, in this case user will not |
| * be notified about them |
| */ |
| if (val0 & mask0 & PXP2_EOP_ERROR_BIT && |
| !(val1 & mask1)) |
| val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0); |
| |
| /* print the register, since no one can restore it */ |
| BLOGE(sc, "PXP2_REG_PXP2_INT_STS_CLR_0 0x%08x\n", val0); |
| |
| /* |
| * if PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR |
| * then notify |
| */ |
| if (val0 & PXP2_EOP_ERROR_BIT) { |
| BLOGE(sc, "PXP2_WR_PGLUE_EOP_ERROR\n"); |
| |
| /* |
| * if only PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR is |
| * set then clear attention from PXP2 block without panic |
| */ |
| if (((val0 & mask0) == PXP2_EOP_ERROR_BIT) && |
| ((val1 & mask1) == 0)) |
| attn &= ~AEU_PXP2_HW_INT_BIT; |
| } |
| } |
| } |
| |
| if (attn & HW_INTERRUT_ASSERT_SET_2) { |
| reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 : |
| MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2); |
| |
| val = REG_RD(sc, reg_offset); |
| val &= ~(attn & HW_INTERRUT_ASSERT_SET_2); |
| REG_WR(sc, reg_offset, val); |
| |
| BLOGE(sc, "FATAL HW block attention set2 0x%x\n", |
| (uint32_t)(attn & HW_INTERRUT_ASSERT_SET_2)); |
| bxe_panic(sc, ("HW block attention set2\n")); |
| } |
| } |
| |
| static void |
| bxe_attn_int_deasserted1(struct bxe_adapter *sc, |
| uint32_t attn) |
| { |
| int port = SC_PORT(sc); |
| int reg_offset; |
| uint32_t val; |
| |
| if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) { |
| val = REG_RD(sc, DORQ_REG_DORQ_INT_STS_CLR); |
| BLOGE(sc, "DB hw attention 0x%08x\n", val); |
| /* DORQ discard attention */ |
| if (val & 0x2) { |
| BLOGE(sc, "FATAL error from DORQ\n"); |
| } |
| } |
| |
| if (attn & HW_INTERRUT_ASSERT_SET_1) { |
| reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 : |
| MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1); |
| |
| val = REG_RD(sc, reg_offset); |
| val &= ~(attn & HW_INTERRUT_ASSERT_SET_1); |
| REG_WR(sc, reg_offset, val); |
| |
| BLOGE(sc, "FATAL HW block attention set1 0x%08x\n", |
| (uint32_t)(attn & HW_INTERRUT_ASSERT_SET_1)); |
| bxe_panic(sc, ("HW block attention set1\n")); |
| } |
| } |
| |
| static void |
| bxe_attn_int_deasserted0(struct bxe_adapter *sc, |
| uint32_t attn) |
| { |
| int port = SC_PORT(sc); |
| int reg_offset; |
| uint32_t val; |
| |
| reg_offset = (port) ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : |
| MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0; |
| |
| if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) { |
| val = REG_RD(sc, reg_offset); |
| val &= ~AEU_INPUTS_ATTN_BITS_SPIO5; |
| REG_WR(sc, reg_offset, val); |
| |
| BLOGW(sc, "SPIO5 hw attention\n"); |
| |
| /* Fan failure attention */ |
| elink_hw_reset_phy(&sc->link_params); |
| bxe_fan_failure(sc); |
| } |
| |
| if ((attn & sc->link_vars.aeu_int_mask) && sc->port.pmf) { |
| BXE_PHY_LOCK(sc); |
| elink_handle_module_detect_int(&sc->link_params); |
| BXE_PHY_UNLOCK(sc); |
| } |
| |
| if (attn & HW_INTERRUT_ASSERT_SET_0) { |
| val = REG_RD(sc, reg_offset); |
| val &= ~(attn & HW_INTERRUT_ASSERT_SET_0); |
| REG_WR(sc, reg_offset, val); |
| |
| bxe_panic(sc, ("FATAL HW block attention set0 0x%lx\n", |
| (attn & HW_INTERRUT_ASSERT_SET_0))); |
| } |
| } |
| |
| static void |
| bxe_attn_int_deasserted(struct bxe_adapter *sc, |
| uint32_t deasserted) |
| { |
| struct attn_route attn; |
| struct attn_route *group_mask; |
| int port = SC_PORT(sc); |
| int index; |
| uint32_t reg_addr; |
| uint32_t val; |
| uint32_t aeu_mask; |
| uint8_t global = FALSE; |
| |
| /* |
| * Need to take HW lock because MCP or other port might also |
| * try to handle this event. |
| */ |
| bxe_acquire_alr(sc); |
| |
| if (bxe_chk_parity_attn(sc, &global, TRUE)) { |
| /* XXX |
| * In case of parity errors don't handle attentions so that |
| * other function would "see" parity errors. |
| */ |
| sc->recovery_state = BXE_RECOVERY_INIT; |
| // XXX schedule a recovery task... |
| /* disable HW interrupts */ |
| bxe_int_disable(sc); |
| bxe_release_alr(sc); |
| return; |
| } |
| |
| attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4); |
| attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4); |
| attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4); |
| attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4); |
| if (!CHIP_IS_E1x(sc)) { |
| attn.sig[4] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4); |
| } else { |
| attn.sig[4] = 0; |
| } |
| |
| BLOGD(sc, DBG_INTR, "attn: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n", |
| attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]); |
| |
| for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) { |
| if (deasserted & (1 << index)) { |
| group_mask = &sc->attn_group[index]; |
| |
| BLOGD(sc, DBG_INTR, |
| "group[%d]: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n", index, |
| group_mask->sig[0], group_mask->sig[1], |
| group_mask->sig[2], group_mask->sig[3], |
| group_mask->sig[4]); |
| |
| bxe_attn_int_deasserted4(sc, attn.sig[4] & group_mask->sig[4]); |
| bxe_attn_int_deasserted3(sc, attn.sig[3] & group_mask->sig[3]); |
| bxe_attn_int_deasserted1(sc, attn.sig[1] & group_mask->sig[1]); |
| bxe_attn_int_deasserted2(sc, attn.sig[2] & group_mask->sig[2]); |
| bxe_attn_int_deasserted0(sc, attn.sig[0] & group_mask->sig[0]); |
| } |
| } |
| |
| bxe_release_alr(sc); |
| |
| if (sc->devinfo.int_block == INT_BLOCK_HC) { |
| reg_addr = (HC_REG_COMMAND_REG + port*32 + |
| COMMAND_REG_ATTN_BITS_CLR); |
| } else { |
| reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8); |
| } |
| |
| val = ~deasserted; |
| BLOGD(sc, DBG_INTR, |
| "about to mask 0x%08x at %s addr 0x%08x\n", val, |
| (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr); |
| REG_WR(sc, reg_addr, val); |
| |
| if (~sc->attn_state & deasserted) { |
| BLOGE(sc, "IGU error\n"); |
| } |
| |
| reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 : |
| MISC_REG_AEU_MASK_ATTN_FUNC_0; |
| |
| bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); |
| |
| aeu_mask = REG_RD(sc, reg_addr); |
| |
| BLOGD(sc, DBG_INTR, "aeu_mask 0x%08x newly deasserted 0x%08x\n", |
| aeu_mask, deasserted); |
| aeu_mask |= (deasserted & 0x3ff); |
| BLOGD(sc, DBG_INTR, "new mask 0x%08x\n", aeu_mask); |
| |
| REG_WR(sc, reg_addr, aeu_mask); |
| bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port); |
| |
| BLOGD(sc, DBG_INTR, "attn_state 0x%08x\n", sc->attn_state); |
| sc->attn_state &= ~deasserted; |
| BLOGD(sc, DBG_INTR, "new state 0x%08x\n", sc->attn_state); |
| } |
| |
| static void |
| bxe_attn_int(struct bxe_adapter *sc) |
| { |
| /* read local copy of bits */ |
| uint32_t attn_bits = le32_to_cpu(sc->def_sb->atten_status_block.attn_bits); |
| uint32_t attn_ack = le32_to_cpu(sc->def_sb->atten_status_block.attn_bits_ack); |
| uint32_t attn_state = sc->attn_state; |
| |
| /* look for changed bits */ |
| uint32_t asserted = attn_bits & ~attn_ack & ~attn_state; |
| uint32_t deasserted = ~attn_bits & attn_ack & attn_state; |
| |
| BLOGD(sc, DBG_INTR, |
| "attn_bits 0x%08x attn_ack 0x%08x asserted 0x%08x deasserted 0x%08x\n", |
| attn_bits, attn_ack, asserted, deasserted); |
| |
| if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state)) { |
| BLOGE(sc, "BAD attention state\n"); |
| } |
| |
| /* handle bits that were raised */ |
| if (asserted) { |
| bxe_attn_int_asserted(sc, asserted); |
| } |
| |
| if (deasserted) { |
| bxe_attn_int_deasserted(sc, deasserted); |
| } |
| } |
| |
| static uint16_t |
| bxe_update_dsb_idx(struct bxe_adapter *sc) |
| { |
| struct host_sp_status_block *def_sb = sc->def_sb; |
| uint16_t rc = 0; |
| |
| mb(); /* status block is written to by the chip */ |
| |
| if (sc->def_att_idx != def_sb->atten_status_block.attn_bits_index) { |
| sc->def_att_idx = def_sb->atten_status_block.attn_bits_index; |
| rc |= BXE_DEF_SB_ATT_IDX; |
| } |
| |
| if (sc->def_idx != def_sb->sp_sb.running_index) { |
| sc->def_idx = def_sb->sp_sb.running_index; |
| rc |= BXE_DEF_SB_IDX; |
| } |
| |
| mb(); |
| |
| return (rc); |
| } |
| |
| static inline struct ecore_queue_sp_obj * |
| bxe_cid_to_q_obj(struct bxe_adapter *sc, |
| uint32_t cid) |
| { |
| BLOGD(sc, DBG_SP, "retrieving fp from cid %d\n", cid); |
| return (&sc->sp_objs[CID_TO_FP(cid, sc)].q_obj); |
| } |
| |
| static void |
| bxe_handle_mcast_eqe(struct bxe_adapter *sc) |
| { |
| struct ecore_mcast_ramrod_params rparam; |
| int rc; |
| |
| memset(&rparam, 0, sizeof(rparam)); |
| |
| rparam.mcast_obj = &sc->mcast_obj; |
| |
| BXE_MCAST_LOCK(sc); |
| |
| /* clear pending state for the last command */ |
| sc->mcast_obj.raw.clear_pending(&sc->mcast_obj.raw); |
| |
| /* if there are pending mcast commands - send them */ |
| if (sc->mcast_obj.check_pending(&sc->mcast_obj)) { |
| rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT); |
| if (rc < 0) { |
| BLOGD(sc, DBG_SP, |
| "ERROR: Failed to send pending mcast commands (%d)\n", |
| rc); |
| } |
| } |
| |
| BXE_MCAST_UNLOCK(sc); |
| } |
| |
| static void |
| bxe_handle_classification_eqe(struct bxe_adapter *sc, |
| union event_ring_elem *elem) |
| { |
| unsigned long ramrod_flags = 0; |
| int rc = 0; |
| uint32_t cid = elem->message.data.eth_event.echo & BXE_SWCID_MASK; |
| struct ecore_vlan_mac_obj *vlan_mac_obj; |
| |
| /* always push next commands out, don't wait here */ |
| __set_bit(RAMROD_CONT, &ramrod_flags); |
| |
| switch (le32_to_cpu(elem->message.data.eth_event.echo) >> BXE_SWCID_SHIFT) { |
| case ECORE_FILTER_MAC_PENDING: |
| BLOGD(sc, DBG_SP, "Got SETUP_MAC completions\n"); |
| vlan_mac_obj = &sc->sp_objs[cid].mac_obj; |
| break; |
| |
| case ECORE_FILTER_MCAST_PENDING: |
| BLOGD(sc, DBG_SP, "Got SETUP_MCAST completions\n"); |
| /* |
| * This is only relevant for 57710 where multicast MACs are |
| * configured as unicast MACs using the same ramrod. |
| */ |
| bxe_handle_mcast_eqe(sc); |
| return; |
| |
| default: |
| BLOGE(sc, "Unsupported classification command: %d\n", |
| elem->message.data.eth_event.echo); |
| return; |
| } |
| |
| rc = vlan_mac_obj->complete(sc, vlan_mac_obj, elem, &ramrod_flags); |
| |
| if (rc < 0) { |
| BLOGE(sc, "Failed to schedule new commands (%d)\n", rc); |
| } else if (rc > 0) { |
| BLOGD(sc, DBG_SP, "Scheduled next pending commands...\n"); |
| } |
| } |
| |
| static void |
| bxe_handle_rx_mode_eqe(struct bxe_adapter *sc, |
| union event_ring_elem *elem) |
| { |
| bxe_clear_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state); |
| |
| /* send rx_mode command again if was requested */ |
| if (bxe_test_and_clear_bit(ECORE_FILTER_RX_MODE_SCHED, |
| &sc->sp_state)) { |
| bxe_set_storm_rx_mode(sc); |
| } |
| #if 0 |
| else if (bxe_test_and_clear_bit(ECORE_FILTER_ISCSI_ETH_START_SCHED, |
| &sc->sp_state)) { |
| bxe_set_iscsi_eth_rx_mode(sc, TRUE); |
| } |
| else if (bxe_test_and_clear_bit(ECORE_FILTER_ISCSI_ETH_STOP_SCHED, |
| &sc->sp_state)) { |
| bxe_set_iscsi_eth_rx_mode(sc, FALSE); |
| } |
| #endif |
| } |
| |
| static void |
| bxe_update_eq_prod(struct bxe_adapter *sc, |
| uint16_t prod) |
| { |
| storm_memset_eq_prod(sc, prod, SC_FUNC(sc)); |
| wmb(); /* keep prod updates ordered */ |
| } |
| |
| static void |
| bxe_eq_int(struct bxe_adapter *sc) |
| { |
| uint16_t hw_cons, sw_cons, sw_prod; |
| union event_ring_elem *elem; |
| uint8_t echo; |
| uint32_t cid; |
| uint8_t opcode; |
| int spqe_cnt = 0; |
| struct ecore_queue_sp_obj *q_obj; |
| struct ecore_func_sp_obj *f_obj = &sc->func_obj; |
| struct ecore_raw_obj *rss_raw = &sc->rss_conf_obj.raw; |
| |
| hw_cons = le16_to_cpu(*sc->eq_cons_sb); |
| |
| /* |
| * The hw_cons range is 1-255, 257 - the sw_cons range is 0-254, 256. |
| * when we get to the next-page we need to adjust so the loop |
| * condition below will be met. The next element is the size of a |
| * regular element and hence incrementing by 1 |
| */ |
| if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE) { |
| hw_cons++; |
| } |
| |
| /* |
| * This function may never run in parallel with itself for a |
| * specific sc and no need for a read memory barrier here. |
| */ |
| sw_cons = sc->eq_cons; |
| sw_prod = sc->eq_prod; |
| |
| BLOGD(sc, DBG_SP,"EQ: hw_cons=%u sw_cons=%u eq_spq_left=0x%lx\n", |
| hw_cons, sw_cons, atomic_read(&sc->eq_spq_left)); |
| |
| for (; |
| sw_cons != hw_cons; |
| sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) { |
| |
| elem = &sc->eq[EQ_DESC(sw_cons)]; |
| |
| #if 0 |
| int rc; |
| rc = bxe_iov_eq_sp_event(sc, elem); |
| if (!rc) { |
| BLOGE(sc, "bxe_iov_eq_sp_event returned %d\n", rc); |
| goto next_spqe; |
| } |
| #endif |
| |
| /* elem CID originates from FW, actually LE */ |
| cid = SW_CID(elem->message.data.cfc_del_event.cid); |
| opcode = elem->message.opcode; |
| |
| /* handle eq element */ |
| switch (opcode) { |
| #if 0 |
| case EVENT_RING_OPCODE_VF_PF_CHANNEL: |
| BLOGD(sc, DBG_SP, "vf/pf channel element on eq\n"); |
| bxe_vf_mbx(sc, &elem->message.data.vf_pf_event); |
| continue; |
| #endif |
| |
| case EVENT_RING_OPCODE_STAT_QUERY: |
| BLOGD(sc, DBG_SP, "got statistics completion event %d\n", |
| sc->stats_comp++); |
| /* nothing to do with stats comp */ |
| goto next_spqe; |
| |
| case EVENT_RING_OPCODE_CFC_DEL: |
| /* handle according to cid range */ |
| /* we may want to verify here that the sc state is HALTING */ |
| BLOGD(sc, DBG_SP, "got delete ramrod for MULTI[%d]\n", cid); |
| q_obj = bxe_cid_to_q_obj(sc, cid); |
| if (q_obj->complete_cmd(sc, q_obj, ECORE_Q_CMD_CFC_DEL)) { |
| break; |
| } |
| goto next_spqe; |
| |
| case EVENT_RING_OPCODE_STOP_TRAFFIC: |
| BLOGD(sc, DBG_SP, "got STOP TRAFFIC\n"); |
| if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_STOP)) { |
| break; |
| } |
| // XXX bxe_dcbx_set_params(sc, BXE_DCBX_STATE_TX_PAUSED); |
| goto next_spqe; |
| |
| case EVENT_RING_OPCODE_START_TRAFFIC: |
| BLOGD(sc, DBG_SP, "got START TRAFFIC\n"); |
| if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_START)) { |
| break; |
| } |
| // XXX bxe_dcbx_set_params(sc, BXE_DCBX_STATE_TX_RELEASED); |
| goto next_spqe; |
| |
| case EVENT_RING_OPCODE_FUNCTION_UPDATE: |
| echo = elem->message.data.function_update_event.echo; |
| if (echo == SWITCH_UPDATE) { |
| BLOGD(sc, DBG_SP, "got FUNC_SWITCH_UPDATE ramrod\n"); |
| if (f_obj->complete_cmd(sc, f_obj, |
| ECORE_F_CMD_SWITCH_UPDATE)) { |
| break; |
| } |
| } |
| else { |
| BLOGD(sc, DBG_SP, |
| "AFEX: ramrod completed FUNCTION_UPDATE\n"); |
| #if 0 |
| f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_AFEX_UPDATE); |
| /* |
| * We will perform the queues update from the sp_core_task as |
| * all queue SP operations should run with CORE_LOCK. |
| */ |
| bxe_set_bit(BXE_SP_CORE_AFEX_F_UPDATE, &sc->sp_core_state); |
| taskqueue_enqueue(sc->sp_tq, &sc->sp_tq_task); |
| #endif |
| } |
| goto next_spqe; |
| |
| #if 0 |
| case EVENT_RING_OPCODE_AFEX_VIF_LISTS: |
| f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_AFEX_VIFLISTS); |
| bxe_after_afex_vif_lists(sc, elem); |
| goto next_spqe; |
| #endif |
| |
| case EVENT_RING_OPCODE_FORWARD_SETUP: |
| q_obj = &bxe_fwd_sp_obj(sc, q_obj); |
| if (q_obj->complete_cmd(sc, q_obj, |
| ECORE_Q_CMD_SETUP_TX_ONLY)) { |
| break; |
| } |
| goto next_spqe; |
| |
| case EVENT_RING_OPCODE_FUNCTION_START: |
| BLOGD(sc, DBG_SP, "got FUNC_START ramrod\n"); |
| if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_START)) { |
| break; |
| } |
| goto next_spqe; |
| |
| case EVENT_RING_OPCODE_FUNCTION_STOP: |
| BLOGD(sc, DBG_SP, "got FUNC_STOP ramrod\n"); |
| if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_STOP)) { |
| break; |
| } |
| goto next_spqe; |
| } |
| |
| switch (opcode | sc->state) { |
| case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BXE_STATE_OPEN): |
| case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BXE_STATE_OPENING_WAITING_PORT): |
| cid = elem->message.data.eth_event.echo & BXE_SWCID_MASK; |
| BLOGD(sc, DBG_SP, "got RSS_UPDATE ramrod. CID %d\n", cid); |
| rss_raw->clear_pending(rss_raw); |
| break; |
| |
| case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_OPEN): |
| case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_DIAG): |
| case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_CLOSING_WAITING_HALT): |
| case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_OPEN): |
| case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_DIAG): |
| case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_CLOSING_WAITING_HALT): |
| BLOGD(sc, DBG_SP, "got (un)set mac ramrod\n"); |
| bxe_handle_classification_eqe(sc, elem); |
| break; |
| |
| case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_OPEN): |
| case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_DIAG): |
| case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_CLOSING_WAITING_HALT): |
| BLOGD(sc, DBG_SP, "got mcast ramrod\n"); |
| bxe_handle_mcast_eqe(sc); |
| break; |
| |
| case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_OPEN): |
| case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_DIAG): |
| case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_CLOSING_WAITING_HALT): |
| BLOGD(sc, DBG_SP, "got rx_mode ramrod\n"); |
| bxe_handle_rx_mode_eqe(sc, elem); |
| break; |
| |
| default: |
| /* unknown event log error and continue */ |
| BLOGE(sc, "Unknown EQ event %d, sc->state 0x%x\n", |
| elem->message.opcode, sc->state); |
| } |
| |
| next_spqe: |
| spqe_cnt++; |
| } /* for */ |
| |
| mb(); |
| atomic_add(&sc->eq_spq_left, spqe_cnt); |
| |
| sc->eq_cons = sw_cons; |
| sc->eq_prod = sw_prod; |
| |
| /* make sure that above mem writes were issued towards the memory */ |
| wmb(); |
| |
| /* update producer */ |
| bxe_update_eq_prod(sc, sc->eq_prod); |
| } |
| |
| static void |
| bxe_handle_sp_tq(void *context, |
| int pending) |
| { |
| struct bxe_adapter *sc = (struct bxe_adapter *)context; |
| uint16_t status; |
| |
| BLOGD(sc, DBG_SP, "---> SP TASK <---\n"); |
| |
| /* what work needs to be performed? */ |
| status = bxe_update_dsb_idx(sc); |
| |
| BLOGD(sc, DBG_SP, "dsb status 0x%04x\n", status); |
| |
| /* HW attentions */ |
| if (status & BXE_DEF_SB_ATT_IDX) { |
| BLOGD(sc, DBG_SP, "---> ATTN INTR <---\n"); |
| bxe_attn_int(sc); |
| status &= ~BXE_DEF_SB_ATT_IDX; |
| } |
| |
| /* SP events: STAT_QUERY and others */ |
| if (status & BXE_DEF_SB_IDX) { |
| /* handle EQ completions */ |
| BLOGD(sc, DBG_SP, "---> EQ INTR <---\n"); |
| bxe_eq_int(sc); |
| bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, |
| le16_to_cpu(sc->def_idx), IGU_INT_NOP, 1); |
| status &= ~BXE_DEF_SB_IDX; |
| } |
| |
| /* if status is non zero then something went wrong */ |
| if (__predict_false(status)) { |
| BLOGE(sc, "Got an unknown SP interrupt! (0x%04x)\n", status); |
| } |
| |
| /* ack status block only if something was actually handled */ |
| bxe_ack_sb(sc, sc->igu_dsb_id, ATTENTION_ID, |
| le16_to_cpu(sc->def_att_idx), IGU_INT_ENABLE, 1); |
| |
| /* |
| * Must be called after the EQ processing (since eq leads to sriov |
| * ramrod completion flows). |
| * This flow may have been scheduled by the arrival of a ramrod |
| * completion, or by the sriov code rescheduling itself. |
| */ |
| // XXX bxe_iov_sp_task(sc); |
| |
| #if 0 |
| /* AFEX - poll to check if VIFSET_ACK should be sent to MFW */ |
| if (bxe_test_and_clear_bit(ECORE_AFEX_PENDING_VIFSET_MCP_ACK, |
| &sc->sp_state)) { |
| bxe_link_report(sc); |
| bxe_fw_command(sc, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0); |
| } |
| #endif |
| } |
| |
| static void |
| bxe_handle_fp_tq(void *context, |
| int pending) |
| { |
| struct bxe_fastpath *fp = (struct bxe_fastpath *)context; |
| struct bxe_adapter *sc = fp->sc; |
| uint8_t more_tx = FALSE; |
| uint8_t more_rx = FALSE; |
| |
| BLOGD(sc, DBG_INTR, "---> FP TASK QUEUE (%d) <---\n", fp->index); |
| |
| /* XXX |
| * IFF_DRV_RUNNING state can't be checked here since we process |
| * slowpath events on a client queue during setup. Instead |
| * we need to add a "process/continue" flag here that the driver |
| * can use to tell the task here not to do anything. |
| */ |
| #if 0 |
| if (!(if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING)) { |
| return; |
| } |
| #endif |
| |
| /* update the fastpath index */ |
| bxe_update_fp_sb_idx(fp); |
| |
| /* XXX add loop here if ever support multiple tx CoS */ |
| /* fp->txdata[cos] */ |
| if (bxe_has_tx_work(fp)) { |
| BXE_FP_TX_LOCK(fp); |
| more_tx = bxe_txeof(sc, fp); |
| BXE_FP_TX_UNLOCK(fp); |
| } |
| |
| if (bxe_has_rx_work(fp)) { |
| more_rx = bxe_rxeof(sc, fp); |
| } |
| |
| if (more_rx /*|| more_tx*/) { |
| /* still more work to do */ |
| taskqueue_enqueue_fast(fp->tq, &fp->tq_task); |
| return; |
| } |
| |
| bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, |
| le16_to_cpu(fp->fp_hc_idx), IGU_INT_ENABLE, 1); |
| } |
| |
| static void |
| bxe_task_fp(struct bxe_fastpath *fp) |
| { |
| struct bxe_adapter *sc = fp->sc; |
| uint8_t more_tx = FALSE; |
| uint8_t more_rx = FALSE; |
| |
| BLOGD(sc, DBG_INTR, "---> FP TASK ISR (%d) <---\n", fp->index); |
| |
| /* update the fastpath index */ |
| bxe_update_fp_sb_idx(fp); |
| |
| /* XXX add loop here if ever support multiple tx CoS */ |
| /* fp->txdata[cos] */ |
| if (bxe_has_tx_work(fp)) { |
| BXE_FP_TX_LOCK(fp); |
| more_tx = bxe_txeof(sc, fp); |
| BXE_FP_TX_UNLOCK(fp); |
| } |
| |
| if (bxe_has_rx_work(fp)) { |
| more_rx = bxe_rxeof(sc, fp); |
| } |
| |
| if (more_rx /*|| more_tx*/) { |
| /* still more work to do, bail out if this ISR and process later */ |
| taskqueue_enqueue_fast(fp->tq, &fp->tq_task); |
| return; |
| } |
| |
| /* |
| * Here we write the fastpath index taken before doing any tx or rx work. |
| * It is very well possible other hw events occurred up to this point and |
| * they were actually processed accordingly above. Since we're going to |
| * write an older fastpath index, an interrupt is coming which we might |
| * not do any work in. |
| */ |
| bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, |
| le16_to_cpu(fp->fp_hc_idx), IGU_INT_ENABLE, 1); |
| } |
| |
| /* |
| * Legacy interrupt entry point. |
| * |
| * Verifies that the controller generated the interrupt and |
| * then calls a separate routine to handle the various |
| * interrupt causes: link, RX, and TX. |
| */ |
| static void bxe_intr_legacy(struct hw_trapframe *hw_tf, void *xsc) |
| { |
| struct bxe_adapter *sc = (struct bxe_adapter *)xsc; |
| struct bxe_fastpath *fp; |
| uint16_t status, mask; |
| int i; |
| |
| BLOGD(sc, DBG_INTR, "---> BXE INTx <---\n"); |
| |
| #if 0 |
| /* Don't handle any interrupts if we're not ready. */ |
| if (__predict_false(sc->intr_sem != 0)) { |
| return; |
| } |
| #endif |
| |
| /* |
| * 0 for ustorm, 1 for cstorm |
| * the bits returned from ack_int() are 0-15 |
| * bit 0 = attention status block |
| * bit 1 = fast path status block |
| * a mask of 0x2 or more = tx/rx event |
| * a mask of 1 = slow path event |
| */ |
| |
| status = bxe_ack_int(sc); |
| |
| /* the interrupt is not for us */ |
| if (__predict_false(status == 0)) { |
| BLOGD(sc, DBG_INTR, "Not our interrupt!\n"); |
| return; |
| } |
| |
| BLOGD(sc, DBG_INTR, "Interrupt status 0x%04x\n", status); |
| |
| FOR_EACH_ETH_QUEUE(sc, i) { |
| fp = &sc->fp[i]; |
| mask = (0x2 << (fp->index + CNIC_SUPPORT(sc))); |
| if (status & mask) { |
| /* acknowledge and disable further fastpath interrupts */ |
| bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0); |
| bxe_task_fp(fp); |
| status &= ~mask; |
| } |
| } |
| |
| #if 0 |
| if (CNIC_SUPPORT(sc)) { |
| mask = 0x2; |
| if (status & (mask | 0x1)) { |
| ... |
| status &= ~mask; |
| } |
| } |
| #endif |
| |
| if (__predict_false(status & 0x1)) { |
| /* acknowledge and disable further slowpath interrupts */ |
| bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0); |
| |
| /* schedule slowpath handler */ |
| taskqueue_enqueue_fast(sc->sp_tq, &sc->sp_tq_task); |
| |
| status &= ~0x1; |
| } |
| |
| if (__predict_false(status)) { |
| BLOGW(sc, "Unexpected fastpath status (0x%08x)!\n", status); |
| } |
| } |
| |
| /* slowpath interrupt entry point */ |
| static void bxe_intr_sp(struct hw_trapframe *hw_tf, void *xsc) |
| { |
| struct bxe_adapter *sc = (struct bxe_adapter *)xsc; |
| |
| BLOGD(sc, (DBG_INTR | DBG_SP), "---> SP INTR <---\n"); |
| |
| /* acknowledge and disable further slowpath interrupts */ |
| bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0); |
| |
| /* schedule slowpath handler */ |
| taskqueue_enqueue_fast(sc->sp_tq, &sc->sp_tq_task); |
| } |
| |
| /* fastpath interrupt entry point */ |
| static void bxe_intr_fp(struct hw_trapframe *hw_tf, void *xfp) |
| { |
| struct bxe_fastpath *fp = (struct bxe_fastpath *)xfp; |
| struct bxe_adapter *sc = fp->sc; |
| |
| BLOGD(sc, DBG_INTR, "---> FP INTR %d <---\n", fp->index); |
| |
| BLOGD(sc, DBG_INTR, |
| "(cpu=%d) MSI-X fp=%d fw_sb=%d igu_sb=%d\n", |
| hw_core_id(), fp->index, fp->fw_sb_id, fp->igu_sb_id); |
| |
| #if 0 |
| /* Don't handle any interrupts if we're not ready. */ |
| if (__predict_false(sc->intr_sem != 0)) { |
| return; |
| } |
| #endif |
| |
| /* acknowledge and disable further fastpath interrupts */ |
| bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0); |
| |
| bxe_task_fp(fp); |
| } |
| |
| /* Release all interrupts allocated by the driver. */ |
| static void |
| bxe_interrupt_free(struct bxe_adapter *sc) |
| { |
| #if 0 // AKAROS_PORT brho: could deregister_irq, but we don't support that yet |
| int i; |
| |
| switch (sc->interrupt_mode) { |
| case INTR_MODE_INTX: |
| BLOGD(sc, DBG_LOAD, "Releasing legacy INTx vector\n"); |
| if (sc->intr[0].resource != NULL) { |
| bus_release_resource(sc->pcidev, |
| SYS_RES_IRQ, |
| sc->intr[0].rid, |
| sc->intr[0].resource); |
| } |
| break; |
| case INTR_MODE_MSI: |
| for (i = 0; i < sc->intr_count; i++) { |
| BLOGD(sc, DBG_LOAD, "Releasing MSI vector %d\n", i); |
| if (sc->intr[i].resource && sc->intr[i].rid) { |
| bus_release_resource(sc->pcidev, |
| SYS_RES_IRQ, |
| sc->intr[i].rid, |
| sc->intr[i].resource); |
| } |
| } |
| pci_release_msi(sc->pcidev); |
| break; |
| case INTR_MODE_MSIX: |
| for (i = 0; i < sc->intr_count; i++) { |
| BLOGD(sc, DBG_LOAD, "Releasing MSI-X vector %d\n", i); |
| if (sc->intr[i].resource && sc->intr[i].rid) { |
| bus_release_resource(sc->pcidev, |
| SYS_RES_IRQ, |
| sc->intr[i].rid, |
| sc->intr[i].resource); |
| } |
| } |
| pci_release_msi(sc->pcidev); |
| break; |
| default: |
| /* nothing to do as initial allocation failed */ |
| break; |
| } |
| #endif |
| } |
| |
| /* |
| * This function determines and allocates the appropriate |
| * interrupt based on system capabilites and user request. |
| * |
| * The user may force a particular interrupt mode, specify |
| * the number of receive queues, specify the method for |
| * distribuitng received frames to receive queues, or use |
| * the default settings which will automatically select the |
| * best supported combination. In addition, the OS may or |
| * may not support certain combinations of these settings. |
| * This routine attempts to reconcile the settings requested |
| * by the user with the capabilites available from the system |
| * to select the optimal combination of features. |
| * |
| * Returns: |
| * 0 = Success, !0 = Failure. |
| */ |
| static int |
| bxe_interrupt_alloc(struct bxe_adapter *sc) |
| { |
| /* BSD did a bunch of allocs, with various fallbacks. We don't bother. |
| * When the NIC loads, we'll just register the irq, which also allocs the |
| * vectors and whatnot. Due to how the vmem mapping code works, we need to |
| * do that at runtime. If we get to be more flexible in the future, we |
| * could do the vector and MMIO work here, with the actual registration |
| * later. */ |
| sc->intr_count = sc->num_queues + 1; |
| return 0; |
| #if 0 // AKAROS_PORT brho: Akaros doesn't need this BSD MSI code |
| int msix_count = 0; |
| int msi_count = 0; |
| int num_requested = 0; |
| int num_allocated = 0; |
| int rid, i, j; |
| int rc; |
| |
| /* get the number of available MSI/MSI-X interrupts from the OS */ |
| if (sc->interrupt_mode > 0) { |
| if (sc->devinfo.pcie_cap_flags & BXE_MSIX_CAPABLE_FLAG) { |
| msix_count = pci_msix_count(sc->pcidev); |
| } |
| |
| if (sc->devinfo.pcie_cap_flags & BXE_MSI_CAPABLE_FLAG) { |
| msi_count = pci_msi_count(sc->pcidev); |
| } |
| |
| BLOGD(sc, DBG_LOAD, "%d MSI and %d MSI-X vectors available\n", |
| msi_count, msix_count); |
| } |
| |
| do { /* try allocating MSI-X interrupt resources (at least 2) */ |
| if (sc->interrupt_mode != INTR_MODE_MSIX) { |
| break; |
| } |
| |
| if (((sc->devinfo.pcie_cap_flags & BXE_MSIX_CAPABLE_FLAG) == 0) || |
| (msix_count < 2)) { |
| sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */ |
| break; |
| } |
| |
| /* ask for the necessary number of MSI-X vectors */ |
| num_requested = MIN((sc->num_queues + 1), msix_count); |
| |
| BLOGD(sc, DBG_LOAD, "Requesting %d MSI-X vectors\n", num_requested); |
| |
| num_allocated = num_requested; |
| if ((rc = pci_alloc_msix(sc->pcidev, &num_allocated)) != 0) { |
| BLOGE(sc, "MSI-X alloc failed! (%d)\n", rc); |
| sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */ |
| break; |
| } |
| |
| if (num_allocated < 2) { /* possible? */ |
| BLOGE(sc, "MSI-X allocation less than 2!\n"); |
| sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */ |
| pci_release_msi(sc->pcidev); |
| break; |
| } |
| |
| BLOGI(sc, "MSI-X vectors Requested %d and Allocated %d\n", |
| num_requested, num_allocated); |
| |
| /* best effort so use the number of vectors allocated to us */ |
| sc->intr_count = num_allocated; |
| sc->num_queues = num_allocated - 1; |
| |
| rid = 1; /* initial resource identifier */ |
| |
| /* allocate the MSI-X vectors */ |
| for (i = 0; i < num_allocated; i++) { |
| sc->intr[i].rid = (rid + i); |
| |
| if ((sc->intr[i].resource = |
| bus_alloc_resource_any(sc->pcidev, |
| SYS_RES_IRQ, |
| &sc->intr[i].rid, |
| RF_ACTIVE)) == NULL) { |
| BLOGE(sc, "Failed to map MSI-X[%d] (rid=%d)!\n", |
| i, (rid + i)); |
| |
| for (j = (i - 1); j >= 0; j--) { |
| bus_release_resource(sc->pcidev, |
| SYS_RES_IRQ, |
| sc->intr[j].rid, |
| sc->intr[j].resource); |
| } |
| |
| sc->intr_count = 0; |
| sc->num_queues = 0; |
| sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */ |
| pci_release_msi(sc->pcidev); |
| break; |
| } |
| |
| BLOGD(sc, DBG_LOAD, "Mapped MSI-X[%d] (rid=%d)\n", i, (rid + i)); |
| } |
| } while (0); |
| |
| do { /* try allocating MSI vector resources (at least 2) */ |
| if (sc->interrupt_mode != INTR_MODE_MSI) { |
| break; |
| } |
| |
| if (((sc->devinfo.pcie_cap_flags & BXE_MSI_CAPABLE_FLAG) == 0) || |
| (msi_count < 1)) { |
| sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */ |
| break; |
| } |
| |
| /* ask for a single MSI vector */ |
| num_requested = 1; |
| |
| BLOGD(sc, DBG_LOAD, "Requesting %d MSI vectors\n", num_requested); |
| |
| num_allocated = num_requested; |
| if ((rc = pci_alloc_msi(sc->pcidev, &num_allocated)) != 0) { |
| BLOGE(sc, "MSI alloc failed (%d)!\n", rc); |
| sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */ |
| break; |
| } |
| |
| if (num_allocated != 1) { /* possible? */ |
| BLOGE(sc, "MSI allocation is not 1!\n"); |
| sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */ |
| pci_release_msi(sc->pcidev); |
| break; |
| } |
| |
| BLOGI(sc, "MSI vectors Requested %d and Allocated %d\n", |
| num_requested, num_allocated); |
| |
| /* best effort so use the number of vectors allocated to us */ |
| sc->intr_count = num_allocated; |
| sc->num_queues = num_allocated; |
| |
| rid = 1; /* initial resource identifier */ |
| |
| sc->intr[0].rid = rid; |
| |
| if ((sc->intr[0].resource = |
| bus_alloc_resource_any(sc->pcidev, |
| SYS_RES_IRQ, |
| &sc->intr[0].rid, |
| RF_ACTIVE)) == NULL) { |
| BLOGE(sc, "Failed to map MSI[0] (rid=%d)!\n", rid); |
| sc->intr_count = 0; |
| sc->num_queues = 0; |
| sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */ |
| pci_release_msi(sc->pcidev); |
| break; |
| } |
| |
| BLOGD(sc, DBG_LOAD, "Mapped MSI[0] (rid=%d)\n", rid); |
| } while (0); |
| |
| do { /* try allocating INTx vector resources */ |
| if (sc->interrupt_mode != INTR_MODE_INTX) { |
| break; |
| } |
| |
| BLOGD(sc, DBG_LOAD, "Requesting legacy INTx interrupt\n"); |
| |
| /* only one vector for INTx */ |
| sc->intr_count = 1; |
| sc->num_queues = 1; |
| |
| rid = 0; /* initial resource identifier */ |
| |
| sc->intr[0].rid = rid; |
| |
| if ((sc->intr[0].resource = |
| bus_alloc_resource_any(sc->pcidev, |
| SYS_RES_IRQ, |
| &sc->intr[0].rid, |
| (RF_ACTIVE | RF_SHAREABLE))) == NULL) { |
| BLOGE(sc, "Failed to map INTx (rid=%d)!\n", rid); |
| sc->intr_count = 0; |
| sc->num_queues = 0; |
| sc->interrupt_mode = -1; /* Failed! */ |
| break; |
| } |
| |
| BLOGD(sc, DBG_LOAD, "Mapped INTx (rid=%d)\n", rid); |
| } while (0); |
| |
| if (sc->interrupt_mode == -1) { |
| BLOGE(sc, "Interrupt Allocation: FAILED!!!\n"); |
| rc = 1; |
| } else { |
| BLOGD(sc, DBG_LOAD, |
| "Interrupt Allocation: interrupt_mode=%d, num_queues=%d\n", |
| sc->interrupt_mode, sc->num_queues); |
| rc = 0; |
| } |
| |
| return (rc); |
| #endif |
| } |
| |
| static void |
| bxe_interrupt_detach(struct bxe_adapter *sc) |
| { |
| struct bxe_fastpath *fp; |
| int i; |
| |
| /* release interrupt resources */ |
| for (i = 0; i < sc->intr_count; i++) { |
| if (sc->intr[i].resource && sc->intr[i].tag) { |
| BLOGD(sc, DBG_LOAD, "Disabling interrupt vector %d\n", i); |
| bus_teardown_intr(sc->pcidev, sc->intr[i].resource, sc->intr[i].tag); |
| } |
| } |
| |
| for (i = 0; i < sc->num_queues; i++) { |
| fp = &sc->fp[i]; |
| if (fp->tq) { |
| taskqueue_drain(fp->tq, &fp->tq_task); |
| taskqueue_free(fp->tq); |
| fp->tq = NULL; |
| } |
| } |
| |
| if (sc->rx_mode_tq) { |
| taskqueue_drain(sc->rx_mode_tq, &sc->rx_mode_tq_task); |
| taskqueue_free(sc->rx_mode_tq); |
| sc->rx_mode_tq = NULL; |
| } |
| |
| if (sc->sp_tq) { |
| taskqueue_drain(sc->sp_tq, &sc->sp_tq_task); |
| taskqueue_free(sc->sp_tq); |
| sc->sp_tq = NULL; |
| } |
| } |
| |
| /* |
| * Enables interrupts and attach to the ISR. |
| * |
| * When using multiple MSI/MSI-X vectors the first vector |
| * is used for slowpath operations while all remaining |
| * vectors are used for fastpath operations. If only a |
| * single MSI/MSI-X vector is used (SINGLE_ISR) then the |
| * ISR must look for both slowpath and fastpath completions. |
| */ |
| static int |
| bxe_interrupt_attach(struct bxe_adapter *sc) |
| { |
| struct bxe_fastpath *fp; |
| int rc = 0; |
| int i; |
| |
| snprintf(sc->sp_tq_name, sizeof(sc->sp_tq_name), |
| "bxe%d_sp_tq", sc->unit); |
| TASK_INIT(&sc->sp_tq_task, 0, bxe_handle_sp_tq, sc); |
| sc->sp_tq = taskqueue_create_fast(sc->sp_tq_name, M_NOWAIT, |
| taskqueue_thread_enqueue, |
| &sc->sp_tq); |
| taskqueue_start_threads(&sc->sp_tq, 1, PWAIT, /* lower priority */ |
| "%s", sc->sp_tq_name); |
| |
| snprintf(sc->rx_mode_tq_name, sizeof(sc->rx_mode_tq_name), |
| "bxe%d_rx_mode_tq", sc->unit); |
| TASK_INIT(&sc->rx_mode_tq_task, 0, bxe_handle_rx_mode_tq, sc); |
| sc->rx_mode_tq = taskqueue_create_fast(sc->rx_mode_tq_name, M_NOWAIT, |
| taskqueue_thread_enqueue, |
| &sc->rx_mode_tq); |
| taskqueue_start_threads(&sc->rx_mode_tq, 1, PWAIT, /* lower priority */ |
| "%s", sc->rx_mode_tq_name); |
| |
| for (i = 0; i < sc->num_queues; i++) { |
| fp = &sc->fp[i]; |
| snprintf(fp->tq_name, sizeof(fp->tq_name), |
| "bxe%d_fp%d_tq", sc->unit, i); |
| TASK_INIT(&fp->tq_task, 0, bxe_handle_fp_tq, fp); |
| fp->tq = taskqueue_create_fast(fp->tq_name, M_NOWAIT, |
| taskqueue_thread_enqueue, |
| &fp->tq); |
| taskqueue_start_threads(&fp->tq, 1, PI_NET, /* higher priority */ |
| "%s", fp->tq_name); |
| } |
| |
| /* setup interrupt handlers */ |
| if (sc->interrupt_mode == INTR_MODE_MSIX) { |
| BLOGD(sc, DBG_LOAD, "Enabling slowpath MSI-X[0] vector\n"); |
| |
| /* |
| * Setup the interrupt handler. Note that we pass the driver instance |
| * to the interrupt handler for the slowpath. |
| */ |
| if ((rc = bus_setup_intr(sc->pcidev, sc->intr[0].resource, |
| 0, //(INTR_TYPE_NET | INTR_MPSAFE), |
| NULL, bxe_intr_sp, sc, |
| &sc->intr[0].tag)) != 0) { |
| BLOGE(sc, "Failed to allocate MSI-X[0] vector (%d)\n", rc); |
| goto bxe_interrupt_attach_exit; |
| } |
| |
| bus_describe_intr(sc->pcidev, sc->intr[0].resource, |
| sc->intr[0].tag, "sp"); |
| |
| bus_bind_intr(sc->pcidev, sc->intr[0].resource, 0); |
| |
| /* initialize the fastpath vectors (note the first was used for sp) */ |
| for (i = 0; i < sc->num_queues; i++) { |
| fp = &sc->fp[i]; |
| BLOGD(sc, DBG_LOAD, "Enabling MSI-X[%d] vector\n", (i + 1)); |
| |
| /* |
| * Setup the interrupt handler. Note that we pass the |
| * fastpath context to the interrupt handler in this |
| * case. |
| */ |
| if ((rc = bus_setup_intr(sc->pcidev, sc->intr[i + 1].resource, |
| 0, //(INTR_TYPE_NET | INTR_MPSAFE), |
| NULL, bxe_intr_fp, fp, |
| &sc->intr[i + 1].tag)) != 0) { |
| BLOGE(sc, "Failed to allocate MSI-X[%d] vector (%d)\n", |
| (i + 1), rc); |
| goto bxe_interrupt_attach_exit; |
| } |
| |
| bus_describe_intr(sc->pcidev, sc->intr[i + 1].resource, |
| sc->intr[i + 1].tag, "fp%02d", i); |
| |
| /* bind the fastpath instance to a cpu */ |
| if (sc->num_queues > 1) { |
| bus_bind_intr(sc->pcidev, sc->intr[i + 1].resource, i); |
| } |
| |
| fp->state = BXE_FP_STATE_IRQ; |
| } |
| } else if (sc->interrupt_mode == INTR_MODE_MSI) { |
| BLOGD(sc, DBG_LOAD, "Enabling MSI[0] vector\n"); |
| |
| /* |
| * Setup the interrupt handler. Note that we pass the |
| * driver instance to the interrupt handler which |
| * will handle both the slowpath and fastpath. |
| */ |
| if ((rc = bus_setup_intr(sc->pcidev, sc->intr[0].resource, |
| 0, //(INTR_TYPE_NET | INTR_MPSAFE), |
| NULL, bxe_intr_legacy, sc, |
| &sc->intr[0].tag)) != 0) { |
| BLOGE(sc, "Failed to allocate MSI[0] vector (%d)\n", rc); |
| goto bxe_interrupt_attach_exit; |
| } |
| |
| } else { /* (sc->interrupt_mode == INTR_MODE_INTX) */ |
| BLOGD(sc, DBG_LOAD, "Enabling INTx interrupts\n"); |
| |
| /* |
| * Setup the interrupt handler. Note that we pass the |
| * driver instance to the interrupt handler which |
| * will handle both the slowpath and fastpath. |
| */ |
| if ((rc = bus_setup_intr(sc->pcidev, sc->intr[0].resource, |
| 0, //(INTR_TYPE_NET | INTR_MPSAFE), |
