blob: 344c0c6f5f78663d050122a0e0b8dabf03981adf [file] [log] [blame]
/*
* Copyright 2008-2014
* erik quanstrom
*
* This software is provided `as-is,' without any express or implied
* warranty. In no event will the author be held liable for any damages
* arising from the use of this software.
*
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
*
* 1. The origin of this software must not be misrepresented; you must
* not claim that you wrote the original software. If you use this
* software in a product, an acknowledgment in the product documentation
* would be appreciated but is not required.
*
* 2. Altered source versions must be plainly marked as such, and must
* not be misrepresented as being the original software.
*
* 3. This notice may not be removed or altered from any source
* distribution.
*/
/* This code has been modified by UC Berkeley to work in Akaros. */
/*
* Intel 8256[367], 8257[1-9], 8258[03], i21[01], i350
* Gigabit Ethernet PCI-Express Controllers
* Coraid EtherDrive® hba
*/
#include <vfs.h>
#include <kfs.h>
#include <slab.h>
#include <kmalloc.h>
#include <kref.h>
#include <string.h>
#include <stdio.h>
#include <assert.h>
#include <error.h>
#include <cpio.h>
#include <pmap.h>
#include <smp.h>
#include <ip.h>
/*
* note: the 82575, 82576 and 82580 are operated using registers aliased
* to the 82563-style architecture. many features seen in the 82598
* are also seen in the 82575 part.
*/
enum {
/* General */
Ctrl = 0x0000, /* Device Control */
Status = 0x0008, /* Device Status */
Eec = 0x0010, /* EEPROM/Flash Control/Data */
Eerd = 0x0014, /* EEPROM Read */
Ctrlext = 0x0018, /* Extended Device Control */
Fla = 0x001c, /* Flash Access */
Mdic = 0x0020, /* MDI Control */
Fcal = 0x0028, /* Flow Control Address Low */
Fcah = 0x002c, /* Flow Control Address High */
Fct = 0x0030, /* Flow Control Type */
Kumctrlsta = 0x0034, /* Kumeran Control and Status Register */
Connsw = 0x0034, /* copper / fiber switch control; 82575/82576 */
Vet = 0x0038, /* VLAN EtherType */
Fcttv = 0x0170, /* Flow Control Transmit Timer Value */
Txcw = 0x0178, /* Transmit Configuration Word */
Rxcw = 0x0180, /* Receive Configuration Word */
Ledctl = 0x0e00, /* LED control */
Pba = 0x1000, /* Packet Buffer Allocation */
Pbs = 0x1008, /* Packet Buffer Size */
/* Interrupt */
Icr = 0x00c0, /* Interrupt Cause Read */
Itr = 0x00c4, /* Interrupt Throttling Rate */
Ics = 0x00c8, /* Interrupt Cause Set */
Ims = 0x00d0, /* Interrupt Mask Set/Read */
Imc = 0x00d8, /* Interrupt mask Clear */
Iam = 0x00e0, /* Interrupt acknowledge Auto Mask */
Ivar = 0x00e4, /* Ivar: interrupt allocation */
Eitr = 0x1680, /* Extended itr; 82575/6 80 only */
P3gio = 0x5b00, /* */
Pbaclr = 0x5b68, /* clear msi-x pba */
/* Receive */
Rctl = 0x0100, /* Control */
Ert = 0x2008, /* Early Receive Threshold (573[EVL], 82578 only) */
Fcrtl = 0x2160, /* Flow Control RX Threshold Low */
Fcrth = 0x2168, /* Flow Control Rx Threshold High */
Psrctl = 0x2170, /* Packet Split Receive Control */
Drxmxod = 0x2540, /* dma max outstanding bytes (82575) */
Rdbal = 0x2800, /* Rdesc Base Address Low Queue 0 */
Rdbah = 0x2804, /* Rdesc Base Address High Queue 0 */
Rdlen = 0x2808, /* Descriptor Length Queue 0 */
Srrctl = 0x280c, /* split and replication rx control (82575) */
Rdh = 0x2810, /* Descriptor Head Queue 0 */
Rdt = 0x2818, /* Descriptor Tail Queue 0 */
Rdtr = 0x2820, /* Descriptor Timer Ring */
Rxdctl = 0x2828, /* Descriptor Control */
Radv = 0x282C, /* Interrupt Absolute Delay Timer */
Rsrpd = 0x2c00, /* Small Packet Detect */
Raid = 0x2c08, /* ACK interrupt delay */
Cpuvec = 0x2c10, /* CPU Vector */
Rxcsum = 0x5000, /* Checksum Control */
Rmpl = 0x5004, /* rx maximum packet length (82575) */
Rfctl = 0x5008, /* Filter Control */
Mta = 0x5200, /* Multicast Table Array */
Ral = 0x5400, /* Receive Address Low */
Rah = 0x5404, /* Receive Address High */