| NULL, bxe_intr_legacy, sc, |
| &sc->intr[0].tag)) != 0) { |
| BLOGE(sc, "Failed to allocate INTx interrupt (%d)\n", rc); |
| goto bxe_interrupt_attach_exit; |
| } |
| } |
| |
| bxe_interrupt_attach_exit: |
| |
| return (rc); |
| } |
| |
| static int bxe_init_hw_common_chip(struct bxe_adapter *sc); |
| static int bxe_init_hw_common(struct bxe_adapter *sc); |
| static int bxe_init_hw_port(struct bxe_adapter *sc); |
| static int bxe_init_hw_func(struct bxe_adapter *sc); |
| static void bxe_reset_common(struct bxe_adapter *sc); |
| static void bxe_reset_port(struct bxe_adapter *sc); |
| static void bxe_reset_func(struct bxe_adapter *sc); |
| static int bxe_gunzip_init(struct bxe_adapter *sc); |
| static void bxe_gunzip_end(struct bxe_adapter *sc); |
| static int bxe_init_firmware(struct bxe_adapter *sc); |
| static void bxe_release_firmware(struct bxe_adapter *sc); |
| |
| static struct |
| ecore_func_sp_drv_ops bxe_func_sp_drv = { |
| .init_hw_cmn_chip = bxe_init_hw_common_chip, |
| .init_hw_cmn = bxe_init_hw_common, |
| .init_hw_port = bxe_init_hw_port, |
| .init_hw_func = bxe_init_hw_func, |
| |
| .reset_hw_cmn = bxe_reset_common, |
| .reset_hw_port = bxe_reset_port, |
| .reset_hw_func = bxe_reset_func, |
| |
| .gunzip_init = bxe_gunzip_init, |
| .gunzip_end = bxe_gunzip_end, |
| |
| .init_fw = bxe_init_firmware, |
| .release_fw = bxe_release_firmware, |
| }; |
| |
| static void |
| bxe_init_func_obj(struct bxe_adapter *sc) |
| { |
| sc->dmae_ready = 0; |
| |
| ecore_init_func_obj(sc, |
| &sc->func_obj, |
| BXE_SP(sc, func_rdata), |
| BXE_SP_MAPPING(sc, func_rdata), |
| BXE_SP(sc, func_afex_rdata), |
| BXE_SP_MAPPING(sc, func_afex_rdata), |
| &bxe_func_sp_drv); |
| } |
| |
| static int |
| bxe_init_hw(struct bxe_adapter *sc, |
| uint32_t load_code) |
| { |
| struct ecore_func_state_params func_params = { NULL }; |
| int rc; |
| |
| /* prepare the parameters for function state transitions */ |
| __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); |
| |
| func_params.f_obj = &sc->func_obj; |
| func_params.cmd = ECORE_F_CMD_HW_INIT; |
| |
| func_params.params.hw_init.load_phase = load_code; |
| |
| /* |
| * Via a plethora of function pointers, we will eventually reach |
| * bxe_init_hw_common(), bxe_init_hw_port(), or bxe_init_hw_func(). |
| */ |
| rc = ecore_func_state_change(sc, &func_params); |
| |
| return (rc); |
| } |
| |
| static void |
| bxe_fill(struct bxe_adapter *sc, |
| uint32_t addr, |
| int fill, |
| uint32_t len) |
| { |
| uint32_t i; |
| |
| if (!(len % 4) && !(addr % 4)) { |
| for (i = 0; i < len; i += 4) { |
| REG_WR(sc, (addr + i), fill); |
| } |
| } else { |
| for (i = 0; i < len; i++) { |
| REG_WR8(sc, (addr + i), fill); |
| } |
| } |
| } |
| |
| /* writes FP SP data to FW - data_size in dwords */ |
| static void |
| bxe_wr_fp_sb_data(struct bxe_adapter *sc, |
| int fw_sb_id, |
| uint32_t *sb_data_p, |
| uint32_t data_size) |
| { |
| int index; |
| |
| for (index = 0; index < data_size; index++) { |
| REG_WR(sc, |
| (BAR_CSTRORM_INTMEM + |
| CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) + |
| (sizeof(uint32_t) * index)), |
| *(sb_data_p + index)); |
| } |
| } |
| |
| static void |
| bxe_zero_fp_sb(struct bxe_adapter *sc, |
| int fw_sb_id) |
| { |
| struct hc_status_block_data_e2 sb_data_e2; |
| struct hc_status_block_data_e1x sb_data_e1x; |
| uint32_t *sb_data_p; |
| uint32_t data_size = 0; |
| |
| if (!CHIP_IS_E1x(sc)) { |
| memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2)); |
| sb_data_e2.common.state = SB_DISABLED; |
| sb_data_e2.common.p_func.vf_valid = FALSE; |
| sb_data_p = (uint32_t *)&sb_data_e2; |
| data_size = (sizeof(struct hc_status_block_data_e2) / |
| sizeof(uint32_t)); |
| } else { |
| memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x)); |
| sb_data_e1x.common.state = SB_DISABLED; |
| sb_data_e1x.common.p_func.vf_valid = FALSE; |
| sb_data_p = (uint32_t *)&sb_data_e1x; |
| data_size = (sizeof(struct hc_status_block_data_e1x) / |
| sizeof(uint32_t)); |
| } |
| |
| bxe_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size); |
| |
| bxe_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id)), |
| 0, CSTORM_STATUS_BLOCK_SIZE); |
| bxe_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id)), |
| 0, CSTORM_SYNC_BLOCK_SIZE); |
| } |
| |
| static void |
| bxe_wr_sp_sb_data(struct bxe_adapter *sc, |
| struct hc_sp_status_block_data *sp_sb_data) |
| { |
| int i; |
| |
| for (i = 0; |
| i < (sizeof(struct hc_sp_status_block_data) / sizeof(uint32_t)); |
| i++) { |
| REG_WR(sc, |
| (BAR_CSTRORM_INTMEM + |
| CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(SC_FUNC(sc)) + |
| (i * sizeof(uint32_t))), |
| *((uint32_t *)sp_sb_data + i)); |
| } |
| } |
| |
| static void |
| bxe_zero_sp_sb(struct bxe_adapter *sc) |
| { |
| struct hc_sp_status_block_data sp_sb_data; |
| |
| memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data)); |
| |
| sp_sb_data.state = SB_DISABLED; |
| sp_sb_data.p_func.vf_valid = FALSE; |
| |
| bxe_wr_sp_sb_data(sc, &sp_sb_data); |
| |
| bxe_fill(sc, |
| (BAR_CSTRORM_INTMEM + |
| CSTORM_SP_STATUS_BLOCK_OFFSET(SC_FUNC(sc))), |
| 0, CSTORM_SP_STATUS_BLOCK_SIZE); |
| bxe_fill(sc, |
| (BAR_CSTRORM_INTMEM + |
| CSTORM_SP_SYNC_BLOCK_OFFSET(SC_FUNC(sc))), |
| 0, CSTORM_SP_SYNC_BLOCK_SIZE); |
| } |
| |
| static void |
| bxe_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm, |
| int igu_sb_id, |
| int igu_seg_id) |
| { |
| hc_sm->igu_sb_id = igu_sb_id; |
| hc_sm->igu_seg_id = igu_seg_id; |
| hc_sm->timer_value = 0xFF; |
| hc_sm->time_to_expire = 0xFFFFFFFF; |
| } |
| |
| static void |
| bxe_map_sb_state_machines(struct hc_index_data *index_data) |
| { |
| /* zero out state machine indices */ |
| |
| /* rx indices */ |
| index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID; |
| |
| /* tx indices */ |
| index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID; |
| index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID; |
| index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID; |
| index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID; |
| |
| /* map indices */ |
| |
| /* rx indices */ |
| index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |= |
| (SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT); |
| |
| /* tx indices */ |
| index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |= |
| (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT); |
| index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |= |
| (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT); |
| index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |= |
| (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT); |
| index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |= |
| (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT); |
| } |
| |
| static void |
| bxe_init_sb(struct bxe_adapter *sc, |
| bus_addr_t busaddr, |
| int vfid, |
| uint8_t vf_valid, |
| int fw_sb_id, |
| int igu_sb_id) |
| { |
| struct hc_status_block_data_e2 sb_data_e2; |
| struct hc_status_block_data_e1x sb_data_e1x; |
| struct hc_status_block_sm *hc_sm_p; |
| uint32_t *sb_data_p; |
| int igu_seg_id; |
| int data_size; |
| |
| if (CHIP_INT_MODE_IS_BC(sc)) { |
| igu_seg_id = HC_SEG_ACCESS_NORM; |
| } else { |
| igu_seg_id = IGU_SEG_ACCESS_NORM; |
| } |
| |
| bxe_zero_fp_sb(sc, fw_sb_id); |
| |
| if (!CHIP_IS_E1x(sc)) { |
| memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2)); |
| sb_data_e2.common.state = SB_ENABLED; |
| sb_data_e2.common.p_func.pf_id = SC_FUNC(sc); |
| sb_data_e2.common.p_func.vf_id = vfid; |
| sb_data_e2.common.p_func.vf_valid = vf_valid; |
| sb_data_e2.common.p_func.vnic_id = SC_VN(sc); |
| sb_data_e2.common.same_igu_sb_1b = TRUE; |
| sb_data_e2.common.host_sb_addr.hi = U64_HI(busaddr); |
| sb_data_e2.common.host_sb_addr.lo = U64_LO(busaddr); |
| hc_sm_p = sb_data_e2.common.state_machine; |
| sb_data_p = (uint32_t *)&sb_data_e2; |
| data_size = (sizeof(struct hc_status_block_data_e2) / |
| sizeof(uint32_t)); |
| bxe_map_sb_state_machines(sb_data_e2.index_data); |
| } else { |
| memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x)); |
| sb_data_e1x.common.state = SB_ENABLED; |
| sb_data_e1x.common.p_func.pf_id = SC_FUNC(sc); |
| sb_data_e1x.common.p_func.vf_id = 0xff; |
| sb_data_e1x.common.p_func.vf_valid = FALSE; |
| sb_data_e1x.common.p_func.vnic_id = SC_VN(sc); |
| sb_data_e1x.common.same_igu_sb_1b = TRUE; |
| sb_data_e1x.common.host_sb_addr.hi = U64_HI(busaddr); |
| sb_data_e1x.common.host_sb_addr.lo = U64_LO(busaddr); |
| hc_sm_p = sb_data_e1x.common.state_machine; |
| sb_data_p = (uint32_t *)&sb_data_e1x; |
| data_size = (sizeof(struct hc_status_block_data_e1x) / |
| sizeof(uint32_t)); |
| bxe_map_sb_state_machines(sb_data_e1x.index_data); |
| } |
| |
| bxe_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID], igu_sb_id, igu_seg_id); |
| bxe_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID], igu_sb_id, igu_seg_id); |
| |
| BLOGD(sc, DBG_LOAD, "Init FW SB %d\n", fw_sb_id); |
| |
| /* write indices to HW - PCI guarantees endianity of regpairs */ |
| bxe_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size); |
| } |
| |
| static inline uint8_t |
| bxe_fp_qzone_id(struct bxe_fastpath *fp) |
| { |
| if (CHIP_IS_E1x(fp->sc)) { |
| return (fp->cl_id + SC_PORT(fp->sc) * ETH_MAX_RX_CLIENTS_E1H); |
| } else { |
| return (fp->cl_id); |
| } |
| } |
| |
| static inline uint32_t |
| bxe_rx_ustorm_prods_offset(struct bxe_adapter *sc, |
| struct bxe_fastpath *fp) |
| { |
| uint32_t offset = BAR_USTRORM_INTMEM; |
| |
| #if 0 |
| if (IS_VF(sc)) { |
| return (PXP_VF_ADDR_USDM_QUEUES_START + |
| (sc->acquire_resp.resc.hw_qid[fp->index] * |
| sizeof(struct ustorm_queue_zone_data))); |
| } else |
| #endif |
| if (!CHIP_IS_E1x(sc)) { |
| offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id); |
| } else { |
| offset += USTORM_RX_PRODS_E1X_OFFSET(SC_PORT(sc), fp->cl_id); |
| } |
| |
| return (offset); |
| } |
| |
| static void |
| bxe_init_eth_fp(struct bxe_adapter *sc, |
| int idx) |
| { |
| struct bxe_fastpath *fp = &sc->fp[idx]; |
| uint32_t cids[ECORE_MULTI_TX_COS] = { 0 }; |
| unsigned long q_type = 0; |
| int cos; |
| |
| fp->sc = sc; |
| fp->index = idx; |
| |
| snprintf(fp->tx_mtx_name, sizeof(fp->tx_mtx_name), |
| "bxe%d_fp%d_tx_lock", sc->unit, idx); |
| qlock_init(&fp->tx_mtx); |
| |
| snprintf(fp->rx_mtx_name, sizeof(fp->rx_mtx_name), |
| "bxe%d_fp%d_rx_lock", sc->unit, idx); |
| qlock_init(&fp->rx_mtx); |
| |
| fp->igu_sb_id = (sc->igu_base_sb + idx + CNIC_SUPPORT(sc)); |
| fp->fw_sb_id = (sc->base_fw_ndsb + idx + CNIC_SUPPORT(sc)); |
| |
| fp->cl_id = (CHIP_IS_E1x(sc)) ? |
| (SC_L_ID(sc) + idx) : |
| /* want client ID same as IGU SB ID for non-E1 */ |
| fp->igu_sb_id; |
| fp->cl_qzone_id = bxe_fp_qzone_id(fp); |
| |
| /* setup sb indices */ |
| if (!CHIP_IS_E1x(sc)) { |
| fp->sb_index_values = fp->status_block.e2_sb->sb.index_values; |
| fp->sb_running_index = fp->status_block.e2_sb->sb.running_index; |
| } else { |
| fp->sb_index_values = fp->status_block.e1x_sb->sb.index_values; |
| fp->sb_running_index = fp->status_block.e1x_sb->sb.running_index; |
| } |
| |
| /* init shortcut */ |
| fp->ustorm_rx_prods_offset = bxe_rx_ustorm_prods_offset(sc, fp); |
| |
| fp->rx_cq_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_RX_CQ_CONS]; |
| |
| /* |
| * XXX If multiple CoS is ever supported then each fastpath structure |
| * will need to maintain tx producer/consumer/dma/etc values *per* CoS. |
| */ |
| for (cos = 0; cos < sc->max_cos; cos++) { |
| cids[cos] = idx; |
| } |
| fp->tx_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_TX_CQ_CONS_COS0]; |
| |
| /* nothing more for a VF to do */ |
| if (IS_VF(sc)) { |
| return; |
| } |
| |
| bxe_init_sb(sc, fp->sb_dma.paddr, BXE_VF_ID_INVALID, FALSE, |
| fp->fw_sb_id, fp->igu_sb_id); |
| |
| bxe_update_fp_sb_idx(fp); |
| |
| /* Configure Queue State object */ |
| __set_bit(ECORE_Q_TYPE_HAS_RX, &q_type); |
| __set_bit(ECORE_Q_TYPE_HAS_TX, &q_type); |
| |
| ecore_init_queue_obj(sc, |
| &sc->sp_objs[idx].q_obj, |
| fp->cl_id, |
| cids, |
| sc->max_cos, |
| SC_FUNC(sc), |
| BXE_SP(sc, q_rdata), |
| BXE_SP_MAPPING(sc, q_rdata), |
| q_type); |
| |
| /* configure classification DBs */ |
| ecore_init_mac_obj(sc, |
| &sc->sp_objs[idx].mac_obj, |
| fp->cl_id, |
| idx, |
| SC_FUNC(sc), |
| BXE_SP(sc, mac_rdata), |
| BXE_SP_MAPPING(sc, mac_rdata), |
| ECORE_FILTER_MAC_PENDING, |
| &sc->sp_state, |
| ECORE_OBJ_TYPE_RX_TX, |
| &sc->macs_pool); |
| |
| BLOGD(sc, DBG_LOAD, "fp[%d]: sb=%p cl_id=%d fw_sb=%d igu_sb=%d\n", |
| idx, fp->status_block.e2_sb, fp->cl_id, fp->fw_sb_id, fp->igu_sb_id); |
| } |
| |
| static inline void |
| bxe_update_rx_prod(struct bxe_adapter *sc, |
| struct bxe_fastpath *fp, |
| uint16_t rx_bd_prod, |
| uint16_t rx_cq_prod, |
| uint16_t rx_sge_prod) |
| { |
| struct ustorm_eth_rx_producers rx_prods = { 0 }; |
| uint32_t i; |
| |
| /* update producers */ |
| rx_prods.bd_prod = rx_bd_prod; |
| rx_prods.cqe_prod = rx_cq_prod; |
| rx_prods.sge_prod = rx_sge_prod; |
| |
| /* |
| * Make sure that the BD and SGE data is updated before updating the |
| * producers since FW might read the BD/SGE right after the producer |
| * is updated. |
| * This is only applicable for weak-ordered memory model archs such |
| * as IA-64. The following barrier is also mandatory since FW will |
| * assumes BDs must have buffers. |
| */ |
| wmb(); |
| |
| for (i = 0; i < (sizeof(rx_prods) / 4); i++) { |
| REG_WR(sc, |
| (fp->ustorm_rx_prods_offset + (i * 4)), |
| ((uint32_t *)&rx_prods)[i]); |
| } |
| |
| wmb(); /* keep prod updates ordered */ |
| |
| BLOGD(sc, DBG_RX, |
| "RX fp[%d]: wrote prods bd_prod=%u cqe_prod=%u sge_prod=%u\n", |
| fp->index, rx_bd_prod, rx_cq_prod, rx_sge_prod); |
| } |
| |
| static void |
| bxe_init_rx_rings(struct bxe_adapter *sc) |
| { |
| struct bxe_fastpath *fp; |
| int i; |
| |
| for (i = 0; i < sc->num_queues; i++) { |
| fp = &sc->fp[i]; |
| |
| fp->rx_bd_cons = 0; |
| |
| /* |
| * Activate the BD ring... |
| * Warning, this will generate an interrupt (to the TSTORM) |
| * so this can only be done after the chip is initialized |
| */ |
| bxe_update_rx_prod(sc, fp, |
| fp->rx_bd_prod, |
| fp->rx_cq_prod, |
| fp->rx_sge_prod); |
| |
| if (i != 0) { |
| continue; |
| } |
| |
| if (CHIP_IS_E1(sc)) { |
| REG_WR(sc, |
| (BAR_USTRORM_INTMEM + |
| USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(SC_FUNC(sc))), |
| U64_LO(fp->rcq_dma.paddr)); |
| REG_WR(sc, |
| (BAR_USTRORM_INTMEM + |
| USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(SC_FUNC(sc)) + 4), |
| U64_HI(fp->rcq_dma.paddr)); |
| } |
| } |
| } |
| |
| static void |
| bxe_init_tx_ring_one(struct bxe_fastpath *fp) |
| { |
| SET_FLAG(fp->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1); |
| fp->tx_db.data.zero_fill1 = 0; |
| fp->tx_db.data.prod = 0; |
| |
| fp->tx_pkt_prod = 0; |
| fp->tx_pkt_cons = 0; |
| fp->tx_bd_prod = 0; |
| fp->tx_bd_cons = 0; |
| fp->eth_q_stats.tx_pkts = 0; |
| } |
| |
| static inline void |
| bxe_init_tx_rings(struct bxe_adapter *sc) |
| { |
| int i; |
| |
| for (i = 0; i < sc->num_queues; i++) { |
| #if 0 |
| uint8_t cos; |
| for (cos = 0; cos < sc->max_cos; cos++) { |
| bxe_init_tx_ring_one(&sc->fp[i].txdata[cos]); |
| } |
| #else |
| bxe_init_tx_ring_one(&sc->fp[i]); |
| #endif |
| } |
| } |
| |
| static void |
| bxe_init_def_sb(struct bxe_adapter *sc) |
| { |
| struct host_sp_status_block *def_sb = sc->def_sb; |
| bus_addr_t mapping = sc->def_sb_dma.paddr; |
| int igu_sp_sb_index; |
| int igu_seg_id; |
| int port = SC_PORT(sc); |
| int func = SC_FUNC(sc); |
| int reg_offset, reg_offset_en5; |
| uint64_t section; |
| int index, sindex; |
| struct hc_sp_status_block_data sp_sb_data; |
| |
| memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data)); |
| |
| if (CHIP_INT_MODE_IS_BC(sc)) { |
| igu_sp_sb_index = DEF_SB_IGU_ID; |
| igu_seg_id = HC_SEG_ACCESS_DEF; |
| } else { |
| igu_sp_sb_index = sc->igu_dsb_id; |
| igu_seg_id = IGU_SEG_ACCESS_DEF; |
| } |
| |
| /* attentions */ |
| section = ((uint64_t)mapping + |
| offsetof(struct host_sp_status_block, atten_status_block)); |
| def_sb->atten_status_block.status_block_id = igu_sp_sb_index; |
| sc->attn_state = 0; |
| |
| reg_offset = (port) ? |
| MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : |
| MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0; |
| reg_offset_en5 = (port) ? |
| MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 : |
| MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0; |
| |
| for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) { |
| /* take care of sig[0]..sig[4] */ |
| for (sindex = 0; sindex < 4; sindex++) { |
| sc->attn_group[index].sig[sindex] = |
| REG_RD(sc, (reg_offset + (sindex * 0x4) + (0x10 * index))); |
| } |
| |
| if (!CHIP_IS_E1x(sc)) { |
| /* |
| * enable5 is separate from the rest of the registers, |
| * and the address skip is 4 and not 16 between the |
| * different groups |
| */ |
| sc->attn_group[index].sig[4] = |
| REG_RD(sc, (reg_offset_en5 + (0x4 * index))); |
| } else { |
| sc->attn_group[index].sig[4] = 0; |
| } |
| } |
| |
| if (sc->devinfo.int_block == INT_BLOCK_HC) { |
| reg_offset = (port) ? |
| HC_REG_ATTN_MSG1_ADDR_L : |
| HC_REG_ATTN_MSG0_ADDR_L; |
| REG_WR(sc, reg_offset, U64_LO(section)); |
| REG_WR(sc, (reg_offset + 4), U64_HI(section)); |
| } else if (!CHIP_IS_E1x(sc)) { |
| REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section)); |
| REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section)); |
| } |
| |
| section = ((uint64_t)mapping + |
| offsetof(struct host_sp_status_block, sp_sb)); |
| |
| bxe_zero_sp_sb(sc); |
| |
| /* PCI guarantees endianity of regpair */ |
| sp_sb_data.state = SB_ENABLED; |
| sp_sb_data.host_sb_addr.lo = U64_LO(section); |
| sp_sb_data.host_sb_addr.hi = U64_HI(section); |
| sp_sb_data.igu_sb_id = igu_sp_sb_index; |
| sp_sb_data.igu_seg_id = igu_seg_id; |
| sp_sb_data.p_func.pf_id = func; |
| sp_sb_data.p_func.vnic_id = SC_VN(sc); |
| sp_sb_data.p_func.vf_id = 0xff; |
| |
| bxe_wr_sp_sb_data(sc, &sp_sb_data); |
| |
| bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0); |
| } |
| |
| static void |
| bxe_init_sp_ring(struct bxe_adapter *sc) |
| { |
| atomic_set(&sc->cq_spq_left, MAX_SPQ_PENDING); |
| sc->spq_prod_idx = 0; |
| sc->dsb_sp_prod = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_ETH_DEF_CONS]; |
| sc->spq_prod_bd = sc->spq; |
| sc->spq_last_bd = (sc->spq_prod_bd + MAX_SP_DESC_CNT); |
| } |
| |
| static void |
| bxe_init_eq_ring(struct bxe_adapter *sc) |
| { |
| union event_ring_elem *elem; |
| int i; |
| |
| for (i = 1; i <= NUM_EQ_PAGES; i++) { |
| elem = &sc->eq[EQ_DESC_CNT_PAGE * i - 1]; |
| |
| elem->next_page.addr.hi = cpu_to_le32(U64_HI(sc->eq_dma.paddr + |
| BCM_PAGE_SIZE * |
| (i % NUM_EQ_PAGES))); |
| elem->next_page.addr.lo = cpu_to_le32(U64_LO(sc->eq_dma.paddr + |
| BCM_PAGE_SIZE * |
| (i % NUM_EQ_PAGES))); |
| } |
| |
| sc->eq_cons = 0; |
| sc->eq_prod = NUM_EQ_DESC; |
| sc->eq_cons_sb = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_EQ_CONS]; |
| |
| atomic_set(&sc->eq_spq_left, |
| (MIN((MAX_SP_DESC_CNT - MAX_SPQ_PENDING), |
| NUM_EQ_DESC) - 1)); |
| } |
| |
| static void |
| bxe_init_internal_common(struct bxe_adapter *sc) |
| { |
| int i; |
| |
| if (IS_MF_SI(sc)) { |
| /* |
| * In switch independent mode, the TSTORM needs to accept |
| * packets that failed classification, since approximate match |
| * mac addresses aren't written to NIG LLH. |
| */ |
| REG_WR8(sc, |
| (BAR_TSTRORM_INTMEM + TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET), |
| 2); |
| } else if (!CHIP_IS_E1(sc)) { /* 57710 doesn't support MF */ |
| REG_WR8(sc, |
| (BAR_TSTRORM_INTMEM + TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET), |
| 0); |
| } |
| |
| /* |
| * Zero this manually as its initialization is currently missing |
| * in the initTool. |
| */ |
| for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++) { |
| REG_WR(sc, |
| (BAR_USTRORM_INTMEM + USTORM_AGG_DATA_OFFSET + (i * 4)), |
| 0); |
| } |
| |
| if (!CHIP_IS_E1x(sc)) { |
| REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET), |
| CHIP_INT_MODE_IS_BC(sc) ? HC_IGU_BC_MODE : HC_IGU_NBC_MODE); |
| } |
| } |
| |
| static void |
| bxe_init_internal(struct bxe_adapter *sc, |
| uint32_t load_code) |
| { |
| switch (load_code) { |
| case FW_MSG_CODE_DRV_LOAD_COMMON: |
| case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP: |
| bxe_init_internal_common(sc); |
| /* no break */ |
| |
| case FW_MSG_CODE_DRV_LOAD_PORT: |
| /* nothing to do */ |
| /* no break */ |
| |
| case FW_MSG_CODE_DRV_LOAD_FUNCTION: |
| /* internal memory per function is initialized inside bxe_pf_init */ |
| break; |
| |
| default: |
| BLOGE(sc, "Unknown load_code (0x%x) from MCP\n", load_code); |
| break; |
| } |
| } |
| |
| static void |
| storm_memset_func_cfg(struct bxe_adapter *sc, |
| struct tstorm_eth_function_common_config *tcfg, |
| uint16_t abs_fid) |
| { |
| uint32_t addr; |
| size_t size; |
| |
| addr = (BAR_TSTRORM_INTMEM + |
| TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid)); |
| size = sizeof(struct tstorm_eth_function_common_config); |
| ecore_storm_memset_struct(sc, addr, size, (uint32_t *)tcfg); |
| } |
| |
| static void |
| bxe_func_init(struct bxe_adapter *sc, |
| struct bxe_func_init_params *p) |
| { |
| struct tstorm_eth_function_common_config tcfg = { 0 }; |
| |
| if (CHIP_IS_E1x(sc)) { |
| storm_memset_func_cfg(sc, &tcfg, p->func_id); |
| } |
| |
| /* Enable the function in the FW */ |
| storm_memset_vf_to_pf(sc, p->func_id, p->pf_id); |
| storm_memset_func_en(sc, p->func_id, 1); |
| |
| /* spq */ |
| if (p->func_flgs & FUNC_FLG_SPQ) { |
| storm_memset_spq_addr(sc, p->spq_map, p->func_id); |
| REG_WR(sc, |
| (XSEM_REG_FAST_MEMORY + XSTORM_SPQ_PROD_OFFSET(p->func_id)), |
| p->spq_prod); |
| } |
| } |
| |
| /* |
| * Calculates the sum of vn_min_rates. |
| * It's needed for further normalizing of the min_rates. |
| * Returns: |
| * sum of vn_min_rates. |
| * or |
| * 0 - if all the min_rates are 0. |
| * In the later case fainess algorithm should be deactivated. |
| * If all min rates are not zero then those that are zeroes will be set to 1. |
| */ |
| static void |
| bxe_calc_vn_min(struct bxe_adapter *sc, |
| struct cmng_init_input *input) |
| { |
| uint32_t vn_cfg; |
| uint32_t vn_min_rate; |
| int all_zero = 1; |
| int vn; |
| |
| for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) { |
| vn_cfg = sc->devinfo.mf_info.mf_config[vn]; |
| vn_min_rate = (((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >> |
| FUNC_MF_CFG_MIN_BW_SHIFT) * 100); |
| |
| if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) { |
| /* skip hidden VNs */ |
| vn_min_rate = 0; |
| } else if (!vn_min_rate) { |
| /* If min rate is zero - set it to 100 */ |
| vn_min_rate = DEF_MIN_RATE; |
| } else { |
| all_zero = 0; |
| } |
| |
| input->vnic_min_rate[vn] = vn_min_rate; |
| } |
| |
| /* if ETS or all min rates are zeros - disable fairness */ |
| if (BXE_IS_ETS_ENABLED(sc)) { |
| input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN; |
| BLOGD(sc, DBG_LOAD, "Fairness disabled (ETS)\n"); |
| } else if (all_zero) { |
| input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN; |
| BLOGD(sc, DBG_LOAD, |
| "Fariness disabled (all MIN values are zeroes)\n"); |
| } else { |
| input->flags.cmng_enables |= CMNG_FLAGS_PER_PORT_FAIRNESS_VN; |
| } |
| } |
| |
| static inline uint16_t |
| bxe_extract_max_cfg(struct bxe_adapter *sc, |
| uint32_t mf_cfg) |
| { |
| uint16_t max_cfg = ((mf_cfg & FUNC_MF_CFG_MAX_BW_MASK) >> |
| FUNC_MF_CFG_MAX_BW_SHIFT); |
| |
| if (!max_cfg) { |
| BLOGD(sc, DBG_LOAD, "Max BW configured to 0 - using 100 instead\n"); |
| max_cfg = 100; |
| } |
| |
| return (max_cfg); |
| } |
| |
| static void |
| bxe_calc_vn_max(struct bxe_adapter *sc, |
| int vn, |
| struct cmng_init_input *input) |
| { |
| uint16_t vn_max_rate; |
| uint32_t vn_cfg = sc->devinfo.mf_info.mf_config[vn]; |
| uint32_t max_cfg; |
| |
| if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) { |
| vn_max_rate = 0; |
| } else { |
| max_cfg = bxe_extract_max_cfg(sc, vn_cfg); |
| |
| if (IS_MF_SI(sc)) { |
| /* max_cfg in percents of linkspeed */ |
| vn_max_rate = ((sc->link_vars.line_speed * max_cfg) / 100); |
| } else { /* SD modes */ |
| /* max_cfg is absolute in 100Mb units */ |
| vn_max_rate = (max_cfg * 100); |
| } |
| } |
| |
| BLOGD(sc, DBG_LOAD, "vn %d: vn_max_rate %d\n", vn, vn_max_rate); |
| |
| input->vnic_max_rate[vn] = vn_max_rate; |
| } |
| |
| static void |
| bxe_cmng_fns_init(struct bxe_adapter *sc, |
| uint8_t read_cfg, |
| uint8_t cmng_type) |
| { |
| struct cmng_init_input input; |
| int vn; |
| |
| memset(&input, 0, sizeof(struct cmng_init_input)); |
| |
| input.port_rate = sc->link_vars.line_speed; |
| |
| if (cmng_type == CMNG_FNS_MINMAX) { |
| /* read mf conf from shmem */ |
| if (read_cfg) { |
| bxe_read_mf_cfg(sc); |
| } |
| |
| /* get VN min rate and enable fairness if not 0 */ |
| bxe_calc_vn_min(sc, &input); |
| |
| /* get VN max rate */ |
| if (sc->port.pmf) { |
| for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) { |
| bxe_calc_vn_max(sc, vn, &input); |
| } |
| } |
| |
| /* always enable rate shaping and fairness */ |
| input.flags.cmng_enables |= CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN; |
| |
| ecore_init_cmng(&input, &sc->cmng); |
| return; |
| } |
| |
| /* rate shaping and fairness are disabled */ |
| BLOGD(sc, DBG_LOAD, "rate shaping and fairness have been disabled\n"); |
| } |
| |
| static int |
| bxe_get_cmng_fns_mode(struct bxe_adapter *sc) |
| { |
| if (CHIP_REV_IS_SLOW(sc)) { |
| return (CMNG_FNS_NONE); |
| } |
| |
| if (IS_MF(sc)) { |
| return (CMNG_FNS_MINMAX); |
| } |
| |
| return (CMNG_FNS_NONE); |
| } |
| |
| static void |
| storm_memset_cmng(struct bxe_adapter *sc, |
| struct cmng_init *cmng, |
| uint8_t port) |
| { |
| int vn; |
| int func; |
| uint32_t addr; |
| size_t size; |
| |
| addr = (BAR_XSTRORM_INTMEM + |
| XSTORM_CMNG_PER_PORT_VARS_OFFSET(port)); |
| size = sizeof(struct cmng_struct_per_port); |
| ecore_storm_memset_struct(sc, addr, size, (uint32_t *)&cmng->port); |
| |
| for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) { |
| func = func_by_vn(sc, vn); |
| |
| addr = (BAR_XSTRORM_INTMEM + |
| XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func)); |
| size = sizeof(struct rate_shaping_vars_per_vn); |
| ecore_storm_memset_struct(sc, addr, size, |
| (uint32_t *)&cmng->vnic.vnic_max_rate[vn]); |
| |
| addr = (BAR_XSTRORM_INTMEM + |
| XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func)); |
| size = sizeof(struct fairness_vars_per_vn); |
| ecore_storm_memset_struct(sc, addr, size, |
| (uint32_t *)&cmng->vnic.vnic_min_rate[vn]); |
| } |
| } |
| |
| static void |
| bxe_pf_init(struct bxe_adapter *sc) |
| { |
| struct bxe_func_init_params func_init = { 0 }; |
| struct event_ring_data eq_data = { { 0 } }; |
| uint16_t flags; |
| |
| if (!CHIP_IS_E1x(sc)) { |
| /* reset IGU PF statistics: MSIX + ATTN */ |
| /* PF */ |
| REG_WR(sc, |
| (IGU_REG_STATISTIC_NUM_MESSAGE_SENT + |
| (BXE_IGU_STAS_MSG_VF_CNT * 4) + |
| ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) * 4)), |
| 0); |
| /* ATTN */ |
| REG_WR(sc, |
| (IGU_REG_STATISTIC_NUM_MESSAGE_SENT + |
| (BXE_IGU_STAS_MSG_VF_CNT * 4) + |
| (BXE_IGU_STAS_MSG_PF_CNT * 4) + |
| ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) * 4)), |
| 0); |
| } |
| |
| /* function setup flags */ |
| flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ); |
| |
| /* |
| * This flag is relevant for E1x only. |
| * E2 doesn't have a TPA configuration in a function level. |
| */ |
| flags |= (sc->ifp->feat & NETF_LRO) ? FUNC_FLG_TPA : 0; |
| |
| func_init.func_flgs = flags; |
| func_init.pf_id = SC_FUNC(sc); |
| func_init.func_id = SC_FUNC(sc); |
| func_init.spq_map = sc->spq_dma.paddr; |
| func_init.spq_prod = sc->spq_prod_idx; |
| |
| bxe_func_init(sc, &func_init); |
| |
| memset(&sc->cmng, 0, sizeof(struct cmng_struct_per_port)); |
| |
| /* |
| * Congestion management values depend on the link rate. |
| * There is no active link so initial link rate is set to 10Gbps. |
| * When the link comes up the congestion management values are |
| * re-calculated according to the actual link rate. |
| */ |
| sc->link_vars.line_speed = SPEED_10000; |
| bxe_cmng_fns_init(sc, TRUE, bxe_get_cmng_fns_mode(sc)); |
| |
| /* Only the PMF sets the HW */ |
| if (sc->port.pmf) { |
| storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc)); |
| } |
| |
| /* init Event Queue - PCI bus guarantees correct endainity */ |
| eq_data.base_addr.hi = U64_HI(sc->eq_dma.paddr); |
| eq_data.base_addr.lo = U64_LO(sc->eq_dma.paddr); |
| eq_data.producer = sc->eq_prod; |
| eq_data.index_id = HC_SP_INDEX_EQ_CONS; |
| eq_data.sb_id = DEF_SB_ID; |
| storm_memset_eq_data(sc, &eq_data, SC_FUNC(sc)); |
| } |
| |
| static void |
| bxe_hc_int_enable(struct bxe_adapter *sc) |
| { |
| int port = SC_PORT(sc); |
| uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0; |
| uint32_t val = REG_RD(sc, addr); |
| uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX) ? TRUE : FALSE; |
| uint8_t single_msix = ((sc->interrupt_mode == INTR_MODE_MSIX) && |
| (sc->intr_count == 1)) ? TRUE : FALSE; |
| uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI) ? TRUE : FALSE; |
| |
| if (msix) { |
| val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | |
| HC_CONFIG_0_REG_INT_LINE_EN_0); |
| val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | |
| HC_CONFIG_0_REG_ATTN_BIT_EN_0); |
| if (single_msix) { |
| val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0; |
| } |
| } else if (msi) { |
| val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0; |
| val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | |
| HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | |
| HC_CONFIG_0_REG_ATTN_BIT_EN_0); |
| } else { |
| val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | |
| HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | |
| HC_CONFIG_0_REG_INT_LINE_EN_0 | |
| HC_CONFIG_0_REG_ATTN_BIT_EN_0); |
| |
| if (!CHIP_IS_E1(sc)) { |
| BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x)\n", |
| val, port, addr); |
| |
| REG_WR(sc, addr, val); |
| |
| val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0; |
| } |
| } |
| |
| if (CHIP_IS_E1(sc)) { |
| REG_WR(sc, (HC_REG_INT_MASK + port*4), 0x1FFFF); |
| } |
| |
| BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x) mode %s\n", |
| val, port, addr, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx"))); |
| |
| REG_WR(sc, addr, val); |
| |
| /* ensure that HC_CONFIG is written before leading/trailing edge config */ |
| mb(); |
| |
| if (!CHIP_IS_E1(sc)) { |
| /* init leading/trailing edge */ |
| if (IS_MF(sc)) { |
| val = (0xee0f | (1 << (SC_VN(sc) + 4))); |
| if (sc->port.pmf) { |
| /* enable nig and gpio3 attention */ |
| val |= 0x1100; |
| } |
| } else { |
| val = 0xffff; |
| } |
| |
| REG_WR(sc, (HC_REG_TRAILING_EDGE_0 + port*8), val); |
| REG_WR(sc, (HC_REG_LEADING_EDGE_0 + port*8), val); |
| } |
| |
| /* make sure that interrupts are indeed enabled from here on */ |
| mb(); |
| } |
| |
| static void |
| bxe_igu_int_enable(struct bxe_adapter *sc) |
| { |
| uint32_t val; |
| uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX) ? TRUE : FALSE; |
| uint8_t single_msix = ((sc->interrupt_mode == INTR_MODE_MSIX) && |
| (sc->intr_count == 1)) ? TRUE : FALSE; |
| uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI) ? TRUE : FALSE; |
| |
| val = REG_RD(sc, IGU_REG_PF_CONFIGURATION); |
| |
| if (msix) { |
| val &= ~(IGU_PF_CONF_INT_LINE_EN | |
| IGU_PF_CONF_SINGLE_ISR_EN); |
| val |= (IGU_PF_CONF_MSI_MSIX_EN | |
| IGU_PF_CONF_ATTN_BIT_EN); |
| if (single_msix) { |
| val |= IGU_PF_CONF_SINGLE_ISR_EN; |
| } |
| } else if (msi) { |
| val &= ~IGU_PF_CONF_INT_LINE_EN; |
| val |= (IGU_PF_CONF_MSI_MSIX_EN | |
| IGU_PF_CONF_ATTN_BIT_EN | |
| IGU_PF_CONF_SINGLE_ISR_EN); |
| } else { |
| val &= ~IGU_PF_CONF_MSI_MSIX_EN; |
| val |= (IGU_PF_CONF_INT_LINE_EN | |
| IGU_PF_CONF_ATTN_BIT_EN | |
| IGU_PF_CONF_SINGLE_ISR_EN); |
| } |
| |
| /* clean previous status - need to configure igu prior to ack*/ |
| if ((!msix) || single_msix) { |
| REG_WR(sc, IGU_REG_PF_CONFIGURATION, val); |
| bxe_ack_int(sc); |
| } |
| |
| val |= IGU_PF_CONF_FUNC_EN; |
| |
| BLOGD(sc, DBG_INTR, "write 0x%x to IGU mode %s\n", |
| val, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx"))); |
| |
| REG_WR(sc, IGU_REG_PF_CONFIGURATION, val); |
| |
| mb(); |
| |
| /* init leading/trailing edge */ |
| if (IS_MF(sc)) { |
| val = (0xee0f | (1 << (SC_VN(sc) + 4))); |
| if (sc->port.pmf) { |
| /* enable nig and gpio3 attention */ |
| val |= 0x1100; |
| } |
| } else { |
| val = 0xffff; |
| } |
| |
| REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val); |
| REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val); |
| |
| /* make sure that interrupts are indeed enabled from here on */ |
| mb(); |
| } |
| |
| static void |
| bxe_int_enable(struct bxe_adapter *sc) |
| { |
| if (sc->devinfo.int_block == INT_BLOCK_HC) { |
| bxe_hc_int_enable(sc); |
| } else { |
| bxe_igu_int_enable(sc); |
| } |
| } |
| |
| static void |
| bxe_hc_int_disable(struct bxe_adapter *sc) |
| { |
| int port = SC_PORT(sc); |
| uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0; |
| uint32_t val = REG_RD(sc, addr); |
| |
| /* |
| * In E1 we must use only PCI configuration space to disable MSI/MSIX |
| * capablility. It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC |
| * block |
| */ |
| if (CHIP_IS_E1(sc)) { |
| /* |
| * Since IGU_PF_CONF_MSI_MSIX_EN still always on use mask register |
| * to prevent from HC sending interrupts after we exit the function |
| */ |
| REG_WR(sc, (HC_REG_INT_MASK + port*4), 0); |
| |
| val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | |
| HC_CONFIG_0_REG_INT_LINE_EN_0 | |
| HC_CONFIG_0_REG_ATTN_BIT_EN_0); |
| } else { |
| val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 | |
| HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 | |
| HC_CONFIG_0_REG_INT_LINE_EN_0 | |
| HC_CONFIG_0_REG_ATTN_BIT_EN_0); |
| } |
| |
| BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x)\n", val, port, addr); |
| |
| /* flush all outstanding writes */ |
| mb(); |
| |
| REG_WR(sc, addr, val); |
| if (REG_RD(sc, addr) != val) { |
| BLOGE(sc, "proper val not read from HC IGU!\n"); |
| } |
| } |
| |
| static void |
| bxe_igu_int_disable(struct bxe_adapter *sc) |
| { |
| uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION); |
| |
| val &= ~(IGU_PF_CONF_MSI_MSIX_EN | |
| IGU_PF_CONF_INT_LINE_EN | |
| IGU_PF_CONF_ATTN_BIT_EN); |
| |
| BLOGD(sc, DBG_INTR, "write %x to IGU\n", val); |
| |
| /* flush all outstanding writes */ |
| mb(); |
| |
| REG_WR(sc, IGU_REG_PF_CONFIGURATION, val); |
| if (REG_RD(sc, IGU_REG_PF_CONFIGURATION) != val) { |
| BLOGE(sc, "proper val not read from IGU!\n"); |
| } |
| } |
| |
| static void |
| bxe_int_disable(struct bxe_adapter *sc) |
| { |
| if (sc->devinfo.int_block == INT_BLOCK_HC) { |
| bxe_hc_int_disable(sc); |
| } else { |
| bxe_igu_int_disable(sc); |
| } |
| } |
| |
| static void |
| bxe_nic_init(struct bxe_adapter *sc, |
| int load_code) |
| { |
| int i; |
| |
| for (i = 0; i < sc->num_queues; i++) { |
| bxe_init_eth_fp(sc, i); |
| } |
| |
| rmb(); /* ensure status block indices were read */ |
| |
| bxe_init_rx_rings(sc); |
| bxe_init_tx_rings(sc); |
| |
| if (IS_VF(sc)) { |
| return; |
| } |
| |
| /* initialize MOD_ABS interrupts */ |
| elink_init_mod_abs_int(sc, &sc->link_vars, |
| sc->devinfo.chip_id, |
| sc->devinfo.shmem_base, |
| sc->devinfo.shmem2_base, |
| SC_PORT(sc)); |
| |
| bxe_init_def_sb(sc); |
| bxe_update_dsb_idx(sc); |
| bxe_init_sp_ring(sc); |
| bxe_init_eq_ring(sc); |
| bxe_init_internal(sc, load_code); |
| bxe_pf_init(sc); |
| bxe_stats_init(sc); |
| |
| /* flush all before enabling interrupts */ |
| mb(); |
| |
| bxe_int_enable(sc); |
| |
| /* check for SPIO5 */ |
| bxe_attn_int_deasserted0(sc, |
| REG_RD(sc, |
| (MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + |
| SC_PORT(sc)*4)) & |
| AEU_INPUTS_ATTN_BITS_SPIO5); |
| } |
| |
| static inline void |
| bxe_init_objs(struct bxe_adapter *sc) |
| { |
| /* mcast rules must be added to tx if tx switching is enabled */ |
| ecore_obj_type o_type = |
| (sc->flags & BXE_TX_SWITCHING) ? ECORE_OBJ_TYPE_RX_TX : |
| ECORE_OBJ_TYPE_RX; |
| |
| /* RX_MODE controlling object */ |
| ecore_init_rx_mode_obj(sc, &sc->rx_mode_obj); |
| |
| /* multicast configuration controlling object */ |
| ecore_init_mcast_obj(sc, |
| &sc->mcast_obj, |
| sc->fp[0].cl_id, |
| sc->fp[0].index, |
| SC_FUNC(sc), |
| SC_FUNC(sc), |
| BXE_SP(sc, mcast_rdata), |
| BXE_SP_MAPPING(sc, mcast_rdata), |
| ECORE_FILTER_MCAST_PENDING, |
| &sc->sp_state, |
| o_type); |
| |
| /* Setup CAM credit pools */ |
| ecore_init_mac_credit_pool(sc, |
| &sc->macs_pool, |
| SC_FUNC(sc), |
| CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) : |
| VNICS_PER_PATH(sc)); |
| |
| ecore_init_vlan_credit_pool(sc, |
| &sc->vlans_pool, |
| SC_ABS_FUNC(sc) >> 1, |
| CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) : |
| VNICS_PER_PATH(sc)); |
| |
| /* RSS configuration object */ |
| ecore_init_rss_config_obj(sc, |
| &sc->rss_conf_obj, |
| sc->fp[0].cl_id, |
| sc->fp[0].index, |
| SC_FUNC(sc), |
| SC_FUNC(sc), |
| BXE_SP(sc, rss_rdata), |
| BXE_SP_MAPPING(sc, rss_rdata), |
| ECORE_FILTER_RSS_CONF_PENDING, |
| &sc->sp_state, ECORE_OBJ_TYPE_RX); |
| } |
| |
| /* |
| * Initialize the function. This must be called before sending CLIENT_SETUP |
| * for the first client. |
| */ |
| static inline int |
| bxe_func_start(struct bxe_adapter *sc) |
| { |
| struct ecore_func_state_params func_params = { NULL }; |
| struct ecore_func_start_params *start_params = &func_params.params.start; |
| |
| /* Prepare parameters for function state transitions */ |
| __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); |
| |
| func_params.f_obj = &sc->func_obj; |
| func_params.cmd = ECORE_F_CMD_START; |
| |
| /* Function parameters */ |
| start_params->mf_mode = sc->devinfo.mf_info.mf_mode; |