Vfta = 0x5600, /* VLAN Filter Table Array */
Mrqc = 0x5818, /* Multiple Receive Queues Command */
/* Transmit */
Tctl = 0x0400, /* Transmit Control */
Tipg = 0x0410, /* Transmit IPG */
Tkabgtxd = 0x3004, /* glci afe band gap transmit ref data, or something */
Tdbal = 0x3800, /* Tdesc Base Address Low */
Tdbah = 0x3804, /* Tdesc Base Address High */
Tdlen = 0x3808, /* Descriptor Length */
Tdh = 0x3810, /* Descriptor Head */
Tdt = 0x3818, /* Descriptor Tail */
Tidv = 0x3820, /* Interrupt Delay Value */
Txdctl = 0x3828, /* Descriptor Control */
Tadv = 0x382C, /* Interrupt Absolute Delay Timer */
Tarc0 = 0x3840, /* Arbitration Counter Queue 0 */
/* Statistics */
Statistics = 0x4000, /* Start of Statistics Area */
Gorcl = 0x88 / 4, /* Good Octets Received Count */
Gotcl = 0x90 / 4, /* Good Octets Transmitted Count */
Torl = 0xC0 / 4, /* Total Octets Received */
Totl = 0xC8 / 4, /* Total Octets Transmitted */
Nstatistics = 0x124 / 4,
};
enum { /* Ctrl */
Lrst = 1 << 3, /* link reset */
Slu = 1 << 6, /* Set Link Up */
Devrst = 1 << 26, /* Device Reset */
Rfce = 1 << 27, /* Receive Flow Control Enable */
Tfce = 1 << 28, /* Transmit Flow Control Enable */
Phyrst = 1 << 31, /* Phy Reset */
};
enum { /* Status */
Lu = 1 << 1, /* Link Up */
Lanid = 3 << 2, /* mask for Lan ID. */
Txoff = 1 << 4, /* Transmission Paused */
Tbimode = 1 << 5, /* TBI Mode Indication */
Phyra = 1 << 10, /* PHY Reset Asserted */
GIOme = 1 << 19, /* GIO Master Enable Status */
};
enum {
/* Eec */
Nvpres = 1 << 8, /* nvram present */
Autord = 1 << 9, /* autoread complete */
Sec1val = 1 << 22, /* sector 1 valid (!sec0) */
};
enum { /* Eerd */
EEstart = 1 << 0, /* Start Read */
EEdone = 1 << 1, /* Read done */
};
enum { /* Ctrlext */
Eerst = 1 << 13, /* EEPROM Reset */
Linkmode = 3 << 22, /* linkmode */
Internalphy = 0 << 22, /* " internal phy (copper) */
Sgmii = 2 << 22, /* " sgmii */
Serdes = 3 << 22, /* " serdes */
Eiame = 1 << 24, /* extended auto mask enable */
Iame = 1 << 27, /* auto mask enable */
Pbasup = 1 << 31, /* msi-x pba support */
};
enum {
/* Connsw */
Enrgirq = 1 << 2, /* interrupt on power detect (enrgsrc) */
};
enum { /* EEPROM content offsets */
Ea = 0x00, /* Ethernet Address */
};
enum { /* Mdic */
MDIdMASK = 0x0000FFFF, /* Data */
MDIdSHIFT = 0,
MDIrMASK = 0x001F0000, /* PHY Register Address */
MDIrSHIFT = 16,
MDIpMASK = 0x03E00000, /* PHY Address */
MDIpSHIFT = 21,
MDIwop = 0x04000000, /* Write Operation */
MDIrop = 0x08000000, /* Read Operation */
MDIready = 0x10000000, /* End of Transaction */
MDIie = 0x20000000, /* Interrupt Enable */
MDIe = 0x40000000, /* Error */
};
enum { /* phy interface */
Phyctl = 0, /* phy ctl register */
Phyisr = 19, /* 82563 phy interrupt status register */
Phylhr = 19, /* 8257[12] link health register */
Physsr = 17, /* phy secondary status register */
Phyprst = 193 << 8 | 17, /* 8256[34] phy port reset */
Phyier = 18, /* 82573 phy interrupt enable register */
Phypage = 22, /* 8256[34] page register */
Phystat = 26, /* 82580 phy status */
Phyapage = 29,
Phy79page = 31, /* 82579 phy page register (all pages) */
Rtlink = 1 << 10, /* realtime link status */
Phyan = 1 << 11, /* phy has autonegotiated */
/* Phyctl bits */
Ran = 1 << 9, /* restart auto negotiation */
Ean = 1 << 12, /* enable auto negotiation */
/* Phyprst bits */
Prst = 1 << 0, /* reset the port */
/* 82573 Phyier bits */
Lscie = 1 << 10, /* link status changed ie */
Ancie = 1 << 11, /* auto negotiation complete ie */
Spdie = 1 << 14, /* speed changed ie */
Panie = 1 << 15, /* phy auto negotiation error ie */
/* Phylhr/Phyisr bits */
Anf = 1 << 6, /* lhr: auto negotiation fault */
Ane = 1 << 15, /* isr: auto negotiation error */
/* 82580 Phystat bits */
Ans = 1 << 14 | 1 << 15, /* 82580 autoneg. status */
Link = 1 << 6, /* 82580 Link */
/* Rxcw builtin serdes */
Anc = 1 << 31,
Rxsynch = 1 << 30,
Rxcfg = 1 << 29,
Rxcfgch = 1 << 28,
Rxcfgbad = 1 << 27,
Rxnc = 1 << 26,
/* Txcw */
Txane = 1 << 31,
Txcfg = 1 << 30,
};
enum { /* fiber (pcs) interface */
Pcsctl = 0x4208, /* pcs control */
Pcsstat = 0x420c, /* pcs status */
/* Pcsctl bits */
Pan = 1 << 16, /* autonegotiate */
Prestart = 1 << 17, /* restart an (self clearing) */
/* Pcsstat bits */
Linkok = 1 << 0, /* link is okay */
Andone = 1 << 16, /* an phase is done see below for success */
Anbad = 1 << 19 | 1 << 20, /* Anerror | Anremfault */
};
enum { /* Icr, Ics, Ims, Imc */
Txdw = 0x00000001, /* Transmit Descriptor Written Back */
Txqe = 0x00000002, /* Transmit Queue Empty */
Lsc = 0x00000004, /* Link Status Change */
Rxseq = 0x00000008, /* Receive Sequence Error */
Rxdmt0 = 0x00000010, /* Rdesc Minimum Threshold Reached */
Rxo = 0x00000040, /* Receiver Overrun */
Rxt0 = 0x00000080, /* Receiver Timer Interrupt; !82575/6/80 only */
Rxdw = 0x00000080, /* Rdesc write back; 82575/6/80 only */
Mdac = 0x00000200, /* MDIO Access Completed */
Rxcfgset = 0x00000400, /* Receiving /C/ ordered sets */
Ack = 0x00020000, /* Receive ACK frame */
Omed = 1 << 20, /* media change; pcs interface */
};
enum { /* Txcw */
TxcwFd = 0x00000020, /* Full Duplex */
TxcwHd = 0x00000040, /* Half Duplex */
TxcwPauseMASK = 0x00000180, /* Pause */
TxcwPauseSHIFT = 7,
TxcwPs = 1 << TxcwPauseSHIFT, /* Pause Supported */
TxcwAs = 2 << TxcwPauseSHIFT, /* Asymmetric FC desired */
TxcwRfiMASK = 0x00003000, /* Remote Fault Indication */
TxcwRfiSHIFT = 12,
TxcwNpr = 0x00008000, /* Next Page Request */
TxcwConfig = 0x40000000, /* Transmit COnfig Control */
TxcwAne = 0x80000000, /* Auto-Negotiation Enable */
};
enum { /* Rctl */
Rrst = 0x00000001, /* Receiver Software Reset */
Ren = 0x00000002, /* Receiver Enable */
Sbp = 0x00000004, /* Store Bad Packets */
Upe = 0x00000008, /* Unicast Promiscuous Enable */
Mpe = 0x00000010, /* Multicast Promiscuous Enable */
Lpe = 0x00000020, /* Long Packet Reception Enable */
RdtmsMASK = 0x00000300, /* Rdesc Minimum Threshold Size */
RdtmsHALF = 0x00000000, /* Threshold is 1/2 Rdlen */
RdtmsQUARTER = 0x00000100, /* Threshold is 1/4 Rdlen */
RdtmsEIGHTH = 0x00000200, /* Threshold is 1/8 Rdlen */
MoMASK = 0x00003000, /* Multicast Offset */
Bam = 0x00008000, /* Broadcast Accept Mode */
BsizeMASK = 0x00030000, /* Receive Buffer Size */
Bsize16384 = 0x00010000, /* Bsex = 1 */
Bsize8192 = 0x00020000, /* Bsex = 1 */
Bsize2048 = 0x00000000,
Bsize1024 = 0x00010000,
Bsize512 = 0x00020000,
Bsize256 = 0x00030000,
BsizeFlex = 0x08000000, /* Flexable Bsize in 1kb increments */
Vfe = 0x00040000, /* VLAN Filter Enable */
Cfien = 0x00080000, /* Canonical Form Indicator Enable */
Cfi = 0x00100000, /* Canonical Form Indicator value */
Dpf = 0x00400000, /* Discard Pause Frames */
Pmcf = 0x00800000, /* Pass MAC Control Frames */
Bsex = 0x02000000, /* Buffer Size Extension */
Secrc = 0x04000000, /* Strip CRC from incoming packet */
};
enum { /* Srrctl */
Dropen = 1 << 31,
};
enum { /* Tctl */
Trst = 0x00000001, /* Transmitter Software Reset */
Ten = 0x00000002, /* Transmit Enable */
Psp = 0x00000008, /* Pad Short Packets */
Mulr = 0x10000000, /* Allow multiple concurrent requests */
CtMASK = 0x00000FF0, /* Collision Threshold */
CtSHIFT = 4,
ColdMASK = 0x003FF000, /* Collision Distance */
ColdSHIFT = 12,
Swxoff = 0x00400000, /* Sofware XOFF Transmission */
Pbe = 0x00800000, /* Packet Burst Enable */
Rtlc = 0x01000000, /* Re-transmit on Late Collision */
Nrtu = 0x02000000, /* No Re-transmit on Underrrun */
};
enum { /* [RT]xdctl */
PthreshMASK = 0x0000003F, /* Prefetch Threshold */
PthreshSHIFT = 0,
HthreshMASK = 0x00003F00, /* Host Threshold */
HthreshSHIFT = 8,
WthreshMASK = 0x003F0000, /* Writeback Threshold */
WthreshSHIFT = 16,
Gran = 0x01000000, /* Granularity; not 82575 */
Enable = 0x02000000,
};
enum { /* Rxcsum */
Ipofl = 0x0100, /* IP Checksum Off-load Enable */
Tuofl = 0x0200, /* TCP/UDP Checksum Off-load Enable */