| start_params->sd_vlan_tag = OVLAN(sc); |
| |
| if (CHIP_IS_E2(sc) || CHIP_IS_E3(sc)) { |
| start_params->network_cos_mode = STATIC_COS; |
| } else { /* CHIP_IS_E1X */ |
| start_params->network_cos_mode = FW_WRR; |
| } |
| |
| start_params->gre_tunnel_mode = 0; |
| start_params->gre_tunnel_rss = 0; |
| |
| return (ecore_func_state_change(sc, &func_params)); |
| } |
| |
| static int |
| bxe_set_power_state(struct bxe_adapter *sc, |
| uint8_t state) |
| { |
| uint16_t pmcsr; |
| |
| /* If there is no power capability, silently succeed */ |
| if (!(sc->devinfo.pcie_cap_flags & BXE_PM_CAPABLE_FLAG)) { |
| BLOGW(sc, "No power capability\n"); |
| return (0); |
| } |
| |
| pmcsr = pcidev_read16(sc->pcidev, |
| (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS)); |
| |
| switch (state) { |
| case PCI_PM_D0: |
| pcidev_write16(sc->pcidev, |
| (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS), |
| ((pmcsr & ~PCIM_PSTAT_DMASK) | PCIM_PSTAT_PME)); |
| |
| if (pmcsr & PCIM_PSTAT_DMASK) { |
| /* delay required during transition out of D3hot */ |
| udelay(20000); |
| } |
| |
| break; |
| |
| case PCI_PM_D3hot: |
| /* XXX if there are other clients above don't shut down the power */ |
| |
| /* don't shut down the power for emulation and FPGA */ |
| if (CHIP_REV_IS_SLOW(sc)) { |
| return (0); |
| } |
| |
| pmcsr &= ~PCIM_PSTAT_DMASK; |
| pmcsr |= PCIM_PSTAT_D3; |
| |
| if (sc->wol) { |
| pmcsr |= PCIM_PSTAT_PMEENABLE; |
| } |
| |
| pcidev_write32(sc->pcidev, |
| (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS), |
| pmcsr); |
| |
| /* |
| * No more memory access after this point until device is brought back |
| * to D0 state. |
| */ |
| break; |
| |
| default: |
| BLOGE(sc, "Can't support PCI power state = %d\n", state); |
| return (-1); |
| } |
| |
| return (0); |
| } |
| |
| |
| /* return true if succeeded to acquire the lock */ |
| static uint8_t |
| bxe_trylock_hw_lock(struct bxe_adapter *sc, |
| uint32_t resource) |
| { |
| uint32_t lock_status; |
| uint32_t resource_bit = (1 << resource); |
| int func = SC_FUNC(sc); |
| uint32_t hw_lock_control_reg; |
| |
| BLOGD(sc, DBG_LOAD, "Trying to take a resource lock 0x%x\n", resource); |
| |
| /* Validating that the resource is within range */ |
| if (resource > HW_LOCK_MAX_RESOURCE_VALUE) { |
| BLOGD(sc, DBG_LOAD, |
| "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n", |
| resource, HW_LOCK_MAX_RESOURCE_VALUE); |
| return (FALSE); |
| } |
| |
| if (func <= 5) { |
| hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8); |
| } else { |
| hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8); |
| } |
| |
| /* try to acquire the lock */ |
| REG_WR(sc, hw_lock_control_reg + 4, resource_bit); |
| lock_status = REG_RD(sc, hw_lock_control_reg); |
| if (lock_status & resource_bit) { |
| return (TRUE); |
| } |
| |
| BLOGE(sc, "Failed to get a resource lock 0x%x\n", resource); |
| |
| return (FALSE); |
| } |
| |
| /* |
| * Get the recovery leader resource id according to the engine this function |
| * belongs to. Currently only only 2 engines is supported. |
| */ |
| static int |
| bxe_get_leader_lock_resource(struct bxe_adapter *sc) |
| { |
| if (SC_PATH(sc)) { |
| return (HW_LOCK_RESOURCE_RECOVERY_LEADER_1); |
| } else { |
| return (HW_LOCK_RESOURCE_RECOVERY_LEADER_0); |
| } |
| } |
| |
| /* try to acquire a leader lock for current engine */ |
| static uint8_t |
| bxe_trylock_leader_lock(struct bxe_adapter *sc) |
| { |
| return (bxe_trylock_hw_lock(sc, bxe_get_leader_lock_resource(sc))); |
| } |
| |
| static int |
| bxe_release_leader_lock(struct bxe_adapter *sc) |
| { |
| return (bxe_release_hw_lock(sc, bxe_get_leader_lock_resource(sc))); |
| } |
| |
| /* close gates #2, #3 and #4 */ |
| static void |
| bxe_set_234_gates(struct bxe_adapter *sc, |
| uint8_t close) |
| { |
| uint32_t val; |
| |
| /* gates #2 and #4a are closed/opened for "not E1" only */ |
| if (!CHIP_IS_E1(sc)) { |
| /* #4 */ |
| REG_WR(sc, PXP_REG_HST_DISCARD_DOORBELLS, !!close); |
| /* #2 */ |
| REG_WR(sc, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close); |
| } |
| |
| /* #3 */ |
| if (CHIP_IS_E1x(sc)) { |
| /* prevent interrupts from HC on both ports */ |
| val = REG_RD(sc, HC_REG_CONFIG_1); |
| REG_WR(sc, HC_REG_CONFIG_1, |
| (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) : |
| (val & ~(uint32_t)HC_CONFIG_1_REG_BLOCK_DISABLE_1)); |
| |
| val = REG_RD(sc, HC_REG_CONFIG_0); |
| REG_WR(sc, HC_REG_CONFIG_0, |
| (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) : |
| (val & ~(uint32_t)HC_CONFIG_0_REG_BLOCK_DISABLE_0)); |
| } else { |
| /* Prevent incomming interrupts in IGU */ |
| val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION); |
| |
| REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION, |
| (!close) ? |
| (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) : |
| (val & ~(uint32_t)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE)); |
| } |
| |
| BLOGD(sc, DBG_LOAD, "%s gates #2, #3 and #4\n", |
| close ? "closing" : "opening"); |
| |
| wmb(); |
| } |
| |
| /* poll for pending writes bit, it should get cleared in no more than 1s */ |
| static int |
| bxe_er_poll_igu_vq(struct bxe_adapter *sc) |
| { |
| uint32_t cnt = 1000; |
| uint32_t pend_bits = 0; |
| |
| do { |
| pend_bits = REG_RD(sc, IGU_REG_PENDING_BITS_STATUS); |
| |
| if (pend_bits == 0) { |
| break; |
| } |
| |
| udelay(1000); |
| } while (--cnt > 0); |
| |
| if (cnt == 0) { |
| BLOGE(sc, "Still pending IGU requests bits=0x%08x!\n", pend_bits); |
| return (-1); |
| } |
| |
| return (0); |
| } |
| |
| #define SHARED_MF_CLP_MAGIC 0x80000000 /* 'magic' bit */ |
| |
| static void |
| bxe_clp_reset_prep(struct bxe_adapter *sc, |
| uint32_t *magic_val) |
| { |
| /* Do some magic... */ |
| uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb); |
| *magic_val = val & SHARED_MF_CLP_MAGIC; |
| MFCFG_WR(sc, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC); |
| } |
| |
| /* restore the value of the 'magic' bit */ |
| static void |
| bxe_clp_reset_done(struct bxe_adapter *sc, |
| uint32_t magic_val) |
| { |
| /* Restore the 'magic' bit value... */ |
| uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb); |
| MFCFG_WR(sc, shared_mf_config.clp_mb, |
| (val & (~SHARED_MF_CLP_MAGIC)) | magic_val); |
| } |
| |
| /* prepare for MCP reset, takes care of CLP configurations */ |
| static void |
| bxe_reset_mcp_prep(struct bxe_adapter *sc, |
| uint32_t *magic_val) |
| { |
| uint32_t shmem; |
| uint32_t validity_offset; |
| |
| /* set `magic' bit in order to save MF config */ |
| if (!CHIP_IS_E1(sc)) { |
| bxe_clp_reset_prep(sc, magic_val); |
| } |
| |
| /* get shmem offset */ |
| shmem = REG_RD(sc, MISC_REG_SHARED_MEM_ADDR); |
| validity_offset = |
| offsetof(struct shmem_region, validity_map[SC_PORT(sc)]); |
| |
| /* Clear validity map flags */ |
| if (shmem > 0) { |
| REG_WR(sc, shmem + validity_offset, 0); |
| } |
| } |
| |
| #define MCP_TIMEOUT 5000 /* 5 seconds (in ms) */ |
| #define MCP_ONE_TIMEOUT 100 /* 100 ms */ |
| |
| static void |
| bxe_mcp_wait_one(struct bxe_adapter *sc) |
| { |
| /* special handling for emulation and FPGA (10 times longer) */ |
| if (CHIP_REV_IS_SLOW(sc)) { |
| udelay((MCP_ONE_TIMEOUT*10) * 1000); |
| } else { |
| udelay((MCP_ONE_TIMEOUT) * 1000); |
| } |
| } |
| |
| /* initialize shmem_base and waits for validity signature to appear */ |
| static int |
| bxe_init_shmem(struct bxe_adapter *sc) |
| { |
| int cnt = 0; |
| uint32_t val = 0; |
| |
| do { |
| sc->devinfo.shmem_base = |
| sc->link_params.shmem_base = |
| REG_RD(sc, MISC_REG_SHARED_MEM_ADDR); |
| |
| if (sc->devinfo.shmem_base) { |
| val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]); |
| if (val & SHR_MEM_VALIDITY_MB) |
| return (0); |
| } |
| |
| bxe_mcp_wait_one(sc); |
| |
| } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT)); |
| |
| BLOGE(sc, "BAD MCP validity signature\n"); |
| |
| return (-1); |
| } |
| |
| static int |
| bxe_reset_mcp_comp(struct bxe_adapter *sc, |
| uint32_t magic_val) |
| { |
| int rc = bxe_init_shmem(sc); |
| |
| /* Restore the `magic' bit value */ |
| if (!CHIP_IS_E1(sc)) { |
| bxe_clp_reset_done(sc, magic_val); |
| } |
| |
| return (rc); |
| } |
| |
| static void |
| bxe_pxp_prep(struct bxe_adapter *sc) |
| { |
| if (!CHIP_IS_E1(sc)) { |
| REG_WR(sc, PXP2_REG_RD_START_INIT, 0); |
| REG_WR(sc, PXP2_REG_RQ_RBC_DONE, 0); |
| wmb(); |
| } |
| } |
| |
| /* |
| * Reset the whole chip except for: |
| * - PCIE core |
| * - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by one reset bit) |
| * - IGU |
| * - MISC (including AEU) |
| * - GRC |
| * - RBCN, RBCP |
| */ |
| static void |
| bxe_process_kill_chip_reset(struct bxe_adapter *sc, |
| uint8_t global) |
| { |
| uint32_t not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2; |
| uint32_t global_bits2, stay_reset2; |
| |
| /* |
| * Bits that have to be set in reset_mask2 if we want to reset 'global' |
| * (per chip) blocks. |
| */ |
| global_bits2 = |
| MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU | |
| MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE; |
| |
| /* |
| * Don't reset the following blocks. |
| * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be |
| * reset, as in 4 port device they might still be owned |
| * by the MCP (there is only one leader per path). |
| */ |
| not_reset_mask1 = |
| MISC_REGISTERS_RESET_REG_1_RST_HC | |
| MISC_REGISTERS_RESET_REG_1_RST_PXPV | |
| MISC_REGISTERS_RESET_REG_1_RST_PXP; |
| |
| not_reset_mask2 = |
| MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO | |
| MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE | |
| MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE | |
| MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE | |
| MISC_REGISTERS_RESET_REG_2_RST_RBCN | |
| MISC_REGISTERS_RESET_REG_2_RST_GRC | |
| MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE | |
| MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B | |
| MISC_REGISTERS_RESET_REG_2_RST_ATC | |
| MISC_REGISTERS_RESET_REG_2_PGLC | |
| MISC_REGISTERS_RESET_REG_2_RST_BMAC0 | |
| MISC_REGISTERS_RESET_REG_2_RST_BMAC1 | |
| MISC_REGISTERS_RESET_REG_2_RST_EMAC0 | |
| MISC_REGISTERS_RESET_REG_2_RST_EMAC1 | |
| MISC_REGISTERS_RESET_REG_2_UMAC0 | |
| MISC_REGISTERS_RESET_REG_2_UMAC1; |
| |
| /* |
| * Keep the following blocks in reset: |
| * - all xxMACs are handled by the elink code. |
| */ |
| stay_reset2 = |
| MISC_REGISTERS_RESET_REG_2_XMAC | |
| MISC_REGISTERS_RESET_REG_2_XMAC_SOFT; |
| |
| /* Full reset masks according to the chip */ |
| reset_mask1 = 0xffffffff; |
| |
| if (CHIP_IS_E1(sc)) |
| reset_mask2 = 0xffff; |
| else if (CHIP_IS_E1H(sc)) |
| reset_mask2 = 0x1ffff; |
| else if (CHIP_IS_E2(sc)) |
| reset_mask2 = 0xfffff; |
| else /* CHIP_IS_E3 */ |
| reset_mask2 = 0x3ffffff; |
| |
| /* Don't reset global blocks unless we need to */ |
| if (!global) |
| reset_mask2 &= ~global_bits2; |
| |
| /* |
| * In case of attention in the QM, we need to reset PXP |
| * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM |
| * because otherwise QM reset would release 'close the gates' shortly |
| * before resetting the PXP, then the PSWRQ would send a write |
| * request to PGLUE. Then when PXP is reset, PGLUE would try to |
| * read the payload data from PSWWR, but PSWWR would not |
| * respond. The write queue in PGLUE would stuck, dmae commands |
| * would not return. Therefore it's important to reset the second |
| * reset register (containing the |
| * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the |
| * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM |
| * bit). |
| */ |
| REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, |
| reset_mask2 & (~not_reset_mask2)); |
| |
| REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, |
| reset_mask1 & (~not_reset_mask1)); |
| |
| mb(); |
| wmb(); |
| |
| REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, |
| reset_mask2 & (~stay_reset2)); |
| |
| mb(); |
| wmb(); |
| |
| REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1); |
| wmb(); |
| } |
| |
| static int |
| bxe_process_kill(struct bxe_adapter *sc, |
| uint8_t global) |
| { |
| int cnt = 1000; |
| uint32_t val = 0; |
| uint32_t sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2; |
| uint32_t tags_63_32 = 0; |
| |
| /* Empty the Tetris buffer, wait for 1s */ |
| do { |
| sr_cnt = REG_RD(sc, PXP2_REG_RD_SR_CNT); |
| blk_cnt = REG_RD(sc, PXP2_REG_RD_BLK_CNT); |
| port_is_idle_0 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_0); |
| port_is_idle_1 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_1); |
| pgl_exp_rom2 = REG_RD(sc, PXP2_REG_PGL_EXP_ROM2); |
| if (CHIP_IS_E3(sc)) { |
| tags_63_32 = REG_RD(sc, PGLUE_B_REG_TAGS_63_32); |
| } |
| |
| if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) && |
| ((port_is_idle_0 & 0x1) == 0x1) && |
| ((port_is_idle_1 & 0x1) == 0x1) && |
| (pgl_exp_rom2 == 0xffffffff) && |
| (!CHIP_IS_E3(sc) || (tags_63_32 == 0xffffffff))) |
| break; |
| udelay(1000); |
| } while (cnt-- > 0); |
| |
| if (cnt <= 0) { |
| BLOGE(sc, "ERROR: Tetris buffer didn't get empty or there " |
| "are still outstanding read requests after 1s! " |
| "sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, " |
| "port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n", |
| sr_cnt, blk_cnt, port_is_idle_0, |
| port_is_idle_1, pgl_exp_rom2); |
| return (-1); |
| } |
| |
| mb(); |
| |
| /* Close gates #2, #3 and #4 */ |
| bxe_set_234_gates(sc, TRUE); |
| |
| /* Poll for IGU VQs for 57712 and newer chips */ |
| if (!CHIP_IS_E1x(sc) && bxe_er_poll_igu_vq(sc)) { |
| return (-1); |
| } |
| |
| /* XXX indicate that "process kill" is in progress to MCP */ |
| |
| /* clear "unprepared" bit */ |
| REG_WR(sc, MISC_REG_UNPREPARED, 0); |
| mb(); |
| |
| /* Make sure all is written to the chip before the reset */ |
| wmb(); |
| |
| /* |
| * Wait for 1ms to empty GLUE and PCI-E core queues, |
| * PSWHST, GRC and PSWRD Tetris buffer. |
| */ |
| udelay(1000); |
| |
| /* Prepare to chip reset: */ |
| /* MCP */ |
| if (global) { |
| bxe_reset_mcp_prep(sc, &val); |
| } |
| |
| /* PXP */ |
| bxe_pxp_prep(sc); |
| mb(); |
| |
| /* reset the chip */ |
| bxe_process_kill_chip_reset(sc, global); |
| mb(); |
| |
| /* clear errors in PGB */ |
| if (!CHIP_IS_E1(sc)) |
| REG_WR(sc, PGLUE_B_REG_LATCHED_ERRORS_CLR, 0x7f); |
| |
| /* Recover after reset: */ |
| /* MCP */ |
| if (global && bxe_reset_mcp_comp(sc, val)) { |
| return (-1); |
| } |
| |
| /* XXX add resetting the NO_MCP mode DB here */ |
| |
| /* Open the gates #2, #3 and #4 */ |
| bxe_set_234_gates(sc, FALSE); |
| |
| /* XXX |
| * IGU/AEU preparation bring back the AEU/IGU to a reset state |
| * re-enable attentions |
| */ |
| |
| return (0); |
| } |
| |
| static int |
| bxe_leader_reset(struct bxe_adapter *sc) |
| { |
| int rc = 0; |
| uint8_t global = bxe_reset_is_global(sc); |
| uint32_t load_code; |
| |
| /* |
| * If not going to reset MCP, load "fake" driver to reset HW while |
| * driver is owner of the HW. |
| */ |
| if (!global && !BXE_NOMCP(sc)) { |
| load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_REQ, |
| DRV_MSG_CODE_LOAD_REQ_WITH_LFA); |
| if (!load_code) { |
| BLOGE(sc, "MCP response failure, aborting\n"); |
| rc = -1; |
| goto exit_leader_reset; |
| } |
| |
| if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) && |
| (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) { |
| BLOGE(sc, "MCP unexpected response, aborting\n"); |
| rc = -1; |
| goto exit_leader_reset2; |
| } |
| |
| load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); |
| if (!load_code) { |
| BLOGE(sc, "MCP response failure, aborting\n"); |
| rc = -1; |
| goto exit_leader_reset2; |
| } |
| } |
| |
| /* try to recover after the failure */ |
| if (bxe_process_kill(sc, global)) { |
| BLOGE(sc, "Something bad occurred on engine %d!\n", SC_PATH(sc)); |
| rc = -1; |
| goto exit_leader_reset2; |
| } |
| |
| /* |
| * Clear the RESET_IN_PROGRESS and RESET_GLOBAL bits and update the driver |
| * state. |
| */ |
| bxe_set_reset_done(sc); |
| if (global) { |
| bxe_clear_reset_global(sc); |
| } |
| |
| exit_leader_reset2: |
| |
| /* unload "fake driver" if it was loaded */ |
| if (!global && !BXE_NOMCP(sc)) { |
| bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0); |
| bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0); |
| } |
| |
| exit_leader_reset: |
| |
| sc->is_leader = 0; |
| bxe_release_leader_lock(sc); |
| |
| mb(); |
| return (rc); |
| } |
| |
| /* |
| * prepare INIT transition, parameters configured: |
| * - HC configuration |
| * - Queue's CDU context |
| */ |
| static void |
| bxe_pf_q_prep_init(struct bxe_adapter *sc, |
| struct bxe_fastpath *fp, |
| struct ecore_queue_init_params *init_params) |
| { |
| uint8_t cos; |
| int cxt_index, cxt_offset; |
| |
| bxe_set_bit(ECORE_Q_FLG_HC, &init_params->rx.flags); |
| bxe_set_bit(ECORE_Q_FLG_HC, &init_params->tx.flags); |
| |
| bxe_set_bit(ECORE_Q_FLG_HC_EN, &init_params->rx.flags); |
| bxe_set_bit(ECORE_Q_FLG_HC_EN, &init_params->tx.flags); |
| |
| /* HC rate */ |
| init_params->rx.hc_rate = |
| sc->hc_rx_ticks ? (1000000 / sc->hc_rx_ticks) : 0; |
| init_params->tx.hc_rate = |
| sc->hc_tx_ticks ? (1000000 / sc->hc_tx_ticks) : 0; |
| |
| /* FW SB ID */ |
| init_params->rx.fw_sb_id = init_params->tx.fw_sb_id = fp->fw_sb_id; |
| |
| /* CQ index among the SB indices */ |
| init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS; |
| init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS; |
| |
| /* set maximum number of COSs supported by this queue */ |
| init_params->max_cos = sc->max_cos; |
| |
| BLOGD(sc, DBG_LOAD, "fp %d setting queue params max cos to %d\n", |
| fp->index, init_params->max_cos); |
| |
| /* set the context pointers queue object */ |
| for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) { |
| /* XXX change index/cid here if ever support multiple tx CoS */ |
| /* fp->txdata[cos]->cid */ |
| cxt_index = fp->index / ILT_PAGE_CIDS; |
| cxt_offset = fp->index - (cxt_index * ILT_PAGE_CIDS); |
| init_params->cxts[cos] = &sc->context[cxt_index].vcxt[cxt_offset].eth; |
| } |
| } |
| |
| /* set flags that are common for the Tx-only and not normal connections */ |
| static unsigned long |
| bxe_get_common_flags(struct bxe_adapter *sc, |
| struct bxe_fastpath *fp, |
| uint8_t zero_stats) |
| { |
| unsigned long flags = 0; |
| |
| /* PF driver will always initialize the Queue to an ACTIVE state */ |
| bxe_set_bit(ECORE_Q_FLG_ACTIVE, &flags); |
| |
| /* |
| * tx only connections collect statistics (on the same index as the |
| * parent connection). The statistics are zeroed when the parent |
| * connection is initialized. |
| */ |
| |
| bxe_set_bit(ECORE_Q_FLG_STATS, &flags); |
| if (zero_stats) { |
| bxe_set_bit(ECORE_Q_FLG_ZERO_STATS, &flags); |
| } |
| |
| /* |
| * tx only connections can support tx-switching, though their |
| * CoS-ness doesn't survive the loopback |
| */ |
| if (sc->flags & BXE_TX_SWITCHING) { |
| bxe_set_bit(ECORE_Q_FLG_TX_SWITCH, &flags); |
| } |
| |
| bxe_set_bit(ECORE_Q_FLG_PCSUM_ON_PKT, &flags); |
| |
| return (flags); |
| } |
| |
| static unsigned long |
| bxe_get_q_flags(struct bxe_adapter *sc, |
| struct bxe_fastpath *fp, |
| uint8_t leading) |
| { |
| unsigned long flags = 0; |
| |
| if (IS_MF_SD(sc)) { |
| bxe_set_bit(ECORE_Q_FLG_OV, &flags); |
| } |
| |
| if (if_getcapenable(sc->ifp) & IFCAP_LRO) { |
| bxe_set_bit(ECORE_Q_FLG_TPA, &flags); |
| bxe_set_bit(ECORE_Q_FLG_TPA_IPV6, &flags); |
| #if 0 |
| if (fp->mode == TPA_MODE_GRO) |
| __set_bit(ECORE_Q_FLG_TPA_GRO, &flags); |
| #endif |
| } |
| |
| if (leading) { |
| bxe_set_bit(ECORE_Q_FLG_LEADING_RSS, &flags); |
| bxe_set_bit(ECORE_Q_FLG_MCAST, &flags); |
| } |
| |
| bxe_set_bit(ECORE_Q_FLG_VLAN, &flags); |
| |
| #if 0 |
| /* configure silent vlan removal */ |
| if (IS_MF_AFEX(sc)) { |
| bxe_set_bit(ECORE_Q_FLG_SILENT_VLAN_REM, &flags); |
| } |
| #endif |
| |
| /* merge with common flags */ |
| return (flags | bxe_get_common_flags(sc, fp, TRUE)); |
| } |
| |
| static void |
| bxe_pf_q_prep_general(struct bxe_adapter *sc, |
| struct bxe_fastpath *fp, |
| struct ecore_general_setup_params *gen_init, |
| uint8_t cos) |
| { |
| gen_init->stat_id = bxe_stats_id(fp); |
| gen_init->spcl_id = fp->cl_id; |
| gen_init->mtu = sc->mtu; |
| gen_init->cos = cos; |
| } |
| |
| static void |
| bxe_pf_rx_q_prep(struct bxe_adapter *sc, |
| struct bxe_fastpath *fp, |
| struct rxq_pause_params *pause, |
| struct ecore_rxq_setup_params *rxq_init) |
| { |
| uint8_t max_sge = 0; |
| uint16_t sge_sz = 0; |
| uint16_t tpa_agg_size = 0; |
| |
| if (if_getcapenable(sc->ifp) & IFCAP_LRO) { |
| pause->sge_th_lo = SGE_TH_LO(sc); |
| pause->sge_th_hi = SGE_TH_HI(sc); |
| |
| /* validate SGE ring has enough to cross high threshold */ |
| if (sc->dropless_fc && |
| (pause->sge_th_hi + FW_PREFETCH_CNT) > |
| (RX_SGE_USABLE_PER_PAGE * RX_SGE_NUM_PAGES)) { |
| BLOGW(sc, "sge ring threshold limit\n"); |
| } |
| |
| /* minimum max_aggregation_size is 2*MTU (two full buffers) */ |
| tpa_agg_size = (2 * sc->mtu); |
| if (tpa_agg_size < sc->max_aggregation_size) { |
| tpa_agg_size = sc->max_aggregation_size; |
| } |
| |
| max_sge = SGE_PAGE_ALIGN(sc->mtu) >> SGE_PAGE_SHIFT; |
| max_sge = ((max_sge + PAGES_PER_SGE - 1) & |
| (~(PAGES_PER_SGE - 1))) >> PAGES_PER_SGE_SHIFT; |
| sge_sz = (uint16_t)MIN(SGE_PAGES, 0xffff); |
| } |
| |
| /* pause - not for e1 */ |
| if (!CHIP_IS_E1(sc)) { |
| pause->bd_th_lo = BD_TH_LO(sc); |
| pause->bd_th_hi = BD_TH_HI(sc); |
| |
| pause->rcq_th_lo = RCQ_TH_LO(sc); |
| pause->rcq_th_hi = RCQ_TH_HI(sc); |
| |
| /* validate rings have enough entries to cross high thresholds */ |
| if (sc->dropless_fc && |
| pause->bd_th_hi + FW_PREFETCH_CNT > |
| sc->rx_ring_size) { |
| BLOGW(sc, "rx bd ring threshold limit\n"); |
| } |
| |
| if (sc->dropless_fc && |
| pause->rcq_th_hi + FW_PREFETCH_CNT > |
| RCQ_NUM_PAGES * RCQ_USABLE_PER_PAGE) { |
| BLOGW(sc, "rcq ring threshold limit\n"); |
| } |
| |
| pause->pri_map = 1; |
| } |
| |
| /* rxq setup */ |
| rxq_init->dscr_map = fp->rx_dma.paddr; |
| rxq_init->sge_map = fp->rx_sge_dma.paddr; |
| rxq_init->rcq_map = fp->rcq_dma.paddr; |
| rxq_init->rcq_np_map = (fp->rcq_dma.paddr + BCM_PAGE_SIZE); |
| |
| /* |
| * This should be a maximum number of data bytes that may be |
| * placed on the BD (not including paddings). |
| */ |
| rxq_init->buf_sz = (fp->rx_buf_size - |
| IP_HEADER_ALIGNMENT_PADDING); |
| |
| rxq_init->cl_qzone_id = fp->cl_qzone_id; |
| rxq_init->tpa_agg_sz = tpa_agg_size; |
| rxq_init->sge_buf_sz = sge_sz; |
| rxq_init->max_sges_pkt = max_sge; |
| rxq_init->rss_engine_id = SC_FUNC(sc); |
| rxq_init->mcast_engine_id = SC_FUNC(sc); |
| |
| /* |
| * Maximum number or simultaneous TPA aggregation for this Queue. |
| * For PF Clients it should be the maximum available number. |
| * VF driver(s) may want to define it to a smaller value. |
| */ |
| rxq_init->max_tpa_queues = MAX_AGG_QS(sc); |
| |
| rxq_init->cache_line_log = BXE_RX_ALIGN_SHIFT; |
| rxq_init->fw_sb_id = fp->fw_sb_id; |
| |
| rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS; |
| |
| /* |
| * configure silent vlan removal |
| * if multi function mode is afex, then mask default vlan |
| */ |
| if (IS_MF_AFEX(sc)) { |
| rxq_init->silent_removal_value = |
| sc->devinfo.mf_info.afex_def_vlan_tag; |
| //rxq_init->silent_removal_mask = EVL_VLID_MASK; // BSD |
| rxq_init->silent_removal_mask = 0xfff; // from bsd |
| } |
| } |
| |
| static void |
| bxe_pf_tx_q_prep(struct bxe_adapter *sc, |
| struct bxe_fastpath *fp, |
| struct ecore_txq_setup_params *txq_init, |
| uint8_t cos) |
| { |
| /* |
| * XXX If multiple CoS is ever supported then each fastpath structure |
| * will need to maintain tx producer/consumer/dma/etc values *per* CoS. |
| * fp->txdata[cos]->tx_dma.paddr; |
| */ |
| txq_init->dscr_map = fp->tx_dma.paddr; |
| txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos; |
| txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW; |
| txq_init->fw_sb_id = fp->fw_sb_id; |
| |
| /* |
| * set the TSS leading client id for TX classfication to the |
| * leading RSS client id |
| */ |
| txq_init->tss_leading_cl_id = BXE_FP(sc, 0, cl_id); |
| } |
| |
| /* |
| * This function performs 2 steps in a queue state machine: |
| * 1) RESET->INIT |
| * 2) INIT->SETUP |
| */ |
| static int |
| bxe_setup_queue(struct bxe_adapter *sc, |
| struct bxe_fastpath *fp, |
| uint8_t leading) |
| { |
| struct ecore_queue_state_params q_params = { NULL }; |
| struct ecore_queue_setup_params *setup_params = |
| &q_params.params.setup; |
| #if 0 |
| struct ecore_queue_setup_tx_only_params *tx_only_params = |
| &q_params.params.tx_only; |
| uint8_t tx_index; |
| #endif |
| int rc; |
| |
| BLOGD(sc, DBG_LOAD, "setting up queue %d\n", fp->index); |
| |
| bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0); |
| |
| q_params.q_obj = &BXE_SP_OBJ(sc, fp).q_obj; |
| |
| /* we want to wait for completion in this context */ |
| bxe_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags); |
| |
| /* prepare the INIT parameters */ |
| bxe_pf_q_prep_init(sc, fp, &q_params.params.init); |
| |
| /* Set the command */ |
| q_params.cmd = ECORE_Q_CMD_INIT; |
| |
| /* Change the state to INIT */ |
| rc = ecore_queue_state_change(sc, &q_params); |
| if (rc) { |
| BLOGE(sc, "Queue(%d) INIT failed\n", fp->index); |
| return (rc); |
| } |
| |
| BLOGD(sc, DBG_LOAD, "init complete\n"); |
| |
| /* now move the Queue to the SETUP state */ |
| memset(setup_params, 0, sizeof(*setup_params)); |
| |
| /* set Queue flags */ |
| setup_params->flags = bxe_get_q_flags(sc, fp, leading); |
| |
| /* set general SETUP parameters */ |
| bxe_pf_q_prep_general(sc, fp, &setup_params->gen_params, |
| FIRST_TX_COS_INDEX); |
| |
| bxe_pf_rx_q_prep(sc, fp, |
| &setup_params->pause_params, |
| &setup_params->rxq_params); |
| |
| bxe_pf_tx_q_prep(sc, fp, |
| &setup_params->txq_params, |
| FIRST_TX_COS_INDEX); |
| |
| /* Set the command */ |
| q_params.cmd = ECORE_Q_CMD_SETUP; |
| |
| /* change the state to SETUP */ |
| rc = ecore_queue_state_change(sc, &q_params); |
| if (rc) { |
| BLOGE(sc, "Queue(%d) SETUP failed\n", fp->index); |
| return (rc); |
| } |
| |
| #if 0 |
| /* loop through the relevant tx-only indices */ |
| for (tx_index = FIRST_TX_ONLY_COS_INDEX; |
| tx_index < sc->max_cos; |
| tx_index++) { |
| /* prepare and send tx-only ramrod*/ |
| rc = bxe_setup_tx_only(sc, fp, &q_params, |
| tx_only_params, tx_index, leading); |
| if (rc) { |
| BLOGE(sc, "Queue(%d.%d) TX_ONLY_SETUP failed\n", |
| fp->index, tx_index); |
| return (rc); |
| } |
| } |
| #endif |
| |
| return (rc); |
| } |
| |
| static int |
| bxe_setup_leading(struct bxe_adapter *sc) |
| { |
| return (bxe_setup_queue(sc, &sc->fp[0], TRUE)); |
| } |
| |
| static int |
| bxe_config_rss_pf(struct bxe_adapter *sc, |
| struct ecore_rss_config_obj *rss_obj, |
| uint8_t config_hash) |
| { |
| struct ecore_config_rss_params params = { NULL }; |
| int i; |
| |
| /* |
| * Although RSS is meaningless when there is a single HW queue we |
| * still need it enabled in order to have HW Rx hash generated. |
| */ |
| |
| params.rss_obj = rss_obj; |
| |
| bxe_set_bit(RAMROD_COMP_WAIT, ¶ms.ramrod_flags); |
| |
| bxe_set_bit(ECORE_RSS_MODE_REGULAR, ¶ms.rss_flags); |
| |
| /* RSS configuration */ |
| bxe_set_bit(ECORE_RSS_IPV4, ¶ms.rss_flags); |
| bxe_set_bit(ECORE_RSS_IPV4_TCP, ¶ms.rss_flags); |
| bxe_set_bit(ECORE_RSS_IPV6, ¶ms.rss_flags); |
| bxe_set_bit(ECORE_RSS_IPV6_TCP, ¶ms.rss_flags); |
| if (rss_obj->udp_rss_v4) { |
| bxe_set_bit(ECORE_RSS_IPV4_UDP, ¶ms.rss_flags); |
| } |
| if (rss_obj->udp_rss_v6) { |
| bxe_set_bit(ECORE_RSS_IPV6_UDP, ¶ms.rss_flags); |
| } |
| |
| /* Hash bits */ |
| params.rss_result_mask = MULTI_MASK; |
| |
| memcpy(params.ind_table, rss_obj->ind_table, sizeof(params.ind_table)); |
| |
| if (config_hash) { |
| /* RSS keys */ |
| randomread(params.rss_key, sizeof(params.rss_key)); |
| bxe_set_bit(ECORE_RSS_SET_SRCH, ¶ms.rss_flags); |
| } |
| |
| return (ecore_config_rss(sc, ¶ms)); |
| } |
| |
| static int |
| bxe_config_rss_eth(struct bxe_adapter *sc, |
| uint8_t config_hash) |
| { |
| return (bxe_config_rss_pf(sc, &sc->rss_conf_obj, config_hash)); |
| } |
| |
| static int |
| bxe_init_rss_pf(struct bxe_adapter *sc) |
| { |
| uint8_t num_eth_queues = BXE_NUM_ETH_QUEUES(sc); |
| int i; |
| |
| /* |
| * Prepare the initial contents of the indirection table if |
| * RSS is enabled |
| */ |
| for (i = 0; i < sizeof(sc->rss_conf_obj.ind_table); i++) { |
| sc->rss_conf_obj.ind_table[i] = |
| (sc->fp->cl_id + (i % num_eth_queues)); |
| } |
| |
| if (sc->udp_rss) { |
| sc->rss_conf_obj.udp_rss_v4 = sc->rss_conf_obj.udp_rss_v6 = 1; |
| } |
| |
| /* |
| * For 57710 and 57711 SEARCHER configuration (rss_keys) is |
| * per-port, so if explicit configuration is needed, do it only |
| * for a PMF. |
| * |
| * For 57712 and newer it's a per-function configuration. |
| */ |
| return (bxe_config_rss_eth(sc, sc->port.pmf || !CHIP_IS_E1x(sc))); |
| } |
| |
| static int |
| bxe_set_mac_one(struct bxe_adapter *sc, |
| uint8_t *mac, |
| struct ecore_vlan_mac_obj *obj, |
| uint8_t set, |
| int mac_type, |
| unsigned long *ramrod_flags) |
| { |
| struct ecore_vlan_mac_ramrod_params ramrod_param; |
| int rc; |
| |
| memset(&ramrod_param, 0, sizeof(ramrod_param)); |
| |
| /* fill in general parameters */ |
| ramrod_param.vlan_mac_obj = obj; |
| ramrod_param.ramrod_flags = *ramrod_flags; |
| |
| /* fill a user request section if needed */ |
| if (!bxe_test_bit(RAMROD_CONT, ramrod_flags)) { |
| memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN); |
| |
| bxe_set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags); |
| |
| /* Set the command: ADD or DEL */ |
| ramrod_param.user_req.cmd = (set) ? ECORE_VLAN_MAC_ADD : |
| ECORE_VLAN_MAC_DEL; |
| } |
| |
| rc = ecore_config_vlan_mac(sc, &ramrod_param); |
| |
| if (rc == ECORE_EXISTS) { |
| BLOGD(sc, DBG_SP, "Failed to schedule ADD operations (EEXIST)\n"); |
| /* do not treat adding same MAC as error */ |
| rc = 0; |
| } else if (rc < 0) { |
| BLOGE(sc, "%s MAC failed (%d)\n", (set ? "Set" : "Delete"), rc); |
| } |
| |
| return (rc); |
| } |
| |
| static int |
| bxe_set_eth_mac(struct bxe_adapter *sc, |
| uint8_t set) |
| { |
| unsigned long ramrod_flags = 0; |
| |
| BLOGD(sc, DBG_LOAD, "Adding Ethernet MAC\n"); |
| |
| bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags); |
| |
| /* Eth MAC is set on RSS leading client (fp[0]) */ |
| return (bxe_set_mac_one(sc, sc->link_params.mac_addr, |
| &sc->sp_objs->mac_obj, |
| set, ECORE_ETH_MAC, &ramrod_flags)); |
| } |
| |
| #if 0 |
| static void |
| bxe_update_max_mf_config(struct bxe_adapter *sc, |
| uint32_t value) |
| { |
| /* load old values */ |
| uint32_t mf_cfg = sc->devinfo.mf_info.mf_config[SC_VN(sc)]; |
| |
| if (value != bxe_extract_max_cfg(sc, mf_cfg)) { |
| /* leave all but MAX value */ |
| mf_cfg &= ~FUNC_MF_CFG_MAX_BW_MASK; |
| |
| /* set new MAX value */ |
| mf_cfg |= ((value << FUNC_MF_CFG_MAX_BW_SHIFT) & |
| FUNC_MF_CFG_MAX_BW_MASK); |
| |
| bxe_fw_command(sc, DRV_MSG_CODE_SET_MF_BW, mf_cfg); |
| } |
| } |
| #endif |
| |
| static int |
| bxe_get_cur_phy_idx(struct bxe_adapter *sc) |
| { |
| uint32_t sel_phy_idx = 0; |
| |
| if (sc->link_params.num_phys <= 1) { |
| return (ELINK_INT_PHY); |
| } |
| |
| if (sc->link_vars.link_up) { |
| sel_phy_idx = ELINK_EXT_PHY1; |
| /* In case link is SERDES, check if the ELINK_EXT_PHY2 is the one */ |
| if ((sc->link_vars.link_status & LINK_STATUS_SERDES_LINK) && |
| (sc->link_params.phy[ELINK_EXT_PHY2].supported & |
| ELINK_SUPPORTED_FIBRE)) |
| sel_phy_idx = ELINK_EXT_PHY2; |
| } else { |
| switch (elink_phy_selection(&sc->link_params)) { |
| case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT: |
| case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY: |
| case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY: |
| sel_phy_idx = ELINK_EXT_PHY1; |
| break; |
| case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY: |
| case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY: |
| sel_phy_idx = ELINK_EXT_PHY2; |
| break; |
| } |
| } |
| |
| return (sel_phy_idx); |
| } |
| |
| static int |
| bxe_get_link_cfg_idx(struct bxe_adapter *sc) |
| { |
| uint32_t sel_phy_idx = bxe_get_cur_phy_idx(sc); |
| |
| /* |
| * The selected activated PHY is always after swapping (in case PHY |
| * swapping is enabled). So when swapping is enabled, we need to reverse |
| * the configuration |
| */ |
| |
| if (sc->link_params.multi_phy_config & PORT_HW_CFG_PHY_SWAPPED_ENABLED) { |
| if (sel_phy_idx == ELINK_EXT_PHY1) |
| sel_phy_idx = ELINK_EXT_PHY2; |
| else if (sel_phy_idx == ELINK_EXT_PHY2) |
| sel_phy_idx = ELINK_EXT_PHY1; |
| } |
| |
| return (ELINK_LINK_CONFIG_IDX(sel_phy_idx)); |
| } |
| |
| static void |
| bxe_set_requested_fc(struct bxe_adapter *sc) |
| { |
| /* |
| * Initialize link parameters structure variables |
| * It is recommended to turn off RX FC for jumbo frames |
| * for better performance |
| */ |
| if (CHIP_IS_E1x(sc) && (sc->mtu > 5000)) { |
| sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_TX; |
| } else { |
| sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_BOTH; |
| } |
| } |
| |
| static void |
| bxe_calc_fc_adv(struct bxe_adapter *sc) |
| { |
| uint8_t cfg_idx = bxe_get_link_cfg_idx(sc); |
| switch (sc->link_vars.ieee_fc & |
| MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) { |
| case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE: |
| default: |
| sc->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause | |
| ADVERTISED_Pause); |
| break; |
| |
| case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH: |
| sc->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause | |
| ADVERTISED_Pause); |
| break; |
| |
| case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC: |
| sc->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause; |
| break; |
| } |
| } |
| |
| static uint16_t |
| bxe_get_mf_speed(struct bxe_adapter *sc) |
| { |
| uint16_t line_speed = sc->link_vars.line_speed; |
| if (IS_MF(sc)) { |
| uint16_t maxCfg = |
| bxe_extract_max_cfg(sc, sc->devinfo.mf_info.mf_config[SC_VN(sc)]); |
| |
| /* calculate the current MAX line speed limit for the MF devices */ |
| if (IS_MF_SI(sc)) { |
| line_speed = (line_speed * maxCfg) / 100; |
| } else { /* SD mode */ |
| uint16_t vn_max_rate = maxCfg * 100; |
| |
| if (vn_max_rate < line_speed) { |
| line_speed = vn_max_rate; |
| } |
| } |
| } |
| |
| return (line_speed); |
| } |
| |
| static void |
| bxe_fill_report_data(struct bxe_adapter *sc, |
| struct bxe_link_report_data *data) |
| { |
| uint16_t line_speed = bxe_get_mf_speed(sc); |
| |
| memset(data, 0, sizeof(*data)); |
| |
| /* fill the report data with the effective line speed */ |
| data->line_speed = line_speed; |
| |
| /* Link is down */ |
| if (!sc->link_vars.link_up || (sc->flags & BXE_MF_FUNC_DIS)) { |
| bxe_set_bit(BXE_LINK_REPORT_LINK_DOWN, &data->link_report_flags); |
| } |
| |
| /* Full DUPLEX */ |
| if (sc->link_vars.duplex == DUPLEX_FULL) { |
| bxe_set_bit(BXE_LINK_REPORT_FULL_DUPLEX, &data->link_report_flags); |
| } |
| |
| /* Rx Flow Control is ON */ |
| if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_RX) { |
| bxe_set_bit(BXE_LINK_REPORT_RX_FC_ON, &data->link_report_flags); |
| } |
| |
| /* Tx Flow Control is ON */ |
| if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) { |
| bxe_set_bit(BXE_LINK_REPORT_TX_FC_ON, &data->link_report_flags); |
| } |
| } |
| |
| /* report link status to OS, should be called under phy_lock */ |
| static void |
| bxe_link_report_locked(struct bxe_adapter *sc) |
| { |
| |
| struct bxe_link_report_data cur_data; |
| |
| /* reread mf_cfg */ |
| if (IS_PF(sc) && !CHIP_IS_E1(sc)) { |
| bxe_read_mf_cfg(sc); |
| } |
| |
| /* Read the current link report info */ |
| bxe_fill_report_data(sc, &cur_data); |
| |
| /* Don't report link down or exactly the same link status twice */ |
| if (!memcmp(&cur_data, &sc->last_reported_link, sizeof(cur_data)) || |
| (bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN, |
| &sc->last_reported_link.link_report_flags) && |
| bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN, |
| &cur_data.link_report_flags))) { |
| return; |
| } |
| |
| sc->link_cnt++; |
| |
| /* report new link params and remember the state for the next time */ |
| memcpy(&sc->last_reported_link, &cur_data, sizeof(cur_data)); |
| |
| if (bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN, |
| &cur_data.link_report_flags)) { |
| //if_link_state_change(sc->ifp, LINK_STATE_DOWN); |
| BLOGI(sc, "NIC Link is Down\n"); |
| } else { |
| const char *duplex; |
| const char *flow; |
| |
| if (bxe_test_and_clear_bit(BXE_LINK_REPORT_FULL_DUPLEX, |
| &cur_data.link_report_flags)) { |
| duplex = "full"; |
| } else { |
| duplex = "half"; |
| } |
| |
| /* |
| * Handle the FC at the end so that only these flags would be |
| * possibly set. This way we may easily check if there is no FC |
| * enabled. |
| */ |
| if (cur_data.link_report_flags) { |
| if (bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON, |
| &cur_data.link_report_flags) && |
| bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON, |
| &cur_data.link_report_flags)) { |
| flow = "ON - receive & transmit"; |
| } else if (bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON, |
| &cur_data.link_report_flags) && |
| !bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON, |
| &cur_data.link_report_flags)) { |
| flow = "ON - receive"; |
| } else if (!bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON, |
| &cur_data.link_report_flags) && |
| bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON, |
| &cur_data.link_report_flags)) { |
| flow = "ON - transmit"; |
| } else { |
| flow = "none"; /* possible? */ |
| } |
| } else { |
| flow = "none"; |
| } |
| |
| //if_link_state_change(sc->ifp, LINK_STATE_UP); |
| BLOGI(sc, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n", |
| cur_data.line_speed, duplex, flow); |
| } |
| } |
| |
| static void |
| bxe_link_report(struct bxe_adapter *sc) |
| { |
| BXE_PHY_LOCK(sc); |
| bxe_link_report_locked(sc); |
| BXE_PHY_UNLOCK(sc); |
| } |
| |