};
typedef struct Rd { /* Receive Descriptor */
uint32_t addr[2];
uint16_t length;
uint16_t checksum;
uint8_t status;
uint8_t errors;
uint16_t special;
} Rd;
enum { /* Rd status */
Rdd = 0x01, /* Descriptor Done */
Reop = 0x02, /* End of Packet */
Ixsm = 0x04, /* Ignore Checksum Indication */
Vp = 0x08, /* Packet is 802.1Q (matched VET) */
Tcpcs = 0x20, /* TCP Checksum Calculated on Packet */
Ipcs = 0x40, /* IP Checksum Calculated on Packet */
Pif = 0x80, /* Passed in-exact filter */
};
enum { /* Rd errors */
Ce = 0x01, /* CRC Error or Alignment Error */
Se = 0x02, /* Symbol Error */
Seq = 0x04, /* Sequence Error */
Cxe = 0x10, /* Carrier Extension Error */
Tcpe = 0x20, /* TCP/UDP Checksum Error */
Ipe = 0x40, /* IP Checksum Error */
Rxe = 0x80, /* RX Data Error */
};
typedef struct { /* Transmit Descriptor */
uint32_t addr[2]; /* Data */
uint32_t control;
uint32_t status;
} Td;
enum { /* Tdesc control */
LenMASK = 0x000FFFFF, /* Data/Packet Length Field */
LenSHIFT = 0,
DtypeCD = 0x00000000, /* Data Type 'Context Descriptor' */
DtypeDD = 0x00100000, /* Data Type 'Data Descriptor' */
PtypeTCP = 0x01000000, /* TCP/UDP Packet Type (CD) */
Teop = 0x01000000, /* End of Packet (DD) */
PtypeIP = 0x02000000, /* IP Packet Type (CD) */
Ifcs = 0x02000000, /* Insert FCS (DD) */
Tse = 0x04000000, /* TCP Segmentation Enable */
Rs = 0x08000000, /* Report Status */
Rps = 0x10000000, /* Report Status Sent */
Dext = 0x20000000, /* Descriptor Extension */
Vle = 0x40000000, /* VLAN Packet Enable */
Ide = 0x80000000, /* Interrupt Delay Enable */
};
enum { /* Tdesc status */
Tdd = 0x0001, /* Descriptor Done */
Ec = 0x0002, /* Excess Collisions */
Lc = 0x0004, /* Late Collision */
Tu = 0x0008, /* Transmit Underrun */
CssMASK = 0xFF00, /* Checksum Start Field */
CssSHIFT = 8,
};
typedef struct {
uint16_t *reg;
uint32_t *reg32;
unsigned int base;
unsigned int lim;
} Flash;
enum {
/* 16 and 32-bit flash registers for ich flash parts */
Bfpr = 0x00 / 4, /* flash base 0:12; lim 16:28 */
Fsts = 0x04 / 2, /* flash status; Hsfsts */
Fctl = 0x06 / 2, /* flash control; Hsfctl */
Faddr = 0x08 / 4, /* flash address to r/w */
Fdata = 0x10 / 4, /* data @ address */
/* status register */
Fdone = 1 << 0, /* flash cycle done */
Fcerr = 1 << 1, /* cycle error; write 1 to clear */
Ael = 1 << 2, /* direct access error log; 1 to clear */
Scip = 1 << 5, /* spi cycle in progress */
Fvalid = 1 << 14, /* flash descriptor valid */
/* control register */
Fgo = 1 << 0, /* start cycle */
Flcycle = 1 << 1, /* two bits: r=0; w=2 */
Fdbc = 1 << 8, /* bytes to read; 5 bits */
};
enum {
Nrd = 256, /* power of two */
Ntd = 256, /* power of two */
Rbalign = 16, /* rx buffer alignment */
Npool = 10,
};
enum {
i82563,
i82566,
i82567,
i82567m,
i82571,
i82572,
i82573,
i82574,
i82575,
i82576,
i82577,
i82577m,
i82578,
i82578m,
i82579,
i82580,
i82583,
i210,
i217,
i350,
Nctlrtype,
};
enum {
Fload = 1 << 0,
Fert = 1 << 1,
F75 = 1 << 2,
Fpba = 1 << 3,
Fflashea = 1 << 4,
F79phy = 1 << 5,
Fnofct = 1 << 6,
};
typedef struct Ctlrtype Ctlrtype;
struct Ctlrtype {
int type;
int mtu;
int phyno;
char *name;
int flag;
};
static Ctlrtype cttab[Nctlrtype] = {
{i82563, 9014, 1, "i82563", Fpba},
{i82566, 1514, 1, "i82566", Fload},
{i82567, 9234, 1, "i82567", Fload},
{i82567m, 1514, 1, "i82567m", 0},
{i82571, 9234, 1, "i82571", Fpba},
{i82572, 9234, 1, "i82572", Fpba},
{i82573, 8192, 1, "i82573", Fert}, /* terrible perf above 8k */
{i82574, 9018, 1, "i82574", 0},
{i82575, 9728, 1, "i82575", F75 | Fflashea},
{i82576, 9728, 1, "i82576", F75},
{i82577, 4096, 2, "i82577", Fload | Fert},
{i82577m, 1514, 2, "i82577", Fload | Fert},
{i82578, 4096, 2, "i82578", Fload | Fert},
{i82578m, 1514, 2, "i82578", Fload | Fert},
{i82579, 9018, 2, "i82579", Fload | Fert | F79phy | Fnofct},
{i82580, 9728, 1, "i82580", F75 | F79phy},
{i82583, 1514, 1, "i82583", 0},
{i210, 9728, 1, "i210", F75 | Fnofct | Fert},