| static void |
| bxe_link_status_update(struct bxe_adapter *sc) |
| { |
| if (sc->state != BXE_STATE_OPEN) { |
| return; |
| } |
| |
| #if 0 |
| /* read updated dcb configuration */ |
| if (IS_PF(sc)) |
| bxe_dcbx_pmf_update(sc); |
| #endif |
| |
| if (IS_PF(sc) && !CHIP_REV_IS_SLOW(sc)) { |
| elink_link_status_update(&sc->link_params, &sc->link_vars); |
| } else { |
| sc->port.supported[0] |= (ELINK_SUPPORTED_10baseT_Half | |
| ELINK_SUPPORTED_10baseT_Full | |
| ELINK_SUPPORTED_100baseT_Half | |
| ELINK_SUPPORTED_100baseT_Full | |
| ELINK_SUPPORTED_1000baseT_Full | |
| ELINK_SUPPORTED_2500baseX_Full | |
| ELINK_SUPPORTED_10000baseT_Full | |
| ELINK_SUPPORTED_TP | |
| ELINK_SUPPORTED_FIBRE | |
| ELINK_SUPPORTED_Autoneg | |
| ELINK_SUPPORTED_Pause | |
| ELINK_SUPPORTED_Asym_Pause); |
| sc->port.advertising[0] = sc->port.supported[0]; |
| |
| sc->link_params.sc = sc; |
| sc->link_params.port = SC_PORT(sc); |
| sc->link_params.req_duplex[0] = DUPLEX_FULL; |
| sc->link_params.req_flow_ctrl[0] = ELINK_FLOW_CTRL_NONE; |
| sc->link_params.req_line_speed[0] = SPEED_10000; |
| sc->link_params.speed_cap_mask[0] = 0x7f0000; |
| sc->link_params.switch_cfg = ELINK_SWITCH_CFG_10G; |
| |
| if (CHIP_REV_IS_FPGA(sc)) { |
| sc->link_vars.mac_type = ELINK_MAC_TYPE_EMAC; |
| sc->link_vars.line_speed = ELINK_SPEED_1000; |
| sc->link_vars.link_status = (LINK_STATUS_LINK_UP | |
| LINK_STATUS_SPEED_AND_DUPLEX_1000TFD); |
| } else { |
| sc->link_vars.mac_type = ELINK_MAC_TYPE_BMAC; |
| sc->link_vars.line_speed = ELINK_SPEED_10000; |
| sc->link_vars.link_status = (LINK_STATUS_LINK_UP | |
| LINK_STATUS_SPEED_AND_DUPLEX_10GTFD); |
| } |
| |
| sc->link_vars.link_up = 1; |
| |
| sc->link_vars.duplex = DUPLEX_FULL; |
| sc->link_vars.flow_ctrl = ELINK_FLOW_CTRL_NONE; |
| |
| if (IS_PF(sc)) { |
| REG_WR(sc, NIG_REG_EGRESS_DRAIN0_MODE + sc->link_params.port*4, 0); |
| bxe_stats_handle(sc, STATS_EVENT_LINK_UP); |
| bxe_link_report(sc); |
| } |
| } |
| |
| if (IS_PF(sc)) { |
| if (sc->link_vars.link_up) { |
| bxe_stats_handle(sc, STATS_EVENT_LINK_UP); |
| } else { |
| bxe_stats_handle(sc, STATS_EVENT_STOP); |
| } |
| bxe_link_report(sc); |
| } else { |
| bxe_link_report(sc); |
| bxe_stats_handle(sc, STATS_EVENT_LINK_UP); |
| } |
| } |
| |
| static int |
| bxe_initial_phy_init(struct bxe_adapter *sc, |
| int load_mode) |
| { |
| int rc, cfg_idx = bxe_get_link_cfg_idx(sc); |
| uint16_t req_line_speed = sc->link_params.req_line_speed[cfg_idx]; |
| struct elink_params *lp = &sc->link_params; |
| |
| bxe_set_requested_fc(sc); |
| |
| if (CHIP_REV_IS_SLOW(sc)) { |
| uint32_t bond = CHIP_BOND_ID(sc); |
| uint32_t feat = 0; |
| |
| if (CHIP_IS_E2(sc) && CHIP_IS_MODE_4_PORT(sc)) { |
| feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC; |
| } else if (bond & 0x4) { |
| if (CHIP_IS_E3(sc)) { |
| feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_XMAC; |
| } else { |
| feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC; |
| } |
| } else if (bond & 0x8) { |
| if (CHIP_IS_E3(sc)) { |
| feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_UMAC; |
| } else { |
| feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC; |
| } |
| } |
| |
| /* disable EMAC for E3 and above */ |
| if (bond & 0x2) { |
| feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC; |
| } |
| |
| sc->link_params.feature_config_flags |= feat; |
| } |
| |
| BXE_PHY_LOCK(sc); |
| |
| if (load_mode == LOAD_DIAG) { |
| lp->loopback_mode = ELINK_LOOPBACK_XGXS; |
| /* Prefer doing PHY loopback at 10G speed, if possible */ |
| if (lp->req_line_speed[cfg_idx] < ELINK_SPEED_10000) { |
| if (lp->speed_cap_mask[cfg_idx] & |
| PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) { |
| lp->req_line_speed[cfg_idx] = ELINK_SPEED_10000; |
| } else { |
| lp->req_line_speed[cfg_idx] = ELINK_SPEED_1000; |
| } |
| } |
| } |
| |
| if (load_mode == LOAD_LOOPBACK_EXT) { |
| lp->loopback_mode = ELINK_LOOPBACK_EXT; |
| } |
| |
| rc = elink_phy_init(&sc->link_params, &sc->link_vars); |
| |
| BXE_PHY_UNLOCK(sc); |
| |
| bxe_calc_fc_adv(sc); |
| |
| if (sc->link_vars.link_up) { |
| bxe_stats_handle(sc, STATS_EVENT_LINK_UP); |
| bxe_link_report(sc); |
| } |
| |
| if (!CHIP_REV_IS_SLOW(sc)) { |
| bxe_periodic_start(sc); |
| } |
| |
| sc->link_params.req_line_speed[cfg_idx] = req_line_speed; |
| return (rc); |
| } |
| |
| /* must be called with sc locked. We don't need finer grained locking, |
| * I think, because adding addresses is not that frequent. |
| */ |
| static int |
| bxe_init_mcast_macs_list(struct bxe_adapter *sc, |
| struct ecore_mcast_ramrod_params *p) |
| { |
| if_t ifp = sc->ifp; |
| int mc_count = 0; |
| int i; |
| struct ecore_mcast_list_elem *mc_mac; |
| struct netaddr *m = ifp->maddr; |
| |
| mc_count = ifp->nmaddr; |
| /* should we enforce one? */ |
| ECORE_LIST_INIT(&p->mcast_list); |
| p->mcast_list_len = 0; |
| |
| if (!mc_count) { |
| return (0); |
| } |
| |
| mc_mac = kzmalloc(sizeof(*mc_mac) * mc_count, KMALLOC_WAIT); |
| if (!mc_mac) { |
| BLOGE(sc, "Failed to allocate temp mcast list\n"); |
| return (-1); |
| } |
| |
| for(i=0; i< mc_count; i++) { |
| if (!m) { |
| warn("Ran out of m's!"); |
| break; |
| } |
| bcopy(m->addr, mc_mac->mac, ETH_ADDR_LEN); |
| ECORE_LIST_PUSH_TAIL(&mc_mac->link, &p->mcast_list); |
| |
| BLOGD(sc, DBG_LOAD, |
| "Setting MCAST %02X:%02X:%02X:%02X:%02X:%02X\n", |
| mc_mac->mac[0], mc_mac->mac[1], mc_mac->mac[2], |
| mc_mac->mac[3], mc_mac->mac[4], mc_mac->mac[5]); |
| |
| mc_mac++; |
| m = m->next; |
| } |
| |
| p->mcast_list_len = mc_count; |
| |
| return (0); |
| } |
| |
| static void |
| bxe_free_mcast_macs_list(struct ecore_mcast_ramrod_params *p) |
| { |
| struct ecore_mcast_list_elem *mc_mac = |
| ECORE_LIST_FIRST_ENTRY(&p->mcast_list, |
| struct ecore_mcast_list_elem, |
| link); |
| |
| if (mc_mac) { |
| /* only a single free as all mc_macs are in the same heap array */ |
| kfree(mc_mac); |
| } |
| } |
| |
| static int |
| bxe_set_mc_list(struct bxe_adapter *sc) |
| { |
| struct ecore_mcast_ramrod_params rparam = { NULL }; |
| int rc = 0; |
| |
| rparam.mcast_obj = &sc->mcast_obj; |
| |
| BXE_MCAST_LOCK(sc); |
| |
| /* first, clear all configured multicast MACs */ |
| rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL); |
| if (rc < 0) { |
| BLOGE(sc, "Failed to clear multicast configuration: %d\n", rc); |
| return (rc); |
| } |
| |
| /* configure a new MACs list */ |
| rc = bxe_init_mcast_macs_list(sc, &rparam); |
| if (rc) { |
| BLOGE(sc, "Failed to create mcast MACs list (%d)\n", rc); |
| BXE_MCAST_UNLOCK(sc); |
| return (rc); |
| } |
| |
| /* Now add the new MACs */ |
| rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_ADD); |
| if (rc < 0) { |
| BLOGE(sc, "Failed to set new mcast config (%d)\n", rc); |
| } |
| |
| bxe_free_mcast_macs_list(&rparam); |
| |
| BXE_MCAST_UNLOCK(sc); |
| |
| return (rc); |
| } |
| |
| static int |
| bxe_set_uc_list(struct bxe_adapter *sc) |
| { |
| if_t ifp = sc->ifp; |
| struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj; |
| struct ifaddr *ifa; |
| unsigned long ramrod_flags = 0; |
| int rc; |
| |
| assert(0); |
| return -1; |
| #if 0 // AKAROS_PORT we never call this |
| qlock(&sc->alock); |
| /* first schedule a cleanup up of old configuration */ |
| rc = bxe_del_all_macs(sc, mac_obj, ECORE_UC_LIST_MAC, FALSE); |
| if (rc < 0) { |
| qunlock(&sc->alock); |
| BLOGE(sc, "Failed to schedule delete of all ETH MACs (%d)\n", rc); |
| return (rc); |
| } |
| |
| ifa = if_getifaddr(ifp); /* XXX Is this structure */ |
| while (ifa) { |
| if (ifa->ifa_addr->sa_family != AF_LINK) { |
| ifa = TAILQ_NEXT(ifa, ifa_link); |
| continue; |
| } |
| |
| rc = bxe_set_mac_one(sc, (uint8_t *)LLADDR((struct sockaddr_dl *)ifa->ifa_addr), |
| mac_obj, TRUE, ECORE_UC_LIST_MAC, &ramrod_flags); |
| if (rc == -EEXIST) { |
| BLOGD(sc, DBG_SP, "Failed to schedule ADD operations (EEXIST)\n"); |
| /* do not treat adding same MAC as an error */ |
| rc = 0; |
| } else if (rc < 0) { |
| BLOGE(sc, "Failed to schedule ADD operations (%d)\n", rc); |
| qunlock(&sc->alock); |
| return (rc); |
| } |
| |
| ifa = TAILQ_NEXT(ifa, ifa_link); |
| } |
| |
| qunlock(&sc->alock); |
| |
| /* Execute the pending commands */ |
| __set_bit(RAMROD_CONT, &ramrod_flags); |
| return (bxe_set_mac_one(sc, NULL, mac_obj, FALSE /* don't care */, |
| ECORE_UC_LIST_MAC, &ramrod_flags)); |
| #endif |
| } |
| |
| static void |
| bxe_handle_rx_mode_tq(void *context, |
| int pending) |
| { |
| struct bxe_adapter *sc = (struct bxe_adapter *)context; |
| if_t ifp = sc->ifp; |
| uint32_t rx_mode = BXE_RX_MODE_NORMAL; |
| |
| BXE_CORE_LOCK(sc); |
| |
| if (sc->state != BXE_STATE_OPEN) { |
| BLOGD(sc, DBG_SP, "state is %x, returning\n", sc->state); |
| BXE_CORE_UNLOCK(sc); |
| return; |
| } |
| |
| BLOGD(sc, DBG_SP, "if_flags(ifp)=0x%x\n", if_getflags(sc->ifp)); |
| assert(0); |
| #if 0 // AKAROS_PORT |
| if (if_getflags(ifp) & IFF_PROMISC) { |
| rx_mode = BXE_RX_MODE_PROMISC; |
| } else if ((if_getflags(ifp) & IFF_ALLMULTI) || |
| ((if_getamcount(ifp) > BXE_MAX_MULTICAST) && |
| CHIP_IS_E1(sc))) { |
| rx_mode = BXE_RX_MODE_ALLMULTI; |
| } else { |
| if (IS_PF(sc)) { |
| /* some multicasts */ |
| if (bxe_set_mc_list(sc) < 0) { |
| rx_mode = BXE_RX_MODE_ALLMULTI; |
| } |
| if (bxe_set_uc_list(sc) < 0) { |
| rx_mode = BXE_RX_MODE_PROMISC; |
| } |
| } |
| #if 0 |
| else { |
| /* |
| * Configuring mcast to a VF involves sleeping (when we |
| * wait for the PF's response). Since this function is |
| * called from a non sleepable context we must schedule |
| * a work item for this purpose |
| */ |
| bxe_set_bit(BXE_SP_RTNL_VFPF_MCAST, &sc->sp_rtnl_state); |
| schedule_delayed_work(&sc->sp_rtnl_task, 0); |
| } |
| #endif |
| } |
| #endif |
| sc->rx_mode = rx_mode; |
| |
| /* schedule the rx_mode command */ |
| if (bxe_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) { |
| BLOGD(sc, DBG_LOAD, "Scheduled setting rx_mode with ECORE...\n"); |
| bxe_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state); |
| BXE_CORE_UNLOCK(sc); |
| return; |
| } |
| |
| if (IS_PF(sc)) { |
| bxe_set_storm_rx_mode(sc); |
| } |
| #if 0 |
| else { |
| /* |
| * Configuring mcast to a VF involves sleeping (when we |
| * wait for the PF's response). Since this function is |
| * called from a non sleepable context we must schedule |
| * a work item for this purpose |
| */ |
| bxe_set_bit(BXE_SP_RTNL_VFPF_STORM_RX_MODE, &sc->sp_rtnl_state); |
| schedule_delayed_work(&sc->sp_rtnl_task, 0); |
| } |
| #endif |
| |
| BXE_CORE_UNLOCK(sc); |
| } |
| |
| static void |
| bxe_set_rx_mode(struct bxe_adapter *sc) |
| { |
| // taskqueue_enqueue(sc->rx_mode_tq, &sc->rx_mode_tq_task); |
| } |
| |
| /* update flags in shmem */ |
| static void |
| bxe_update_drv_flags(struct bxe_adapter *sc, |
| uint32_t flags, |
| uint32_t set) |
| { |
| uint32_t drv_flags; |
| |
| if (SHMEM2_HAS(sc, drv_flags)) { |
| bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS); |
| drv_flags = SHMEM2_RD(sc, drv_flags); |
| |
| if (set) { |
| SET_FLAGS(drv_flags, flags); |
| } else { |
| RESET_FLAGS(drv_flags, flags); |
| } |
| |
| SHMEM2_WR(sc, drv_flags, drv_flags); |
| BLOGD(sc, DBG_LOAD, "drv_flags 0x%08x\n", drv_flags); |
| |
| bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS); |
| } |
| } |
| |
| /* periodic timer callout routine, only runs when the interface is up */ |
| |
| static void bxe_alarm_handler(struct alarm_waiter *waiter) |
| { |
| struct timer_chain *tchain = &per_cpu_info[0].tchain; |
| |
| struct bxe_adapter *sc = (struct bxe_adapter *) waiter->data; |
| int i; |
| |
| if (!BXE_CORE_TRYLOCK(sc)) { |
| /* just bail and try again next time */ |
| |
| if ((sc->state == BXE_STATE_OPEN) && |
| (atomic_read(&sc->periodic_flags) == PERIODIC_GO)) { |
| goto done; |
| |
| } |
| |
| return; |
| } |
| |
| if ((sc->state != BXE_STATE_OPEN) || |
| (atomic_read(&sc->periodic_flags) == PERIODIC_STOP)) { |
| BLOGW(sc, "periodic callout exit (state=0x%x)\n", sc->state); |
| BXE_CORE_UNLOCK(sc); |
| goto done; |
| } |
| |
| /* Check for TX timeouts on any fastpath. */ |
| FOR_EACH_QUEUE(sc, i) { |
| if (bxe_watchdog(sc, &sc->fp[i]) != 0) { |
| /* Ruh-Roh, chip was reset! */ |
| break; |
| } |
| } |
| |
| if (!CHIP_REV_IS_SLOW(sc)) { |
| /* |
| * This barrier is needed to ensure the ordering between the writing |
| * to the sc->port.pmf in the bxe_nic_load() or bxe_pmf_update() and |
| * the reading here. |
| */ |
| mb(); |
| if (sc->port.pmf) { |
| BXE_PHY_LOCK(sc); |
| elink_period_func(&sc->link_params, &sc->link_vars); |
| BXE_PHY_UNLOCK(sc); |
| } |
| } |
| |
| if (IS_PF(sc) && !BXE_NOMCP(sc)) { |
| int mb_idx = SC_FW_MB_IDX(sc); |
| uint32_t drv_pulse; |
| uint32_t mcp_pulse; |
| |
| ++sc->fw_drv_pulse_wr_seq; |
| sc->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK; |
| |
| drv_pulse = sc->fw_drv_pulse_wr_seq; |
| bxe_drv_pulse(sc); |
| |
| mcp_pulse = (SHMEM_RD(sc, func_mb[mb_idx].mcp_pulse_mb) & |
| MCP_PULSE_SEQ_MASK); |
| |
| /* |
| * The delta between driver pulse and mcp response should |
| * be 1 (before mcp response) or 0 (after mcp response). |
| */ |
| if ((drv_pulse != mcp_pulse) && |
| (drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) { |
| /* someone lost a heartbeat... */ |
| BLOGE(sc, "drv_pulse (0x%x) != mcp_pulse (0x%x)\n", |
| drv_pulse, mcp_pulse); |
| } |
| } |
| |
| /* state is BXE_STATE_OPEN */ |
| bxe_stats_handle(sc, STATS_EVENT_UPDATE); |
| |
| #if 0 |
| /* sample VF bulletin board for new posts from PF */ |
| if (IS_VF(sc)) { |
| bxe_sample_bulletin(sc); |
| } |
| #endif |
| |
| BXE_CORE_UNLOCK(sc); |
| |
| if ((sc->state == BXE_STATE_OPEN) && |
| (atomic_read(&sc->periodic_flags) == PERIODIC_GO)) { |
| goto done; |
| } |
| // we're not restarting it. That's how it ends. |
| return; |
| /* schedule the next periodic callout */ |
| done: |
| __reset_alarm_rel(tchain, waiter, bxe_periodic_alarm); |
| } |
| |
| static void |
| bxe_periodic_start(struct bxe_adapter *sc) |
| { |
| struct timer_chain *tchain = &per_cpu_info[0].tchain; |
| |
| if (! sc->waiter) { |
| sc->waiter = kzmalloc(sizeof(struct alarm_waiter), KMALLOC_WAIT); |
| init_awaiter(sc->waiter, bxe_alarm_handler); |
| } |
| reset_alarm_rel(tchain, sc->waiter, bxe_periodic_alarm); |
| } |
| |
| static void |
| bxe_periodic_stop(struct bxe_adapter *sc) |
| { |
| atomic_set(&sc->periodic_flags, PERIODIC_STOP); |
| } |
| |
| /* start the controller */ |
| static __noinline int |
| bxe_nic_load(struct bxe_adapter *sc, |
| int load_mode) |
| { |
| uint32_t val; |
| int load_code = 0; |
| int i, rc = 0; |
| |
| BXE_CORE_LOCK_ASSERT(sc); |
| |
| BLOGD(sc, DBG_LOAD, "Starting NIC load...\n"); |
| |
| sc->state = BXE_STATE_OPENING_WAITING_LOAD; |
| |
| if (IS_PF(sc)) { |
| /* must be called before memory allocation and HW init */ |
| bxe_ilt_set_info(sc); |
| } |
| |
| // sc->last_reported_link_state = LINK_STATE_UNKNOWN; |
| |
| bxe_set_fp_rx_buf_size(sc); |
| |
| if (bxe_alloc_fp_buffers(sc) != 0) { |
| BLOGE(sc, "Failed to allocate fastpath memory\n"); |
| sc->state = BXE_STATE_CLOSED; |
| rc = ENOMEM; |
| goto bxe_nic_load_error0; |
| } |
| |
| |
| if (bxe_alloc_mem(sc) != 0) { |
| sc->state = BXE_STATE_CLOSED; |
| rc = ENOMEM; |
| goto bxe_nic_load_error0; |
| } |
| |
| if (bxe_alloc_fw_stats_mem(sc) != 0) { |
| sc->state = BXE_STATE_CLOSED; |
| rc = ENOMEM; |
| goto bxe_nic_load_error0; |
| } |
| |
| if (IS_PF(sc)) { |
| /* set pf load just before approaching the MCP */ |
| bxe_set_pf_load(sc); |
| |
| /* if MCP exists send load request and analyze response */ |
| if (!BXE_NOMCP(sc)) { |
| /* attempt to load pf */ |
| if (bxe_nic_load_request(sc, &load_code) != 0) { |
| sc->state = BXE_STATE_CLOSED; |
| rc = ENXIO; |
| goto bxe_nic_load_error1; |
| } |
| |
| /* what did the MCP say? */ |
| if (bxe_nic_load_analyze_req(sc, load_code) != 0) { |
| bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); |
| sc->state = BXE_STATE_CLOSED; |
| rc = ENXIO; |
| goto bxe_nic_load_error2; |
| } |
| } else { |
| BLOGI(sc, "Device has no MCP!\n"); |
| load_code = bxe_nic_load_no_mcp(sc); |
| } |
| |
| /* mark PMF if applicable */ |
| bxe_nic_load_pmf(sc, load_code); |
| |
| /* Init Function state controlling object */ |
| bxe_init_func_obj(sc); |
| |
| /* Initialize HW */ |
| if (bxe_init_hw(sc, load_code) != 0) { |
| BLOGE(sc, "HW init failed\n"); |
| bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); |
| sc->state = BXE_STATE_CLOSED; |
| rc = ENXIO; |
| goto bxe_nic_load_error2; |
| } |
| } |
| |
| /* attach interrupts */ |
| if (bxe_interrupt_attach(sc) != 0) { |
| sc->state = BXE_STATE_CLOSED; |
| rc = ENXIO; |
| goto bxe_nic_load_error2; |
| } |
| |
| bxe_nic_init(sc, load_code); |
| |
| /* Init per-function objects */ |
| if (IS_PF(sc)) { |
| bxe_init_objs(sc); |
| // XXX bxe_iov_nic_init(sc); |
| |
| /* set AFEX default VLAN tag to an invalid value */ |
| sc->devinfo.mf_info.afex_def_vlan_tag = -1; |
| // XXX bxe_nic_load_afex_dcc(sc, load_code); |
| |
| sc->state = BXE_STATE_OPENING_WAITING_PORT; |
| rc = bxe_func_start(sc); |
| if (rc) { |
| BLOGE(sc, "Function start failed!\n"); |
| bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); |
| sc->state = BXE_STATE_ERROR; |
| goto bxe_nic_load_error3; |
| } |
| |
| /* send LOAD_DONE command to MCP */ |
| if (!BXE_NOMCP(sc)) { |
| load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0); |
| if (!load_code) { |
| BLOGE(sc, "MCP response failure, aborting\n"); |
| sc->state = BXE_STATE_ERROR; |
| rc = ENXIO; |
| goto bxe_nic_load_error3; |
| } |
| } |
| |
| rc = bxe_setup_leading(sc); |
| if (rc) { |
| BLOGE(sc, "Setup leading failed!\n"); |
| sc->state = BXE_STATE_ERROR; |
| goto bxe_nic_load_error3; |
| } |
| |
| FOR_EACH_NONDEFAULT_ETH_QUEUE(sc, i) { |
| rc = bxe_setup_queue(sc, &sc->fp[i], FALSE); |
| if (rc) { |
| BLOGE(sc, "Queue(%d) setup failed\n", i); |
| sc->state = BXE_STATE_ERROR; |
| goto bxe_nic_load_error3; |
| } |
| } |
| |
| rc = bxe_init_rss_pf(sc); |
| if (rc) { |
| BLOGE(sc, "PF RSS init failed\n"); |
| sc->state = BXE_STATE_ERROR; |
| goto bxe_nic_load_error3; |
| } |
| } |
| /* XXX VF */ |
| #if 0 |
| else { /* VF */ |
| FOR_EACH_ETH_QUEUE(sc, i) { |
| rc = bxe_vfpf_setup_q(sc, i); |
| if (rc) { |
| BLOGE(sc, "Queue(%d) setup failed\n", i); |
| sc->state = BXE_STATE_ERROR; |
| goto bxe_nic_load_error3; |
| } |
| } |
| } |
| #endif |
| |
| /* now when Clients are configured we are ready to work */ |
| sc->state = BXE_STATE_OPEN; |
| |
| /* Configure a ucast MAC */ |
| if (IS_PF(sc)) { |
| rc = bxe_set_eth_mac(sc, TRUE); |
| } |
| #if 0 |
| else { /* IS_VF(sc) */ |
| rc = bxe_vfpf_set_mac(sc); |
| } |
| #endif |
| if (rc) { |
| BLOGE(sc, "Setting Ethernet MAC failed\n"); |
| sc->state = BXE_STATE_ERROR; |
| goto bxe_nic_load_error3; |
| } |
| |
| #if 0 |
| if (IS_PF(sc) && sc->pending_max) { |
| /* for AFEX */ |
| bxe_update_max_mf_config(sc, sc->pending_max); |
| sc->pending_max = 0; |
| } |
| #endif |
| |
| if (sc->port.pmf) { |
| rc = bxe_initial_phy_init(sc, /* XXX load_mode */LOAD_OPEN); |
| if (rc) { |
| sc->state = BXE_STATE_ERROR; |
| goto bxe_nic_load_error3; |
| } |
| } |
| |
| sc->link_params.feature_config_flags &= |
| ~ELINK_FEATURE_CONFIG_BOOT_FROM_SAN; |
| |
| /* start fast path */ |
| |
| /* Initialize Rx filter */ |
| bxe_set_rx_mode(sc); |
| |
| /* start the Tx */ |
| switch (/* XXX load_mode */LOAD_OPEN) { |
| case LOAD_NORMAL: |
| case LOAD_OPEN: |
| break; |
| |
| case LOAD_DIAG: |
| case LOAD_LOOPBACK_EXT: |
| sc->state = BXE_STATE_DIAG; |
| break; |
| |
| default: |
| break; |
| } |
| |
| if (sc->port.pmf) { |
| bxe_update_drv_flags(sc, 1 << DRV_FLAGS_PORT_MASK, 0); |
| } else { |
| bxe_link_status_update(sc); |
| } |
| |
| /* start the periodic timer alarm */ |
| bxe_periodic_start(sc); |
| |
| if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) { |
| /* mark driver is loaded in shmem2 */ |
| val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]); |
| SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)], |
| (val | |
| DRV_FLAGS_CAPABILITIES_LOADED_SUPPORTED | |
| DRV_FLAGS_CAPABILITIES_LOADED_L2)); |
| } |
| |
| /* wait for all pending SP commands to complete */ |
| if (IS_PF(sc) && !bxe_wait_sp_comp(sc, ~0x0UL)) { |
| BLOGE(sc, "Timeout waiting for all SPs to complete!\n"); |
| bxe_periodic_stop(sc); |
| bxe_nic_unload(sc, UNLOAD_CLOSE, FALSE); |
| return (ENXIO); |
| } |
| |
| #if 0 |
| /* If PMF - send ADMIN DCBX msg to MFW to initiate DCBX FSM */ |
| if (sc->port.pmf && (sc->state != BXE_STATE_DIAG)) { |
| bxe_dcbx_init(sc, FALSE); |
| } |
| #endif |
| |
| /* Tell the stack the driver is running! */ |
| //if_setdrvflags(sc->ifp, IFF_DRV_RUNNING); |
| |
| BLOGD(sc, DBG_LOAD, "NIC successfully loaded\n"); |
| |
| return (0); |
| |
| bxe_nic_load_error3: |
| |
| if (IS_PF(sc)) { |
| bxe_int_disable_sync(sc, 1); |
| |
| /* clean out queued objects */ |
| bxe_squeeze_objects(sc); |
| } |
| |
| bxe_interrupt_detach(sc); |
| |
| bxe_nic_load_error2: |
| |
| if (IS_PF(sc) && !BXE_NOMCP(sc)) { |
| bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0); |
| bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0); |
| } |
| |
| sc->port.pmf = 0; |
| |
| bxe_nic_load_error1: |
| |
| /* clear pf_load status, as it was already set */ |
| if (IS_PF(sc)) { |
| bxe_clear_pf_load(sc); |
| } |
| |
| bxe_nic_load_error0: |
| |
| bxe_free_fw_stats_mem(sc); |
| bxe_free_fp_buffers(sc); |
| bxe_free_mem(sc); |
| |
| return (rc); |
| } |
| |
| static int |
| bxe_init_locked(struct bxe_adapter *sc) |
| { |
| int other_engine = SC_PATH(sc) ? 0 : 1; |
| uint8_t other_load_status, load_status; |
| uint8_t global = FALSE; |
| int rc; |
| |
| BXE_CORE_LOCK_ASSERT(sc); |
| |
| /* check if the driver is already running */ |
| // if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) { |
| // BLOGD(sc, DBG_LOAD, "Init called while driver is running!\n"); |
| // return (0); |
| // } |
| |
| bxe_set_power_state(sc, PCI_PM_D0); |
| |
| /* |
| * If parity occurred during the unload, then attentions and/or |
| * RECOVERY_IN_PROGRES may still be set. If so we want the first function |
| * loaded on the current engine to complete the recovery. Parity recovery |
| * is only relevant for PF driver. |
| */ |
| if (IS_PF(sc)) { |
| other_load_status = bxe_get_load_status(sc, other_engine); |
| load_status = bxe_get_load_status(sc, SC_PATH(sc)); |
| |
| if (!bxe_reset_is_done(sc, SC_PATH(sc)) || |
| bxe_chk_parity_attn(sc, &global, TRUE)) { |
| do { |
| /* |
| * If there are attentions and they are in global blocks, set |
| * the GLOBAL_RESET bit regardless whether it will be this |
| * function that will complete the recovery or not. |
| */ |
| if (global) { |
| bxe_set_reset_global(sc); |
| } |
| |
| /* |
| * Only the first function on the current engine should try |
| * to recover in open. In case of attentions in global blocks |
| * only the first in the chip should try to recover. |
| */ |
| if ((!load_status && (!global || !other_load_status)) && |
| bxe_trylock_leader_lock(sc) && !bxe_leader_reset(sc)) { |
| BLOGI(sc, "Recovered during init\n"); |
| break; |
| } |
| |
| /* recovery has failed... */ |
| bxe_set_power_state(sc, PCI_PM_D3hot); |
| sc->recovery_state = BXE_RECOVERY_FAILED; |
| |
| BLOGE(sc, "Recovery flow hasn't properly " |
| "completed yet, try again later. " |
| "If you still see this message after a " |
| "few retries then power cycle is required.\n"); |
| |
| rc = ENXIO; |
| goto bxe_init_locked_done; |
| } while (0); |
| } |
| } |
| |
| sc->recovery_state = BXE_RECOVERY_DONE; |
| |
| rc = bxe_nic_load(sc, LOAD_OPEN); |
| |
| bxe_init_locked_done: |
| |
| if (rc) { |
| /* Tell the stack the driver is NOT running! */ |
| BLOGE(sc, "Initialization failed, " |
| "stack notified driver is NOT running!\n"); |
| // if_setdrvflagbits(sc->ifp, 0, IFF_DRV_RUNNING); |
| } |
| |
| return (rc); |
| } |
| |
| static int |
| bxe_stop_locked(struct bxe_adapter *sc) |
| { |
| BXE_CORE_LOCK_ASSERT(sc); |
| return (bxe_nic_unload(sc, UNLOAD_NORMAL, TRUE)); |
| } |
| |
| /* |
| * Handles controller initialization when called from an unlocked routine. |
| * ifconfig calls this function. |
| * |
| * Returns: |
| * void |
| */ |
| void bxe_init(void *xsc) |
| { |
| struct bxe_adapter *sc = (struct bxe_adapter *)xsc; |
| |
| BXE_CORE_LOCK(sc); |
| bxe_init_locked(sc); |
| BXE_CORE_UNLOCK(sc); |
| } |
| |
| static int |
| bxe_init_ifnet(struct bxe_adapter *sc) |
| { |
| #if 0 // AKAROS_PORT brho: can ignore, i think. bsd attachment stuff |
| if_t ifp; |
| int capabilities; |
| |
| /* ifconfig entrypoint for media type/status reporting */ |
| ifmedia_init(&sc->ifmedia, IFM_IMASK, |
| bxe_ifmedia_update, |
| bxe_ifmedia_status); |
| |
| /* set the default interface values */ |
| ifmedia_add(&sc->ifmedia, (IFM_ETHER | IFM_FDX | sc->media), 0, NULL); |
| ifmedia_add(&sc->ifmedia, (IFM_ETHER | IFM_AUTO), 0, NULL); |
| ifmedia_set(&sc->ifmedia, (IFM_ETHER | IFM_AUTO)); |
| |
| sc->ifmedia.ifm_media = sc->ifmedia.ifm_cur->ifm_media; /* XXX ? */ |
| |
| /* allocate the ifnet structure */ |
| if ((ifp = if_gethandle(IFT_ETHER)) == NULL) { |
| BLOGE(sc, "Interface allocation failed!\n"); |
| return (ENXIO); |
| } |
| |
| if_setsoftc(ifp, sc); |
| if_initname(ifp, device_get_name(sc->pcidev), device_get_unit(sc->pcidev)); |
| if_setflags(ifp, (IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST)); |
| if_setioctlfn(ifp, bxe_ioctl); |
| if_setstartfn(ifp, bxe_tx_start); |
| if_setgetcounterfn(ifp, bxe_get_counter); |
| #if __FreeBSD_version >= 800000 |
| if_settransmitfn(ifp, bxe_tx_mq_start); |
| if_setqflushfn(ifp, bxe_mq_flush); |
| #endif |
| #ifdef FreeBSD8_0 |
| if_settimer(ifp, 0); |
| #endif |
| if_setinitfn(ifp, bxe_init); |
| if_setmtu(ifp, sc->mtu); |
| if_sethwassist(ifp, (CSUM_IP | |
| CSUM_TCP | |
| CSUM_UDP | |
| CSUM_TSO | |
| CSUM_TCP_IPV6 | |
| CSUM_UDP_IPV6)); |
| |
| capabilities = |
| #if __FreeBSD_version < 700000 |
| (IFCAP_VLAN_MTU | |
| IFCAP_VLAN_HWTAGGING | |
| IFCAP_HWCSUM | |
| IFCAP_JUMBO_MTU | |
| IFCAP_LRO); |
| #else |
| (IFCAP_VLAN_MTU | |
| IFCAP_VLAN_HWTAGGING | |
| IFCAP_VLAN_HWTSO | |
| IFCAP_VLAN_HWFILTER | |
| IFCAP_VLAN_HWCSUM | |
| IFCAP_HWCSUM | |
| IFCAP_JUMBO_MTU | |
| IFCAP_LRO | |
| IFCAP_TSO4 | |
| IFCAP_TSO6 | |
| IFCAP_WOL_MAGIC); |
| #endif |
| if_setcapabilitiesbit(ifp, capabilities, 0); /* XXX */ |
| if_setbaudrate(ifp, IF_Gbps(10)); |
| /* XXX */ |
| if_setsendqlen(ifp, sc->tx_ring_size); |
| if_setsendqready(ifp); |
| /* XXX */ |
| |
| sc->ifp = ifp; |
| |
| /* attach to the Ethernet interface list */ |
| ether_ifattach(ifp, sc->link_params.mac_addr); |
| #endif |
| return (0); |
| } |
| |
| static void |
| bxe_deallocate_bars(struct bxe_adapter *sc) |
| { |
| int i; |
| #if 0 // AKAROS_PORT brho: bsd bar code, can leave commented out |
| for (i = 0; i < MAX_BARS; i++) { |
| if (sc->bar[i].resource != NULL) { |
| bus_release_resource(sc->pcidev, |
| SYS_RES_MEMORY, |
| sc->bar[i].rid, |
| sc->bar[i].resource); |
| BLOGD(sc, DBG_LOAD, "Released PCI BAR%d [%02x] memory\n", |
| i, PCIR_BAR(i)); |
| } |
| } |
| #endif |
| } |
| |
| static int |
| bxe_allocate_bars(struct bxe_adapter *sc) |
| { |
| unsigned int flags; |
| int i; |
| physaddr_t mmio_paddr; |
| uint16_t pio_port; |
| memset(sc->bar, 0, sizeof(sc->bar)); |
| |
| for (i = 0; i < MAX_BARS; i++) { |
| |
| /* memory resources reside at BARs 0, 2, 4 */ |
| /* Run `pciconf -lb` to see mappings */ |
| if ((i != 0) && (i != 2) && (i != 4)) |
| continue; |
| |
| sc->bar[i].rid = PCIR_BAR(i); |
| |
| mmio_paddr = pci_get_membar(sc->pcidev, i); |
| if (!mmio_paddr) { |
| pio_port = pci_get_iobar(sc->pcidev, i); |
| if (!pio_port) { |
| /* This will trip on BAR 4. 1 and 3 were skipped earlier, since |
| * they are the second-parts of the MMIO64 addr. Not sure why 4 |
| * gets skipped. BSD seemed to think there was a memory |
| * resource there. */ |
| printk("BXE, skipping BAR %d\n", i); |
| continue; |
| } |
| sc->bar[i].handle = pio_port; |
| sc->bar[i].tag = X86_BUS_SPACE_IO; |
| printk("BXE: PIO mapped BAR %d, 0x%x\n", i, sc->bar[i].handle); |
| } else { |
| sc->bar[i].tag = X86_BUS_SPACE_MEM; |
| sc->bar[i].handle = vmap_pmem_nocache(mmio_paddr, |
| sc->pcidev->bar[i].mmio_sz); |
| if (!sc->bar[i].handle) { |
| printk("BXE: can't map %p for BAR %d\n", mmio_paddr, i); |
| continue; |
| } |
| printk("BXE: MMIO mapped BAR %d, %p -> %p\n", i, sc->bar[i].handle, |
| mmio_paddr); |
| /* Here's how to remove it, if you need to: */ |
| //vunmap_vmem(sc->bar[i].handle, sc->pcidev->bar[i].mmio_sz); |
| } |
| |
| |
| #if 0 // AKAROS_PORT brho: bsd bar code, can leave commented out |
| flags = RF_ACTIVE; |
| if (i == 0) { |
| flags |= RF_SHAREABLE; |
| } |
| |
| if ((sc->bar[i].resource = |
| bus_alloc_resource_any(sc->pcidev, |
| SYS_RES_MEMORY, |
| &sc->bar[i].rid, |
| flags)) == NULL) { |
| #if 0 |
| /* BAR4 doesn't exist for E1 */ |
| BLOGE(sc, "PCI BAR%d [%02x] memory allocation failed\n", |
| i, PCIR_BAR(i)); |
| #endif |
| return (0); |
| } |
| |
| sc->bar[i].tag = rman_get_bustag(sc->bar[i].resource); |
| sc->bar[i].handle = rman_get_bushandle(sc->bar[i].resource); |
| sc->bar[i].kva = (vm_offset_t)rman_get_virtual(sc->bar[i].resource); |
| |
| BLOGI(sc, "PCI BAR%d [%02x] memory allocated: %p-%p (%ld) -> %p\n", |
| i, PCIR_BAR(i), |
| (void *)rman_get_start(sc->bar[i].resource), |
| (void *)rman_get_end(sc->bar[i].resource), |
| rman_get_size(sc->bar[i].resource), |
| (void *)sc->bar[i].kva); |
| #endif |
| } |
| return (0); |
| } |
| |
| static void |
| bxe_get_function_num(struct bxe_adapter *sc) |
| { |
| uint32_t val = 0; |
| |
| /* |
| * Read the ME register to get the function number. The ME register |
| * holds the relative-function number and absolute-function number. The |
| * absolute-function number appears only in E2 and above. Before that |
| * these bits always contained zero, therefore we cannot blindly use them. |
| */ |
| |
| val = REG_RD(sc, BAR_ME_REGISTER); |
| |
| sc->pfunc_rel = |
| (uint8_t)((val & ME_REG_PF_NUM) >> ME_REG_PF_NUM_SHIFT); |
| sc->path_id = |
| (uint8_t)((val & ME_REG_ABS_PF_NUM) >> ME_REG_ABS_PF_NUM_SHIFT) & 1; |
| |
| if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) { |
| sc->pfunc_abs = ((sc->pfunc_rel << 1) | sc->path_id); |
| } else { |
| sc->pfunc_abs = (sc->pfunc_rel | sc->path_id); |
| } |
| |
| BLOGD(sc, DBG_LOAD, |
| "Relative function %d, Absolute function %d, Path %d\n", |
| sc->pfunc_rel, sc->pfunc_abs, sc->path_id); |
| } |
| |
| static uint32_t |
| bxe_get_shmem_mf_cfg_base(struct bxe_adapter *sc) |
| { |
| uint32_t shmem2_size; |
| uint32_t offset; |
| uint32_t mf_cfg_offset_value; |
| |
| /* Non 57712 */ |
| offset = (SHMEM_RD(sc, func_mb) + |
| (MAX_FUNC_NUM * sizeof(struct drv_func_mb))); |
| |
| /* 57712 plus */ |
| if (sc->devinfo.shmem2_base != 0) { |
| shmem2_size = SHMEM2_RD(sc, size); |
| if (shmem2_size > offsetof(struct shmem2_region, mf_cfg_addr)) { |
| mf_cfg_offset_value = SHMEM2_RD(sc, mf_cfg_addr); |
| if (SHMEM_MF_CFG_ADDR_NONE != mf_cfg_offset_value) { |
| offset = mf_cfg_offset_value; |
| } |
| } |
| } |
| |
| return (offset); |
| } |
| |
| static uint32_t |
| bxe_pcie_capability_read(struct bxe_adapter *sc, |
| int reg, |
| int width) |
| { |
| uint32_t pcie_reg; |
| |
| /* ensure PCIe capability is enabled */ |
| if (pci_find_cap(sc->pcidev, PCIY_EXPRESS, &pcie_reg) == 0) { |
| if (pcie_reg != 0) { |
| BLOGD(sc, DBG_LOAD, "PCIe capability at 0x%04x\n", pcie_reg); |
| switch (width) { |
| case 4: |
| return pcidev_read32(sc->pcidev, (pcie_reg + reg)); |
| case 2: |
| return pcidev_read16(sc->pcidev, (pcie_reg + reg)); |
| case 1: |
| return pcidev_read8(sc->pcidev, (pcie_reg + reg)); |
| default: |
| BLOGE(sc, "Bad width %d in PCIE Cap read\n", width); |
| } |
| } |
| } |
| BLOGE(sc, "PCIe capability NOT FOUND!!!\n"); |
| |
| return (0); |
| } |
| |
| static uint8_t |
| bxe_is_pcie_pending(struct bxe_adapter *sc) |
| { |
| return (bxe_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_STA, 2) & |
| PCIM_EXP_STA_TRANSACTION_PND); |
| } |
| |
| /* |
| * Walk the PCI capabiites list for the device to find what features are |
| * supported. These capabilites may be enabled/disabled by firmware so it's |
| * best to walk the list rather than make assumptions. |
| */ |
| static void |
| bxe_probe_pci_caps(struct bxe_adapter *sc) |
| { |
| uint16_t link_status; |
| uint32_t reg; |
| |
| /* check if PCI Power Management is enabled */ |
| if (pci_find_cap(sc->pcidev, PCIY_PMG, ®) == 0) { |
| if (reg != 0) { |
| BLOGD(sc, DBG_LOAD, "Found PM capability at 0x%04x\n", reg); |
| |
| sc->devinfo.pcie_cap_flags |= BXE_PM_CAPABLE_FLAG; |
| sc->devinfo.pcie_pm_cap_reg = (uint16_t)reg; |
| } |
| } |
| |
| link_status = bxe_pcie_capability_read(sc, PCIR_EXPRESS_LINK_STA, 2); |
| |
| /* handle PCIe 2.0 workarounds for 57710 */ |
| if (CHIP_IS_E1(sc)) { |
| /* workaround for 57710 errata E4_57710_27462 */ |
| sc->devinfo.pcie_link_speed = |
| (REG_RD(sc, 0x3d04) & (1 << 24)) ? 2 : 1; |
| |
| /* workaround for 57710 errata E4_57710_27488 */ |
| sc->devinfo.pcie_link_width = |
| ((link_status & PCIM_LINK_STA_WIDTH) >> 4); |
| if (sc->devinfo.pcie_link_speed > 1) { |
| sc->devinfo.pcie_link_width = |
| ((link_status & PCIM_LINK_STA_WIDTH) >> 4) >> 1; |
| } |
| } else { |
| sc->devinfo.pcie_link_speed = |
| (link_status & PCIM_LINK_STA_SPEED); |
| sc->devinfo.pcie_link_width = |
| ((link_status & PCIM_LINK_STA_WIDTH) >> 4); |
| } |
| |
| BLOGD(sc, DBG_LOAD, "PCIe link speed=%d width=%d\n", |
| sc->devinfo.pcie_link_speed, sc->devinfo.pcie_link_width); |
| |
| sc->devinfo.pcie_cap_flags |= BXE_PCIE_CAPABLE_FLAG; |
| sc->devinfo.pcie_pcie_cap_reg = (uint16_t)reg; |
| |
| /* check if MSI capability is enabled */ |
| if (pci_find_cap(sc->pcidev, PCIY_MSI, ®) == 0) { |
| if (reg != 0) { |
| BLOGD(sc, DBG_LOAD, "Found MSI capability at 0x%04x\n", reg); |
| |
| sc->devinfo.pcie_cap_flags |= BXE_MSI_CAPABLE_FLAG; |
| sc->devinfo.pcie_msi_cap_reg = (uint16_t)reg; |
| } |
| } |
| |
| /* check if MSI-X capability is enabled */ |
| if (pci_find_cap(sc->pcidev, PCIY_MSIX, ®) == 0) { |
| if (reg != 0) { |
| BLOGD(sc, DBG_LOAD, "Found MSI-X capability at 0x%04x\n", reg); |
| |
| sc->devinfo.pcie_cap_flags |= BXE_MSIX_CAPABLE_FLAG; |
| sc->devinfo.pcie_msix_cap_reg = (uint16_t)reg; |
| } |
| } |
| } |
| |
| static int |
| bxe_get_shmem_mf_cfg_info_sd(struct bxe_adapter *sc) |
| { |
| struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; |
| uint32_t val; |
| |
| /* get the outer vlan if we're in switch-dependent mode */ |
| |
| val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag); |
| mf_info->ext_id = (uint16_t)val; |
| |
| mf_info->multi_vnics_mode = 1; |
| |
| if (!VALID_OVLAN(mf_info->ext_id)) { |
| BLOGE(sc, "Invalid VLAN (%d)\n", mf_info->ext_id); |
| return (1); |
| } |
| |
| /* get the capabilities */ |
| if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) == |
| FUNC_MF_CFG_PROTOCOL_ISCSI) { |
| mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ISCSI; |
| } else if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) == |
| FUNC_MF_CFG_PROTOCOL_FCOE) { |
| mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_FCOE; |
| } else { |
| mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ETHERNET; |
| } |
| |
| mf_info->vnics_per_port = |
| (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4; |
| return (0); |
| } |
| |
| static uint32_t |
| bxe_get_shmem_ext_proto_support_flags(struct bxe_adapter *sc) |
| { |
| uint32_t retval = 0; |
| uint32_t val; |
| |
| val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg); |
| |
| if (val & MACP_FUNC_CFG_FLAGS_ENABLED) { |
| if (val & MACP_FUNC_CFG_FLAGS_ETHERNET) { |
| retval |= MF_PROTO_SUPPORT_ETHERNET; |
| } |
| if (val & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) { |
| retval |= MF_PROTO_SUPPORT_ISCSI; |
| } |
| if (val & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) { |
| retval |= MF_PROTO_SUPPORT_FCOE; |
| } |
| } |
| |
| return (retval); |
| } |
| |
| static int |
| bxe_get_shmem_mf_cfg_info_si(struct bxe_adapter *sc) |
| { |
| struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; |
| uint32_t val; |
| |
| /* |
| * There is no outer vlan if we're in switch-independent mode. |
| * If the mac is valid then assume multi-function. |
| */ |
| |
| val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg); |
| |
| mf_info->multi_vnics_mode = ((val & MACP_FUNC_CFG_FLAGS_MASK) != 0); |
| |
| mf_info->mf_protos_supported = bxe_get_shmem_ext_proto_support_flags(sc); |
| |
| mf_info->vnics_per_port = |
| (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4; |
| |
| return (0); |
| } |
| |
| static int |
| bxe_get_shmem_mf_cfg_info_niv(struct bxe_adapter *sc) |
| { |
| struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; |
| uint32_t e1hov_tag; |
| uint32_t func_config; |
| uint32_t niv_config; |
| |
| mf_info->multi_vnics_mode = 1; |
| |
| e1hov_tag = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag); |
| func_config = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config); |
| niv_config = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].afex_config); |
| |
| mf_info->ext_id = |
| (uint16_t)((e1hov_tag & FUNC_MF_CFG_E1HOV_TAG_MASK) >> |
| FUNC_MF_CFG_E1HOV_TAG_SHIFT); |
| |
| mf_info->default_vlan = |
| (uint16_t)((e1hov_tag & FUNC_MF_CFG_AFEX_VLAN_MASK) >> |
| FUNC_MF_CFG_AFEX_VLAN_SHIFT); |
| |
| mf_info->niv_allowed_priorities = |
| (uint8_t)((niv_config & FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >> |
| FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT); |
| |
| mf_info->niv_default_cos = |
| (uint8_t)((func_config & FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >> |
| FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT); |
| |
| mf_info->afex_vlan_mode = |
| ((niv_config & FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >> |
| FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT); |
| |
| mf_info->niv_mba_enabled = |
| ((niv_config & FUNC_MF_CFG_AFEX_MBA_ENABLED_MASK) >> |
| FUNC_MF_CFG_AFEX_MBA_ENABLED_SHIFT); |
| |
| mf_info->mf_protos_supported = bxe_get_shmem_ext_proto_support_flags(sc); |
| |
| mf_info->vnics_per_port = |