{i217, 9728, 1, "i217", F79phy | Fnofct | Fload | Fert},
{i350, 9728, 1, "i350", F75 | F79phy | Fnofct},
};
typedef void (*Freefn) (struct block *);
typedef struct ctlr Ctlr;
struct ctlr {
uintptr_t mmio_paddr;
struct pci_device *pcidev;
struct ctlr *next;
int active;
int type;
uint16_t eeprom[0x40];
qlock_t alock; /* attach */
void *alloc; /* receive/transmit descriptors */
int nrd;
int ntd;
unsigned int rbsz;
uint32_t *nic;
spinlock_t imlock;
int im; /* interrupt mask */
struct rendez lrendez;
int lim;
qlock_t slock;
uint32_t statistics[Nstatistics];
unsigned int lsleep;
unsigned int lintr;
unsigned int rsleep;
unsigned int rintr;
unsigned int txdw;
unsigned int tintr;
unsigned int ixsm;
unsigned int ipcs;
unsigned int tcpcs;
unsigned int speeds[4];
unsigned int phyerrata;
uint8_t ra[Eaddrlen]; /* receive address */
uint32_t mta[128]; /* multicast table array */
struct rendez rrendez;
int rim;
int rdfree;
Rd *rdba; /* receive descriptor base address */
struct block **rb; /* receive buffers */
unsigned int rdh; /* receive descriptor head */
unsigned int rdt; /* receive descriptor tail */
int rdtr; /* receive delay timer ring value */
int radv; /* receive interrupt absolute delay timer */
struct rendez trendez;
qlock_t tlock;
int tbusy;
Td *tdba; /* transmit descriptor base address */
struct block **tb; /* transmit buffers */
int tdh; /* transmit descriptor head */
int tdt; /* transmit descriptor tail */
int fcrtl;
int fcrth;
uint32_t pba; /* packet buffer allocation */
};
static inline uint32_t csr32r(struct ctlr *c, uintptr_t reg)
{
return read_mmreg32((uintptr_t)(c->nic + (reg / 4)));
}
static inline void csr32w(struct ctlr *c, uintptr_t reg, uint32_t val)
{
write_mmreg32((uintptr_t)(c->nic + (reg / 4)), val);
}
static struct ctlr *i82563ctlr;
static char *statistics[Nstatistics] = {
"CRC Error",
"Alignment Error",
"Symbol Error",
"RX Error",
"Missed Packets",
"Single Collision",
"Excessive Collisions",
"Multiple Collision",
"Late Collisions",
NULL,
"Collision",
"Transmit Underrun",
"Defer",
"Transmit - No CRS",
"Sequence Error",
"Carrier Extension Error",
"Receive Error Length",
NULL,
"XON Received",
"XON Transmitted",
"XOFF Received",
"XOFF Transmitted",
"FC Received Unsupported",
"Packets Received (64 Bytes)",
"Packets Received (65-127 Bytes)",
"Packets Received (128-255 Bytes)",
"Packets Received (256-511 Bytes)",
"Packets Received (512-1023 Bytes)",
"Packets Received (1024-mtu Bytes)",
"Good Packets Received",
"Broadcast Packets Received",
"Multicast Packets Received",
"Good Packets Transmitted",
NULL,
"Good Octets Received",
NULL,
"Good Octets Transmitted",
NULL,
NULL,
NULL,
"Receive No Buffers",
"Receive Undersize",
"Receive Fragment",
"Receive Oversize",
"Receive Jabber",
"Management Packets Rx",
"Management Packets Drop",
"Management Packets Tx",
"Total Octets Received",
NULL,
"Total Octets Transmitted",
NULL,
"Total Packets Received",
"Total Packets Transmitted",
"Packets Transmitted (64 Bytes)",
"Packets Transmitted (65-127 Bytes)",
"Packets Transmitted (128-255 Bytes)",
"Packets Transmitted (256-511 Bytes)",
"Packets Transmitted (512-1023 Bytes)",
"Packets Transmitted (1024-mtu Bytes)",
"Multicast Packets Transmitted",
"Broadcast Packets Transmitted",
"TCP Segmentation Context Transmitted",
"TCP Segmentation Context Fail",
"Interrupt Assertion",
"Interrupt Rx Pkt Timer",
"Interrupt Rx Abs Timer",
"Interrupt Tx Pkt Timer",
"Interrupt Tx Abs Timer",
"Interrupt Tx Queue Empty",
"Interrupt Tx Desc Low",
"Interrupt Rx Min",
"Interrupt Rx Overrun",
};
static char *cname(struct ctlr *c)
{
return cttab[c->type].name;
}
static long i82563ifstat(struct ether* edev, void* a, long n, uint32_t offset)
{
char *s, *p, *e, *stat;
int i, r;
uint64_t tuvl, ruvl;
struct ctlr *ctlr;
ctlr = edev->ctlr;
qlock(&ctlr->slock);
p = s = kzmalloc(READSTR, 0);
e = p + READSTR;
for (i = 0; i < Nstatistics; i++) {
r = csr32r(ctlr, Statistics + i * 4);
if ((stat = statistics[i]) == NULL)
continue;
switch (i) {
case Gorcl:
case Gotcl:
case Torl:
case Totl:
ruvl = r;
ruvl += (uint64_t) csr32r(ctlr, Statistics + (i + 1) * 4) << 32;
tuvl = ruvl;
tuvl += ctlr->statistics[i];
tuvl += (uint64_t) ctlr->statistics[i + 1] << 32;
if (tuvl == 0)
continue;
ctlr->statistics[i] = tuvl;
ctlr->statistics[i + 1] = tuvl >> 32;
p = seprintf(p, e, "%s: %llud %llud\n", stat, tuvl, ruvl);
i++;
break;
default:
ctlr->statistics[i] += r;
if (ctlr->statistics[i] == 0)
continue;
p = seprintf(p, e, "%s: %ud %ud\n", stat,
ctlr->statistics[i], r);
break;
}
}
p = seprintf(p, e, "lintr: %ud %ud\n", ctlr->lintr, ctlr->lsleep);
p = seprintf(p, e, "rintr: %ud %ud\n", ctlr->rintr, ctlr->rsleep);
p = seprintf(p, e, "tintr: %ud %ud\n", ctlr->tintr, ctlr->txdw);
p = seprintf(p, e, "ixcs: %ud %ud %ud\n", ctlr->ixsm, ctlr->ipcs,
ctlr->tcpcs);
p = seprintf(p, e, "rdtr: %ud\n", ctlr->rdtr);
p = seprintf(p, e, "radv: %ud\n", ctlr->radv);
p = seprintf(p, e, "ctrl: %.8ux\n", csr32r(ctlr, Ctrl));
p = seprintf(p, e, "ctrlext: %.8ux\n", csr32r(ctlr, Ctrlext));
p = seprintf(p, e, "status: %.8ux\n", csr32r(ctlr, Status));
p = seprintf(p, e, "txcw: %.8ux\n", csr32r(ctlr, Txcw));
p = seprintf(p, e, "txdctl: %.8ux\n", csr32r(ctlr, Txdctl));
p = seprintf(p, e, "pba: %.8ux\n", ctlr->pba);
p = seprintf(p, e, "speeds: 10:%ud 100:%ud 1000:%ud ?:%ud\n",
ctlr->speeds[0], ctlr->speeds[1], ctlr->speeds[2],
ctlr->speeds[3]);
p = seprintf(p, e, "type: %s\n", cname(ctlr));
n = readstr(offset, a, n, s);
kfree(s);
qunlock(&ctlr->slock);
return n;
}
static void i82563promiscuous(void *arg, int on)
{
int rctl;
struct ctlr *ctlr;
struct ether *edev;
edev = arg;
ctlr = edev->ctlr;
rctl = csr32r(ctlr, Rctl);
rctl &= ~MoMASK;
if (on)
rctl |= Upe | Mpe;
else
rctl &= ~(Upe | Mpe);
csr32w(ctlr, Rctl, rctl);
}
static void i82563multicast(void *arg, uint8_t * addr, int on)
{
int bit, x;
struct ctlr *ctlr;
struct ether *edev;
edev = arg;
ctlr = edev->ctlr;
x = addr[5] >> 1;
if (ctlr->type == i82566)
x &= 31;
if (ctlr->type == i210 || ctlr->type == i217)
x &= 15;
bit = ((addr[5] & 1) << 4) | (addr[4] >> 4);
/*
* multiple ether addresses can hash to the same filter bit,
* so it's never safe to clear a filter bit.
* if we want to clear filter bits, we need to keep track of
* all the multicast addresses in use, clear all the filter bits,
* then set the ones corresponding to in-use addresses.
*/
if (on)
ctlr->mta[x] |= 1 << bit;
// else
// ctlr->mta[x] &= ~(1<<bit);
csr32w(ctlr, Mta + x * 4, ctlr->mta[x]);
}
static void i82563im(struct ctlr *ctlr, int im)
{
spin_lock_irqsave(&ctlr->imlock);
ctlr->im |= im;
csr32w(ctlr, Ims, ctlr->im);
spin_unlock_irqsave(&ctlr->imlock);
}
static void i82563txinit(struct ctlr *ctlr)
{
int i;
uint32_t r;
struct block *b;
if (cttab[ctlr->type].flag & F75)
csr32w(ctlr, Tctl, 0x0F << CtSHIFT | Psp);
else
csr32w(ctlr, Tctl, 0x0F << CtSHIFT | Psp | 66 << ColdSHIFT | Mulr);
csr32w(ctlr, Tipg, 6 << 20 | 8 << 10 | 8); /* yb sez: 0x702008 */
csr32w(ctlr, Tdbal, paddr_low32(ctlr->tdba));
csr32w(ctlr, Tdbah, paddr_high32(ctlr->tdba));
csr32w(ctlr, Tdlen, ctlr->ntd * sizeof(Td));
ctlr->tdh = PREV_RING(0, ctlr->ntd);
csr32w(ctlr, Tdh, 0);
ctlr->tdt = 0;
csr32w(ctlr, Tdt, 0);
for (i = 0; i < ctlr->ntd; i++) {
if ((b = ctlr->tb[i]) != NULL) {
ctlr->tb[i] = NULL;
freeb(b);
}
memset(&ctlr->tdba[i], 0, sizeof(Td));
}
csr32w(ctlr, Tidv, 128);
csr32w(ctlr, Tadv, 64);
csr32w(ctlr, Tctl, csr32r(ctlr, Tctl) | Ten);
r = csr32r(ctlr, Txdctl) & ~WthreshMASK;
r |= 4 << WthreshSHIFT | 4 << PthreshSHIFT;
if (cttab[ctlr->type].flag & F75)
r |= Enable;
csr32w(ctlr, Txdctl, r);
}
static int i82563cleanup(struct ether *e)
{
struct block *b;
struct ctlr *c;
int tdh, m, n;
c = e->ctlr;
tdh = c->tdh;
m = c->ntd;
while (c->tdba[n = NEXT_RING(tdh, m)].status & Tdd) {
tdh = n;