| (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4; |
| |
| return (0); |
| } |
| |
| static int |
| bxe_check_valid_mf_cfg(struct bxe_adapter *sc) |
| { |
| struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; |
| uint32_t mf_cfg1; |
| uint32_t mf_cfg2; |
| uint32_t ovlan1; |
| uint32_t ovlan2; |
| uint8_t i, j; |
| |
| BLOGD(sc, DBG_LOAD, "MF config parameters for function %d\n", |
| SC_PORT(sc)); |
| BLOGD(sc, DBG_LOAD, "\tmf_config=0x%x\n", |
| mf_info->mf_config[SC_VN(sc)]); |
| BLOGD(sc, DBG_LOAD, "\tmulti_vnics_mode=%d\n", |
| mf_info->multi_vnics_mode); |
| BLOGD(sc, DBG_LOAD, "\tvnics_per_port=%d\n", |
| mf_info->vnics_per_port); |
| BLOGD(sc, DBG_LOAD, "\tovlan/vifid=%d\n", |
| mf_info->ext_id); |
| BLOGD(sc, DBG_LOAD, "\tmin_bw=%d/%d/%d/%d\n", |
| mf_info->min_bw[0], mf_info->min_bw[1], |
| mf_info->min_bw[2], mf_info->min_bw[3]); |
| BLOGD(sc, DBG_LOAD, "\tmax_bw=%d/%d/%d/%d\n", |
| mf_info->max_bw[0], mf_info->max_bw[1], |
| mf_info->max_bw[2], mf_info->max_bw[3]); |
| BLOGD(sc, DBG_LOAD, "\tmac_addr: %s\n", |
| sc->mac_addr_str); |
| |
| /* various MF mode sanity checks... */ |
| |
| if (mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_HIDE) { |
| BLOGE(sc, "Enumerated function %d is marked as hidden\n", |
| SC_PORT(sc)); |
| return (1); |
| } |
| |
| if ((mf_info->vnics_per_port > 1) && !mf_info->multi_vnics_mode) { |
| BLOGE(sc, "vnics_per_port=%d multi_vnics_mode=%d\n", |
| mf_info->vnics_per_port, mf_info->multi_vnics_mode); |
| return (1); |
| } |
| |
| if (mf_info->mf_mode == MULTI_FUNCTION_SD) { |
| /* vnic id > 0 must have valid ovlan in switch-dependent mode */ |
| if ((SC_VN(sc) > 0) && !VALID_OVLAN(OVLAN(sc))) { |
| BLOGE(sc, "mf_mode=SD vnic_id=%d ovlan=%d\n", |
| SC_VN(sc), OVLAN(sc)); |
| return (1); |
| } |
| |
| if (!VALID_OVLAN(OVLAN(sc)) && mf_info->multi_vnics_mode) { |
| BLOGE(sc, "mf_mode=SD multi_vnics_mode=%d ovlan=%d\n", |
| mf_info->multi_vnics_mode, OVLAN(sc)); |
| return (1); |
| } |
| |
| /* |
| * Verify all functions are either MF or SF mode. If MF, make sure |
| * sure that all non-hidden functions have a valid ovlan. If SF, |
| * make sure that all non-hidden functions have an invalid ovlan. |
| */ |
| FOREACH_ABS_FUNC_IN_PORT(sc, i) { |
| mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config); |
| ovlan1 = MFCFG_RD(sc, func_mf_config[i].e1hov_tag); |
| if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) && |
| (((mf_info->multi_vnics_mode) && !VALID_OVLAN(ovlan1)) || |
| ((!mf_info->multi_vnics_mode) && VALID_OVLAN(ovlan1)))) { |
| BLOGE(sc, "mf_mode=SD function %d MF config " |
| "mismatch, multi_vnics_mode=%d ovlan=%d\n", |
| i, mf_info->multi_vnics_mode, ovlan1); |
| return (1); |
| } |
| } |
| |
| /* Verify all funcs on the same port each have a different ovlan. */ |
| FOREACH_ABS_FUNC_IN_PORT(sc, i) { |
| mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config); |
| ovlan1 = MFCFG_RD(sc, func_mf_config[i].e1hov_tag); |
| /* iterate from the next function on the port to the max func */ |
| for (j = i + 2; j < MAX_FUNC_NUM; j += 2) { |
| mf_cfg2 = MFCFG_RD(sc, func_mf_config[j].config); |
| ovlan2 = MFCFG_RD(sc, func_mf_config[j].e1hov_tag); |
| if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) && |
| VALID_OVLAN(ovlan1) && |
| !(mf_cfg2 & FUNC_MF_CFG_FUNC_HIDE) && |
| VALID_OVLAN(ovlan2) && |
| (ovlan1 == ovlan2)) { |
| BLOGE(sc, "mf_mode=SD functions %d and %d " |
| "have the same ovlan (%d)\n", |
| i, j, ovlan1); |
| return (1); |
| } |
| } |
| } |
| } /* MULTI_FUNCTION_SD */ |
| |
| return (0); |
| } |
| |
| static int |
| bxe_get_mf_cfg_info(struct bxe_adapter *sc) |
| { |
| struct bxe_mf_info *mf_info = &sc->devinfo.mf_info; |
| uint32_t val, mac_upper; |
| uint8_t i, vnic; |
| |
| /* initialize mf_info defaults */ |
| mf_info->vnics_per_port = 1; |
| mf_info->multi_vnics_mode = FALSE; |
| mf_info->path_has_ovlan = FALSE; |
| mf_info->mf_mode = SINGLE_FUNCTION; |
| |
| if (!CHIP_IS_MF_CAP(sc)) { |
| return (0); |
| } |
| |
| if (sc->devinfo.mf_cfg_base == SHMEM_MF_CFG_ADDR_NONE) { |
| BLOGE(sc, "Invalid mf_cfg_base!\n"); |
| return (1); |
| } |
| |
| /* get the MF mode (switch dependent / independent / single-function) */ |
| |
| val = SHMEM_RD(sc, dev_info.shared_feature_config.config); |
| |
| switch (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK) |
| { |
| case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT: |
| |
| mac_upper = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper); |
| |
| /* check for legal upper mac bytes */ |
| if (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT) { |
| mf_info->mf_mode = MULTI_FUNCTION_SI; |
| } else { |
| BLOGE(sc, "Invalid config for Switch Independent mode\n"); |
| } |
| |
| break; |
| |
| case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED: |
| case SHARED_FEAT_CFG_FORCE_SF_MODE_SPIO4: |
| |
| /* get outer vlan configuration */ |
| val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag); |
| |
| if ((val & FUNC_MF_CFG_E1HOV_TAG_MASK) != |
| FUNC_MF_CFG_E1HOV_TAG_DEFAULT) { |
| mf_info->mf_mode = MULTI_FUNCTION_SD; |
| } else { |
| BLOGE(sc, "Invalid config for Switch Dependent mode\n"); |
| } |
| |
| break; |
| |
| case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF: |
| |
| /* not in MF mode, vnics_per_port=1 and multi_vnics_mode=FALSE */ |
| return (0); |
| |
| case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE: |
| |
| /* |
| * Mark MF mode as NIV if MCP version includes NPAR-SD support |
| * and the MAC address is valid. |
| */ |
| mac_upper = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper); |
| |
| if ((SHMEM2_HAS(sc, afex_driver_support)) && |
| (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT)) { |
| mf_info->mf_mode = MULTI_FUNCTION_AFEX; |
| } else { |
| BLOGE(sc, "Invalid config for AFEX mode\n"); |
| } |
| |
| break; |
| |
| default: |
| |
| BLOGE(sc, "Unknown MF mode (0x%08x)\n", |
| (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK)); |
| |
| return (1); |
| } |
| |
| /* set path mf_mode (which could be different than function mf_mode) */ |
| if (mf_info->mf_mode == MULTI_FUNCTION_SD) { |
| mf_info->path_has_ovlan = TRUE; |
| } else if (mf_info->mf_mode == SINGLE_FUNCTION) { |
| /* |
| * Decide on path multi vnics mode. If we're not in MF mode and in |
| * 4-port mode, this is good enough to check vnic-0 of the other port |
| * on the same path |
| */ |
| if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) { |
| uint8_t other_port = !(PORT_ID(sc) & 1); |
| uint8_t abs_func_other_port = (SC_PATH(sc) + (2 * other_port)); |
| |
| val = MFCFG_RD(sc, func_mf_config[abs_func_other_port].e1hov_tag); |
| |
| mf_info->path_has_ovlan = VALID_OVLAN((uint16_t)val) ? 1 : 0; |
| } |
| } |
| |
| if (mf_info->mf_mode == SINGLE_FUNCTION) { |
| /* invalid MF config */ |
| if (SC_VN(sc) >= 1) { |
| BLOGE(sc, "VNIC ID >= 1 in SF mode\n"); |
| return (1); |
| } |
| |
| return (0); |
| } |
| |
| /* get the MF configuration */ |
| mf_info->mf_config[SC_VN(sc)] = |
| MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config); |
| |
| switch(mf_info->mf_mode) |
| { |
| case MULTI_FUNCTION_SD: |
| |
| bxe_get_shmem_mf_cfg_info_sd(sc); |
| break; |
| |
| case MULTI_FUNCTION_SI: |
| |
| bxe_get_shmem_mf_cfg_info_si(sc); |
| break; |
| |
| case MULTI_FUNCTION_AFEX: |
| |
| bxe_get_shmem_mf_cfg_info_niv(sc); |
| break; |
| |
| default: |
| |
| BLOGE(sc, "Get MF config failed (mf_mode=0x%08x)\n", |
| mf_info->mf_mode); |
| return (1); |
| } |
| |
| /* get the congestion management parameters */ |
| |
| vnic = 0; |
| FOREACH_ABS_FUNC_IN_PORT(sc, i) { |
| /* get min/max bw */ |
| val = MFCFG_RD(sc, func_mf_config[i].config); |
| mf_info->min_bw[vnic] = |
| ((val & FUNC_MF_CFG_MIN_BW_MASK) >> FUNC_MF_CFG_MIN_BW_SHIFT); |
| mf_info->max_bw[vnic] = |
| ((val & FUNC_MF_CFG_MAX_BW_MASK) >> FUNC_MF_CFG_MAX_BW_SHIFT); |
| vnic++; |
| } |
| |
| return (bxe_check_valid_mf_cfg(sc)); |
| } |
| |
| static int |
| bxe_get_shmem_info(struct bxe_adapter *sc) |
| { |
| int port; |
| uint32_t mac_hi, mac_lo, val; |
| |
| port = SC_PORT(sc); |
| mac_hi = mac_lo = 0; |
| |
| sc->link_params.sc = sc; |
| sc->link_params.port = port; |
| |
| /* get the hardware config info */ |
| sc->devinfo.hw_config = |
| SHMEM_RD(sc, dev_info.shared_hw_config.config); |
| sc->devinfo.hw_config2 = |
| SHMEM_RD(sc, dev_info.shared_hw_config.config2); |
| |
| sc->link_params.hw_led_mode = |
| ((sc->devinfo.hw_config & SHARED_HW_CFG_LED_MODE_MASK) >> |
| SHARED_HW_CFG_LED_MODE_SHIFT); |
| |
| /* get the port feature config */ |
| sc->port.config = |
| SHMEM_RD(sc, dev_info.port_feature_config[port].config), |
| |
| /* get the link params */ |
| sc->link_params.speed_cap_mask[0] = |
| SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask); |
| sc->link_params.speed_cap_mask[1] = |
| SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask2); |
| |
| /* get the lane config */ |
| sc->link_params.lane_config = |
| SHMEM_RD(sc, dev_info.port_hw_config[port].lane_config); |
| |
| /* get the link config */ |
| val = SHMEM_RD(sc, dev_info.port_feature_config[port].link_config); |
| sc->port.link_config[ELINK_INT_PHY] = val; |
| sc->link_params.switch_cfg = (val & PORT_FEATURE_CONNECTED_SWITCH_MASK); |
| sc->port.link_config[ELINK_EXT_PHY1] = |
| SHMEM_RD(sc, dev_info.port_feature_config[port].link_config2); |
| |
| /* get the override preemphasis flag and enable it or turn it off */ |
| val = SHMEM_RD(sc, dev_info.shared_feature_config.config); |
| if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED) { |
| sc->link_params.feature_config_flags |= |
| ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED; |
| } else { |
| sc->link_params.feature_config_flags &= |
| ~ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED; |
| } |
| |
| /* get the initial value of the link params */ |
| sc->link_params.multi_phy_config = |
| SHMEM_RD(sc, dev_info.port_hw_config[port].multi_phy_config); |
| |
| /* get external phy info */ |
| sc->port.ext_phy_config = |
| SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config); |
| |
| /* get the multifunction configuration */ |
| bxe_get_mf_cfg_info(sc); |
| |
| /* get the mac address */ |
| if (IS_MF(sc)) { |
| mac_hi = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper); |
| mac_lo = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_lower); |
| } else { |
| mac_hi = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_upper); |
| mac_lo = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_lower); |
| } |
| |
| if ((mac_lo == 0) && (mac_hi == 0)) { |
| *sc->mac_addr_str = 0; |
| BLOGE(sc, "No Ethernet address programmed!\n"); |
| } else { |
| sc->link_params.mac_addr[0] = (uint8_t)(mac_hi >> 8); |
| sc->link_params.mac_addr[1] = (uint8_t)(mac_hi); |
| sc->link_params.mac_addr[2] = (uint8_t)(mac_lo >> 24); |
| sc->link_params.mac_addr[3] = (uint8_t)(mac_lo >> 16); |
| sc->link_params.mac_addr[4] = (uint8_t)(mac_lo >> 8); |
| sc->link_params.mac_addr[5] = (uint8_t)(mac_lo); |
| snprintf(sc->mac_addr_str, sizeof(sc->mac_addr_str), |
| "%02x:%02x:%02x:%02x:%02x:%02x", |
| sc->link_params.mac_addr[0], sc->link_params.mac_addr[1], |
| sc->link_params.mac_addr[2], sc->link_params.mac_addr[3], |
| sc->link_params.mac_addr[4], sc->link_params.mac_addr[5]); |
| BLOGD(sc, DBG_LOAD, "Ethernet address: %s\n", sc->mac_addr_str); |
| } |
| |
| #if 0 |
| if (!IS_MF(sc) && |
| ((sc->port.config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) == |
| PORT_FEAT_CFG_STORAGE_PERSONALITY_FCOE)) { |
| sc->flags |= BXE_NO_ISCSI; |
| } |
| if (!IS_MF(sc) && |
| ((sc->port.config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) == |
| PORT_FEAT_CFG_STORAGE_PERSONALITY_ISCSI)) { |
| sc->flags |= BXE_NO_FCOE; |
| } |
| #endif |
| |
| return (0); |
| } |
| |
| static void |
| bxe_get_tunable_params(struct bxe_adapter *sc) |
| { |
| /* sanity checks */ |
| if ((bxe_interrupt_mode != INTR_MODE_INTX) && |
| (bxe_interrupt_mode != INTR_MODE_MSI) && |
| (bxe_interrupt_mode != INTR_MODE_MSIX)) { |
| BLOGW(sc, "invalid interrupt_mode value (%d)\n", bxe_interrupt_mode); |
| bxe_interrupt_mode = INTR_MODE_MSIX; |
| } |
| |
| if ((bxe_queue_count < 0) || (bxe_queue_count > MAX_RSS_CHAINS)) { |
| BLOGW(sc, "invalid queue_count value (%d)\n", bxe_queue_count); |
| bxe_queue_count = 0; |
| } |
| |
| if ((bxe_max_rx_bufs < 1) || (bxe_max_rx_bufs > RX_BD_USABLE)) { |
| if (bxe_max_rx_bufs == 0) { |
| bxe_max_rx_bufs = RX_BD_USABLE; |
| } else { |
| BLOGW(sc, "invalid max_rx_bufs (%d)\n", bxe_max_rx_bufs); |
| bxe_max_rx_bufs = 2048; |
| } |
| } |
| |
| if ((bxe_hc_rx_ticks < 1) || (bxe_hc_rx_ticks > 100)) { |
| BLOGW(sc, "invalid hc_rx_ticks (%d)\n", bxe_hc_rx_ticks); |
| bxe_hc_rx_ticks = 25; |
| } |
| |
| if ((bxe_hc_tx_ticks < 1) || (bxe_hc_tx_ticks > 100)) { |
| BLOGW(sc, "invalid hc_tx_ticks (%d)\n", bxe_hc_tx_ticks); |
| bxe_hc_tx_ticks = 50; |
| } |
| |
| if (bxe_max_aggregation_size == 0) { |
| bxe_max_aggregation_size = TPA_AGG_SIZE; |
| } |
| |
| if (bxe_max_aggregation_size > 0xffff) { |
| BLOGW(sc, "invalid max_aggregation_size (%d)\n", |
| bxe_max_aggregation_size); |
| bxe_max_aggregation_size = TPA_AGG_SIZE; |
| } |
| |
| if ((bxe_mrrs < -1) || (bxe_mrrs > 3)) { |
| BLOGW(sc, "invalid mrrs (%d)\n", bxe_mrrs); |
| bxe_mrrs = -1; |
| } |
| |
| if ((bxe_autogreeen < 0) || (bxe_autogreeen > 2)) { |
| BLOGW(sc, "invalid autogreeen (%d)\n", bxe_autogreeen); |
| bxe_autogreeen = 0; |
| } |
| |
| if ((bxe_udp_rss < 0) || (bxe_udp_rss > 1)) { |
| BLOGW(sc, "invalid udp_rss (%d)\n", bxe_udp_rss); |
| bxe_udp_rss = 0; |
| } |
| |
| /* pull in user settings */ |
| sc->interrupt_mode = bxe_interrupt_mode; |
| sc->max_rx_bufs = bxe_max_rx_bufs; |
| sc->hc_rx_ticks = bxe_hc_rx_ticks; |
| sc->hc_tx_ticks = bxe_hc_tx_ticks; |
| sc->max_aggregation_size = bxe_max_aggregation_size; |
| sc->mrrs = bxe_mrrs; |
| sc->autogreeen = bxe_autogreeen; |
| sc->udp_rss = bxe_udp_rss; |
| |
| if (bxe_interrupt_mode == INTR_MODE_INTX) { |
| sc->num_queues = 1; |
| } else { /* INTR_MODE_MSI or INTR_MODE_MSIX */ |
| sc->num_queues = |
| MIN((bxe_queue_count ? bxe_queue_count : num_cpus), MAX_RSS_CHAINS); |
| if (sc->num_queues > num_cpus) { |
| sc->num_queues = num_cpus; |
| } |
| } |
| |
| BLOGD(sc, DBG_LOAD, |
| "User Config: " |
| "debug=0x%lx " |
| "interrupt_mode=%d " |
| "queue_count=%d " |
| "hc_rx_ticks=%d " |
| "hc_tx_ticks=%d " |
| "rx_budget=%d " |
| "max_aggregation_size=%d " |
| "mrrs=%d " |
| "autogreeen=%d " |
| "udp_rss=%d\n", |
| bxe_debug, |
| sc->interrupt_mode, |
| sc->num_queues, |
| sc->hc_rx_ticks, |
| sc->hc_tx_ticks, |
| bxe_rx_budget, |
| sc->max_aggregation_size, |
| sc->mrrs, |
| sc->autogreeen, |
| sc->udp_rss); |
| } |
| |
| static void |
| bxe_media_detect(struct bxe_adapter *sc) |
| { |
| uint32_t phy_idx = bxe_get_cur_phy_idx(sc); |
| switch (sc->link_params.phy[phy_idx].media_type) { |
| case ELINK_ETH_PHY_SFPP_10G_FIBER: |
| case ELINK_ETH_PHY_XFP_FIBER: |
| BLOGI(sc, "Found 10Gb Fiber media.\n"); |
| //sc->media = IFM_10G_SR; |
| break; |
| case ELINK_ETH_PHY_SFP_1G_FIBER: |
| BLOGI(sc, "Found 1Gb Fiber media.\n"); |
| //sc->media = IFM_1000_SX; |
| break; |
| case ELINK_ETH_PHY_KR: |
| case ELINK_ETH_PHY_CX4: |
| BLOGI(sc, "Found 10GBase-CX4 media.\n"); |
| //sc->media = IFM_10G_CX4; |
| break; |
| case ELINK_ETH_PHY_DA_TWINAX: |
| BLOGI(sc, "Found 10Gb Twinax media.\n"); |
| //sc->media = IFM_10G_TWINAX; |
| break; |
| case ELINK_ETH_PHY_BASE_T: |
| if (sc->link_params.speed_cap_mask[0] & |
| PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) { |
| BLOGI(sc, "Found 10GBase-T media.\n"); |
| //sc->media = IFM_10G_T; |
| } else { |
| BLOGI(sc, "Found 1000Base-T media.\n"); |
| //sc->media = IFM_1000_T; |
| } |
| break; |
| case ELINK_ETH_PHY_NOT_PRESENT: |
| BLOGI(sc, "Media not present.\n"); |
| //sc->media = 0; |
| break; |
| case ELINK_ETH_PHY_UNSPECIFIED: |
| default: |
| BLOGI(sc, "Unknown media!\n"); |
| //sc->media = 0; |
| break; |
| } |
| } |
| |
| #define GET_FIELD(value, fname) \ |
| (((value) & (fname##_MASK)) >> (fname##_SHIFT)) |
| #define IGU_FID(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID) |
| #define IGU_VEC(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR) |
| |
| static int |
| bxe_get_igu_cam_info(struct bxe_adapter *sc) |
| { |
| int pfid = SC_FUNC(sc); |
| int igu_sb_id; |
| uint32_t val; |
| uint8_t fid, igu_sb_cnt = 0; |
| |
| sc->igu_base_sb = 0xff; |
| |
| if (CHIP_INT_MODE_IS_BC(sc)) { |
| int vn = SC_VN(sc); |
| igu_sb_cnt = sc->igu_sb_cnt; |
| sc->igu_base_sb = ((CHIP_IS_MODE_4_PORT(sc) ? pfid : vn) * |
| FP_SB_MAX_E1x); |
| sc->igu_dsb_id = (E1HVN_MAX * FP_SB_MAX_E1x + |
| (CHIP_IS_MODE_4_PORT(sc) ? pfid : vn)); |
| return (0); |
| } |
| |
| /* IGU in normal mode - read CAM */ |
| for (igu_sb_id = 0; |
| igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE; |
| igu_sb_id++) { |
| val = REG_RD(sc, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4); |
| if (!(val & IGU_REG_MAPPING_MEMORY_VALID)) { |
| continue; |
| } |
| fid = IGU_FID(val); |
| if ((fid & IGU_FID_ENCODE_IS_PF)) { |
| if ((fid & IGU_FID_PF_NUM_MASK) != pfid) { |
| continue; |
| } |
| if (IGU_VEC(val) == 0) { |
| /* default status block */ |
| sc->igu_dsb_id = igu_sb_id; |
| } else { |
| if (sc->igu_base_sb == 0xff) { |
| sc->igu_base_sb = igu_sb_id; |
| } |
| igu_sb_cnt++; |
| } |
| } |
| } |
| |
| /* |
| * Due to new PF resource allocation by MFW T7.4 and above, it's optional |
| * that number of CAM entries will not be equal to the value advertised in |
| * PCI. Driver should use the minimal value of both as the actual status |
| * block count |
| */ |
| sc->igu_sb_cnt = MIN(sc->igu_sb_cnt, igu_sb_cnt); |
| |
| if (igu_sb_cnt == 0) { |
| BLOGE(sc, "CAM configuration error\n"); |
| return (-1); |
| } |
| |
| return (0); |
| } |
| |
| /* |
| * Gather various information from the device config space, the device itself, |
| * shmem, and the user input. |
| */ |
| static int |
| bxe_get_device_info(struct bxe_adapter *sc) |
| { |
| uint32_t val; |
| int rc; |
| |
| /* Get the data for the device */ |
| sc->devinfo.vendor_id = pci_get_vendor(sc->pcidev); |
| sc->devinfo.device_id = pci_get_device(sc->pcidev); |
| sc->devinfo.subvendor_id = pci_get_subvendor(sc->pcidev); |
| sc->devinfo.subdevice_id = pci_get_subdevice(sc->pcidev); |
| |
| /* get the chip revision (chip metal comes from pci config space) */ |
| sc->devinfo.chip_id = |
| sc->link_params.chip_id = |
| (((REG_RD(sc, MISC_REG_CHIP_NUM) & 0xffff) << 16) | |
| ((REG_RD(sc, MISC_REG_CHIP_REV) & 0xf) << 12) | |
| (((REG_RD(sc, PCICFG_OFFSET + PCI_ID_VAL3) >> 24) & 0xf) << 4) | |
| ((REG_RD(sc, MISC_REG_BOND_ID) & 0xf) << 0)); |
| |
| /* force 57811 according to MISC register */ |
| if (REG_RD(sc, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) { |
| if (CHIP_IS_57810(sc)) { |
| sc->devinfo.chip_id = ((CHIP_NUM_57811 << 16) | |
| (sc->devinfo.chip_id & 0x0000ffff)); |
| } else if (CHIP_IS_57810_MF(sc)) { |
| sc->devinfo.chip_id = ((CHIP_NUM_57811_MF << 16) | |
| (sc->devinfo.chip_id & 0x0000ffff)); |
| } |
| sc->devinfo.chip_id |= 0x1; |
| } |
| |
| BLOGD(sc, DBG_LOAD, |
| "chip_id=0x%08x (num=0x%04x rev=0x%01x metal=0x%02x bond=0x%01x)\n", |
| sc->devinfo.chip_id, |
| ((sc->devinfo.chip_id >> 16) & 0xffff), |
| ((sc->devinfo.chip_id >> 12) & 0xf), |
| ((sc->devinfo.chip_id >> 4) & 0xff), |
| ((sc->devinfo.chip_id >> 0) & 0xf)); |
| |
| val = (REG_RD(sc, 0x2874) & 0x55); |
| if ((sc->devinfo.chip_id & 0x1) || |
| (CHIP_IS_E1(sc) && val) || |
| (CHIP_IS_E1H(sc) && (val == 0x55))) { |
| sc->flags |= BXE_ONE_PORT_FLAG; |
| BLOGD(sc, DBG_LOAD, "single port device\n"); |
| } |
| |
| /* set the doorbell size */ |
| sc->doorbell_size = (1 << BXE_DB_SHIFT); |
| |
| /* determine whether the device is in 2 port or 4 port mode */ |
| sc->devinfo.chip_port_mode = CHIP_PORT_MODE_NONE; /* E1 & E1h*/ |
| if (CHIP_IS_E2E3(sc)) { |
| /* |
| * Read port4mode_en_ovwr[0]: |
| * If 1, four port mode is in port4mode_en_ovwr[1]. |
| * If 0, four port mode is in port4mode_en[0]. |
| */ |
| val = REG_RD(sc, MISC_REG_PORT4MODE_EN_OVWR); |
| if (val & 1) { |
| val = ((val >> 1) & 1); |
| } else { |
| val = REG_RD(sc, MISC_REG_PORT4MODE_EN); |
| } |
| |
| sc->devinfo.chip_port_mode = |
| (val) ? CHIP_4_PORT_MODE : CHIP_2_PORT_MODE; |
| |
| BLOGD(sc, DBG_LOAD, "Port mode = %s\n", (val) ? "4" : "2"); |
| } |
| |
| /* get the function and path info for the device */ |
| bxe_get_function_num(sc); |
| |
| /* get the shared memory base address */ |
| sc->devinfo.shmem_base = |
| sc->link_params.shmem_base = |
| REG_RD(sc, MISC_REG_SHARED_MEM_ADDR); |
| sc->devinfo.shmem2_base = |
| REG_RD(sc, (SC_PATH(sc) ? MISC_REG_GENERIC_CR_1 : |
| MISC_REG_GENERIC_CR_0)); |
| |
| BLOGD(sc, DBG_LOAD, "shmem_base=0x%08x, shmem2_base=0x%08x\n", |
| sc->devinfo.shmem_base, sc->devinfo.shmem2_base); |
| |
| if (!sc->devinfo.shmem_base) { |
| /* this should ONLY prevent upcoming shmem reads */ |
| BLOGI(sc, "MCP not active\n"); |
| sc->flags |= BXE_NO_MCP_FLAG; |
| return (0); |
| } |
| |
| /* make sure the shared memory contents are valid */ |
| val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]); |
| if ((val & (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) != |
| (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) { |
| BLOGE(sc, "Invalid SHMEM validity signature: 0x%08x\n", val); |
| return (0); |
| } |
| BLOGD(sc, DBG_LOAD, "Valid SHMEM validity signature: 0x%08x\n", val); |
| |
| /* get the bootcode version */ |
| sc->devinfo.bc_ver = SHMEM_RD(sc, dev_info.bc_rev); |
| snprintf(sc->devinfo.bc_ver_str, |
| sizeof(sc->devinfo.bc_ver_str), |
| "%d.%d.%d", |
| ((sc->devinfo.bc_ver >> 24) & 0xff), |
| ((sc->devinfo.bc_ver >> 16) & 0xff), |
| ((sc->devinfo.bc_ver >> 8) & 0xff)); |
| BLOGD(sc, DBG_LOAD, "Bootcode version: %s\n", sc->devinfo.bc_ver_str); |
| |
| /* get the bootcode shmem address */ |
| sc->devinfo.mf_cfg_base = bxe_get_shmem_mf_cfg_base(sc); |
| BLOGD(sc, DBG_LOAD, "mf_cfg_base=0x08%x \n", sc->devinfo.mf_cfg_base); |
| |
| /* clean indirect addresses as they're not used */ |
| pcidev_write32(sc->pcidev, PCICFG_GRC_ADDRESS, 0); |
| if (IS_PF(sc)) { |
| REG_WR(sc, PXP2_REG_PGL_ADDR_88_F0, 0); |
| REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F0, 0); |
| REG_WR(sc, PXP2_REG_PGL_ADDR_90_F0, 0); |
| REG_WR(sc, PXP2_REG_PGL_ADDR_94_F0, 0); |
| if (CHIP_IS_E1x(sc)) { |
| REG_WR(sc, PXP2_REG_PGL_ADDR_88_F1, 0); |
| REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F1, 0); |
| REG_WR(sc, PXP2_REG_PGL_ADDR_90_F1, 0); |
| REG_WR(sc, PXP2_REG_PGL_ADDR_94_F1, 0); |
| } |
| |
| /* |
| * Enable internal target-read (in case we are probed after PF |
| * FLR). Must be done prior to any BAR read access. Only for |
| * 57712 and up |
| */ |
| if (!CHIP_IS_E1x(sc)) { |
| REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1); |
| } |
| } |
| |
| /* get the nvram size */ |
| val = REG_RD(sc, MCP_REG_MCPR_NVM_CFG4); |
| sc->devinfo.flash_size = |
| (NVRAM_1MB_SIZE << (val & MCPR_NVM_CFG4_FLASH_SIZE)); |
| BLOGD(sc, DBG_LOAD, "nvram flash size: %d\n", sc->devinfo.flash_size); |
| |
| /* get PCI capabilites */ |
| bxe_probe_pci_caps(sc); |
| |
| bxe_set_power_state(sc, PCI_PM_D0); |
| |
| /* get various configuration parameters from shmem */ |
| bxe_get_shmem_info(sc); |
| |
| if (sc->devinfo.pcie_msix_cap_reg != 0) { |
| val = pcidev_read16(sc->pcidev, |
| (sc->devinfo.pcie_msix_cap_reg + |
| PCIR_MSIX_CTRL)); |
| sc->igu_sb_cnt = (val & PCIM_MSIXCTRL_TABLE_SIZE); |
| } else { |
| sc->igu_sb_cnt = 1; |
| } |
| |
| sc->igu_base_addr = BAR_IGU_INTMEM; |
| |
| /* initialize IGU parameters */ |
| if (CHIP_IS_E1x(sc)) { |
| sc->devinfo.int_block = INT_BLOCK_HC; |
| sc->igu_dsb_id = DEF_SB_IGU_ID; |
| sc->igu_base_sb = 0; |
| } else { |
| sc->devinfo.int_block = INT_BLOCK_IGU; |
| |
| /* do not allow device reset during IGU info preocessing */ |
| bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET); |
| |
| val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION); |
| |
| if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) { |
| int tout = 5000; |
| |
| BLOGD(sc, DBG_LOAD, "FORCING IGU Normal Mode\n"); |
| |
| val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN); |
| REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION, val); |
| REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x7f); |
| |
| while (tout && REG_RD(sc, IGU_REG_RESET_MEMORIES)) { |
| tout--; |
| udelay(1000); |
| } |
| |
| if (REG_RD(sc, IGU_REG_RESET_MEMORIES)) { |
| BLOGD(sc, DBG_LOAD, "FORCING IGU Normal Mode failed!!!\n"); |
| bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET); |
| return (-1); |
| } |
| } |
| |
| if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) { |
| BLOGD(sc, DBG_LOAD, "IGU Backward Compatible Mode\n"); |
| sc->devinfo.int_block |= INT_BLOCK_MODE_BW_COMP; |
| } else { |
| BLOGD(sc, DBG_LOAD, "IGU Normal Mode\n"); |
| } |
| |
| rc = bxe_get_igu_cam_info(sc); |
| |
| bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET); |
| |
| if (rc) { |
| return (rc); |
| } |
| } |
| |
| /* |
| * Get base FW non-default (fast path) status block ID. This value is |
| * used to initialize the fw_sb_id saved on the fp/queue structure to |
| * determine the id used by the FW. |
| */ |
| if (CHIP_IS_E1x(sc)) { |
| sc->base_fw_ndsb = ((SC_PORT(sc) * FP_SB_MAX_E1x) + SC_L_ID(sc)); |
| } else { |
| /* |
| * 57712+ - We currently use one FW SB per IGU SB (Rx and Tx of |
| * the same queue are indicated on the same IGU SB). So we prefer |
| * FW and IGU SBs to be the same value. |
| */ |
| sc->base_fw_ndsb = sc->igu_base_sb; |
| } |
| |
| BLOGD(sc, DBG_LOAD, |
| "igu_dsb_id=%d igu_base_sb=%d igu_sb_cnt=%d base_fw_ndsb=%d\n", |
| sc->igu_dsb_id, sc->igu_base_sb, |
| sc->igu_sb_cnt, sc->base_fw_ndsb); |
| |
| elink_phy_probe(&sc->link_params); |
| |
| return (0); |
| } |
| |
| static void |
| bxe_link_settings_supported(struct bxe_adapter *sc, |
| uint32_t switch_cfg) |
| { |
| uint32_t cfg_size = 0; |
| uint32_t idx; |
| uint8_t port = SC_PORT(sc); |
| |
| /* aggregation of supported attributes of all external phys */ |
| sc->port.supported[0] = 0; |
| sc->port.supported[1] = 0; |
| |
| switch (sc->link_params.num_phys) { |
| case 1: |
| sc->port.supported[0] = sc->link_params.phy[ELINK_INT_PHY].supported; |
| cfg_size = 1; |
| break; |
| case 2: |
| sc->port.supported[0] = sc->link_params.phy[ELINK_EXT_PHY1].supported; |
| cfg_size = 1; |
| break; |
| case 3: |
| if (sc->link_params.multi_phy_config & |
| PORT_HW_CFG_PHY_SWAPPED_ENABLED) { |
| sc->port.supported[1] = |
| sc->link_params.phy[ELINK_EXT_PHY1].supported; |
| sc->port.supported[0] = |
| sc->link_params.phy[ELINK_EXT_PHY2].supported; |
| } else { |
| sc->port.supported[0] = |
| sc->link_params.phy[ELINK_EXT_PHY1].supported; |
| sc->port.supported[1] = |
| sc->link_params.phy[ELINK_EXT_PHY2].supported; |
| } |
| cfg_size = 2; |
| break; |
| } |
| |
| if (!(sc->port.supported[0] || sc->port.supported[1])) { |
| BLOGE(sc, "Invalid phy config in NVRAM (PHY1=0x%08x PHY2=0x%08x)\n", |
| SHMEM_RD(sc, |
| dev_info.port_hw_config[port].external_phy_config), |
| SHMEM_RD(sc, |
| dev_info.port_hw_config[port].external_phy_config2)); |
| return; |
| } |
| |
| if (CHIP_IS_E3(sc)) |
| sc->port.phy_addr = REG_RD(sc, MISC_REG_WC0_CTRL_PHY_ADDR); |
| else { |
| switch (switch_cfg) { |
| case ELINK_SWITCH_CFG_1G: |
| sc->port.phy_addr = |
| REG_RD(sc, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10); |
| break; |
| case ELINK_SWITCH_CFG_10G: |
| sc->port.phy_addr = |
| REG_RD(sc, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18); |
| break; |
| default: |
| BLOGE(sc, "Invalid switch config in link_config=0x%08x\n", |
| sc->port.link_config[0]); |
| return; |
| } |
| } |
| |
| BLOGD(sc, DBG_LOAD, "PHY addr 0x%08x\n", sc->port.phy_addr); |
| |
| /* mask what we support according to speed_cap_mask per configuration */ |
| for (idx = 0; idx < cfg_size; idx++) { |
| if (!(sc->link_params.speed_cap_mask[idx] & |
| PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF)) { |
| sc->port.supported[idx] &= ~ELINK_SUPPORTED_10baseT_Half; |
| } |
| |
| if (!(sc->link_params.speed_cap_mask[idx] & |
| PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL)) { |
| sc->port.supported[idx] &= ~ELINK_SUPPORTED_10baseT_Full; |
| } |
| |
| if (!(sc->link_params.speed_cap_mask[idx] & |
| PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF)) { |
| sc->port.supported[idx] &= ~ELINK_SUPPORTED_100baseT_Half; |
| } |
| |
| if (!(sc->link_params.speed_cap_mask[idx] & |
| PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL)) { |
| sc->port.supported[idx] &= ~ELINK_SUPPORTED_100baseT_Full; |
| } |
| |
| if (!(sc->link_params.speed_cap_mask[idx] & |
| PORT_HW_CFG_SPEED_CAPABILITY_D0_1G)) { |
| sc->port.supported[idx] &= ~ELINK_SUPPORTED_1000baseT_Full; |
| } |
| |
| if (!(sc->link_params.speed_cap_mask[idx] & |
| PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G)) { |
| sc->port.supported[idx] &= ~ELINK_SUPPORTED_2500baseX_Full; |
| } |
| |
| if (!(sc->link_params.speed_cap_mask[idx] & |
| PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)) { |
| sc->port.supported[idx] &= ~ELINK_SUPPORTED_10000baseT_Full; |
| } |
| |
| if (!(sc->link_params.speed_cap_mask[idx] & |
| PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)) { |
| sc->port.supported[idx] &= ~ELINK_SUPPORTED_20000baseKR2_Full; |
| } |
| } |
| |
| BLOGD(sc, DBG_LOAD, "PHY supported 0=0x%08x 1=0x%08x\n", |
| sc->port.supported[0], sc->port.supported[1]); |
| } |
| |
| static void |
| bxe_link_settings_requested(struct bxe_adapter *sc) |
| { |
| uint32_t link_config; |
| uint32_t idx; |
| uint32_t cfg_size = 0; |
| |
| sc->port.advertising[0] = 0; |
| sc->port.advertising[1] = 0; |
| |
| switch (sc->link_params.num_phys) { |
| case 1: |
| case 2: |
| cfg_size = 1; |
| break; |
| case 3: |
| cfg_size = 2; |
| break; |
| } |
| |
| for (idx = 0; idx < cfg_size; idx++) { |
| sc->link_params.req_duplex[idx] = DUPLEX_FULL; |
| link_config = sc->port.link_config[idx]; |
| |
| switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) { |
| case PORT_FEATURE_LINK_SPEED_AUTO: |
| if (sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg) { |
| sc->link_params.req_line_speed[idx] = ELINK_SPEED_AUTO_NEG; |
| sc->port.advertising[idx] |= sc->port.supported[idx]; |
| if (sc->link_params.phy[ELINK_EXT_PHY1].type == |
| PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833) |
| sc->port.advertising[idx] |= |
| (ELINK_SUPPORTED_100baseT_Half | |
| ELINK_SUPPORTED_100baseT_Full); |
| } else { |
| /* force 10G, no AN */ |
| sc->link_params.req_line_speed[idx] = ELINK_SPEED_10000; |
| sc->port.advertising[idx] |= |
| (ADVERTISED_10000baseT_Full | ADVERTISED_FIBRE); |
| continue; |
| } |
| break; |
| |
| case PORT_FEATURE_LINK_SPEED_10M_FULL: |
| if (sc->port.supported[idx] & ELINK_SUPPORTED_10baseT_Full) { |
| sc->link_params.req_line_speed[idx] = ELINK_SPEED_10; |
| sc->port.advertising[idx] |= (ADVERTISED_10baseT_Full | |
| ADVERTISED_TP); |
| } else { |
| BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " |
| "speed_cap_mask=0x%08x\n", |
| link_config, sc->link_params.speed_cap_mask[idx]); |
| return; |
| } |
| break; |
| |
| case PORT_FEATURE_LINK_SPEED_10M_HALF: |
| if (sc->port.supported[idx] & ELINK_SUPPORTED_10baseT_Half) { |
| sc->link_params.req_line_speed[idx] = ELINK_SPEED_10; |
| sc->link_params.req_duplex[idx] = DUPLEX_HALF; |
| sc->port.advertising[idx] |= (ADVERTISED_10baseT_Half | |
| ADVERTISED_TP); |
| } else { |
| BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " |
| "speed_cap_mask=0x%08x\n", |
| link_config, sc->link_params.speed_cap_mask[idx]); |
| return; |
| } |
| break; |
| |
| case PORT_FEATURE_LINK_SPEED_100M_FULL: |
| if (sc->port.supported[idx] & ELINK_SUPPORTED_100baseT_Full) { |
| sc->link_params.req_line_speed[idx] = ELINK_SPEED_100; |
| sc->port.advertising[idx] |= (ADVERTISED_100baseT_Full | |
| ADVERTISED_TP); |
| } else { |
| BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " |
| "speed_cap_mask=0x%08x\n", |
| link_config, sc->link_params.speed_cap_mask[idx]); |
| return; |
| } |
| break; |
| |
| case PORT_FEATURE_LINK_SPEED_100M_HALF: |
| if (sc->port.supported[idx] & ELINK_SUPPORTED_100baseT_Half) { |
| sc->link_params.req_line_speed[idx] = ELINK_SPEED_100; |
| sc->link_params.req_duplex[idx] = DUPLEX_HALF; |
| sc->port.advertising[idx] |= (ADVERTISED_100baseT_Half | |
| ADVERTISED_TP); |
| } else { |
| BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " |
| "speed_cap_mask=0x%08x\n", |
| link_config, sc->link_params.speed_cap_mask[idx]); |
| return; |
| } |
| break; |
| |
| case PORT_FEATURE_LINK_SPEED_1G: |
| if (sc->port.supported[idx] & ELINK_SUPPORTED_1000baseT_Full) { |
| sc->link_params.req_line_speed[idx] = ELINK_SPEED_1000; |
| sc->port.advertising[idx] |= (ADVERTISED_1000baseT_Full | |
| ADVERTISED_TP); |
| } else { |
| BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " |
| "speed_cap_mask=0x%08x\n", |
| link_config, sc->link_params.speed_cap_mask[idx]); |
| return; |
| } |
| break; |
| |
| case PORT_FEATURE_LINK_SPEED_2_5G: |
| if (sc->port.supported[idx] & ELINK_SUPPORTED_2500baseX_Full) { |
| sc->link_params.req_line_speed[idx] = ELINK_SPEED_2500; |
| sc->port.advertising[idx] |= (ADVERTISED_2500baseX_Full | |
| ADVERTISED_TP); |
| } else { |
| BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " |
| "speed_cap_mask=0x%08x\n", |
| link_config, sc->link_params.speed_cap_mask[idx]); |
| return; |
| } |
| break; |
| |
| case PORT_FEATURE_LINK_SPEED_10G_CX4: |
| if (sc->port.supported[idx] & ELINK_SUPPORTED_10000baseT_Full) { |
| sc->link_params.req_line_speed[idx] = ELINK_SPEED_10000; |
| sc->port.advertising[idx] |= (ADVERTISED_10000baseT_Full | |
| ADVERTISED_FIBRE); |
| } else { |
| BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " |
| "speed_cap_mask=0x%08x\n", |
| link_config, sc->link_params.speed_cap_mask[idx]); |
| return; |
| } |
| break; |
| |
| case PORT_FEATURE_LINK_SPEED_20G: |
| sc->link_params.req_line_speed[idx] = ELINK_SPEED_20000; |
| break; |
| |
| default: |
| BLOGE(sc, "Invalid NVRAM config link_config=0x%08x " |
| "speed_cap_mask=0x%08x\n", |
| link_config, sc->link_params.speed_cap_mask[idx]); |
| sc->link_params.req_line_speed[idx] = ELINK_SPEED_AUTO_NEG; |
| sc->port.advertising[idx] = sc->port.supported[idx]; |
| break; |
| } |
| |
| sc->link_params.req_flow_ctrl[idx] = |
| (link_config & PORT_FEATURE_FLOW_CONTROL_MASK); |
| |
| if (sc->link_params.req_flow_ctrl[idx] == ELINK_FLOW_CTRL_AUTO) { |
| if (!(sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg)) { |
| sc->link_params.req_flow_ctrl[idx] = ELINK_FLOW_CTRL_NONE; |
| } else { |
| bxe_set_requested_fc(sc); |
| } |
| } |
| |
| BLOGD(sc, DBG_LOAD, "req_line_speed=%d req_duplex=%d " |
| "req_flow_ctrl=0x%x advertising=0x%x\n", |
| sc->link_params.req_line_speed[idx], |
| sc->link_params.req_duplex[idx], |
| sc->link_params.req_flow_ctrl[idx], |
| sc->port.advertising[idx]); |
| } |
| } |
| |
| static void |
| bxe_get_phy_info(struct bxe_adapter *sc) |
| { |
| uint8_t port = SC_PORT(sc); |
| uint32_t config = sc->port.config; |
| uint32_t eee_mode; |
| |
| /* shmem data already read in bxe_get_shmem_info() */ |
| |
| BLOGD(sc, DBG_LOAD, "lane_config=0x%08x speed_cap_mask0=0x%08x " |
| "link_config0=0x%08x\n", |
| sc->link_params.lane_config, |
| sc->link_params.speed_cap_mask[0], |
| sc->port.link_config[0]); |
| |
| bxe_link_settings_supported(sc, sc->link_params.switch_cfg); |
| bxe_link_settings_requested(sc); |
| |
| if (sc->autogreeen == AUTO_GREEN_FORCE_ON) { |
| sc->link_params.feature_config_flags |= |
| ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED; |
| } else if (sc->autogreeen == AUTO_GREEN_FORCE_OFF) { |
| sc->link_params.feature_config_flags &= |
| ~ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED; |
| } else if (config & PORT_FEAT_CFG_AUTOGREEEN_ENABLED) { |
| sc->link_params.feature_config_flags |= |
| ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED; |
| } |
| |
| /* configure link feature according to nvram value */ |
| eee_mode = |
| (((SHMEM_RD(sc, dev_info.port_feature_config[port].eee_power_mode)) & |
| PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >> |
| PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT); |
| if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) { |
| sc->link_params.eee_mode = (ELINK_EEE_MODE_ADV_LPI | |
| ELINK_EEE_MODE_ENABLE_LPI | |
| ELINK_EEE_MODE_OUTPUT_TIME); |
| } else { |
| sc->link_params.eee_mode = 0; |
| } |
| |
| /* get the media type */ |
| bxe_media_detect(sc); |
| } |
| |
| static void |
| bxe_get_params(struct bxe_adapter *sc) |
| { |
| /* get user tunable params */ |
| bxe_get_tunable_params(sc); |
| |
| /* select the RX and TX ring sizes */ |
| sc->tx_ring_size = TX_BD_USABLE; |
| sc->rx_ring_size = RX_BD_USABLE; |
| |
| /* XXX disable WoL */ |
| sc->wol = 0; |
| } |
| |
| static void |
| bxe_set_modes_bitmap(struct bxe_adapter *sc) |
| { |
| uint32_t flags = 0; |
| |
| if (CHIP_REV_IS_FPGA(sc)) { |
| SET_FLAGS(flags, MODE_FPGA); |
| } else if (CHIP_REV_IS_EMUL(sc)) { |
| SET_FLAGS(flags, MODE_EMUL); |
| } else { |
| SET_FLAGS(flags, MODE_ASIC); |
| } |
| |
| if (CHIP_IS_MODE_4_PORT(sc)) { |
| SET_FLAGS(flags, MODE_PORT4); |
| } else { |
| SET_FLAGS(flags, MODE_PORT2); |
| } |
| |
| if (CHIP_IS_E2(sc)) { |
| SET_FLAGS(flags, MODE_E2); |
| } else if (CHIP_IS_E3(sc)) { |
| SET_FLAGS(flags, MODE_E3); |
| if (CHIP_REV(sc) == CHIP_REV_Ax) { |
| SET_FLAGS(flags, MODE_E3_A0); |
| } else /*if (CHIP_REV(sc) == CHIP_REV_Bx)*/ { |
| SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3); |
| } |
| } |
| |
| if (IS_MF(sc)) { |
| SET_FLAGS(flags, MODE_MF); |
| switch (sc->devinfo.mf_info.mf_mode) { |
| case MULTI_FUNCTION_SD: |
| SET_FLAGS(flags, MODE_MF_SD); |
| break; |
| case MULTI_FUNCTION_SI: |
| SET_FLAGS(flags, MODE_MF_SI); |
| break; |
| case MULTI_FUNCTION_AFEX: |
| SET_FLAGS(flags, MODE_MF_AFEX); |
| break; |
| } |
| } else { |
| SET_FLAGS(flags, MODE_SF); |
| } |
| |
| #if defined(__LITTLE_ENDIAN) |