if ((b = c->tb[tdh]) != NULL) {
c->tb[tdh] = NULL;
freeb(b);
} else
printk("#l%d: %s tx underrun! %d\n", e->ctlrno, cname(c), n);
c->tdba[tdh].status = 0;
}
return c->tdh = tdh;
}
static int notrim(void *v)
{
struct ctlr *c;
c = v;
return (c->im & Txdw) == 0;
}
static void i82563tproc(void *v)
{
Td *td;
struct block *bp;
struct ether *edev;
struct ctlr *ctlr;
int tdh, tdt, m;
edev = v;
ctlr = edev->ctlr;
tdt = ctlr->tdt;
m = ctlr->ntd;
i82563txinit(ctlr);
for (;;) {
tdh = i82563cleanup(edev);
if (NEXT_RING(tdt, m) == tdh) {
ctlr->txdw++;
i82563im(ctlr, Txdw);
rendez_sleep(&ctlr->trendez, notrim, ctlr);
continue;
}
bp = qbread(edev->oq, 100000);
if (!bp) {
/* this only happens if the q is closed. qbread can also throw,
* btw, which we don't handle. */
warn("i350 tproc failed to get a block, aborting!");
return;
}
td = &ctlr->tdba[tdt];
td->addr[0] = paddr_low32(bp->rp);
td->addr[1] = paddr_high32(bp->rp);
td->control = Ide | Rs | Ifcs | Teop | BLEN(bp);
ctlr->tb[tdt] = bp;
tdt = NEXT_RING(tdt, m);
wmb_f();
csr32w(ctlr, Tdt, tdt);
}
}
static int i82563replenish(struct ctlr *ctlr, int maysleep)
{
unsigned int rdt, m;
struct block *bp;
Rd *rd;
int retval = 0;
rdt = ctlr->rdt;
m = ctlr->nrd;
for (; NEXT_RING(rdt, m) != ctlr->rdh; rdt = NEXT_RING(rdt, m)) {
rd = &ctlr->rdba[rdt];
if (ctlr->rb[rdt] != NULL) {
printk("%s: tx overrun\n", cname(ctlr));
break;
}
bp = iallocb(ctlr->rbsz + Rbalign);
if (bp == NULL) {
/* could do a sleeping allocb btw, we're a ktask */
warn_once("OOM, trying to survive");
break;
}
ctlr->rb[rdt] = bp;
rd->addr[0] = paddr_low32(bp->rp);
rd->addr[1] = paddr_high32(bp->rp);
rd->status = 0;
ctlr->rdfree++;
}
if (ctlr->rdt != rdt) {
ctlr->rdt = rdt;
wmb_f();
csr32w(ctlr, Rdt, rdt);
}
return retval;
}
static void i82563rxinit(struct ctlr *ctlr)
{
int i;
struct block *bp;
if (ctlr->rbsz <= 2048)
csr32w(ctlr, Rctl, Dpf | Bsize2048 | Bam | RdtmsHALF);
else {
i = ctlr->rbsz / 1024;
if (ctlr->rbsz % 1024)
i++;
if (cttab[ctlr->type].flag & F75) {
csr32w(ctlr, Rctl, Lpe | Dpf | Bsize2048 | Bam | RdtmsHALF | Secrc);
if (ctlr->type != i82575)
i |= (ctlr->nrd / 2 >> 4) << 20; /* RdmsHalf */
csr32w(ctlr, Srrctl, i | Dropen);
csr32w(ctlr, Rmpl, ctlr->rbsz);
// csr32w(ctlr, Drxmxod, 0x7ff);
} else
csr32w(ctlr, Rctl,
Lpe | Dpf | BsizeFlex * i | Bam | RdtmsHALF | Secrc);
}
if (cttab[ctlr->type].flag & Fert)
csr32w(ctlr, Ert, 1024 / 8);
if (ctlr->type == i82566)
csr32w(ctlr, Pbs, 16);
csr32w(ctlr, Rdbal, paddr_low32(ctlr->rdba));
csr32w(ctlr, Rdbah, paddr_high32(ctlr->rdba));
csr32w(ctlr, Rdlen, ctlr->nrd * sizeof(Rd));
ctlr->rdh = 0;
csr32w(ctlr, Rdh, 0);
ctlr->rdt = 0;
csr32w(ctlr, Rdt, 0);
ctlr->rdtr = 0; //25;
ctlr->radv = 0; //500;
csr32w(ctlr, Rdtr, ctlr->rdtr);
csr32w(ctlr, Radv, ctlr->radv);
for (i = 0; i < ctlr->nrd; i++)
if ((bp = ctlr->rb[i]) != NULL) {
ctlr->rb[i] = NULL;
freeb(bp);
}
if (cttab[ctlr->type].flag & F75)
csr32w(ctlr, Rxdctl,
1 << WthreshSHIFT | 8 << PthreshSHIFT | 1 << HthreshSHIFT |
Enable);
else
csr32w(ctlr, Rxdctl, 2 << WthreshSHIFT | 2 << PthreshSHIFT);
/*
* Enable checksum offload.
*/
csr32w(ctlr, Rxcsum, Tuofl | Ipofl | ETHERHDRSIZE);
}
static int i82563rim(void *v)
{
return ((struct ctlr *)v)->rim != 0;
}
static void i82563rproc(void *arg)
{
unsigned int m, rdh, rim, im;
struct block *bp;
struct ctlr *ctlr;
struct ether *edev;
Rd *rd;
edev = arg;
ctlr = edev->ctlr;
i82563rxinit(ctlr);
csr32w(ctlr, Rctl, csr32r(ctlr, Rctl) | Ren);
if (cttab[ctlr->type].flag & F75) {
csr32w(ctlr, Rxdctl, csr32r(ctlr, Rxdctl) | Enable);
im = Rxt0 | Rxo | Rxdmt0 | Rxseq | Ack;
} else
im = Rxt0 | Rxo | Rxdmt0 | Rxseq | Ack;
m = ctlr->nrd;
for (;;) {
i82563im(ctlr, im);
ctlr->rsleep++;
i82563replenish(ctlr, 1);
rendez_sleep(&ctlr->rrendez, i82563rim, ctlr);
rdh = ctlr->rdh;
for (;;) {
rd = &ctlr->rdba[rdh];
rim = ctlr->rim;
ctlr->rim = 0;
if (!(rd->status & Rdd))
break;
/*
* Accept eop packets with no errors.