| SET_FLAGS(flags, MODE_LITTLE_ENDIAN); |
| #else /* __BIG_ENDIAN */ |
| SET_FLAGS(flags, MODE_BIG_ENDIAN); |
| #endif |
| |
| INIT_MODE_FLAGS(sc) = flags; |
| } |
| |
| static int |
| bxe_alloc_hsi_mem(struct bxe_adapter *sc) |
| { |
| struct bxe_fastpath *fp; |
| bus_addr_t busaddr; |
| int max_agg_queues; |
| int max_segments; |
| bus_size_t max_size; |
| bus_size_t max_seg_size; |
| char buf[32]; |
| int rc; |
| int i, j; |
| |
| /* XXX zero out all vars here and call bxe_alloc_hsi_mem on error */ |
| /* allocate the parent bus DMA tag */ |
| rc = bus_dma_tag_create(bus_get_dma_tag(sc->pcidev), /* parent tag */ |
| 1, /* alignment */ |
| 0, /* boundary limit */ |
| BUS_SPACE_MAXADDR, /* restricted low */ |
| BUS_SPACE_MAXADDR, /* restricted hi */ |
| NULL, /* addr filter() */ |
| NULL, /* addr filter() arg */ |
| BUS_SPACE_MAXSIZE_32BIT, /* max map size */ |
| BUS_SPACE_UNRESTRICTED, /* num discontinuous */ |
| BUS_SPACE_MAXSIZE_32BIT, /* max seg size */ |
| 0, /* flags */ |
| NULL, /* lock() */ |
| NULL, /* lock() arg */ |
| &sc->parent_dma_tag); /* returned dma tag */ |
| if (rc != 0) { |
| BLOGE(sc, "Failed to alloc parent DMA tag (%d)!\n", rc); |
| return (1); |
| } |
| |
| /************************/ |
| /* DEFAULT STATUS BLOCK */ |
| /************************/ |
| |
| if (bxe_dma_alloc(sc, sizeof(struct host_sp_status_block), |
| &sc->def_sb_dma, "default status block") != 0) { |
| /* XXX */ |
| bus_dma_tag_destroy(sc->parent_dma_tag); |
| return (1); |
| } |
| |
| sc->def_sb = (struct host_sp_status_block *)sc->def_sb_dma.vaddr; |
| |
| /***************/ |
| /* EVENT QUEUE */ |
| /***************/ |
| |
| if (bxe_dma_alloc(sc, BCM_PAGE_SIZE, |
| &sc->eq_dma, "event queue") != 0) { |
| /* XXX */ |
| bxe_dma_free(sc, &sc->def_sb_dma); |
| sc->def_sb = NULL; |
| bus_dma_tag_destroy(sc->parent_dma_tag); |
| return (1); |
| } |
| |
| sc->eq = (union event_ring_elem * )sc->eq_dma.vaddr; |
| |
| /*************/ |
| /* SLOW PATH */ |
| /*************/ |
| |
| if (bxe_dma_alloc(sc, sizeof(struct bxe_slowpath), |
| &sc->sp_dma, "slow path") != 0) { |
| /* XXX */ |
| bxe_dma_free(sc, &sc->eq_dma); |
| sc->eq = NULL; |
| bxe_dma_free(sc, &sc->def_sb_dma); |
| sc->def_sb = NULL; |
| bus_dma_tag_destroy(sc->parent_dma_tag); |
| return (1); |
| } |
| |
| sc->sp = (struct bxe_slowpath *)sc->sp_dma.vaddr; |
| |
| /*******************/ |
| /* SLOW PATH QUEUE */ |
| /*******************/ |
| |
| if (bxe_dma_alloc(sc, BCM_PAGE_SIZE, |
| &sc->spq_dma, "slow path queue") != 0) { |
| /* XXX */ |
| bxe_dma_free(sc, &sc->sp_dma); |
| sc->sp = NULL; |
| bxe_dma_free(sc, &sc->eq_dma); |
| sc->eq = NULL; |
| bxe_dma_free(sc, &sc->def_sb_dma); |
| sc->def_sb = NULL; |
| bus_dma_tag_destroy(sc->parent_dma_tag); |
| return (1); |
| } |
| |
| sc->spq = (struct eth_spe *)sc->spq_dma.vaddr; |
| |
| /***************************/ |
| /* FW DECOMPRESSION BUFFER */ |
| /***************************/ |
| |
| if (bxe_dma_alloc(sc, FW_BUF_SIZE, &sc->gz_buf_dma, |
| "fw decompression buffer") != 0) { |
| /* XXX */ |
| bxe_dma_free(sc, &sc->spq_dma); |
| sc->spq = NULL; |
| bxe_dma_free(sc, &sc->sp_dma); |
| sc->sp = NULL; |
| bxe_dma_free(sc, &sc->eq_dma); |
| sc->eq = NULL; |
| bxe_dma_free(sc, &sc->def_sb_dma); |
| sc->def_sb = NULL; |
| bus_dma_tag_destroy(sc->parent_dma_tag); |
| return (1); |
| } |
| |
| // The compress/decompress shit never worked. But they use the buffer. */ |
| sc->gz_buf = (void *)sc->gz_buf_dma.vaddr; |
| |
| /*************/ |
| /* FASTPATHS */ |
| /*************/ |
| |
| /* allocate DMA memory for each fastpath structure */ |
| for (i = 0; i < sc->num_queues; i++) { |
| fp = &sc->fp[i]; |
| fp->sc = sc; |
| fp->index = i; |
| |
| /*******************/ |
| /* FP STATUS BLOCK */ |
| /*******************/ |
| |
| snprintf(buf, sizeof(buf), "fp %d status block", i); |
| if (bxe_dma_alloc(sc, sizeof(union bxe_host_hc_status_block), |
| &fp->sb_dma, buf) != 0) { |
| /* XXX unwind and free previous fastpath allocations */ |
| BLOGE(sc, "Failed to alloc %s\n", buf); |
| return (1); |
| } else { |
| if (CHIP_IS_E2E3(sc)) { |
| fp->status_block.e2_sb = |
| (struct host_hc_status_block_e2 *)fp->sb_dma.vaddr; |
| } else { |
| fp->status_block.e1x_sb = |
| (struct host_hc_status_block_e1x *)fp->sb_dma.vaddr; |
| } |
| } |
| |
| /******************/ |
| /* FP TX BD CHAIN */ |
| /******************/ |
| |
| snprintf(buf, sizeof(buf), "fp %d tx bd chain", i); |
| if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * TX_BD_NUM_PAGES), |
| &fp->tx_dma, buf) != 0) { |
| /* XXX unwind and free previous fastpath allocations */ |
| BLOGE(sc, "Failed to alloc %s\n", buf); |
| return (1); |
| } else { |
| fp->tx_chain = (union eth_tx_bd_types *)fp->tx_dma.vaddr; |
| } |
| |
| /* link together the tx bd chain pages */ |
| for (j = 1; j <= TX_BD_NUM_PAGES; j++) { |
| /* index into the tx bd chain array to last entry per page */ |
| struct eth_tx_next_bd *tx_next_bd = |
| &fp->tx_chain[TX_BD_TOTAL_PER_PAGE * j - 1].next_bd; |
| /* point to the next page and wrap from last page */ |
| busaddr = (fp->tx_dma.paddr + |
| (BCM_PAGE_SIZE * (j % TX_BD_NUM_PAGES))); |
| tx_next_bd->addr_hi = cpu_to_le32(U64_HI(busaddr)); |
| tx_next_bd->addr_lo = cpu_to_le32(U64_LO(busaddr)); |
| } |
| |
| /******************/ |
| /* FP RX BD CHAIN */ |
| /******************/ |
| |
| snprintf(buf, sizeof(buf), "fp %d rx bd chain", i); |
| if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RX_BD_NUM_PAGES), |
| &fp->rx_dma, buf) != 0) { |
| /* XXX unwind and free previous fastpath allocations */ |
| BLOGE(sc, "Failed to alloc %s\n", buf); |
| return (1); |
| } else { |
| fp->rx_chain = (struct eth_rx_bd *)fp->rx_dma.vaddr; |
| } |
| |
| /* link together the rx bd chain pages */ |
| for (j = 1; j <= RX_BD_NUM_PAGES; j++) { |
| /* index into the rx bd chain array to last entry per page */ |
| struct eth_rx_bd *rx_bd = |
| &fp->rx_chain[RX_BD_TOTAL_PER_PAGE * j - 2]; |
| /* point to the next page and wrap from last page */ |
| busaddr = (fp->rx_dma.paddr + |
| (BCM_PAGE_SIZE * (j % RX_BD_NUM_PAGES))); |
| rx_bd->addr_hi = cpu_to_le32(U64_HI(busaddr)); |
| rx_bd->addr_lo = cpu_to_le32(U64_LO(busaddr)); |
| } |
| |
| /*******************/ |
| /* FP RX RCQ CHAIN */ |
| /*******************/ |
| |
| snprintf(buf, sizeof(buf), "fp %d rcq chain", i); |
| if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RCQ_NUM_PAGES), |
| &fp->rcq_dma, buf) != 0) { |
| /* XXX unwind and free previous fastpath allocations */ |
| BLOGE(sc, "Failed to alloc %s\n", buf); |
| return (1); |
| } else { |
| fp->rcq_chain = (union eth_rx_cqe *)fp->rcq_dma.vaddr; |
| } |
| |
| /* link together the rcq chain pages */ |
| for (j = 1; j <= RCQ_NUM_PAGES; j++) { |
| /* index into the rcq chain array to last entry per page */ |
| struct eth_rx_cqe_next_page *rx_cqe_next = |
| (struct eth_rx_cqe_next_page *) |
| &fp->rcq_chain[RCQ_TOTAL_PER_PAGE * j - 1]; |
| /* point to the next page and wrap from last page */ |
| busaddr = (fp->rcq_dma.paddr + |
| (BCM_PAGE_SIZE * (j % RCQ_NUM_PAGES))); |
| rx_cqe_next->addr_hi = cpu_to_le32(U64_HI(busaddr)); |
| rx_cqe_next->addr_lo = cpu_to_le32(U64_LO(busaddr)); |
| } |
| |
| /*******************/ |
| /* FP RX SGE CHAIN */ |
| /*******************/ |
| |
| snprintf(buf, sizeof(buf), "fp %d sge chain", i); |
| if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RX_SGE_NUM_PAGES), |
| &fp->rx_sge_dma, buf) != 0) { |
| /* XXX unwind and free previous fastpath allocations */ |
| BLOGE(sc, "Failed to alloc %s\n", buf); |
| return (1); |
| } else { |
| fp->rx_sge_chain = (struct eth_rx_sge *)fp->rx_sge_dma.vaddr; |
| } |
| |
| /* link together the sge chain pages */ |
| for (j = 1; j <= RX_SGE_NUM_PAGES; j++) { |
| /* index into the rcq chain array to last entry per page */ |
| struct eth_rx_sge *rx_sge = |
| &fp->rx_sge_chain[RX_SGE_TOTAL_PER_PAGE * j - 2]; |
| /* point to the next page and wrap from last page */ |
| busaddr = (fp->rx_sge_dma.paddr + |
| (BCM_PAGE_SIZE * (j % RX_SGE_NUM_PAGES))); |
| rx_sge->addr_hi = cpu_to_le32(U64_HI(busaddr)); |
| rx_sge->addr_lo = cpu_to_le32(U64_LO(busaddr)); |
| } |
| |
| /***********************/ |
| /* FP TX MBUF DMA MAPS */ |
| /***********************/ |
| /* set required sizes before mapping to conserve resources */ |
| if (if_getcapenable(sc->ifp) & (IFCAP_TSO4 | IFCAP_TSO6)) { |
| max_size = BXE_TSO_MAX_SIZE; |
| max_segments = BXE_TSO_MAX_SEGMENTS; |
| max_seg_size = BXE_TSO_MAX_SEG_SIZE; |
| } else { |
| max_size = (MCLBYTES * BXE_MAX_SEGMENTS); |
| max_segments = BXE_MAX_SEGMENTS; |
| max_seg_size = MCLBYTES; |
| } |
| |
| /* create a dma tag for the tx mbufs */ |
| rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */ |
| 1, /* alignment */ |
| 0, /* boundary limit */ |
| BUS_SPACE_MAXADDR, /* restricted low */ |
| BUS_SPACE_MAXADDR, /* restricted hi */ |
| NULL, /* addr filter() */ |
| NULL, /* addr filter() arg */ |
| max_size, /* max map size */ |
| max_segments, /* num discontinuous */ |
| max_seg_size, /* max seg size */ |
| 0, /* flags */ |
| NULL, /* lock() */ |
| NULL, /* lock() arg */ |
| &fp->tx_mbuf_tag); /* returned dma tag */ |
| if (rc != 0) { |
| /* XXX unwind and free previous fastpath allocations */ |
| BLOGE(sc, "Failed to create dma tag for " |
| "'fp %d tx mbufs' (%d)\n", |
| i, rc); |
| return (1); |
| } |
| /* create dma maps for each of the tx mbuf clusters */ |
| for (j = 0; j < TX_BD_TOTAL; j++) { |
| if (bus_dmamap_create(fp->tx_mbuf_tag, |
| BUS_DMA_NOWAIT, |
| &fp->tx_mbuf_chain[j].m_map)) { |
| /* XXX unwind and free previous fastpath allocations */ |
| BLOGE(sc, "Failed to create dma map for " |
| "'fp %d tx mbuf %d' (%d)\n", |
| i, j, rc); |
| return (1); |
| } |
| } |
| |
| /***********************/ |
| /* FP RX MBUF DMA MAPS */ |
| /***********************/ |
| |
| /* create a dma tag for the rx mbufs */ |
| rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */ |
| 1, /* alignment */ |
| 0, /* boundary limit */ |
| BUS_SPACE_MAXADDR, /* restricted low */ |
| BUS_SPACE_MAXADDR, /* restricted hi */ |
| NULL, /* addr filter() */ |
| NULL, /* addr filter() arg */ |
| MJUM9BYTES, /* max map size */ |
| 1, /* num discontinuous */ |
| MJUM9BYTES, /* max seg size */ |
| 0, /* flags */ |
| NULL, /* lock() */ |
| NULL, /* lock() arg */ |
| &fp->rx_mbuf_tag); /* returned dma tag */ |
| if (rc != 0) { |
| /* XXX unwind and free previous fastpath allocations */ |
| BLOGE(sc, "Failed to create dma tag for " |
| "'fp %d rx mbufs' (%d)\n", |
| i, rc); |
| return (1); |
| } |
| /* create dma maps for each of the rx mbuf clusters */ |
| for (j = 0; j < RX_BD_TOTAL; j++) { |
| if (bus_dmamap_create(fp->rx_mbuf_tag, |
| BUS_DMA_NOWAIT, |
| &fp->rx_mbuf_chain[j].m_map)) { |
| /* XXX unwind and free previous fastpath allocations */ |
| BLOGE(sc, "Failed to create dma map for " |
| "'fp %d rx mbuf %d' (%d)\n", |
| i, j, rc); |
| return (1); |
| } |
| } |
| |
| /* create dma map for the spare rx mbuf cluster */ |
| if (bus_dmamap_create(fp->rx_mbuf_tag, |
| BUS_DMA_NOWAIT, |
| &fp->rx_mbuf_spare_map)) { |
| /* XXX unwind and free previous fastpath allocations */ |
| BLOGE(sc, "Failed to create dma map for " |
| "'fp %d spare rx mbuf' (%d)\n", |
| i, rc); |
| return (1); |
| } |
| /***************************/ |
| /* FP RX SGE MBUF DMA MAPS */ |
| /***************************/ |
| /* create a dma tag for the rx sge mbufs */ |
| rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */ |
| 1, /* alignment */ |
| 0, /* boundary limit */ |
| BUS_SPACE_MAXADDR, /* restricted low */ |
| BUS_SPACE_MAXADDR, /* restricted hi */ |
| NULL, /* addr filter() */ |
| NULL, /* addr filter() arg */ |
| BCM_PAGE_SIZE, /* max map size */ |
| 1, /* num discontinuous */ |
| BCM_PAGE_SIZE, /* max seg size */ |
| 0, /* flags */ |
| NULL, /* lock() */ |
| NULL, /* lock() arg */ |
| &fp->rx_sge_mbuf_tag); /* returned dma tag */ |
| if (rc != 0) { |
| /* XXX unwind and free previous fastpath allocations */ |
| BLOGE(sc, "Failed to create dma tag for " |
| "'fp %d rx sge mbufs' (%d)\n", |
| i, rc); |
| return (1); |
| } |
| /* create dma maps for the rx sge mbuf clusters */ |
| for (j = 0; j < RX_SGE_TOTAL; j++) { |
| if (bus_dmamap_create(fp->rx_sge_mbuf_tag, |
| BUS_DMA_NOWAIT, |
| &fp->rx_sge_mbuf_chain[j].m_map)) { |
| /* XXX unwind and free previous fastpath allocations */ |
| BLOGE(sc, "Failed to create dma map for " |
| "'fp %d rx sge mbuf %d' (%d)\n", |
| i, j, rc); |
| return (1); |
| } |
| } |
| |
| /* create dma map for the spare rx sge mbuf cluster */ |
| if (bus_dmamap_create(fp->rx_sge_mbuf_tag, |
| BUS_DMA_NOWAIT, |
| &fp->rx_sge_mbuf_spare_map)) { |
| /* XXX unwind and free previous fastpath allocations */ |
| BLOGE(sc, "Failed to create dma map for " |
| "'fp %d spare rx sge mbuf' (%d)\n", |
| i, rc); |
| return (1); |
| } |
| /***************************/ |
| /* FP RX TPA MBUF DMA MAPS */ |
| /***************************/ |
| |
| /* create dma maps for the rx tpa mbuf clusters */ |
| max_agg_queues = MAX_AGG_QS(sc); |
| for (j = 0; j < max_agg_queues; j++) { |
| if (bus_dmamap_create(fp->rx_mbuf_tag, |
| BUS_DMA_NOWAIT, |
| &fp->rx_tpa_info[j].bd.m_map)) { |
| /* XXX unwind and free previous fastpath allocations */ |
| BLOGE(sc, "Failed to create dma map for " |
| "'fp %d rx tpa mbuf %d' (%d)\n", |
| i, j, rc); |
| return (1); |
| } |
| } |
| |
| /* create dma map for the spare rx tpa mbuf cluster */ |
| if (bus_dmamap_create(fp->rx_mbuf_tag, |
| BUS_DMA_NOWAIT, |
| &fp->rx_tpa_info_mbuf_spare_map)) { |
| /* XXX unwind and free previous fastpath allocations */ |
| BLOGE(sc, "Failed to create dma map for " |
| "'fp %d spare rx tpa mbuf' (%d)\n", |
| i, rc); |
| return (1); |
| } |
| |
| bxe_init_sge_ring_bit_mask(fp); |
| } |
| |
| return (0); |
| } |
| |
| static void |
| bxe_free_hsi_mem(struct bxe_adapter *sc) |
| { |
| struct bxe_fastpath *fp; |
| int max_agg_queues; |
| int i, j; |
| /* still a minor pita to free this */ |
| assert(0); |
| #if 0 // AKAROS_PORT |
| if (sc->parent_dma_tag == NULL) { |
| return; /* assume nothing was allocated */ |
| } |
| |
| for (i = 0; i < sc->num_queues; i++) { |
| fp = &sc->fp[i]; |
| |
| /*******************/ |
| /* FP STATUS BLOCK */ |
| /*******************/ |
| |
| bxe_dma_free(sc, &fp->sb_dma); |
| memset(&fp->status_block, 0, sizeof(fp->status_block)); |
| |
| /******************/ |
| /* FP TX BD CHAIN */ |
| /******************/ |
| |
| bxe_dma_free(sc, &fp->tx_dma); |
| fp->tx_chain = NULL; |
| |
| /******************/ |
| /* FP RX BD CHAIN */ |
| /******************/ |
| |
| bxe_dma_free(sc, &fp->rx_dma); |
| fp->rx_chain = NULL; |
| |
| /*******************/ |
| /* FP RX RCQ CHAIN */ |
| /*******************/ |
| |
| bxe_dma_free(sc, &fp->rcq_dma); |
| fp->rcq_chain = NULL; |
| |
| /*******************/ |
| /* FP RX SGE CHAIN */ |
| /*******************/ |
| |
| bxe_dma_free(sc, &fp->rx_sge_dma); |
| fp->rx_sge_chain = NULL; |
| |
| /***********************/ |
| /* FP TX MBUF DMA MAPS */ |
| /***********************/ |
| |
| if (fp->tx_mbuf_tag != NULL) { |
| for (j = 0; j < TX_BD_TOTAL; j++) { |
| if (fp->tx_mbuf_chain[j].m_map != NULL) { |
| bus_dmamap_unload(fp->tx_mbuf_tag, |
| fp->tx_mbuf_chain[j].m_map); |
| bus_dmamap_destroy(fp->tx_mbuf_tag, |
| fp->tx_mbuf_chain[j].m_map); |
| } |
| } |
| |
| bus_dma_tag_destroy(fp->tx_mbuf_tag); |
| fp->tx_mbuf_tag = NULL; |
| } |
| |
| /***********************/ |
| /* FP RX MBUF DMA MAPS */ |
| /***********************/ |
| |
| if (fp->rx_mbuf_tag != NULL) { |
| for (j = 0; j < RX_BD_TOTAL; j++) { |
| if (fp->rx_mbuf_chain[j].m_map != NULL) { |
| bus_dmamap_unload(fp->rx_mbuf_tag, |
| fp->rx_mbuf_chain[j].m_map); |
| bus_dmamap_destroy(fp->rx_mbuf_tag, |
| fp->rx_mbuf_chain[j].m_map); |
| } |
| } |
| |
| if (fp->rx_mbuf_spare_map != NULL) { |
| bus_dmamap_unload(fp->rx_mbuf_tag, fp->rx_mbuf_spare_map); |
| bus_dmamap_destroy(fp->rx_mbuf_tag, fp->rx_mbuf_spare_map); |
| } |
| |
| /***************************/ |
| /* FP RX TPA MBUF DMA MAPS */ |
| /***************************/ |
| |
| max_agg_queues = MAX_AGG_QS(sc); |
| |
| for (j = 0; j < max_agg_queues; j++) { |
| if (fp->rx_tpa_info[j].bd.m_map != NULL) { |
| bus_dmamap_unload(fp->rx_mbuf_tag, |
| fp->rx_tpa_info[j].bd.m_map); |
| bus_dmamap_destroy(fp->rx_mbuf_tag, |
| fp->rx_tpa_info[j].bd.m_map); |
| } |
| } |
| |
| if (fp->rx_tpa_info_mbuf_spare_map != NULL) { |
| bus_dmamap_unload(fp->rx_mbuf_tag, |
| fp->rx_tpa_info_mbuf_spare_map); |
| bus_dmamap_destroy(fp->rx_mbuf_tag, |
| fp->rx_tpa_info_mbuf_spare_map); |
| } |
| |
| bus_dma_tag_destroy(fp->rx_mbuf_tag); |
| fp->rx_mbuf_tag = NULL; |
| } |
| |
| /***************************/ |
| /* FP RX SGE MBUF DMA MAPS */ |
| /***************************/ |
| |
| if (fp->rx_sge_mbuf_tag != NULL) { |
| for (j = 0; j < RX_SGE_TOTAL; j++) { |
| if (fp->rx_sge_mbuf_chain[j].m_map != NULL) { |
| bus_dmamap_unload(fp->rx_sge_mbuf_tag, |
| fp->rx_sge_mbuf_chain[j].m_map); |
| bus_dmamap_destroy(fp->rx_sge_mbuf_tag, |
| fp->rx_sge_mbuf_chain[j].m_map); |
| } |
| } |
| |
| if (fp->rx_sge_mbuf_spare_map != NULL) { |
| bus_dmamap_unload(fp->rx_sge_mbuf_tag, |
| fp->rx_sge_mbuf_spare_map); |
| bus_dmamap_destroy(fp->rx_sge_mbuf_tag, |
| fp->rx_sge_mbuf_spare_map); |
| } |
| |
| bus_dma_tag_destroy(fp->rx_sge_mbuf_tag); |
| fp->rx_sge_mbuf_tag = NULL; |
| } |
| } |
| |
| /***************************/ |
| /* FW DECOMPRESSION BUFFER */ |
| /***************************/ |
| |
| bxe_dma_free(sc, &sc->gz_buf_dma); |
| sc->gz_buf = NULL; |
| free(sc->gz_strm, M_DEVBUF); |
| sc->gz_strm = NULL; |
| |
| /*******************/ |
| /* SLOW PATH QUEUE */ |
| /*******************/ |
| |
| bxe_dma_free(sc, &sc->spq_dma); |
| sc->spq = NULL; |
| |
| /*************/ |
| /* SLOW PATH */ |
| /*************/ |
| |
| bxe_dma_free(sc, &sc->sp_dma); |
| sc->sp = NULL; |
| |
| /***************/ |
| /* EVENT QUEUE */ |
| /***************/ |
| |
| bxe_dma_free(sc, &sc->eq_dma); |
| sc->eq = NULL; |
| |
| /************************/ |
| /* DEFAULT STATUS BLOCK */ |
| /************************/ |
| |
| bxe_dma_free(sc, &sc->def_sb_dma); |
| sc->def_sb = NULL; |
| |
| bus_dma_tag_destroy(sc->parent_dma_tag); |
| sc->parent_dma_tag = NULL; |
| #endif |
| } |
| |
| /* |
| * Previous driver DMAE transaction may have occurred when pre-boot stage |
| * ended and boot began. This would invalidate the addresses of the |
| * transaction, resulting in was-error bit set in the PCI causing all |
| * hw-to-host PCIe transactions to timeout. If this happened we want to clear |
| * the interrupt which detected this from the pglueb and the was-done bit |
| */ |
| static void |
| bxe_prev_interrupted_dmae(struct bxe_adapter *sc) |
| { |
| uint32_t val; |
| |
| if (!CHIP_IS_E1x(sc)) { |
| val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS); |
| if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) { |
| BLOGD(sc, DBG_LOAD, |
| "Clearing 'was-error' bit that was set in pglueb"); |
| REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, 1 << SC_FUNC(sc)); |
| } |
| } |
| } |
| |
| static int |
| bxe_prev_mcp_done(struct bxe_adapter *sc) |
| { |
| uint32_t rc = bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, |
| DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET); |
| if (!rc) { |
| BLOGE(sc, "MCP response failure, aborting\n"); |
| return (-1); |
| } |
| |
| return (0); |
| } |
| |
| static struct bxe_prev_list_node * |
| bxe_prev_path_get_entry(struct bxe_adapter *sc) |
| { |
| struct bxe_prev_list_node *tmp; |
| LIST_FOREACH(tmp, &bxe_prev_list, node) { |
| if ((sc->pcie_bus == tmp->bus) && |
| (sc->pcie_device == tmp->slot) && |
| (SC_PATH(sc) == tmp->path)) { |
| return (tmp); |
| } |
| } |
| return (NULL); |
| } |
| |
| static uint8_t |
| bxe_prev_is_path_marked(struct bxe_adapter *sc) |
| { |
| struct bxe_prev_list_node *tmp; |
| int rc = FALSE; |
| qlock(&bxe_prev_mtx); |
| |
| tmp = bxe_prev_path_get_entry(sc); |
| if (tmp) { |
| if (tmp->aer) { |
| BLOGD(sc, DBG_LOAD, |
| "Path %d/%d/%d was marked by AER\n", |
| sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); |
| } else { |
| rc = TRUE; |
| BLOGD(sc, DBG_LOAD, |
| "Path %d/%d/%d was already cleaned from previous drivers\n", |
| sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); |
| } |
| } |
| |
| qunlock(&bxe_prev_mtx); |
| |
| return (rc); |
| } |
| |
| static int |
| bxe_prev_mark_path(struct bxe_adapter *sc, |
| uint8_t after_undi) |
| { |
| struct bxe_prev_list_node *tmp; |
| |
| qlock(&bxe_prev_mtx); |
| |
| /* Check whether the entry for this path already exists */ |
| tmp = bxe_prev_path_get_entry(sc); |
| if (tmp) { |
| if (!tmp->aer) { |
| BLOGD(sc, DBG_LOAD, |
| "Re-marking AER in path %d/%d/%d\n", |
| sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); |
| } else { |
| BLOGD(sc, DBG_LOAD, |
| "Removing AER indication from path %d/%d/%d\n", |
| sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); |
| tmp->aer = 0; |
| } |
| |
| qunlock(&bxe_prev_mtx); |
| return (0); |
| } |
| |
| qunlock(&bxe_prev_mtx); |
| |
| /* Create an entry for this path and add it */ |
| tmp = kzmalloc(sizeof(struct bxe_prev_list_node), 0); //M_DEVBUF, |
| // (M_NOWAIT | M_ZERO)); |
| if (!tmp) { |
| BLOGE(sc, "Failed to allocate 'bxe_prev_list_node'\n"); |
| return (-1); |
| } |
| |
| tmp->bus = sc->pcie_bus; |
| tmp->slot = sc->pcie_device; |
| tmp->path = SC_PATH(sc); |
| tmp->aer = 0; |
| tmp->undi = after_undi ? (1 << SC_PORT(sc)) : 0; |
| |
| qlock(&bxe_prev_mtx); |
| |
| BLOGD(sc, DBG_LOAD, |
| "Marked path %d/%d/%d - finished previous unload\n", |
| sc->pcie_bus, sc->pcie_device, SC_PATH(sc)); |
| LIST_INSERT_HEAD(&bxe_prev_list, tmp, node); |
| |
| qunlock(&bxe_prev_mtx); |
| |
| return (0); |
| } |
| |
| static int |
| bxe_do_flr(struct bxe_adapter *sc) |
| { |
| int i; |
| |
| /* only E2 and onwards support FLR */ |
| if (CHIP_IS_E1x(sc)) { |
| BLOGD(sc, DBG_LOAD, "FLR not supported in E1/E1H\n"); |
| return (-1); |
| } |
| |
| /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */ |
| if (sc->devinfo.bc_ver < REQ_BC_VER_4_INITIATE_FLR) { |
| BLOGD(sc, DBG_LOAD, "FLR not supported by BC_VER: 0x%08x\n", |
| sc->devinfo.bc_ver); |
| return (-1); |
| } |
| |
| /* Wait for Transaction Pending bit clean */ |
| for (i = 0; i < 4; i++) { |
| if (i) { |
| udelay(((1 << (i - 1)) * 100) * 1000); |
| } |
| |
| if (!bxe_is_pcie_pending(sc)) { |
| goto clear; |
| } |
| } |
| |
| BLOGE(sc, "PCIE transaction is not cleared, " |
| "proceeding with reset anyway\n"); |
| |
| clear: |
| |
| BLOGD(sc, DBG_LOAD, "Initiating FLR\n"); |
| bxe_fw_command(sc, DRV_MSG_CODE_INITIATE_FLR, 0); |
| |
| return (0); |
| } |
| |
| struct bxe_mac_vals { |
| uint32_t xmac_addr; |
| uint32_t xmac_val; |
| uint32_t emac_addr; |
| uint32_t emac_val; |
| uint32_t umac_addr; |
| uint32_t umac_val; |
| uint32_t bmac_addr; |
| uint32_t bmac_val[2]; |
| }; |
| |
| static void |
| bxe_prev_unload_close_mac(struct bxe_adapter *sc, |
| struct bxe_mac_vals *vals) |
| { |
| uint32_t val, base_addr, offset, mask, reset_reg; |
| uint8_t mac_stopped = FALSE; |
| uint8_t port = SC_PORT(sc); |
| uint32_t wb_data[2]; |
| |
| /* reset addresses as they also mark which values were changed */ |
| vals->bmac_addr = 0; |
| vals->umac_addr = 0; |
| vals->xmac_addr = 0; |
| vals->emac_addr = 0; |
| |
| reset_reg = REG_RD(sc, MISC_REG_RESET_REG_2); |
| |
| if (!CHIP_IS_E3(sc)) { |
| val = REG_RD(sc, NIG_REG_BMAC0_REGS_OUT_EN + port * 4); |
| mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port; |
| if ((mask & reset_reg) && val) { |
| BLOGD(sc, DBG_LOAD, "Disable BMAC Rx\n"); |
| base_addr = SC_PORT(sc) ? NIG_REG_INGRESS_BMAC1_MEM |
| : NIG_REG_INGRESS_BMAC0_MEM; |
| offset = CHIP_IS_E2(sc) ? BIGMAC2_REGISTER_BMAC_CONTROL |
| : BIGMAC_REGISTER_BMAC_CONTROL; |
| |
| /* |
| * use rd/wr since we cannot use dmae. This is safe |
| * since MCP won't access the bus due to the request |
| * to unload, and no function on the path can be |
| * loaded at this time. |
| */ |
| wb_data[0] = REG_RD(sc, base_addr + offset); |
| wb_data[1] = REG_RD(sc, base_addr + offset + 0x4); |
| vals->bmac_addr = base_addr + offset; |
| vals->bmac_val[0] = wb_data[0]; |
| vals->bmac_val[1] = wb_data[1]; |
| wb_data[0] &= ~ELINK_BMAC_CONTROL_RX_ENABLE; |
| REG_WR(sc, vals->bmac_addr, wb_data[0]); |
| REG_WR(sc, vals->bmac_addr + 0x4, wb_data[1]); |
| } |
| |
| BLOGD(sc, DBG_LOAD, "Disable EMAC Rx\n"); |
| vals->emac_addr = NIG_REG_NIG_EMAC0_EN + SC_PORT(sc)*4; |
| vals->emac_val = REG_RD(sc, vals->emac_addr); |
| REG_WR(sc, vals->emac_addr, 0); |
| mac_stopped = TRUE; |
| } else { |
| if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) { |
| BLOGD(sc, DBG_LOAD, "Disable XMAC Rx\n"); |
| base_addr = SC_PORT(sc) ? GRCBASE_XMAC1 : GRCBASE_XMAC0; |
| val = REG_RD(sc, base_addr + XMAC_REG_PFC_CTRL_HI); |
| REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI, val & ~(1 << 1)); |
| REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI, val | (1 << 1)); |
| vals->xmac_addr = base_addr + XMAC_REG_CTRL; |
| vals->xmac_val = REG_RD(sc, vals->xmac_addr); |
| REG_WR(sc, vals->xmac_addr, 0); |
| mac_stopped = TRUE; |
| } |
| |
| mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port; |
| if (mask & reset_reg) { |
| BLOGD(sc, DBG_LOAD, "Disable UMAC Rx\n"); |
| base_addr = SC_PORT(sc) ? GRCBASE_UMAC1 : GRCBASE_UMAC0; |
| vals->umac_addr = base_addr + UMAC_REG_COMMAND_CONFIG; |
| vals->umac_val = REG_RD(sc, vals->umac_addr); |
| REG_WR(sc, vals->umac_addr, 0); |
| mac_stopped = TRUE; |
| } |
| } |
| |
| if (mac_stopped) { |
| udelay(20000); |
| } |
| } |
| |
| #define BXE_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4)) |
| #define BXE_PREV_UNDI_RCQ(val) ((val) & 0xffff) |
| #define BXE_PREV_UNDI_BD(val) ((val) >> 16 & 0xffff) |
| #define BXE_PREV_UNDI_PROD(rcq, bd) ((bd) << 16 | (rcq)) |
| |
| static void |
| bxe_prev_unload_undi_inc(struct bxe_adapter *sc, |
| uint8_t port, |
| uint8_t inc) |
| { |
| uint16_t rcq, bd; |
| uint32_t tmp_reg = REG_RD(sc, BXE_PREV_UNDI_PROD_ADDR(port)); |
| |
| rcq = BXE_PREV_UNDI_RCQ(tmp_reg) + inc; |
| bd = BXE_PREV_UNDI_BD(tmp_reg) + inc; |
| |
| tmp_reg = BXE_PREV_UNDI_PROD(rcq, bd); |
| REG_WR(sc, BXE_PREV_UNDI_PROD_ADDR(port), tmp_reg); |
| |
| BLOGD(sc, DBG_LOAD, |
| "UNDI producer [%d] rings bd -> 0x%04x, rcq -> 0x%04x\n", |
| port, bd, rcq); |
| } |
| |
| static int |
| bxe_prev_unload_common(struct bxe_adapter *sc) |
| { |
| uint32_t reset_reg, tmp_reg = 0, rc; |
| uint8_t prev_undi = FALSE; |
| struct bxe_mac_vals mac_vals; |
| uint32_t timer_count = 1000; |
| uint32_t prev_brb; |
| |
| /* |
| * It is possible a previous function received 'common' answer, |
| * but hasn't loaded yet, therefore creating a scenario of |
| * multiple functions receiving 'common' on the same path. |
| */ |
| BLOGD(sc, DBG_LOAD, "Common unload Flow\n"); |
| |
| memset(&mac_vals, 0, sizeof(mac_vals)); |
| |
| if (bxe_prev_is_path_marked(sc)) { |
| return (bxe_prev_mcp_done(sc)); |
| } |
| |
| reset_reg = REG_RD(sc, MISC_REG_RESET_REG_1); |
| |
| /* Reset should be performed after BRB is emptied */ |
| if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) { |
| /* Close the MAC Rx to prevent BRB from filling up */ |
| bxe_prev_unload_close_mac(sc, &mac_vals); |
| |
| /* close LLH filters towards the BRB */ |
| elink_set_rx_filter(&sc->link_params, 0); |
| |
| /* |
| * Check if the UNDI driver was previously loaded. |
| * UNDI driver initializes CID offset for normal bell to 0x7 |
| */ |
| if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_DORQ) { |
| tmp_reg = REG_RD(sc, DORQ_REG_NORM_CID_OFST); |
| if (tmp_reg == 0x7) { |
| BLOGD(sc, DBG_LOAD, "UNDI previously loaded\n"); |
| prev_undi = TRUE; |
| /* clear the UNDI indication */ |
| REG_WR(sc, DORQ_REG_NORM_CID_OFST, 0); |
| /* clear possible idle check errors */ |
| REG_RD(sc, NIG_REG_NIG_INT_STS_CLR_0); |
| } |
| } |
| |
| /* wait until BRB is empty */ |
| tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS); |
| while (timer_count) { |
| prev_brb = tmp_reg; |
| |
| tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS); |
| if (!tmp_reg) { |
| break; |
| } |
| |
| BLOGD(sc, DBG_LOAD, "BRB still has 0x%08x\n", tmp_reg); |
| |
| /* reset timer as long as BRB actually gets emptied */ |
| if (prev_brb > tmp_reg) { |
| timer_count = 1000; |
| } else { |
| timer_count--; |
| } |
| |
| /* If UNDI resides in memory, manually increment it */ |
| if (prev_undi) { |
| bxe_prev_unload_undi_inc(sc, SC_PORT(sc), 1); |
| } |
| |
| udelay(10); |
| } |
| |
| if (!timer_count) { |
| BLOGE(sc, "Failed to empty BRB\n"); |
| } |
| } |
| |
| /* No packets are in the pipeline, path is ready for reset */ |
| bxe_reset_common(sc); |
| |
| if (mac_vals.xmac_addr) { |
| REG_WR(sc, mac_vals.xmac_addr, mac_vals.xmac_val); |
| } |
| if (mac_vals.umac_addr) { |
| REG_WR(sc, mac_vals.umac_addr, mac_vals.umac_val); |
| } |
| if (mac_vals.emac_addr) { |
| REG_WR(sc, mac_vals.emac_addr, mac_vals.emac_val); |
| } |
| if (mac_vals.bmac_addr) { |
| REG_WR(sc, mac_vals.bmac_addr, mac_vals.bmac_val[0]); |
| REG_WR(sc, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]); |
| } |
| |
| rc = bxe_prev_mark_path(sc, prev_undi); |
| if (rc) { |
| bxe_prev_mcp_done(sc); |
| return (rc); |
| } |
| |
| return (bxe_prev_mcp_done(sc)); |
| } |
| |
| static int |
| bxe_prev_unload_uncommon(struct bxe_adapter *sc) |
| { |
| int rc; |
| |
| BLOGD(sc, DBG_LOAD, "Uncommon unload Flow\n"); |
| |
| /* Test if previous unload process was already finished for this path */ |
| if (bxe_prev_is_path_marked(sc)) { |
| return (bxe_prev_mcp_done(sc)); |
| } |
| |
| BLOGD(sc, DBG_LOAD, "Path is unmarked\n"); |
| |
| /* |
| * If function has FLR capabilities, and existing FW version matches |
| * the one required, then FLR will be sufficient to clean any residue |
| * left by previous driver |
| */ |
| rc = bxe_nic_load_analyze_req(sc, FW_MSG_CODE_DRV_LOAD_FUNCTION); |
| if (!rc) { |
| /* fw version is good */ |
| BLOGD(sc, DBG_LOAD, "FW version matches our own, attempting FLR\n"); |
| rc = bxe_do_flr(sc); |
| } |
| |
| if (!rc) { |
| /* FLR was performed */ |
| BLOGD(sc, DBG_LOAD, "FLR successful\n"); |
| return (0); |
| } |
| |
| BLOGD(sc, DBG_LOAD, "Could not FLR\n"); |
| |
| /* Close the MCP request, return failure*/ |
| rc = bxe_prev_mcp_done(sc); |
| if (!rc) { |
| rc = BXE_PREV_WAIT_NEEDED; |
| } |
| |
| return (rc); |
| } |
| |
| static int bxe_prev_unload(struct bxe_adapter *sc) |
| { |
| int time_counter = 10; |
| uint32_t fw, hw_lock_reg, hw_lock_val; |
| uint32_t rc = 0; |
| |
| /* |
| * Clear HW from errors which may have resulted from an interrupted |
| * DMAE transaction. |
| */ |
| bxe_prev_interrupted_dmae(sc); |
| |
| /* Release previously held locks */ |
| hw_lock_reg = |
| (SC_FUNC(sc) <= 5) ? |
| (MISC_REG_DRIVER_CONTROL_1 + SC_FUNC(sc) * 8) : |
| (MISC_REG_DRIVER_CONTROL_7 + (SC_FUNC(sc) - 6) * 8); |
| |
| hw_lock_val = (REG_RD(sc, hw_lock_reg)); |
| if (hw_lock_val) { |
| if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) { |
| BLOGD(sc, DBG_LOAD, "Releasing previously held NVRAM lock\n"); |
| REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB, |
| (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << SC_PORT(sc))); |
| } |
| BLOGD(sc, DBG_LOAD, "Releasing previously held HW lock\n"); |
| REG_WR(sc, hw_lock_reg, 0xffffffff); |
| } else { |
| BLOGD(sc, DBG_LOAD, "No need to release HW/NVRAM locks\n"); |
| } |
| |
| if (MCPR_ACCESS_LOCK_LOCK & REG_RD(sc, MCP_REG_MCPR_ACCESS_LOCK)) { |
| BLOGD(sc, DBG_LOAD, "Releasing previously held ALR\n"); |
| REG_WR(sc, MCP_REG_MCPR_ACCESS_LOCK, 0); |
| } |
| |
| do { |
| /* Lock MCP using an unload request */ |
| fw = bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0); |
| if (!fw) { |
| BLOGE(sc, "MCP response failure, aborting\n"); |
| rc = -1; |
| break; |
| } |
| |
| if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON) { |
| rc = bxe_prev_unload_common(sc); |
| break; |
| } |
| |
| /* non-common reply from MCP night require looping */ |
| rc = bxe_prev_unload_uncommon(sc); |
| if (rc != BXE_PREV_WAIT_NEEDED) { |
| break; |
| } |
| |
| udelay(20000); |
| } while (--time_counter); |
| |
| if (!time_counter || rc) { |
| BLOGE(sc, "Failed to unload previous driver!\n"); |
| rc = -1; |
| } |
| |
| return (rc); |
| } |
| |
| void |
| bxe_dcbx_set_state(struct bxe_adapter *sc, |
| uint8_t dcb_on, |
| uint32_t dcbx_enabled) |
| { |
| if (!CHIP_IS_E1x(sc)) { |
| sc->dcb_state = dcb_on; |
| sc->dcbx_enabled = dcbx_enabled; |
| } else { |
| sc->dcb_state = FALSE; |
| sc->dcbx_enabled = BXE_DCBX_ENABLED_INVALID; |
| } |
| BLOGD(sc, DBG_LOAD, |
| "DCB state [%s:%s]\n", |
| dcb_on ? "ON" : "OFF", |
| (dcbx_enabled == BXE_DCBX_ENABLED_OFF) ? "user-mode" : |
| (dcbx_enabled == BXE_DCBX_ENABLED_ON_NEG_OFF) ? "on-chip static" : |
| (dcbx_enabled == BXE_DCBX_ENABLED_ON_NEG_ON) ? |
| "on-chip with negotiation" : "invalid"); |
| } |
| |
| /* must be called after sriov-enable */ |
| static int |
| bxe_set_qm_cid_count(struct bxe_adapter *sc) |
| { |
| int cid_count = BXE_L2_MAX_CID(sc); |
| |
| if (IS_SRIOV(sc)) { |
| cid_count += BXE_VF_CIDS; |
| } |
| |
| if (CNIC_SUPPORT(sc)) { |
| cid_count += CNIC_CID_MAX; |
| } |
| |
| return (ROUNDUP(cid_count, QM_CID_ROUND)); |
| } |
| |
| static void |
| bxe_init_multi_cos(struct bxe_adapter *sc) |
| { |
| int pri, cos; |
| |
| uint32_t pri_map = 0; /* XXX change to user config */ |
| |
| for (pri = 0; pri < BXE_MAX_PRIORITY; pri++) { |
| cos = ((pri_map & (0xf << (pri * 4))) >> (pri * 4)); |
| if (cos < sc->max_cos) { |
| sc->prio_to_cos[pri] = cos; |
| } else { |
| BLOGW(sc, "Invalid COS %d for priority %d " |
| "(max COS is %d), setting to 0\n", |
| cos, pri, (sc->max_cos - 1)); |
| sc->prio_to_cos[pri] = 0; |
| } |
| } |
| } |
| |
| #if 0 // AKAROS_PORT brho: prob can ignore |
| static int |
| bxe_sysctl_state(SYSCTL_HANDLER_ARGS) |
| { |
| struct bxe_adapter *sc; |
| int error, result; |
| |
| result = 0; |
| error = sysctl_handle_int(oidp, &result, 0, req); |
| |
| if (error || !req->newptr) { |
| return (error); |
| } |
| |
| if (result == 1) { |
| sc = (struct bxe_adapter *)arg1; |
| BLOGI(sc, "... dumping driver state ...\n"); |
| /* XXX */ |
| } |
| |
| return (error); |
| } |
| |
| |
| static int |
| bxe_sysctl_eth_stat(SYSCTL_HANDLER_ARGS) |
| { |
| struct bxe_adapter *sc = (struct bxe_adapter *)arg1; |
| uint32_t *eth_stats = (uint32_t *)&sc->eth_stats; |
| uint32_t *offset; |
| uint64_t value = 0; |
| int index = (int)arg2; |
| |
| if (index >= BXE_NUM_ETH_STATS) { |
| BLOGE(sc, "bxe_eth_stats index out of range (%d)\n", index); |
| return (-1); |
| } |
| |
| offset = (eth_stats + bxe_eth_stats_arr[index].offset); |
| |
| switch (bxe_eth_stats_arr[index].size) { |
| case 4: |
| value = (uint64_t)*offset; |
| break; |
| case 8: |
| value = HILO_U64(*offset, *(offset + 1)); |
| break; |
| default: |
| BLOGE(sc, "Invalid bxe_eth_stats size (index=%d size=%d)\n", |
| index, bxe_eth_stats_arr[index].size); |
| return (-1); |
| } |
| |
| return (sysctl_handle_64(oidp, &value, 0, req)); |
| } |
| |
| static int |
| bxe_sysctl_eth_q_stat(SYSCTL_HANDLER_ARGS) |
| { |
| struct bxe_adapter *sc = (struct bxe_adapter *)arg1; |
| uint32_t *eth_stats; |
| uint32_t *offset; |
| uint64_t value = 0; |
| uint32_t q_stat = (uint32_t)arg2; |
| uint32_t fp_index = ((q_stat >> 16) & 0xffff); |
| uint32_t index = (q_stat & 0xffff); |
| |
| eth_stats = (uint32_t *)&sc->fp[fp_index].eth_q_stats; |
| |
| if (index >= BXE_NUM_ETH_Q_STATS) { |
| BLOGE(sc, "bxe_eth_q_stats index out of range (%d)\n", index); |
| return (-1); |
| } |
| |
| offset = (eth_stats + bxe_eth_q_stats_arr[index].offset); |
| |
| switch (bxe_eth_q_stats_arr[index].size) { |
| case 4: |
| value = (uint64_t)*offset; |
| break; |
| case 8: |
| value = HILO_U64(*offset, *(offset + 1)); |
| break; |
| default: |
| BLOGE(sc, "Invalid bxe_eth_q_stats size (index=%d size=%d)\n", |
| index, bxe_eth_q_stats_arr[index].size); |
| return (-1); |
| } |
| |
| return (sysctl_handle_64(oidp, &value, 0, req)); |
| } |
| #endif |
| #if 0 // AKAROS_PORT brho: prob can ignore |
| static void |
| bxe_add_sysctls(struct bxe_adapter *sc) |
| { |
| struct sysctl_ctx_list *ctx; |
| struct sysctl_oid_list *children; |
| struct sysctl_oid *queue_top, *queue; |
| struct sysctl_oid_list *queue_top_children, *queue_children; |
| char queue_num_buf[32]; |
| uint32_t q_stat; |
| int i, j; |
| |
| ctx = device_get_sysctl_ctx(sc->pcidev); |
| children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->pcidev)); |
| |
| SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "version", |
| CTLFLAG_RD, BXE_DRIVER_VERSION, 0, |
| "version"); |
| |
| SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bc_version", |
| CTLFLAG_RD, sc->devinfo.bc_ver_str, 0, |
| "bootcode version"); |
| |
| snprintf(sc->fw_ver_str, sizeof(sc->fw_ver_str), "%d.%d.%d.%d", |
| BCM_5710_FW_MAJOR_VERSION, |
| BCM_5710_FW_MINOR_VERSION, |
| BCM_5710_FW_REVISION_VERSION, |
| BCM_5710_FW_ENGINEERING_VERSION); |
| SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "fw_version", |
| CTLFLAG_RD, sc->fw_ver_str, 0, |
| "firmware version"); |
| |
| snprintf(sc->mf_mode_str, sizeof(sc->mf_mode_str), "%s", |
| ((sc->devinfo.mf_info.mf_mode == SINGLE_FUNCTION) ? "Single" : |
| (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SD) ? "MF-SD" : |
| (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SI) ? "MF-SI" : |
| (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_AFEX) ? "MF-AFEX" : |
| "Unknown")); |
| SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mf_mode", |
| CTLFLAG_RD, sc->mf_mode_str, 0, |
| "multifunction mode"); |
| |
| SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "mf_vnics", |
| CTLFLAG_RD, &sc->devinfo.mf_info.vnics_per_port, 0, |
| "multifunction vnics per port"); |
| |
| SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mac_addr", |
| CTLFLAG_RD, sc->mac_addr_str, 0, |
| "mac address"); |
| |
| snprintf(sc->pci_link_str, sizeof(sc->pci_link_str), "%s x%d", |
| ((sc->devinfo.pcie_link_speed == 1) ? "2.5GT/s" : |
| (sc->devinfo.pcie_link_speed == 2) ? "5.0GT/s" : |
| (sc->devinfo.pcie_link_speed == 4) ? "8.0GT/s" : |
| "???GT/s"), |
| sc->devinfo.pcie_link_width); |
| SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pci_link", |
| CTLFLAG_RD, sc->pci_link_str, 0, |
| "pci link status"); |
| |
| sc->debug = bxe_debug; |
| SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, "debug", |
| CTLFLAG_RW, &sc->debug, |
| "debug logging mode"); |
| |
| sc->rx_budget = bxe_rx_budget; |
| SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rx_budget", |
| CTLFLAG_RW, &sc->rx_budget, 0, |
| "rx processing budget"); |
| |
| SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "state", |
| CTLTYPE_UINT | CTLFLAG_RW, sc, 0, |
| bxe_sysctl_state, "IU", "dump driver state"); |
| |
| for (i = 0; i < BXE_NUM_ETH_STATS; i++) { |
| SYSCTL_ADD_PROC(ctx, children, OID_AUTO, |
| bxe_eth_stats_arr[i].string, |
| CTLTYPE_U64 | CTLFLAG_RD, sc, i, |
| bxe_sysctl_eth_stat, "LU", |
| bxe_eth_stats_arr[i].string); |
| } |
| |
| /* add a new parent node for all queues "dev.bxe.#.queue" */ |
| queue_top = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "queue", |
| CTLFLAG_RD, NULL, "queue"); |
| queue_top_children = SYSCTL_CHILDREN(queue_top); |
| |
| for (i = 0; i < sc->num_queues; i++) { |
| /* add a new parent node for a single queue "dev.bxe.#.queue.#" */ |
| snprintf(queue_num_buf, sizeof(queue_num_buf), "%d", i); |
| queue = SYSCTL_ADD_NODE(ctx, queue_top_children, OID_AUTO, |
| queue_num_buf, CTLFLAG_RD, NULL, |
| "single queue"); |
| queue_children = SYSCTL_CHILDREN(queue); |
| |
| for (j = 0; j < BXE_NUM_ETH_Q_STATS; j++) { |
| q_stat = ((i << 16) | j); |
| SYSCTL_ADD_PROC(ctx, queue_children, OID_AUTO, |
| bxe_eth_q_stats_arr[j].string, |
| CTLTYPE_U64 | CTLFLAG_RD, sc, q_stat, |
| bxe_sysctl_eth_q_stat, "LU", |
| bxe_eth_q_stats_arr[j].string); |
| } |
| } |
| } |
| #endif |
| |
| /* |
| * Device attach function. |
| * |
| * Allocates device resources, performs secondary chip identification, and |
| * initializes driver instance variables. This function is called from driver |
| * load after a successful probe. |
| * |
| * Returns: |
| * 0 = Success, >0 = Failure |
| */ |
| int bxe_attach(struct bxe_adapter *sc) |
| { |
| struct pci_device *dev = sc->pcidev; |
| |
| /* XME: Remove me */ |
| sc->debug = DBG_ALL & ~DBG_REGS; |
| |
| BLOGD(sc, DBG_LOAD, "Starting attach...\n"); |
| |
| sc->state = BXE_STATE_CLOSED; |
| |
| /* what is this? */ |
| //sc->unit = device_get_unit(dev); |
| |
| BLOGD(sc, DBG_LOAD, "softc = %p\n", sc); |
| |
| sc->pcie_bus = dev->bus; |
| sc->pcie_device = dev->dev; |
| sc->pcie_func = dev->func; |
| |
| /* enable bus master capability */ |
| pci_set_bus_master(dev); |
| |
| /* get the BARs */ |
| if (bxe_allocate_bars(sc) != 0) { |
| return (ENXIO); |
| } |
| |
| /* initialize the mutexes */ |
| bxe_init_mutexes(sc); |
| |
| /* prepare the chip taskqueue */ |
| sc->chip_tq_flags = CHIP_TQ_NONE; |
| snprintf(sc->chip_tq_name, sizeof(sc->chip_tq_name), |
| "bxe%d_chip_tq", sc->unit); |
| TASK_INIT(&sc->chip_tq_task, 0, bxe_handle_chip_tq, sc); |
| sc->chip_tq = taskqueue_create(sc->chip_tq_name, M_NOWAIT, |
| taskqueue_thread_enqueue, |
| &sc->chip_tq); |
| taskqueue_start_threads(&sc->chip_tq, 1, PWAIT, /* lower priority */ |
| "%s", sc->chip_tq_name); |
| |
| /* get device info and set params */ |
| if (bxe_get_device_info(sc) != 0) { |
| BLOGE(sc, "getting device info\n"); |
| /* assuming BSD wanted to free the mtx here too */ |
| goto err_mux_bars_etc; |
| } |
| |
| /* get final misc params */ |
| bxe_get_params(sc); |
| |
| /* set the default MTU (changed via ifconfig) */ |
| sc->mtu = ETHERMAXTU; |
| |
| bxe_set_modes_bitmap(sc); |
| |
| /* XXX |
| * If in AFEX mode and the function is configured for FCoE |
| * then bail... no L2 allowed. |
| */ |
| |
| /* get phy settings from shmem and 'and' against admin settings */ |
| bxe_get_phy_info(sc); |
| |
| /* initialize the FreeBSD ifnet interface */ |
| if (bxe_init_ifnet(sc) != 0) |
| goto err_mux_bars_etc; |
| |
| /* allocate device interrupts */ |
| if (bxe_interrupt_alloc(sc) != 0) |
| goto err_media_etc; |
| |
| /* allocate ilt */ |
| if (bxe_alloc_ilt_mem(sc) != 0) |
| goto err_interrupt_etc; |
| |
| /* allocate the host hardware/software hsi structures */ |
| if (bxe_alloc_hsi_mem(sc) != 0) |
| goto err_ilt_mem_etc; |
| |
| /* need to reset chip if UNDI was active */ |
| if (IS_PF(sc) && !BXE_NOMCP(sc)) { |
| /* init fw_seq */ |
| sc->fw_seq = |
| (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) & |
| DRV_MSG_SEQ_NUMBER_MASK); |
| BLOGD(sc, DBG_LOAD, "prev unload fw_seq 0x%04x\n", sc->fw_seq); |
| bxe_prev_unload(sc); |
| } |
| |
| #if 1 |
| /* XXX */ |
| bxe_dcbx_set_state(sc, FALSE, BXE_DCBX_ENABLED_OFF); |
| #else |
| if (SHMEM2_HAS(sc, dcbx_lldp_params_offset) && |
| SHMEM2_HAS(sc, dcbx_lldp_dcbx_stat_offset) && |
| SHMEM2_RD(sc, dcbx_lldp_params_offset) && |
| SHMEM2_RD(sc, dcbx_lldp_dcbx_stat_offset)) { |
| bxe_dcbx_set_state(sc, TRUE, BXE_DCBX_ENABLED_ON_NEG_ON); |
| bxe_dcbx_init_params(sc); |
| } else { |
| bxe_dcbx_set_state(sc, FALSE, BXE_DCBX_ENABLED_OFF); |
| } |
| #endif |
| |
| /* calculate qm_cid_count */ |
| sc->qm_cid_count = bxe_set_qm_cid_count(sc); |
| BLOGD(sc, DBG_LOAD, "qm_cid_count=%d\n", sc->qm_cid_count); |
| |
| sc->max_cos = 1; |
| bxe_init_multi_cos(sc); |
| |
| return (0); |
| |
| err_ilt_mem_etc: |
| bxe_free_ilt_mem(sc); |
| err_interrupt_etc: |
| bxe_interrupt_free(sc); |
| err_media_etc: |
| if (sc->ifp != NULL) { |
| //ether_ifdetach(sc->ifp); |
| } |
| ifmedia_removeall(&sc->media); |
| err_mux_bars_etc: |
| bxe_release_mutexes(sc); |
| bxe_deallocate_bars(sc); |
| pci_clr_bus_master(dev); |
| warn("There was an error in attaching the BXE NIC"); |
| return (ENXIO); |
| } |
| |
| #if 0 // AKAROS_PORT brho: prob can ignore |
| /* |
| * Device detach function. |
| * |
| * Stops the controller, resets the controller, and releases resources. |
| * |
| * Returns: |
| * 0 = Success, >0 = Failure |
| */ |
| static int |
| bxe_detach(struct pcidev *dev) |
| { |
| struct bxe_adapter *sc; |
| if_t ifp; |
| |
| sc = device_get_softc(dev); |
| |
| BLOGD(sc, DBG_LOAD, "Starting detach...\n"); |
| |
| ifp = sc->ifp; |
| if (ifp != NULL && if_vlantrunkinuse(ifp)) { |
| BLOGE(sc, "Cannot detach while VLANs are in use.\n"); |
| return(EBUSY); |
| } |
| |
| /* stop the periodic callout */ |
| bxe_periodic_stop(sc); |
| |
| /* stop the chip taskqueue */ |
| atomic_set(&sc->chip_tq_flags, CHIP_TQ_NONE); |
| if (sc->chip_tq) { |
| taskqueue_drain(sc->chip_tq, &sc->chip_tq_task); |
| taskqueue_free(sc->chip_tq); |
| sc->chip_tq = NULL; |
| } |
| |
| /* stop and reset the controller if it was open */ |
| if (sc->state != BXE_STATE_CLOSED) { |
| BXE_CORE_LOCK(sc); |
| bxe_nic_unload(sc, UNLOAD_CLOSE, TRUE); |
| BXE_CORE_UNLOCK(sc); |
| } |
| |
| /* release the network interface */ |
| if (ifp != NULL) { |
| ether_ifdetach(ifp); |
| } |
| ifmedia_removeall(&sc->media); |
| |
| /* XXX do the following based on driver state... */ |
| |
| /* free the host hardware/software hsi structures */ |
| bxe_free_hsi_mem(sc); |
| |
| /* free ilt */ |
| bxe_free_ilt_mem(sc); |
| |
| /* release the interrupts */ |
| bxe_interrupt_free(sc); |
| |
| /* Release the mutexes*/ |
| bxe_release_mutexes(sc); |
| |
| /* Release the PCIe BAR mapped memory */ |
| bxe_deallocate_bars(sc); |
| |
| /* Release the FreeBSD interface. */ |
| if (sc->ifp != NULL) { |
| if_free(sc->ifp); |
| } |
| |
| pci_disable_busmaster(dev); |
| |
| return (0); |
| } |
| |
| /* |
| * Device shutdown function. |
| * |
| * Stops and resets the controller. |
| * |
| * Returns: |
| * Nothing |
| */ |
| static int |
| bxe_shutdown(struct pcidev *dev) |
| { |
| struct bxe_adapter *sc; |
| |
| sc = device_get_softc(dev); |
| |
| BLOGD(sc, DBG_LOAD, "Starting shutdown...\n"); |
| |
| /* stop the periodic callout */ |
| bxe_periodic_stop(sc); |
| |
| BXE_CORE_LOCK(sc); |
| bxe_nic_unload(sc, UNLOAD_NORMAL, FALSE); |
| BXE_CORE_UNLOCK(sc); |
| |
| return (0); |
| } |
| #endif |
| |
| void |
| bxe_igu_ack_sb(struct bxe_adapter *sc, |
| uint8_t igu_sb_id, |
| uint8_t segment, |
| uint16_t index, |
| uint8_t op, |
| uint8_t update) |
| { |
| uint32_t igu_addr = sc->igu_base_addr; |
| igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8; |
| bxe_igu_ack_sb_gen(sc, igu_sb_id, segment, index, op, update, igu_addr); |
| } |
| |
| static void |
| bxe_igu_clear_sb_gen(struct bxe_adapter *sc, |
| uint8_t func, |
| uint8_t idu_sb_id, |
| uint8_t is_pf) |
| { |
| uint32_t data, ctl, cnt = 100; |
| uint32_t igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA; |
| uint32_t igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL; |
| uint32_t igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4; |
| uint32_t sb_bit = 1 << (idu_sb_id%32); |
| uint32_t func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT; |
| uint32_t addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id; |
| |
| /* Not supported in BC mode */ |
| if (CHIP_INT_MODE_IS_BC(sc)) { |
| return; |
| } |
| |
| data = ((IGU_USE_REGISTER_cstorm_type_0_sb_cleanup << |
| IGU_REGULAR_CLEANUP_TYPE_SHIFT) | |
| IGU_REGULAR_CLEANUP_SET | |
| IGU_REGULAR_BCLEANUP); |
| |
| ctl = ((addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT) | |
| (func_encode << IGU_CTRL_REG_FID_SHIFT) | |
| (IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT)); |
| |
| BLOGD(sc, DBG_LOAD, "write 0x%08x to IGU(via GRC) addr 0x%x\n", |
| data, igu_addr_data); |
| REG_WR(sc, igu_addr_data, data); |
| |
| bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0, |
| BUS_SPACE_BARRIER_WRITE); |
| mb(); |
| |
| BLOGD(sc, DBG_LOAD, "write 0x%08x to IGU(via GRC) addr 0x%x\n", |
| ctl, igu_addr_ctl); |
| REG_WR(sc, igu_addr_ctl, ctl); |
| |
| bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0, |
| BUS_SPACE_BARRIER_WRITE); |
| mb(); |
| |
| /* wait for clean up to finish */ |
| while (!(REG_RD(sc, igu_addr_ack) & sb_bit) && --cnt) { |
| udelay(20000); |
| } |
| |
| if (!(REG_RD(sc, igu_addr_ack) & sb_bit)) { |
| BLOGD(sc, DBG_LOAD, |
| "Unable to finish IGU cleanup: " |
| "idu_sb_id %d offset %d bit %d (cnt %d)\n", |
| idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt); |
| } |
| } |
| |
| static void |
| bxe_igu_clear_sb(struct bxe_adapter *sc, |
| uint8_t idu_sb_id) |
| { |
| bxe_igu_clear_sb_gen(sc, SC_FUNC(sc), idu_sb_id, TRUE /*PF*/); |
| } |
| |
| |
| |
| |
| |
| |
| /*******************/ |
| /* ECORE CALLBACKS */ |
| /*******************/ |
| |
| static void |
| bxe_reset_common(struct bxe_adapter *sc) |
| { |
| uint32_t val = 0x1400; |
| |
| /* reset_common */ |
| REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR), 0xd3ffff7f); |
| |
| if (CHIP_IS_E3(sc)) { |
| val |= MISC_REGISTERS_RESET_REG_2_MSTAT0; |
| val |= MISC_REGISTERS_RESET_REG_2_MSTAT1; |
| } |
| |
| REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR), val); |
| } |
| |
| static void |
| bxe_common_init_phy(struct bxe_adapter *sc) |
| { |
| uint32_t shmem_base[2]; |
| uint32_t shmem2_base[2]; |
| |
| /* Avoid common init in case MFW supports LFA */ |
| if (SHMEM2_RD(sc, size) > |
| (uint32_t)offsetof(struct shmem2_region, |
| lfa_host_addr[SC_PORT(sc)])) { |
| return; |
| } |
| |
| shmem_base[0] = sc->devinfo.shmem_base; |
| shmem2_base[0] = sc->devinfo.shmem2_base; |
| |
| if (!CHIP_IS_E1x(sc)) { |
| shmem_base[1] = SHMEM2_RD(sc, other_shmem_base_addr); |
| shmem2_base[1] = SHMEM2_RD(sc, other_shmem2_base_addr); |
| } |
| |
| BXE_PHY_LOCK(sc); |
| elink_common_init_phy(sc, shmem_base, shmem2_base, |
| sc->devinfo.chip_id, 0); |
| BXE_PHY_UNLOCK(sc); |
| } |
| |
| static void |
| bxe_pf_disable(struct bxe_adapter *sc) |
| { |
| uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION); |
| |
| val &= ~IGU_PF_CONF_FUNC_EN; |
| |
| REG_WR(sc, IGU_REG_PF_CONFIGURATION, val); |
| REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0); |
| REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 0); |
| } |
| |
| static void |
| bxe_init_pxp(struct bxe_adapter *sc) |
| { |
| uint16_t devctl; |
| int r_order, w_order; |
| devctl = bxe_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_CTL, 2); |
| |
| BLOGD(sc, DBG_LOAD, "read 0x%08x from devctl\n", devctl); |
| |
| w_order = ((devctl & PCIM_EXP_CTL_MAX_PAYLOAD) >> 5); |
| |
| if (sc->mrrs == -1) { |
| r_order = ((devctl & PCIM_EXP_CTL_MAX_READ_REQUEST) >> 12); |
| } else { |
| BLOGD(sc, DBG_LOAD, "forcing read order to %d\n", sc->mrrs); |
| r_order = sc->mrrs; |
| } |
| |
| ecore_init_pxp_arb(sc, r_order, w_order); |
| } |
| |
| static uint32_t |
| bxe_get_pretend_reg(struct bxe_adapter *sc) |
| { |
| uint32_t base = PXP2_REG_PGL_PRETEND_FUNC_F0; |
| uint32_t stride = (PXP2_REG_PGL_PRETEND_FUNC_F1 - base); |
| return (base + (SC_ABS_FUNC(sc)) * stride); |
| } |
| |
| /* |
| * Called only on E1H or E2. |
| * When pretending to be PF, the pretend value is the function number 0..7. |
| * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID |
| * combination. |
| */ |
| static int |
| bxe_pretend_func(struct bxe_adapter *sc, |
| uint16_t pretend_func_val) |
| { |
| uint32_t pretend_reg; |
| |
| if (CHIP_IS_E1H(sc) && (pretend_func_val > E1H_FUNC_MAX)) { |
| return (-1); |
| } |
| |
| /* get my own pretend register */ |
| pretend_reg = bxe_get_pretend_reg(sc); |
| REG_WR(sc, pretend_reg, pretend_func_val); |
| REG_RD(sc, pretend_reg); |
| return (0); |
| } |
| |
| static void |
| bxe_iov_init_dmae(struct bxe_adapter *sc) |
| { |
| return; |
| #if 0 |
| BLOGD(sc, DBG_LOAD, "SRIOV is %s\n", IS_SRIOV(sc) ? "ON" : "OFF"); |
| |
| if (!IS_SRIOV(sc)) { |
| return; |
| } |
| |
| REG_WR(sc, DMAE_REG_BACKWARD_COMP_EN, 0); |
| #endif |
| } |
| |
| #if 0 |
| static int |
| bxe_iov_init_ilt(struct bxe_adapter *sc, |
| uint16_t line) |
| { |
| return (line); |
| #if 0 |
| int i; |
| struct ecore_ilt* ilt = sc->ilt; |
| |
| if (!IS_SRIOV(sc)) { |
| return (line); |
| } |
| |
| /* set vfs ilt lines */ |
| for (i = 0; i < BXE_VF_CIDS/ILT_PAGE_CIDS ; i++) { |
| struct hw_dma *hw_cxt = SC_VF_CXT_PAGE(sc,i); |
| ilt->lines[line+i].page = hw_cxt->addr; |
| ilt->lines[line+i].page_mapping = hw_cxt->mapping; |
| ilt->lines[line+i].size = hw_cxt->size; /* doesn't matter */ |
| } |
| return (line+i); |
| #endif |
| } |
| #endif |
| |
| static void |
| bxe_iov_init_dq(struct bxe_adapter *sc) |
| { |
| return; |
| #if 0 |
| if (!IS_SRIOV(sc)) { |
| return; |
| } |
| |
| /* Set the DQ such that the CID reflect the abs_vfid */ |
| REG_WR(sc, DORQ_REG_VF_NORM_VF_BASE, 0); |
| REG_WR(sc, DORQ_REG_MAX_RVFID_SIZE, LOG2_UP(BNX2X_MAX_NUM_OF_VFS)); |
| |
| /* |
| * Set VFs starting CID. If its > 0 the preceding CIDs are belong to |
| * the PF L2 queues |
| */ |
| REG_WR(sc, DORQ_REG_VF_NORM_CID_BASE, BNX2X_FIRST_VF_CID); |
| |
| /* The VF window size is the log2 of the max number of CIDs per VF */ |
| REG_WR(sc, DORQ_REG_VF_NORM_CID_WND_SIZE, BNX2X_VF_CID_WND); |
| |
| /* |
| * The VF doorbell size 0 - *B, 4 - 128B. We set it here to match |
| * the Pf doorbell size although the 2 are independent. |
| */ |
| REG_WR(sc, DORQ_REG_VF_NORM_CID_OFST, |
| BNX2X_DB_SHIFT - BNX2X_DB_MIN_SHIFT); |
| |
| /* |
| * No security checks for now - |
| * configure single rule (out of 16) mask = 0x1, value = 0x0, |
| * CID range 0 - 0x1ffff |
| */ |
| REG_WR(sc, DORQ_REG_VF_TYPE_MASK_0, 1); |
| REG_WR(sc, DORQ_REG_VF_TYPE_VALUE_0, 0); |
| REG_WR(sc, DORQ_REG_VF_TYPE_MIN_MCID_0, 0); |
| REG_WR(sc, DORQ_REG_VF_TYPE_MAX_MCID_0, 0x1ffff); |
| |
| /* set the number of VF alllowed doorbells to the full DQ range */ |
| REG_WR(sc, DORQ_REG_VF_NORM_MAX_CID_COUNT, 0x20000); |
| |
| /* set the VF doorbell threshold */ |
| REG_WR(sc, DORQ_REG_VF_USAGE_CT_LIMIT, 4); |
| #endif |
| } |
| |
| /* send a NIG loopback debug packet */ |
| static void |
| bxe_lb_pckt(struct bxe_adapter *sc) |
| { |
| uint32_t wb_write[3]; |
| |
| /* Ethernet source and destination addresses */ |
| wb_write[0] = 0x55555555; |
| wb_write[1] = 0x55555555; |
| wb_write[2] = 0x20; /* SOP */ |
| REG_WR_DMAE(sc, NIG_REG_DEBUG_PACKET_LB, wb_write, 3); |
| |
| /* NON-IP protocol */ |
| wb_write[0] = 0x09000000; |
| wb_write[1] = 0x55555555; |
| wb_write[2] = 0x10; /* EOP, eop_bvalid = 0 */ |
| REG_WR_DMAE(sc, NIG_REG_DEBUG_PACKET_LB, wb_write, 3); |
| } |
| |
| /* |
| * Some of the internal memories are not directly readable from the driver. |
| * To test them we send debug packets. |
| */ |
| static int |
| bxe_int_mem_test(struct bxe_adapter *sc) |
| { |
| int factor; |
| int count, i; |
| uint32_t val = 0; |
| |
| if (CHIP_REV_IS_FPGA(sc)) { |
| factor = 120; |
| } else if (CHIP_REV_IS_EMUL(sc)) { |
| factor = 200; |
| } else { |
| factor = 1; |
| } |
| |
| /* disable inputs of parser neighbor blocks */ |
| REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x0); |
| REG_WR(sc, TCM_REG_PRS_IFEN, 0x0); |
| REG_WR(sc, CFC_REG_DEBUG0, 0x1); |
| REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x0); |
| |
| /* write 0 to parser credits for CFC search request */ |
| REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0); |
| |
| /* send Ethernet packet */ |
| bxe_lb_pckt(sc); |
| |
| /* TODO do i reset NIG statistic? */ |
| /* Wait until NIG register shows 1 packet of size 0x10 */ |
| count = 1000 * factor; |
| while (count) { |
| bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2); |
| val = *BXE_SP(sc, wb_data[0]); |
| if (val == 0x10) { |
| break; |
| } |
| |
| udelay(10000); |
| count--; |
| } |
| |
| if (val != 0x10) { |
| BLOGE(sc, "NIG timeout val=0x%x\n", val); |
| return (-1); |
| } |
| |
| /* wait until PRS register shows 1 packet */ |
| count = (1000 * factor); |
| while (count) { |
| val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS); |
| if (val == 1) { |
| break; |
| } |
| |
| udelay(10000); |
| count--; |
| } |
| |
| if (val != 0x1) { |
| BLOGE(sc, "PRS timeout val=0x%x\n", val); |
| return (-2); |
| } |
| |
| /* Reset and init BRB, PRS */ |
| REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03); |
| udelay(50000); |
| REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03); |
| udelay(50000); |
| ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON); |
| ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON); |
| |
| /* Disable inputs of parser neighbor blocks */ |
| REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x0); |
| REG_WR(sc, TCM_REG_PRS_IFEN, 0x0); |
| REG_WR(sc, CFC_REG_DEBUG0, 0x1); |
| REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x0); |
| |
| /* Write 0 to parser credits for CFC search request */ |
| REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0); |
| |
| /* send 10 Ethernet packets */ |
| for (i = 0; i < 10; i++) { |
| bxe_lb_pckt(sc); |
| } |
| |
| /* Wait until NIG register shows 10+1 packets of size 11*0x10 = 0xb0 */ |
| count = (1000 * factor); |
| while (count) { |
| bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2); |
| val = *BXE_SP(sc, wb_data[0]); |
| if (val == 0xb0) { |
| break; |
| } |
| |
| udelay(10000); |
| count--; |
| } |
| |
| if (val != 0xb0) { |
| BLOGE(sc, "NIG timeout val=0x%x\n", val); |
| return (-3); |
| } |
| |
| /* Wait until PRS register shows 2 packets */ |
| val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS); |
| if (val != 2) { |
| BLOGE(sc, "PRS timeout val=0x%x\n", val); |
| } |
| |
| /* Write 1 to parser credits for CFC search request */ |
| REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1); |
| |
| /* Wait until PRS register shows 3 packets */ |
| udelay(10000 * factor); |
| |
| /* Wait until NIG register shows 1 packet of size 0x10 */ |
| val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS); |
| if (val != 3) { |
| BLOGE(sc, "PRS timeout val=0x%x\n", val); |
| } |
| |
| /* clear NIG EOP FIFO */ |
| for (i = 0; i < 11; i++) { |
| REG_RD(sc, NIG_REG_INGRESS_EOP_LB_FIFO); |
| } |
| |
| val = REG_RD(sc, NIG_REG_INGRESS_EOP_LB_EMPTY); |
| if (val != 1) { |
| BLOGE(sc, "clear of NIG failed\n"); |
| return (-4); |
| } |
| |
| /* Reset and init BRB, PRS, NIG */ |
| REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03); |
| udelay(50000); |
| REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03); |
| udelay(50000); |
| ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON); |
| ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON); |
| if (!CNIC_SUPPORT(sc)) { |
| /* set NIC mode */ |
| REG_WR(sc, PRS_REG_NIC_MODE, 1); |
| } |
| |
| /* Enable inputs of parser neighbor blocks */ |
| REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x7fffffff); |
| REG_WR(sc, TCM_REG_PRS_IFEN, 0x1); |
| REG_WR(sc, CFC_REG_DEBUG0, 0x0); |
| REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x1); |
| |
| return (0); |
| } |
| |
| static void |
| bxe_setup_fan_failure_detection(struct bxe_adapter *sc) |
| { |
| int is_required; |
| uint32_t val; |
| int port; |
| |
| is_required = 0; |
| val = (SHMEM_RD(sc, dev_info.shared_hw_config.config2) & |
| SHARED_HW_CFG_FAN_FAILURE_MASK); |
| |
| if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED) { |
| is_required = 1; |
| } |
| /* |
| * The fan failure mechanism is usually related to the PHY type since |
| * the power consumption of the board is affected by the PHY. Currently, |
| * fan is required for most designs with SFX7101, BCM8727 and BCM8481. |
| */ |
| else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE) { |
| for (port = PORT_0; port < PORT_MAX; port++) { |
| is_required |= elink_fan_failure_det_req(sc, |
| sc->devinfo.shmem_base, |
| sc->devinfo.shmem2_base, |
| port); |
| } |
| } |
| |
| BLOGD(sc, DBG_LOAD, "fan detection setting: %d\n", is_required); |
| |
| if (is_required == 0) { |
| return; |
| } |
| |
| /* Fan failure is indicated by SPIO 5 */ |
| bxe_set_spio(sc, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z); |
| |
| /* set to active low mode */ |
| val = REG_RD(sc, MISC_REG_SPIO_INT); |
| val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS); |
| REG_WR(sc, MISC_REG_SPIO_INT, val); |
| |
| /* enable interrupt to signal the IGU */ |
| val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN); |
| val |= MISC_SPIO_SPIO5; |
| REG_WR(sc, MISC_REG_SPIO_EVENT_EN, val); |
| } |
| |
| static void |
| bxe_enable_blocks_attention(struct bxe_adapter *sc) |
| { |
| uint32_t val; |
| |
| REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0); |
| if (!CHIP_IS_E1x(sc)) { |
| REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0x40); |
| } else { |
| REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0); |
| } |
| REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0); |
| REG_WR(sc, CFC_REG_CFC_INT_MASK, 0); |
| /* |
| * mask read length error interrupts in brb for parser |
| * (parsing unit and 'checksum and crc' unit) |
| * these errors are legal (PU reads fixed length and CAC can cause |
| * read length error on truncated packets) |
| */ |
| REG_WR(sc, BRB1_REG_BRB1_INT_MASK, 0xFC00); |
| REG_WR(sc, QM_REG_QM_INT_MASK, 0); |
| REG_WR(sc, TM_REG_TM_INT_MASK, 0); |
| REG_WR(sc, XSDM_REG_XSDM_INT_MASK_0, 0); |
| REG_WR(sc, XSDM_REG_XSDM_INT_MASK_1, 0); |
| REG_WR(sc, XCM_REG_XCM_INT_MASK, 0); |
| /* REG_WR(sc, XSEM_REG_XSEM_INT_MASK_0, 0); */ |
| /* REG_WR(sc, XSEM_REG_XSEM_INT_MASK_1, 0); */ |
| REG_WR(sc, USDM_REG_USDM_INT_MASK_0, 0); |
| REG_WR(sc, USDM_REG_USDM_INT_MASK_1, 0); |
| REG_WR(sc, UCM_REG_UCM_INT_MASK, 0); |
| /* REG_WR(sc, USEM_REG_USEM_INT_MASK_0, 0); */ |
| /* REG_WR(sc, USEM_REG_USEM_INT_MASK_1, 0); */ |
| REG_WR(sc, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0); |
| REG_WR(sc, CSDM_REG_CSDM_INT_MASK_0, 0); |
| REG_WR(sc, CSDM_REG_CSDM_INT_MASK_1, 0); |
| REG_WR(sc, CCM_REG_CCM_INT_MASK, 0); |
| /* REG_WR(sc, CSEM_REG_CSEM_INT_MASK_0, 0); */ |
| /* REG_WR(sc, CSEM_REG_CSEM_INT_MASK_1, 0); */ |
| |
| val = (PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT | |
| PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF | |
| PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN); |
| if (!CHIP_IS_E1x(sc)) { |
| val |= (PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED | |
| PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED); |
| } |
| REG_WR(sc, PXP2_REG_PXP2_INT_MASK_0, val); |
| |
| REG_WR(sc, TSDM_REG_TSDM_INT_MASK_0, 0); |
| REG_WR(sc, TSDM_REG_TSDM_INT_MASK_1, 0); |
| REG_WR(sc, TCM_REG_TCM_INT_MASK, 0); |
| /* REG_WR(sc, TSEM_REG_TSEM_INT_MASK_0, 0); */ |
| |
| if (!CHIP_IS_E1x(sc)) { |
| /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */ |
| REG_WR(sc, TSEM_REG_TSEM_INT_MASK_1, 0x07ff); |
| } |
| |
| REG_WR(sc, CDU_REG_CDU_INT_MASK, 0); |
| REG_WR(sc, DMAE_REG_DMAE_INT_MASK, 0); |
| /* REG_WR(sc, MISC_REG_MISC_INT_MASK, 0); */ |
| REG_WR(sc, PBF_REG_PBF_INT_MASK, 0x18); /* bit 3,4 masked */ |
| } |
| |
| /** |
| * bxe_init_hw_common - initialize the HW at the COMMON phase. |
| * |
| * @sc: driver handle |
| */ |
| static int |
| bxe_init_hw_common(struct bxe_adapter *sc) |
| { |
| uint8_t abs_func_id; |
| uint32_t val; |
| |
| BLOGD(sc, DBG_LOAD, "starting common init for func %d\n", |
| SC_ABS_FUNC(sc)); |
| |
| /* |
| * take the RESET lock to protect undi_unload flow from accessing |
| * registers while we are resetting the chip |
| */ |
| bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET); |
| |
| bxe_reset_common(sc); |
| |
| REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET), 0xffffffff); |
| |
| val = 0xfffc; |
| if (CHIP_IS_E3(sc)) { |
| val |= MISC_REGISTERS_RESET_REG_2_MSTAT0; |
| val |= MISC_REGISTERS_RESET_REG_2_MSTAT1; |
| } |
| |
| REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET), val); |
| |
| bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET); |
| |
| ecore_init_block(sc, BLOCK_MISC, PHASE_COMMON); |
| BLOGD(sc, DBG_LOAD, "after misc block init\n"); |
| |
| if (!CHIP_IS_E1x(sc)) { |
| /* |
| * 4-port mode or 2-port mode we need to turn off master-enable for |
| * everyone. After that we turn it back on for self. So, we disregard |
| * multi-function, and always disable all functions on the given path, |
| * this means 0,2,4,6 for path 0 and 1,3,5,7 for path 1 |
| */ |
| for (abs_func_id = SC_PATH(sc); |
| abs_func_id < (E2_FUNC_MAX * 2); |
| abs_func_id += 2) { |
| if (abs_func_id == SC_ABS_FUNC(sc)) { |
| REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); |
| continue; |
| } |
| |
| bxe_pretend_func(sc, abs_func_id); |
| |
| /* clear pf enable */ |
| bxe_pf_disable(sc); |
| |
| bxe_pretend_func(sc, SC_ABS_FUNC(sc)); |
| } |
| } |
| |
| BLOGD(sc, DBG_LOAD, "after pf disable\n"); |
| |
| ecore_init_block(sc, BLOCK_PXP, PHASE_COMMON); |
| |
| if (CHIP_IS_E1(sc)) { |
| /* |
| * enable HW interrupt from PXP on USDM overflow |
| * bit 16 on INT_MASK_0 |
| */ |
| REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0); |
| } |
| |
| ecore_init_block(sc, BLOCK_PXP2, PHASE_COMMON); |
| bxe_init_pxp(sc); |
| |
| #ifdef __BIG_ENDIAN |
| REG_WR(sc, PXP2_REG_RQ_QM_ENDIAN_M, 1); |
| REG_WR(sc, PXP2_REG_RQ_TM_ENDIAN_M, 1); |
| REG_WR(sc, PXP2_REG_RQ_SRC_ENDIAN_M, 1); |
| REG_WR(sc, PXP2_REG_RQ_CDU_ENDIAN_M, 1); |
| REG_WR(sc, PXP2_REG_RQ_DBG_ENDIAN_M, 1); |
| /* make sure this value is 0 */ |
| REG_WR(sc, PXP2_REG_RQ_HC_ENDIAN_M, 0); |
| |
| //REG_WR(sc, PXP2_REG_RD_PBF_SWAP_MODE, 1); |
| REG_WR(sc, PXP2_REG_RD_QM_SWAP_MODE, 1); |
| REG_WR(sc, PXP2_REG_RD_TM_SWAP_MODE, 1); |
| REG_WR(sc, PXP2_REG_RD_SRC_SWAP_MODE, 1); |
| REG_WR(sc, PXP2_REG_RD_CDURD_SWAP_MODE, 1); |
| #endif |
| |
| ecore_ilt_init_page_size(sc, INITOP_SET); |
| |
| if (CHIP_REV_IS_FPGA(sc) && CHIP_IS_E1H(sc)) { |
| REG_WR(sc, PXP2_REG_PGL_TAGS_LIMIT, 0x1); |
| } |
| |
| /* let the HW do it's magic... */ |
| udelay(100000); |
| |
| /* finish PXP init */ |
| val = REG_RD(sc, PXP2_REG_RQ_CFG_DONE); |
| if (val != 1) { |
| BLOGE(sc, "PXP2 CFG failed\n"); |
| return (-1); |
| } |
| val = REG_RD(sc, PXP2_REG_RD_INIT_DONE); |
| if (val != 1) { |
| BLOGE(sc, "PXP2 RD_INIT failed\n"); |
| return (-1); |
| } |
| |
| BLOGD(sc, DBG_LOAD, "after pxp init\n"); |
| |
| /* |
| * Timer bug workaround for E2 only. We need to set the entire ILT to have |
| * entries with value "0" and valid bit on. This needs to be done by the |
| * first PF that is loaded in a path (i.e. common phase) |
| */ |
| if (!CHIP_IS_E1x(sc)) { |
| /* |
| * In E2 there is a bug in the timers block that can cause function 6 / 7 |
| * (i.e. vnic3) to start even if it is marked as "scan-off". |
| * This occurs when a different function (func2,3) is being marked |
| * as "scan-off". Real-life scenario for example: if a driver is being |
| * load-unloaded while func6,7 are down. This will cause the timer to access |
| * the ilt, translate to a logical address and send a request to read/write. |
| * Since the ilt for the function that is down is not valid, this will cause |
| * a translation error which is unrecoverable. |
| * The Workaround is intended to make sure that when this happens nothing |
| * fatal will occur. The workaround: |
| * 1. First PF driver which loads on a path will: |
| * a. After taking the chip out of reset, by using pretend, |
| * it will write "0" to the following registers of |
| * the other vnics. |
| * REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0); |
| * REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0); |
| * REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0); |
| * And for itself it will write '1' to |
| * PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable |
| * dmae-operations (writing to pram for example.) |
| * note: can be done for only function 6,7 but cleaner this |
| * way. |
| * b. Write zero+valid to the entire ILT. |
| * c. Init the first_timers_ilt_entry, last_timers_ilt_entry of |
| * VNIC3 (of that port). The range allocated will be the |
| * entire ILT. This is needed to prevent ILT range error. |
| * 2. Any PF driver load flow: |
| * a. ILT update with the physical addresses of the allocated |
| * logical pages. |
| * b. Wait 20msec. - note that this timeout is needed to make |
| * sure there are no requests in one of the PXP internal |
| * queues with "old" ILT addresses. |
| * c. PF enable in the PGLC. |
| * d. Clear the was_error of the PF in the PGLC. (could have |
| * occurred while driver was down) |
| * e. PF enable in the CFC (WEAK + STRONG) |
| * f. Timers scan enable |
| * 3. PF driver unload flow: |
| * a. Clear the Timers scan_en. |
| * b. Polling for scan_on=0 for that PF. |
| * c. Clear the PF enable bit in the PXP. |
| * d. Clear the PF enable in the CFC (WEAK + STRONG) |
| * e. Write zero+valid to all ILT entries (The valid bit must |
| * stay set) |
| * f. If this is VNIC 3 of a port then also init |
| * first_timers_ilt_entry to zero and last_timers_ilt_entry |
| * to the last enrty in the ILT. |
| * |
| * Notes: |
| * Currently the PF error in the PGLC is non recoverable. |
| * In the future the there will be a recovery routine for this error. |
| * Currently attention is masked. |
| * Having an MCP lock on the load/unload process does not guarantee that |
| * there is no Timer disable during Func6/7 enable. This is because the |
| * Timers scan is currently being cleared by the MCP on FLR. |
| * Step 2.d can be done only for PF6/7 and the driver can also check if |
| * there is error before clearing it. But the flow above is simpler and |
| * more general. |
| * All ILT entries are written by zero+valid and not just PF6/7 |
| * ILT entries since in the future the ILT entries allocation for |
| * PF-s might be dynamic. |
| */ |
| struct ilt_client_info ilt_cli; |
| struct ecore_ilt ilt; |
| |
| memset(&ilt_cli, 0, sizeof(struct ilt_client_info)); |
| memset(&ilt, 0, sizeof(struct ecore_ilt)); |
| |
| /* initialize dummy TM client */ |
| ilt_cli.start = 0; |
| ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1; |
| ilt_cli.client_num = ILT_CLIENT_TM; |
| |
| /* |
| * Step 1: set zeroes to all ilt page entries with valid bit on |
| * Step 2: set the timers first/last ilt entry to point |
| * to the entire range to prevent ILT range error for 3rd/4th |
| * vnic (this code assumes existence of the vnic) |
| * |
| * both steps performed by call to ecore_ilt_client_init_op() |
| * with dummy TM client |
| * |
| * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT |
| * and his brother are split registers |
| */ |
| |
| bxe_pretend_func(sc, (SC_PATH(sc) + 6)); |
| ecore_ilt_client_init_op_ilt(sc, &ilt, &ilt_cli, INITOP_CLEAR); |
| bxe_pretend_func(sc, SC_ABS_FUNC(sc)); |
| |
| REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN, BXE_PXP_DRAM_ALIGN); |
| REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_RD, BXE_PXP_DRAM_ALIGN); |
| REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1); |
| } |
| |
| REG_WR(sc, PXP2_REG_RQ_DISABLE_INPUTS, 0); |
| REG_WR(sc, PXP2_REG_RD_DISABLE_INPUTS, 0); |
| |
| if (!CHIP_IS_E1x(sc)) { |
| int factor = CHIP_REV_IS_EMUL(sc) ? 1000 : |
| (CHIP_REV_IS_FPGA(sc) ? 400 : 0); |
| |
| ecore_init_block(sc, BLOCK_PGLUE_B, PHASE_COMMON); |
| ecore_init_block(sc, BLOCK_ATC, PHASE_COMMON); |
| |
| /* let the HW do it's magic... */ |
| do { |
| udelay(200000); |
| val = REG_RD(sc, ATC_REG_ATC_INIT_DONE); |
| } while (factor-- && (val != 1)); |
| |
| if (val != 1) { |
| BLOGE(sc, "ATC_INIT failed\n"); |
| return (-1); |
| } |
| } |
| |
| BLOGD(sc, DBG_LOAD, "after pglue and atc init\n"); |
| |
| ecore_init_block(sc, BLOCK_DMAE, PHASE_COMMON); |
| |
| bxe_iov_init_dmae(sc); |
| |
| /* clean the DMAE memory */ |
| sc->dmae_ready = 1; |
| ecore_init_fill(sc, TSEM_REG_PRAM, 0, 8, 1); |
| |
| ecore_init_block(sc, BLOCK_TCM, PHASE_COMMON); |
| |
| ecore_init_block(sc, BLOCK_UCM, PHASE_COMMON); |
| |
| ecore_init_block(sc, BLOCK_CCM, PHASE_COMMON); |
| |
| ecore_init_block(sc, BLOCK_XCM, PHASE_COMMON); |
| |
| bxe_read_dmae(sc, XSEM_REG_PASSIVE_BUFFER, 3); |
| bxe_read_dmae(sc, CSEM_REG_PASSIVE_BUFFER, 3); |
| bxe_read_dmae(sc, TSEM_REG_PASSIVE_BUFFER, 3); |
| bxe_read_dmae(sc, USEM_REG_PASSIVE_BUFFER, 3); |
| |
| ecore_init_block(sc, BLOCK_QM, PHASE_COMMON); |
| |
| /* QM queues pointers table */ |
| ecore_qm_init_ptr_table(sc, sc->qm_cid_count, INITOP_SET); |
| |
| /* soft reset pulse */ |
| REG_WR(sc, QM_REG_SOFT_RESET, 1); |
| REG_WR(sc, QM_REG_SOFT_RESET, 0); |
| |
| if (CNIC_SUPPORT(sc)) |
| ecore_init_block(sc, BLOCK_TM, PHASE_COMMON); |
| |
| ecore_init_block(sc, BLOCK_DORQ, PHASE_COMMON); |
| REG_WR(sc, DORQ_REG_DPM_CID_OFST, BXE_DB_SHIFT); |
| if (!CHIP_REV_IS_SLOW(sc)) { |
| /* enable hw interrupt from doorbell Q */ |
| REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0); |
| } |
| |
| ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON); |
| |
| ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON); |
| REG_WR(sc, PRS_REG_A_PRSU_20, 0xf); |
| |
| if (!CHIP_IS_E1(sc)) { |
| REG_WR(sc, PRS_REG_E1HOV_MODE, sc->devinfo.mf_info.path_has_ovlan); |
| } |
| |
| if (!CHIP_IS_E1x(sc) && !CHIP_IS_E3B0(sc)) { |
| if (IS_MF_AFEX(sc)) { |
| /* |
| * configure that AFEX and VLAN headers must be |
| * received in AFEX mode |
| */ |
| REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC, 0xE); |
| REG_WR(sc, PRS_REG_MUST_HAVE_HDRS, 0xA); |
| REG_WR(sc, PRS_REG_HDRS_AFTER_TAG_0, 0x6); |
| REG_WR(sc, PRS_REG_TAG_ETHERTYPE_0, 0x8926); |
| REG_WR(sc, PRS_REG_TAG_LEN_0, 0x4); |
| } else { |
| /* |
| * Bit-map indicating which L2 hdrs may appear |
| * after the basic Ethernet header |
| */ |
| REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC, |
| sc->devinfo.mf_info.path_has_ovlan ? 7 : 6); |
| } |
| } |
| |
| ecore_init_block(sc, BLOCK_TSDM, PHASE_COMMON); |
| ecore_init_block(sc, BLOCK_CSDM, PHASE_COMMON); |
| ecore_init_block(sc, BLOCK_USDM, PHASE_COMMON); |
| ecore_init_block(sc, BLOCK_XSDM, PHASE_COMMON); |
| |
| if (!CHIP_IS_E1x(sc)) { |
| /* reset VFC memories */ |
| REG_WR(sc, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST, |
| VFC_MEMORIES_RST_REG_CAM_RST | |
| VFC_MEMORIES_RST_REG_RAM_RST); |
| REG_WR(sc, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST, |
| VFC_MEMORIES_RST_REG_CAM_RST | |
| VFC_MEMORIES_RST_REG_RAM_RST); |
| |
| udelay(20000); |
| } |
| |
| ecore_init_block(sc, BLOCK_TSEM, PHASE_COMMON); |
| ecore_init_block(sc, BLOCK_USEM, PHASE_COMMON); |
| ecore_init_block(sc, BLOCK_CSEM, PHASE_COMMON); |
| ecore_init_block(sc, BLOCK_XSEM, PHASE_COMMON); |
| |
| /* sync semi rtc */ |
| REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, |
| 0x80000000); |
| REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, |
| 0x80000000); |
| |
| ecore_init_block(sc, BLOCK_UPB, PHASE_COMMON); |
| ecore_init_block(sc, BLOCK_XPB, PHASE_COMMON); |
| ecore_init_block(sc, BLOCK_PBF, PHASE_COMMON); |
| |
| if (!CHIP_IS_E1x(sc)) { |
| if (IS_MF_AFEX(sc)) { |
| /* |
| * configure that AFEX and VLAN headers must be |
| * sent in AFEX mode |
| */ |
| REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC, 0xE); |
| REG_WR(sc, PBF_REG_MUST_HAVE_HDRS, 0xA); |
| REG_WR(sc, PBF_REG_HDRS_AFTER_TAG_0, 0x6); |
| REG_WR(sc, PBF_REG_TAG_ETHERTYPE_0, 0x8926); |
| REG_WR(sc, PBF_REG_TAG_LEN_0, 0x4); |
| } else { |
| REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC, |
| sc->devinfo.mf_info.path_has_ovlan ? 7 : 6); |
| } |
| } |
| |
| REG_WR(sc, SRC_REG_SOFT_RST, 1); |
| |
| ecore_init_block(sc, BLOCK_SRC, PHASE_COMMON); |
| |
| if (CNIC_SUPPORT(sc)) { |
| REG_WR(sc, SRC_REG_KEYSEARCH_0, 0x63285672); |
| REG_WR(sc, SRC_REG_KEYSEARCH_1, 0x24b8f2cc); |
| REG_WR(sc, SRC_REG_KEYSEARCH_2, 0x223aef9b); |
| REG_WR(sc, SRC_REG_KEYSEARCH_3, 0x26001e3a); |
| REG_WR(sc, SRC_REG_KEYSEARCH_4, 0x7ae91116); |
| REG_WR(sc, SRC_REG_KEYSEARCH_5, 0x5ce5230b); |
| REG_WR(sc, SRC_REG_KEYSEARCH_6, 0x298d8adf); |
| REG_WR(sc, SRC_REG_KEYSEARCH_7, 0x6eb0ff09); |
| REG_WR(sc, SRC_REG_KEYSEARCH_8, 0x1830f82f); |
| REG_WR(sc, SRC_REG_KEYSEARCH_9, 0x01e46be7); |
| } |
| REG_WR(sc, SRC_REG_SOFT_RST, 0); |
| |
| if (sizeof(union cdu_context) != 1024) { |
| /* we currently assume that a context is 1024 bytes */ |
| BLOGE(sc, "please adjust the size of cdu_context(%ld)\n", |
| (long)sizeof(union cdu_context)); |
| } |
| |
| ecore_init_block(sc, BLOCK_CDU, PHASE_COMMON); |
| val = (4 << 24) + (0 << 12) + 1024; |
| REG_WR(sc, CDU_REG_CDU_GLOBAL_PARAMS, val); |
| |
| ecore_init_block(sc, BLOCK_CFC, PHASE_COMMON); |
| |
| REG_WR(sc, CFC_REG_INIT_REG, 0x7FF); |
| /* enable context validation interrupt from CFC */ |
| REG_WR(sc, CFC_REG_CFC_INT_MASK, 0); |
| |
| /* set the thresholds to prevent CFC/CDU race */ |
| REG_WR(sc, CFC_REG_DEBUG0, 0x20020000); |
| ecore_init_block(sc, BLOCK_HC, PHASE_COMMON); |
| |
| if (!CHIP_IS_E1x(sc) && BXE_NOMCP(sc)) { |
| REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x36); |
| } |
| |
| ecore_init_block(sc, BLOCK_IGU, PHASE_COMMON); |
| ecore_init_block(sc, BLOCK_MISC_AEU, PHASE_COMMON); |
| |
| /* Reset PCIE errors for debug */ |
| REG_WR(sc, 0x2814, 0xffffffff); |
| REG_WR(sc, 0x3820, 0xffffffff); |
| |
| if (!CHIP_IS_E1x(sc)) { |
| REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_CONTROL_5, |
| (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 | |
| PXPCS_TL_CONTROL_5_ERR_UNSPPORT)); |
| REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT, |
| (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 | |
| PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 | |
| PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2)); |
| REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT, |
| (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 | |
| PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 | |
| PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5)); |
| } |
| |
| ecore_init_block(sc, BLOCK_NIG, PHASE_COMMON); |
| |
| if (!CHIP_IS_E1(sc)) { |
| /* in E3 this done in per-port section */ |
| if (!CHIP_IS_E3(sc)) |
| REG_WR(sc, NIG_REG_LLH_MF_MODE, IS_MF(sc)); |
| } |
| |
| if (CHIP_IS_E1H(sc)) { |
| /* not applicable for E2 (and above ...) */ |
| REG_WR(sc, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(sc)); |
| } |
| |
| if (CHIP_REV_IS_SLOW(sc)) { |
| udelay(200000); |
| } |
| |
| /* finish CFC init */ |
| val = reg_poll(sc, CFC_REG_LL_INIT_DONE, 1, 100, 10); |
| if (val != 1) { |
| BLOGE(sc, "CFC LL_INIT failed\n"); |
| return (-1); |
| } |
| val = reg_poll(sc, CFC_REG_AC_INIT_DONE, 1, 100, 10); |
| if (val != 1) { |
| BLOGE(sc, "CFC AC_INIT failed\n"); |
| return (-1); |
| } |
| val = reg_poll(sc, CFC_REG_CAM_INIT_DONE, 1, 100, 10); |
| if (val != 1) { |
| BLOGE(sc, "CFC CAM_INIT failed\n"); |
| return (-1); |
| } |
| REG_WR(sc, CFC_REG_DEBUG0, 0); |
| |
| if (CHIP_IS_E1(sc)) { |
| /* read NIG statistic to see if this is our first up since powerup */ |
| bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2); |
| val = *BXE_SP(sc, wb_data[0]); |
| |
| /* do internal memory self test */ |
| if ((val == 0) && bxe_int_mem_test(sc)) { |
| BLOGE(sc, "internal mem self test failed\n"); |
| return (-1); |
| } |
| } |
| |
| bxe_setup_fan_failure_detection(sc); |
| |
| /* clear PXP2 attentions */ |
| REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0); |
| |
| bxe_enable_blocks_attention(sc); |
| |
| if (!CHIP_REV_IS_SLOW(sc)) { |
| ecore_enable_blocks_parity(sc); |
| } |
| |
| if (!BXE_NOMCP(sc)) { |
| if (CHIP_IS_E1x(sc)) { |
| bxe_common_init_phy(sc); |
| } |
| } |
| |
| return (0); |
| } |
| |
| /** |
| * bxe_init_hw_common_chip - init HW at the COMMON_CHIP phase. |
| * |
| * @sc: driver handle |
| */ |
| static int |
| bxe_init_hw_common_chip(struct bxe_adapter *sc) |
| { |
| int rc = bxe_init_hw_common(sc); |
| |
| if (rc) { |
| return (rc); |
| } |
| |
| /* In E2 2-PORT mode, same ext phy is used for the two paths */ |
| if (!BXE_NOMCP(sc)) { |
| bxe_common_init_phy(sc); |
| } |
| |
| return (0); |
| } |
| |
| static int |
| bxe_init_hw_port(struct bxe_adapter *sc) |
| { |
| int port = SC_PORT(sc); |
| int init_phase = port ? PHASE_PORT1 : PHASE_PORT0; |
| uint32_t low, high; |
| uint32_t val; |
| |
| BLOGD(sc, DBG_LOAD, "starting port init for port %d\n", port); |
| |
| REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0); |
| |
| ecore_init_block(sc, BLOCK_MISC, init_phase); |
| ecore_init_block(sc, BLOCK_PXP, init_phase); |
| ecore_init_block(sc, BLOCK_PXP2, init_phase); |
| |
| /* |
| * Timers bug workaround: disables the pf_master bit in pglue at |
| * common phase, we need to enable it here before any dmae access are |
| * attempted. Therefore we manually added the enable-master to the |
| * port phase (it also happens in the function phase) |
| */ |
| if (!CHIP_IS_E1x(sc)) { |
| REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); |
| } |
| |
| ecore_init_block(sc, BLOCK_ATC, init_phase); |
| ecore_init_block(sc, BLOCK_DMAE, init_phase); |
| ecore_init_block(sc, BLOCK_PGLUE_B, init_phase); |
| ecore_init_block(sc, BLOCK_QM, init_phase); |
| |
| ecore_init_block(sc, BLOCK_TCM, init_phase); |
| ecore_init_block(sc, BLOCK_UCM, init_phase); |
| ecore_init_block(sc, BLOCK_CCM, init_phase); |
| ecore_init_block(sc, BLOCK_XCM, init_phase); |
| |
| /* QM cid (connection) count */ |
| ecore_qm_init_cid_count(sc, sc->qm_cid_count, INITOP_SET); |
| |
| if (CNIC_SUPPORT(sc)) { |
| ecore_init_block(sc, BLOCK_TM, init_phase); |
| REG_WR(sc, TM_REG_LIN0_SCAN_TIME + port*4, 20); |
| REG_WR(sc, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31); |
| } |
| |
| ecore_init_block(sc, BLOCK_DORQ, init_phase); |
| |
| ecore_init_block(sc, BLOCK_BRB1, init_phase); |
| |
| if (CHIP_IS_E1(sc) || CHIP_IS_E1H(sc)) { |
| if (IS_MF(sc)) { |
| low = (BXE_ONE_PORT(sc) ? 160 : 246); |
| } else if (sc->mtu > 4096) { |
| if (BXE_ONE_PORT(sc)) { |
| low = 160; |
| } else { |
| val = sc->mtu; |
| /* (24*1024 + val*4)/256 */ |
| low = (96 + (val / 64) + ((val % 64) ? 1 : 0)); |
| } |
| } else { |
| low = (BXE_ONE_PORT(sc) ? 80 : 160); |
| } |
| high = (low + 56); /* 14*1024/256 */ |
| REG_WR(sc, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low); |
| REG_WR(sc, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high); |
| } |
| |
| if (CHIP_IS_MODE_4_PORT(sc)) { |
| REG_WR(sc, SC_PORT(sc) ? |
| BRB1_REG_MAC_GUARANTIED_1 : |
| BRB1_REG_MAC_GUARANTIED_0, 40); |
| } |
| |
| ecore_init_block(sc, BLOCK_PRS, init_phase); |
| if (CHIP_IS_E3B0(sc)) { |
| if (IS_MF_AFEX(sc)) { |
| /* configure headers for AFEX mode */ |
| REG_WR(sc, SC_PORT(sc) ? |
| PRS_REG_HDRS_AFTER_BASIC_PORT_1 : |
| PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE); |
| REG_WR(sc, SC_PORT(sc) ? |
| PRS_REG_HDRS_AFTER_TAG_0_PORT_1 : |
| PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6); |
| REG_WR(sc, SC_PORT(sc) ? |
| PRS_REG_MUST_HAVE_HDRS_PORT_1 : |
| PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA); |
| } else { |
| /* Ovlan exists only if we are in multi-function + |
| * switch-dependent mode, in switch-independent there |
| * is no ovlan headers |
| */ |
| REG_WR(sc, SC_PORT(sc) ? |
| PRS_REG_HDRS_AFTER_BASIC_PORT_1 : |
| PRS_REG_HDRS_AFTER_BASIC_PORT_0, |
| (sc->devinfo.mf_info.path_has_ovlan ? 7 : 6)); |
| } |
| } |
| |
| ecore_init_block(sc, BLOCK_TSDM, init_phase); |
| ecore_init_block(sc, BLOCK_CSDM, init_phase); |
| ecore_init_block(sc, BLOCK_USDM, init_phase); |
| ecore_init_block(sc, BLOCK_XSDM, init_phase); |
| |
| ecore_init_block(sc, BLOCK_TSEM, init_phase); |
| ecore_init_block(sc, BLOCK_USEM, init_phase); |
| ecore_init_block(sc, BLOCK_CSEM, init_phase); |
| ecore_init_block(sc, BLOCK_XSEM, init_phase); |
| |
| ecore_init_block(sc, BLOCK_UPB, init_phase); |
| ecore_init_block(sc, BLOCK_XPB, init_phase); |
| |
| ecore_init_block(sc, BLOCK_PBF, init_phase); |
| |
| if (CHIP_IS_E1x(sc)) { |
| /* configure PBF to work without PAUSE mtu 9000 */ |
| REG_WR(sc, PBF_REG_P0_PAUSE_ENABLE + port*4, 0); |
| |
| /* update threshold */ |
| REG_WR(sc, PBF_REG_P0_ARB_THRSH + port*4, (9040/16)); |
| /* update init credit */ |
| REG_WR(sc, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22); |
| |
| /* probe changes */ |
| REG_WR(sc, PBF_REG_INIT_P0 + port*4, 1); |
| udelay(50); |
| REG_WR(sc, PBF_REG_INIT_P0 + port*4, 0); |
| } |
| |
| if (CNIC_SUPPORT(sc)) { |
| ecore_init_block(sc, BLOCK_SRC, init_phase); |
| } |
| |
| ecore_init_block(sc, BLOCK_CDU, init_phase); |
| ecore_init_block(sc, BLOCK_CFC, init_phase); |
| |
| if (CHIP_IS_E1(sc)) { |
| REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0); |
| REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0); |
| } |
| ecore_init_block(sc, BLOCK_HC, init_phase); |
| |
| ecore_init_block(sc, BLOCK_IGU, init_phase); |
| |
| ecore_init_block(sc, BLOCK_MISC_AEU, init_phase); |
| /* init aeu_mask_attn_func_0/1: |
| * - SF mode: bits 3-7 are masked. only bits 0-2 are in use |
| * - MF mode: bit 3 is masked. bits 0-2 are in use as in SF |
| * bits 4-7 are used for "per vn group attention" */ |
| val = IS_MF(sc) ? 0xF7 : 0x7; |
| /* Enable DCBX attention for all but E1 */ |
| val |= CHIP_IS_E1(sc) ? 0 : 0x10; |
| REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val); |
| |
| ecore_init_block(sc, BLOCK_NIG, init_phase); |
| |
| if (!CHIP_IS_E1x(sc)) { |
| /* Bit-map indicating which L2 hdrs may appear after the |
| * basic Ethernet header |
| */ |
| if (IS_MF_AFEX(sc)) { |
| REG_WR(sc, SC_PORT(sc) ? |
| NIG_REG_P1_HDRS_AFTER_BASIC : |
| NIG_REG_P0_HDRS_AFTER_BASIC, 0xE); |
| } else { |
| REG_WR(sc, SC_PORT(sc) ? |
| NIG_REG_P1_HDRS_AFTER_BASIC : |
| NIG_REG_P0_HDRS_AFTER_BASIC, |
| IS_MF_SD(sc) ? 7 : 6); |
| } |
| |
| if (CHIP_IS_E3(sc)) { |
| REG_WR(sc, SC_PORT(sc) ? |
| NIG_REG_LLH1_MF_MODE : |
| NIG_REG_LLH_MF_MODE, IS_MF(sc)); |
| } |
| } |
| if (!CHIP_IS_E3(sc)) { |
| REG_WR(sc, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1); |
| } |
| |
| if (!CHIP_IS_E1(sc)) { |
| /* 0x2 disable mf_ov, 0x1 enable */ |
| REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4, |
| (IS_MF_SD(sc) ? 0x1 : 0x2)); |
| |
| if (!CHIP_IS_E1x(sc)) { |
| val = 0; |
| switch (sc->devinfo.mf_info.mf_mode) { |
| case MULTI_FUNCTION_SD: |
| val = 1; |
| break; |
| case MULTI_FUNCTION_SI: |
| case MULTI_FUNCTION_AFEX: |
| val = 2; |
| break; |
| } |
| |
| REG_WR(sc, (SC_PORT(sc) ? NIG_REG_LLH1_CLS_TYPE : |
| NIG_REG_LLH0_CLS_TYPE), val); |
| } |
| REG_WR(sc, NIG_REG_LLFC_ENABLE_0 + port*4, 0); |
| REG_WR(sc, NIG_REG_LLFC_OUT_EN_0 + port*4, 0); |
| REG_WR(sc, NIG_REG_PAUSE_ENABLE_0 + port*4, 1); |
| } |
| |
| /* If SPIO5 is set to generate interrupts, enable it for this port */ |
| val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN); |
| if (val & MISC_SPIO_SPIO5) { |
| uint32_t reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 : |
| MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0); |
| val = REG_RD(sc, reg_addr); |
| val |= AEU_INPUTS_ATTN_BITS_SPIO5; |
| REG_WR(sc, reg_addr, val); |
| } |
| |
| return (0); |
| } |
| |
| static uint32_t |
| bxe_flr_clnup_reg_poll(struct bxe_adapter *sc, |
| uint32_t reg, |
| uint32_t expected, |
| uint32_t poll_count) |
| { |
| uint32_t cur_cnt = poll_count; |
| uint32_t val; |
| |
| while ((val = REG_RD(sc, reg)) != expected && cur_cnt--) { |
| udelay(FLR_WAIT_INTERVAL); |
| } |
| |
| return (val); |
| } |
| |
| static int |
| bxe_flr_clnup_poll_hw_counter(struct bxe_adapter *sc, |
| uint32_t reg, |
| char *msg, |
| uint32_t poll_cnt) |
| { |
| uint32_t val = bxe_flr_clnup_reg_poll(sc, reg, 0, poll_cnt); |
| |
| if (val != 0) { |
| BLOGE(sc, "%s usage count=%d\n", msg, val); |
| return (1); |
| } |
| |
| return (0); |
| } |
| |
| /* Common routines with VF FLR cleanup */ |
| static uint32_t |
| bxe_flr_clnup_poll_count(struct bxe_adapter *sc) |
| { |
| /* adjust polling timeout */ |
| if (CHIP_REV_IS_EMUL(sc)) { |
| return (FLR_POLL_CNT * 2000); |
| } |
| |
| if (CHIP_REV_IS_FPGA(sc)) { |
| return (FLR_POLL_CNT * 120); |
| } |
| |
| return (FLR_POLL_CNT); |
| } |
| |
| static int |
| bxe_poll_hw_usage_counters(struct bxe_adapter *sc, |
| uint32_t poll_cnt) |
| { |
| /* wait for CFC PF usage-counter to zero (includes all the VFs) */ |
| if (bxe_flr_clnup_poll_hw_counter(sc, |
| CFC_REG_NUM_LCIDS_INSIDE_PF, |
| "CFC PF usage counter timed out", |
| poll_cnt)) { |
| return (1); |
| } |
| |
| /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */ |
| if (bxe_flr_clnup_poll_hw_counter(sc, |
| DORQ_REG_PF_USAGE_CNT, |
| "DQ PF usage counter timed out", |
| poll_cnt)) { |
| return (1); |
| } |
| |
| /* Wait for QM PF usage-counter to zero (until DQ cleanup) */ |
| if (bxe_flr_clnup_poll_hw_counter(sc, |
| QM_REG_PF_USG_CNT_0 + 4*SC_FUNC(sc), |
| "QM PF usage counter timed out", |
| poll_cnt)) { |
| return (1); |
| } |
| |
| /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */ |
| if (bxe_flr_clnup_poll_hw_counter(sc, |
| TM_REG_LIN0_VNIC_UC + 4*SC_PORT(sc), |
| "Timers VNIC usage counter timed out", |
| poll_cnt)) { |
| return (1); |
| } |
| |
| if (bxe_flr_clnup_poll_hw_counter(sc, |
| TM_REG_LIN0_NUM_SCANS + 4*SC_PORT(sc), |
| "Timers NUM_SCANS usage counter timed out", |
| poll_cnt)) { |
| return (1); |
| } |
| |
| /* Wait DMAE PF usage counter to zero */ |
| if (bxe_flr_clnup_poll_hw_counter(sc, |
| dmae_reg_go_c[INIT_DMAE_C(sc)], |
| "DMAE dommand register timed out", |
| poll_cnt)) { |
| return (1); |
| } |
| |
| return (0); |
| } |
| |
| #define OP_GEN_PARAM(param) \ |
| (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM) |
| #define OP_GEN_TYPE(type) \ |
| (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE) |
| #define OP_GEN_AGG_VECT(index) \ |
| (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX) |
| |
| static int |
| bxe_send_final_clnup(struct bxe_adapter *sc, |
| uint8_t clnup_func, |
| uint32_t poll_cnt) |
| { |
| uint32_t op_gen_command = 0; |
| uint32_t comp_addr = (BAR_CSTRORM_INTMEM + |
| CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func)); |
| int ret = 0; |
| |
| if (REG_RD(sc, comp_addr)) { |
| BLOGE(sc, "Cleanup complete was not 0 before sending\n"); |
| return (1); |
| } |
| |
| op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX); |
| op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE); |
| op_gen_command |= OP_GEN_AGG_VECT(clnup_func); |
| op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT; |
| |
| BLOGD(sc, DBG_LOAD, "sending FW Final cleanup\n"); |
| REG_WR(sc, XSDM_REG_OPERATION_GEN, op_gen_command); |
| |
| if (bxe_flr_clnup_reg_poll(sc, comp_addr, 1, poll_cnt) != 1) { |
| BLOGE(sc, "FW final cleanup did not succeed\n"); |
| BLOGD(sc, DBG_LOAD, "At timeout completion address contained %x\n", |
| (REG_RD(sc, comp_addr))); |
| bxe_panic(sc, ("FLR cleanup failed\n")); |
| return (1); |
| } |
| |
| /* Zero completion for nxt FLR */ |
| REG_WR(sc, comp_addr, 0); |
| |
| return (ret); |
| } |
| |
| static void |
| bxe_pbf_pN_buf_flushed(struct bxe_adapter *sc, |
| struct pbf_pN_buf_regs *regs, |
| uint32_t poll_count) |
| { |
| uint32_t init_crd, crd, crd_start, crd_freed, crd_freed_start; |
| uint32_t cur_cnt = poll_count; |
| |
| crd_freed = crd_freed_start = REG_RD(sc, regs->crd_freed); |
| crd = crd_start = REG_RD(sc, regs->crd); |
| init_crd = REG_RD(sc, regs->init_crd); |
| |
| BLOGD(sc, DBG_LOAD, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd); |
| BLOGD(sc, DBG_LOAD, "CREDIT[%d] : s:%x\n", regs->pN, crd); |
| BLOGD(sc, DBG_LOAD, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed); |
| |
| while ((crd != init_crd) && |
| ((uint32_t)((int32_t)crd_freed - (int32_t)crd_freed_start) < |
| (init_crd - crd_start))) { |
| if (cur_cnt--) { |
| udelay(FLR_WAIT_INTERVAL); |
| crd = REG_RD(sc, regs->crd); |
| crd_freed = REG_RD(sc, regs->crd_freed); |
| } else { |
| BLOGD(sc, DBG_LOAD, "PBF tx buffer[%d] timed out\n", regs->pN); |
| BLOGD(sc, DBG_LOAD, "CREDIT[%d] : c:%x\n", regs->pN, crd); |
| BLOGD(sc, DBG_LOAD, "CREDIT_FREED[%d]: c:%x\n", regs->pN, crd_freed); |
| break; |
| } |
| } |
| |
| BLOGD(sc, DBG_LOAD, "Waited %d*%d usec for PBF tx buffer[%d]\n", |
| poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN); |
| } |
| |
| static void |
| bxe_pbf_pN_cmd_flushed(struct bxe_adapter *sc, |
| struct pbf_pN_cmd_regs *regs, |
| uint32_t poll_count) |
| { |
| uint32_t occup, to_free, freed, freed_start; |
| uint32_t cur_cnt = poll_count; |
| |
| occup = to_free = REG_RD(sc, regs->lines_occup); |
| freed = freed_start = REG_RD(sc, regs->lines_freed); |
| |
| BLOGD(sc, DBG_LOAD, "OCCUPANCY[%d] : s:%x\n", regs->pN, occup); |
| BLOGD(sc, DBG_LOAD, "LINES_FREED[%d] : s:%x\n", regs->pN, freed); |
| |
| while (occup && |
| ((uint32_t)((int32_t)freed - (int32_t)freed_start) < to_free)) { |
| if (cur_cnt--) { |
| udelay(FLR_WAIT_INTERVAL); |
| occup = REG_RD(sc, regs->lines_occup); |
| freed = REG_RD(sc, regs->lines_freed); |
| } else { |
| BLOGD(sc, DBG_LOAD, "PBF cmd queue[%d] timed out\n", regs->pN); |
| BLOGD(sc, DBG_LOAD, "OCCUPANCY[%d] : s:%x\n", regs->pN, occup); |
| BLOGD(sc, DBG_LOAD, "LINES_FREED[%d] : s:%x\n", regs->pN, freed); |
| break; |
| } |
| } |
| |
| BLOGD(sc, DBG_LOAD, "Waited %d*%d usec for PBF cmd queue[%d]\n", |
| poll_count - cur_cnt, FLR_WAIT_INTERVAL, regs->pN); |
| } |
| |
| static void |
| bxe_tx_hw_flushed(struct bxe_adapter *sc, uint32_t poll_count) |
| { |
| struct pbf_pN_cmd_regs cmd_regs[] = { |
| {0, (CHIP_IS_E3B0(sc)) ? |
| PBF_REG_TQ_OCCUPANCY_Q0 : |
| PBF_REG_P0_TQ_OCCUPANCY, |
| (CHIP_IS_E3B0(sc)) ? |
| PBF_REG_TQ_LINES_FREED_CNT_Q0 : |
| PBF_REG_P0_TQ_LINES_FREED_CNT}, |
| {1, (CHIP_IS_E3B0(sc)) ? |
| PBF_REG_TQ_OCCUPANCY_Q1 : |
| PBF_REG_P1_TQ_OCCUPANCY, |
| (CHIP_IS_E3B0(sc)) ? |
| PBF_REG_TQ_LINES_FREED_CNT_Q1 : |
| PBF_REG_P1_TQ_LINES_FREED_CNT}, |
| {4, (CHIP_IS_E3B0(sc)) ? |
| PBF_REG_TQ_OCCUPANCY_LB_Q : |
| PBF_REG_P4_TQ_OCCUPANCY, |
| (CHIP_IS_E3B0(sc)) ? |
| PBF_REG_TQ_LINES_FREED_CNT_LB_Q : |
| PBF_REG_P4_TQ_LINES_FREED_CNT} |
| }; |
| |
| struct pbf_pN_buf_regs buf_regs[] = { |
| {0, (CHIP_IS_E3B0(sc)) ? |
| PBF_REG_INIT_CRD_Q0 : |
| PBF_REG_P0_INIT_CRD , |
| (CHIP_IS_E3B0(sc)) ? |
| PBF_REG_CREDIT_Q0 : |
| PBF_REG_P0_CREDIT, |
| (CHIP_IS_E3B0(sc)) ? |
| PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 : |
| PBF_REG_P0_INTERNAL_CRD_FREED_CNT}, |
| {1, (CHIP_IS_E3B0(sc)) ? |
| PBF_REG_INIT_CRD_Q1 : |
| PBF_REG_P1_INIT_CRD, |
| (CHIP_IS_E3B0(sc)) ? |
| PBF_REG_CREDIT_Q1 : |
| PBF_REG_P1_CREDIT, |
| (CHIP_IS_E3B0(sc)) ? |
| PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 : |
| PBF_REG_P1_INTERNAL_CRD_FREED_CNT}, |
| {4, (CHIP_IS_E3B0(sc)) ? |
| PBF_REG_INIT_CRD_LB_Q : |
| PBF_REG_P4_INIT_CRD, |
| (CHIP_IS_E3B0(sc)) ? |
| PBF_REG_CREDIT_LB_Q : |
| PBF_REG_P4_CREDIT, |
| (CHIP_IS_E3B0(sc)) ? |
| PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q : |
| PBF_REG_P4_INTERNAL_CRD_FREED_CNT}, |
| }; |
| |
| int i; |
| |
| /* Verify the command queues are flushed P0, P1, P4 */ |
| for (i = 0; i < ARRAY_SIZE(cmd_regs); i++) { |
| bxe_pbf_pN_cmd_flushed(sc, &cmd_regs[i], poll_count); |
| } |
| |
| /* Verify the transmission buffers are flushed P0, P1, P4 */ |
| for (i = 0; i < ARRAY_SIZE(buf_regs); i++) { |
| bxe_pbf_pN_buf_flushed(sc, &buf_regs[i], poll_count); |
| } |
| } |
| |
| static void |
| bxe_hw_enable_status(struct bxe_adapter *sc) |
| { |
| uint32_t val; |
| |
| val = REG_RD(sc, CFC_REG_WEAK_ENABLE_PF); |
| BLOGD(sc, DBG_LOAD, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val); |
| |
| val = REG_RD(sc, PBF_REG_DISABLE_PF); |
| BLOGD(sc, DBG_LOAD, "PBF_REG_DISABLE_PF is 0x%x\n", val); |
| |
| val = REG_RD(sc, IGU_REG_PCI_PF_MSI_EN); |
| BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val); |
| |
| val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_EN); |
| BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val); |
| |
| val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_FUNC_MASK); |
| BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val); |
| |
| val = REG_RD(sc, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR); |
| BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val); |
| |
| val = REG_RD(sc, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR); |
| BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val); |
| |
| val = REG_RD(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER); |
| BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n", val); |
| } |
| |
| static int |
| bxe_pf_flr_clnup(struct bxe_adapter *sc) |
| { |
| uint32_t poll_cnt = bxe_flr_clnup_poll_count(sc); |
| |
| BLOGD(sc, DBG_LOAD, "Cleanup after FLR PF[%d]\n", SC_ABS_FUNC(sc)); |
| |
| /* Re-enable PF target read access */ |
| REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1); |
| |
| /* Poll HW usage counters */ |
| BLOGD(sc, DBG_LOAD, "Polling usage counters\n"); |
| if (bxe_poll_hw_usage_counters(sc, poll_cnt)) { |
| return (-1); |
| } |
| |
| /* Zero the igu 'trailing edge' and 'leading edge' */ |
| |
| /* Send the FW cleanup command */ |
| if (bxe_send_final_clnup(sc, (uint8_t)SC_FUNC(sc), poll_cnt)) { |
| return (-1); |
| } |
| |
| /* ATC cleanup */ |
| |
| /* Verify TX hw is flushed */ |
| bxe_tx_hw_flushed(sc, poll_cnt); |
| |
| /* Wait 100ms (not adjusted according to platform) */ |
| udelay(100000); |
| |
| /* Verify no pending pci transactions */ |
| if (bxe_is_pcie_pending(sc)) { |
| BLOGE(sc, "PCIE Transactions still pending\n"); |
| } |
| |
| /* Debug */ |
| bxe_hw_enable_status(sc); |
| |
| /* |
| * Master enable - Due to WB DMAE writes performed before this |
| * register is re-initialized as part of the regular function init |
| */ |
| REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); |
| |
| return (0); |
| } |
| |
| #if 0 |
| static void |
| bxe_init_searcher(struct bxe_adapter *sc) |
| { |
| int port = SC_PORT(sc); |
| ecore_src_init_t2(sc, sc->t2, sc->t2_mapping, SRC_CONN_NUM); |
| /* T1 hash bits value determines the T1 number of entries */ |
| REG_WR(sc, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS); |
| } |
| #endif |
| |
| static int |
| bxe_init_hw_func(struct bxe_adapter *sc) |
| { |
| int port = SC_PORT(sc); |
| int func = SC_FUNC(sc); |
| int init_phase = PHASE_PF0 + func; |
| struct ecore_ilt *ilt = sc->ilt; |
| uint16_t cdu_ilt_start; |
| uint32_t addr, val; |
| uint32_t main_mem_base, main_mem_size, main_mem_prty_clr; |
| int i, main_mem_width, rc; |
| |
| BLOGD(sc, DBG_LOAD, "starting func init for func %d\n", func); |
| |
| /* FLR cleanup */ |
| if (!CHIP_IS_E1x(sc)) { |
| rc = bxe_pf_flr_clnup(sc); |
| if (rc) { |
| BLOGE(sc, "FLR cleanup failed!\n"); |
| // XXX bxe_fw_dump(sc); |
| // XXX bxe_idle_chk(sc); |
| return (rc); |
| } |
| } |
| |
| /* set MSI reconfigure capability */ |
| if (sc->devinfo.int_block == INT_BLOCK_HC) { |
| addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0); |
| val = REG_RD(sc, addr); |
| val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0; |
| REG_WR(sc, addr, val); |
| } |
| |
| ecore_init_block(sc, BLOCK_PXP, init_phase); |
| ecore_init_block(sc, BLOCK_PXP2, init_phase); |
| |
| ilt = sc->ilt; |
| cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start; |
| |
| #if 0 |
| if (IS_SRIOV(sc)) { |
| cdu_ilt_start += BXE_FIRST_VF_CID/ILT_PAGE_CIDS; |
| } |
| cdu_ilt_start = bxe_iov_init_ilt(sc, cdu_ilt_start); |
| |
| #if (BXE_FIRST_VF_CID > 0) |
| /* |
| * If BXE_FIRST_VF_CID > 0 then the PF L2 cids precedes |
| * those of the VFs, so start line should be reset |
| */ |
| cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start; |
| #endif |
| #endif |
| |
| for (i = 0; i < L2_ILT_LINES(sc); i++) { |
| //ilt->lines[cdu_ilt_start + i].page = sc->context[i].vcxt; |
| // ilt->lines[cdu_ilt_start + i].page_mapping = |
| // sc->context[i].vcxt_dma.paddr; |
| //ilt->lines[cdu_ilt_start + i].size = sc->context[i].size; |
| } |
| ecore_ilt_init_op(sc, INITOP_SET); |
| |
| #if 0 |
| if (!CONFIGURE_NIC_MODE(sc)) { |
| bxe_init_searcher(sc); |
| REG_WR(sc, PRS_REG_NIC_MODE, 0); |
| BLOGD(sc, DBG_LOAD, "NIC MODE disabled\n"); |
| } else |
| #endif |
| { |
| /* Set NIC mode */ |
| REG_WR(sc, PRS_REG_NIC_MODE, 1); |
| BLOGD(sc, DBG_LOAD, "NIC MODE configured\n"); |
| } |
| |
| if (!CHIP_IS_E1x(sc)) { |
| uint32_t pf_conf = IGU_PF_CONF_FUNC_EN; |
| |
| /* Turn on a single ISR mode in IGU if driver is going to use |
| * INT#x or MSI |
| */ |
| if (sc->interrupt_mode != INTR_MODE_MSIX) { |
| pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN; |
| } |
| |
| /* |
| * Timers workaround bug: function init part. |
| * Need to wait 20msec after initializing ILT, |
| * needed to make sure there are no requests in |
| * one of the PXP internal queues with "old" ILT addresses |
| */ |
| udelay(20000); |
| |
| /* |
| * Master enable - Due to WB DMAE writes performed before this |
| * register is re-initialized as part of the regular function |
| * init |
| */ |
| REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1); |
| /* Enable the function in IGU */ |
| REG_WR(sc, IGU_REG_PF_CONFIGURATION, pf_conf); |
| } |
| |
| sc->dmae_ready = 1; |
| |
| ecore_init_block(sc, BLOCK_PGLUE_B, init_phase); |
| |
| if (!CHIP_IS_E1x(sc)) |
| REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func); |
| |
| ecore_init_block(sc, BLOCK_ATC, init_phase); |
| ecore_init_block(sc, BLOCK_DMAE, init_phase); |
| ecore_init_block(sc, BLOCK_NIG, init_phase); |
| ecore_init_block(sc, BLOCK_SRC, init_phase); |
| ecore_init_block(sc, BLOCK_MISC, init_phase); |
| ecore_init_block(sc, BLOCK_TCM, init_phase); |
| ecore_init_block(sc, BLOCK_UCM, init_phase); |
| ecore_init_block(sc, BLOCK_CCM, init_phase); |
| ecore_init_block(sc, BLOCK_XCM, init_phase); |
| ecore_init_block(sc, BLOCK_TSEM, init_phase); |
| ecore_init_block(sc, BLOCK_USEM, init_phase); |
| ecore_init_block(sc, BLOCK_CSEM, init_phase); |
| ecore_init_block(sc, BLOCK_XSEM, init_phase); |
| |
| if (!CHIP_IS_E1x(sc)) |
| REG_WR(sc, QM_REG_PF_EN, 1); |
| |
| if (!CHIP_IS_E1x(sc)) { |
| REG_WR(sc, TSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func); |
| REG_WR(sc, USEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func); |
| REG_WR(sc, CSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func); |
| REG_WR(sc, XSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func); |
| } |
| ecore_init_block(sc, BLOCK_QM, init_phase); |
| |
| ecore_init_block(sc, BLOCK_TM, init_phase); |
| ecore_init_block(sc, BLOCK_DORQ, init_phase); |
| |
| bxe_iov_init_dq(sc); |
| |
| ecore_init_block(sc, BLOCK_BRB1, init_phase); |
| ecore_init_block(sc, BLOCK_PRS, init_phase); |
| ecore_init_block(sc, BLOCK_TSDM, init_phase); |
| ecore_init_block(sc, BLOCK_CSDM, init_phase); |
| ecore_init_block(sc, BLOCK_USDM, init_phase); |
| ecore_init_block(sc, BLOCK_XSDM, init_phase); |
| ecore_init_block(sc, BLOCK_UPB, init_phase); |
| ecore_init_block(sc, BLOCK_XPB, init_phase); |
| ecore_init_block(sc, BLOCK_PBF, init_phase); |
| if (!CHIP_IS_E1x(sc)) |
| REG_WR(sc, PBF_REG_DISABLE_PF, 0); |
| |
| ecore_init_block(sc, BLOCK_CDU, init_phase); |
| |
| ecore_init_block(sc, BLOCK_CFC, init_phase); |
| |
| if (!CHIP_IS_E1x(sc)) |
| REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 1); |
| |
| if (IS_MF(sc)) { |
| REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 1); |
| REG_WR(sc, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, OVLAN(sc)); |
| } |
| |
| ecore_init_block(sc, BLOCK_MISC_AEU, init_phase); |
| |
| /* HC init per function */ |
| if (sc->devinfo.int_block == INT_BLOCK_HC) { |
| if (CHIP_IS_E1H(sc)) { |
| REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0); |
| |
| REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0); |
| REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0); |
| } |
| ecore_init_block(sc, BLOCK_HC, init_phase); |
| |
| } else { |
| int num_segs, sb_idx, prod_offset; |
| |
| REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0); |
| |
| if (!CHIP_IS_E1x(sc)) { |
| REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0); |
| REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0); |
| } |
| |
| ecore_init_block(sc, BLOCK_IGU, init_phase); |
| |
| if (!CHIP_IS_E1x(sc)) { |
| int dsb_idx = 0; |
| /** |
| * Producer memory: |
| * E2 mode: address 0-135 match to the mapping memory; |
| * 136 - PF0 default prod; 137 - PF1 default prod; |
| * 138 - PF2 default prod; 139 - PF3 default prod; |
| * 140 - PF0 attn prod; 141 - PF1 attn prod; |
| * 142 - PF2 attn prod; 143 - PF3 attn prod; |
| * 144-147 reserved. |
| * |
| * E1.5 mode - In backward compatible mode; |
| * for non default SB; each even line in the memory |
| * holds the U producer and each odd line hold |
| * the C producer. The first 128 producers are for |
| * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20 |
| * producers are for the DSB for each PF. |
| * Each PF has five segments: (the order inside each |
| * segment is PF0; PF1; PF2; PF3) - 128-131 U prods; |
| * 132-135 C prods; 136-139 X prods; 140-143 T prods; |
| * 144-147 attn prods; |
| */ |
| /* non-default-status-blocks */ |
| num_segs = CHIP_INT_MODE_IS_BC(sc) ? |
| IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS; |
| for (sb_idx = 0; sb_idx < sc->igu_sb_cnt; sb_idx++) { |
| prod_offset = (sc->igu_base_sb + sb_idx) * |
| num_segs; |
| |
| for (i = 0; i < num_segs; i++) { |
| addr = IGU_REG_PROD_CONS_MEMORY + |
| (prod_offset + i) * 4; |
| REG_WR(sc, addr, 0); |
| } |
| /* send consumer update with value 0 */ |
| bxe_ack_sb(sc, sc->igu_base_sb + sb_idx, |
| USTORM_ID, 0, IGU_INT_NOP, 1); |
| bxe_igu_clear_sb(sc, sc->igu_base_sb + sb_idx); |
| } |
| |
| /* default-status-blocks */ |
| num_segs = CHIP_INT_MODE_IS_BC(sc) ? |
| IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS; |
| |
| if (CHIP_IS_MODE_4_PORT(sc)) |
| dsb_idx = SC_FUNC(sc); |
| else |
| dsb_idx = SC_VN(sc); |
| |
| prod_offset = (CHIP_INT_MODE_IS_BC(sc) ? |
| IGU_BC_BASE_DSB_PROD + dsb_idx : |
| IGU_NORM_BASE_DSB_PROD + dsb_idx); |
| |
| /* |
| * igu prods come in chunks of E1HVN_MAX (4) - |
| * does not matters what is the current chip mode |
| */ |
| for (i = 0; i < (num_segs * E1HVN_MAX); |
| i += E1HVN_MAX) { |
| addr = IGU_REG_PROD_CONS_MEMORY + |
| (prod_offset + i)*4; |
| REG_WR(sc, addr, 0); |
| } |
| /* send consumer update with 0 */ |
| if (CHIP_INT_MODE_IS_BC(sc)) { |
| bxe_ack_sb(sc, sc->igu_dsb_id, |
| USTORM_ID, 0, IGU_INT_NOP, 1); |
| bxe_ack_sb(sc, sc->igu_dsb_id, |
| CSTORM_ID, 0, IGU_INT_NOP, 1); |
| bxe_ack_sb(sc, sc->igu_dsb_id, |
| XSTORM_ID, 0, IGU_INT_NOP, 1); |
| bxe_ack_sb(sc, sc->igu_dsb_id, |
| TSTORM_ID, 0, IGU_INT_NOP, 1); |
| bxe_ack_sb(sc, sc->igu_dsb_id, |
| ATTENTION_ID, 0, IGU_INT_NOP, 1); |
| } else { |
| bxe_ack_sb(sc, sc->igu_dsb_id, |
| USTORM_ID, 0, IGU_INT_NOP, 1); |
| bxe_ack_sb(sc, sc->igu_dsb_id, |
| ATTENTION_ID, 0, IGU_INT_NOP, 1); |
| } |
| bxe_igu_clear_sb(sc, sc->igu_dsb_id); |
| |
| /* !!! these should become driver const once |
| rf-tool supports split-68 const */ |
| REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0); |
| REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0); |
| REG_WR(sc, IGU_REG_SB_MASK_LSB, 0); |
| REG_WR(sc, IGU_REG_SB_MASK_MSB, 0); |
| REG_WR(sc, IGU_REG_PBA_STATUS_LSB, 0); |
| REG_WR(sc, IGU_REG_PBA_STATUS_MSB, 0); |
| } |
| } |
| |
| /* Reset PCIE errors for debug */ |
| REG_WR(sc, 0x2114, 0xffffffff); |
| REG_WR(sc, 0x2120, 0xffffffff); |
| |
| if (CHIP_IS_E1x(sc)) { |
| main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/ |
| main_mem_base = HC_REG_MAIN_MEMORY + |
| SC_PORT(sc) * (main_mem_size * 4); |
| main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR; |
| main_mem_width = 8; |
| |
| val = REG_RD(sc, main_mem_prty_clr); |
| if (val) { |
| BLOGD(sc, DBG_LOAD, |
| "Parity errors in HC block during function init (0x%x)!\n", |
| val); |
| } |
| |
| /* Clear "false" parity errors in MSI-X table */ |
| for (i = main_mem_base; |
| i < main_mem_base + main_mem_size * 4; |
| i += main_mem_width) { |
| bxe_read_dmae(sc, i, main_mem_width / 4); |
| bxe_write_dmae(sc, BXE_SP_MAPPING(sc, wb_data), |
| i, main_mem_width / 4); |
| } |
| /* Clear HC parity attention */ |
| REG_RD(sc, main_mem_prty_clr); |
| } |
| |
| #if 1 |
| /* Enable STORMs SP logging */ |
| REG_WR8(sc, BAR_USTRORM_INTMEM + |
| USTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1); |
| REG_WR8(sc, BAR_TSTRORM_INTMEM + |
| TSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1); |
| REG_WR8(sc, BAR_CSTRORM_INTMEM + |
| CSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1); |
| REG_WR8(sc, BAR_XSTRORM_INTMEM + |
| XSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1); |
| #endif |
| |
| elink_phy_probe(&sc->link_params); |
| |
| return (0); |
| } |
| |
| static void |
| bxe_link_reset(struct bxe_adapter *sc) |
| { |
| if (!BXE_NOMCP(sc)) { |
| BXE_PHY_LOCK(sc); |
| elink_lfa_reset(&sc->link_params, &sc->link_vars); |
| BXE_PHY_UNLOCK(sc); |
| } else { |
| if (!CHIP_REV_IS_SLOW(sc)) { |
| BLOGW(sc, "Bootcode is missing - cannot reset link\n"); |
| } |
| } |
| } |
| |
| static void |
| bxe_reset_port(struct bxe_adapter *sc) |
| { |
| int port = SC_PORT(sc); |
| uint32_t val; |
| |
| /* reset physical Link */ |
| bxe_link_reset(sc); |
| |
| REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0); |
| |
| /* Do not rcv packets to BRB */ |
| REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0); |
| /* Do not direct rcv packets that are not for MCP to the BRB */ |
| REG_WR(sc, (port ? NIG_REG_LLH1_BRB1_NOT_MCP : |
| NIG_REG_LLH0_BRB1_NOT_MCP), 0x0); |
| |
| /* Configure AEU */ |
| REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0); |
| |
| udelay(100000); |
| |
| /* Check for BRB port occupancy */ |
| val = REG_RD(sc, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4); |
| if (val) { |
| BLOGD(sc, DBG_LOAD, |
| "BRB1 is not empty, %d blocks are occupied\n", val); |
| } |
| |
| /* TODO: Close Doorbell port? */ |
| } |
| |
| static void |
| bxe_ilt_wr(struct bxe_adapter *sc, |
| uint32_t index, |
| bus_addr_t addr) |
| { |
| int reg; |
| uint32_t wb_write[2]; |
| |
| if (CHIP_IS_E1(sc)) { |
| reg = PXP2_REG_RQ_ONCHIP_AT + index*8; |
| } else { |
| reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8; |
| } |
| |
| wb_write[0] = ONCHIP_ADDR1(addr); |
| wb_write[1] = ONCHIP_ADDR2(addr); |
| REG_WR_DMAE(sc, reg, wb_write, 2); |
| } |
| |
| static void |
| bxe_clear_func_ilt(struct bxe_adapter *sc, |
| uint32_t func) |
| { |
| uint32_t i, base = FUNC_ILT_BASE(func); |
| for (i = base; i < base + ILT_PER_FUNC; i++) { |
| bxe_ilt_wr(sc, i, 0); |
| } |
| } |
| |
| static void |
| bxe_reset_func(struct bxe_adapter *sc) |
| { |
| struct bxe_fastpath *fp; |
| int port = SC_PORT(sc); |
| int func = SC_FUNC(sc); |
| int i; |
| |
| /* Disable the function in the FW */ |
| REG_WR8(sc, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0); |
| REG_WR8(sc, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0); |
| REG_WR8(sc, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0); |
| REG_WR8(sc, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0); |
| |
| /* FP SBs */ |
| FOR_EACH_ETH_QUEUE(sc, i) { |
| fp = &sc->fp[i]; |
| REG_WR8(sc, BAR_CSTRORM_INTMEM + |
| CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id), |
| SB_DISABLED); |
| } |
| |
| #if 0 |
| if (CNIC_LOADED(sc)) { |
| /* CNIC SB */ |
| REG_WR8(sc, BAR_CSTRORM_INTMEM + |
| CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET |
| (bxe_cnic_fw_sb_id(sc)), SB_DISABLED); |
| } |
| #endif |
| |
| /* SP SB */ |
| REG_WR8(sc, BAR_CSTRORM_INTMEM + |
| CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func), |
| SB_DISABLED); |
| |
| for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++) { |
| REG_WR(sc, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func), 0); |
| } |
| |
| /* Configure IGU */ |
| if (sc->devinfo.int_block == INT_BLOCK_HC) { |
| REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0); |
| REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0); |
| } else { |
| REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0); |
| REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0); |
| } |
| |
| if (CNIC_LOADED(sc)) { |
| /* Disable Timer scan */ |
| REG_WR(sc, TM_REG_EN_LINEAR0_TIMER + port*4, 0); |
| /* |
| * Wait for at least 10ms and up to 2 second for the timers |
| * scan to complete |
| */ |
| for (i = 0; i < 200; i++) { |
| udelay(10000); |
| if (!REG_RD(sc, TM_REG_LIN0_SCAN_ON + port*4)) |
| break; |
| } |
| } |
| |
| /* Clear ILT */ |
| bxe_clear_func_ilt(sc, func); |
| |
| /* |
| * Timers workaround bug for E2: if this is vnic-3, |
| * we need to set the entire ilt range for this timers. |
| */ |
| if (!CHIP_IS_E1x(sc) && SC_VN(sc) == 3) { |
| struct ilt_client_info ilt_cli; |
| /* use dummy TM client */ |
| memset(&ilt_cli, 0, sizeof(struct ilt_client_info)); |
| ilt_cli.start = 0; |
| ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1; |
| ilt_cli.client_num = ILT_CLIENT_TM; |
| |
| ecore_ilt_boundry_init_op(sc, &ilt_cli, 0, INITOP_CLEAR); |
| } |
| |
| /* this assumes that reset_port() called before reset_func()*/ |
| if (!CHIP_IS_E1x(sc)) { |
| bxe_pf_disable(sc); |
| } |
| |
| sc->dmae_ready = 0; |
| } |
| |
| static int |
| bxe_gunzip_init(struct bxe_adapter *sc) |
| { |
| return (0); |
| } |
| |
| static void |
| bxe_gunzip_end(struct bxe_adapter *sc) |
| { |
| return; |
| } |
| |
| static int |
| bxe_init_firmware(struct bxe_adapter *sc) |
| { |
| if (CHIP_IS_E1(sc)) { |
| ecore_init_e1_firmware(sc); |
| sc->iro_array = e1_iro_arr; |
| } else if (CHIP_IS_E1H(sc)) { |
| ecore_init_e1h_firmware(sc); |
| sc->iro_array = e1h_iro_arr; |
| } else if (!CHIP_IS_E1x(sc)) { |
| ecore_init_e2_firmware(sc); |
| sc->iro_array = e2_iro_arr; |
| } else { |
| BLOGE(sc, "Unsupported chip revision\n"); |
| return (-1); |
| } |
| |
| return (0); |
| } |
| |
| static void |
| bxe_release_firmware(struct bxe_adapter *sc) |
| { |
| /* Do nothing */ |
| return; |
| } |
| |
| static int |
| ecore_gunzip(struct bxe_adapter *sc, |
| const uint8_t *zbuf, |
| int len) |
| { |
| /* XXX : Implement... */ |
| BLOGD(sc, DBG_LOAD, "ECORE_GUNZIP NOT IMPLEMENTED\n"); |
| return (FALSE); |
| } |
| |
| static void |
| ecore_reg_wr_ind(struct bxe_adapter *sc, |
| uint32_t addr, |
| uint32_t val) |
| { |
| bxe_reg_wr_ind(sc, addr, val); |
| } |
| |
| static void |
| ecore_write_dmae_phys_len(struct bxe_adapter *sc, |
| bus_addr_t phys_addr, |
| uint32_t addr, |
| uint32_t len) |
| { |
| bxe_write_dmae_phys_len(sc, phys_addr, addr, len); |
| } |
| |
| void |
| ecore_storm_memset_struct(struct bxe_adapter *sc, |
| uint32_t addr, |
| size_t size, |
| uint32_t *data) |
| { |
| uint8_t i; |
| for (i = 0; i < size/4; i++) { |
| REG_WR(sc, addr + (i * 4), data[i]); |
| } |
| } |