* With no errors and the Ixsm bit set,
* the descriptor status Tpcs and Ipcs bits give
* an indication of whether the checksums were
* calculated and valid.
*/
bp = ctlr->rb[rdh];
if ((rd->status & Reop) && rd->errors == 0) {
bp->wp += rd->length;
bp->lim = bp->wp; /* lie like a dog. avoid packblock. */
if (!(rd->status & Ixsm)) {
ctlr->ixsm++;
if (rd->status & Ipcs) {
/*
* IP checksum calculated
* (and valid as errors == 0).
*/
ctlr->ipcs++;
bp->flag |= Bipck;
}
if (rd->status & Tcpcs) {
/*
* TCP/UDP checksum calculated
* (and valid as errors == 0).
*/
ctlr->tcpcs++;
bp->flag |= Btcpck | Budpck;
}
bp->checksum = rd->checksum;
bp->flag |= Bpktck;
}
etheriq(edev, bp, 1);
} else
freeb(bp);
ctlr->rb[rdh] = NULL;
rd->status = 0;
ctlr->rdfree--;
ctlr->rdh = rdh = NEXT_RING(rdh, m);
if (ctlr->nrd - ctlr->rdfree >= 32 || (rim & Rxdmt0))
if (i82563replenish(ctlr, 0) == -1)
break;
}
}
}
static int i82563lim(void *v)
{
return ((struct ctlr *)v)->lim != 0;
}
static int speedtab[] = {
10, 100, 1000, 0
};
static unsigned int phywrite0(struct ctlr *, int unused_int, int, uint16_t);
static unsigned int
setpage(struct ctlr *c, unsigned int phyno, unsigned int p, unsigned int r)
{
unsigned int pr;
switch (c->type) {
case i82563:
if (r >= 16 && r <= 28 && r != 22)
pr = Phypage;
else if (r == 30 || r == 31)
pr = Phyapage;
else
return 0;
return phywrite0(c, phyno, pr, p);
case i82576:
case i82577:
case i82578:
return phywrite0(c, phyno, Phy79page, p); /* unverified */
case i82579:
return phywrite0(c, phyno, Phy79page, p << 5);
default:
if (p == 0)
return 0;
return ~0;
}
}
static unsigned int phyread0(struct ctlr *c, int phyno, int reg)
{
unsigned int phy, i;
csr32w(c, Mdic, MDIrop | phyno << MDIpSHIFT | reg << MDIrSHIFT);
phy = 0;
for (i = 0; i < 64; i++) {
phy = csr32r(c, Mdic);
if (phy & (MDIe | MDIready))
break;
udelay(1);
}
if ((phy & (MDIe | MDIready)) != MDIready) {
printd("%s: phy %d wedged %.8ux\n", cttab[c->type].name, phyno, phy);
return ~0;
}
return phy & 0xffff;
}
static unsigned int
phyread(struct ctlr *c, unsigned int phyno, unsigned int reg)
{
if (setpage(c, phyno, reg >> 8, reg & 0xff) == ~0) {
printd("%s: phyread: bad phy page %d\n", cname(c), reg >> 8);
return ~0;
}
return phyread0(c, phyno, reg & 0xff);
}
static unsigned int phywrite0(struct ctlr *c, int phyno, int reg, uint16_t val)
{
unsigned int phy, i;
csr32w(c, Mdic, MDIwop | phyno << MDIpSHIFT | reg << MDIrSHIFT | val);
phy = 0;
for (i = 0; i < 64; i++) {
phy = csr32r(c, Mdic);
if (phy & (MDIe | MDIready))
break;
udelay(1);
}
if ((phy & (MDIe | MDIready)) != MDIready)
return ~0;
return 0;
}
static unsigned int
phywrite(struct ctlr *c, unsigned int phyno, unsigned int reg, uint16_t v)
{
if (setpage(c, phyno, reg >> 8, reg & 0xff) == ~0)
panic("%s: bad phy reg %.4ux", cname(c), reg);
return phywrite0(c, phyno, reg & 0xff, v);
}
static void phyerrata(struct ether *e, struct ctlr *c, unsigned int phyno)
{
if (e->netif.mbps == 0) {
if (c->phyerrata == 0) {
c->phyerrata++;
phywrite(c, phyno, Phyprst, Prst); /* try a port reset */
printd("ether%d: %s: phy port reset\n", e->ctlrno, cname(c));
}
} else {
c->phyerrata = 0;
}
}
static void phyl79proc(void *v)
{
unsigned int a, i, r, phy, phyno;
struct ctlr *c;
struct ether *e;
e = v;
c = e->ctlr;
phyno = cttab[c->type].phyno;
for (;;) {
phy = phyread(c, phyno, Phystat);
if (phy == ~0) {
phy = 0;
i = 3;
goto next;
}
i = (phy >> 8) & 3;
a = phy & Ans;
if (a) {
r = phyread(c, phyno, Phyctl);
phywrite(c, phyno, Phyctl, r | Ran | Ean);
}
next:
e->netif.link = i != 3 && (phy & Link) != 0;
if (e->netif.link == 0)
i = 3;
c->speeds[i]++;
e->netif.mbps = speedtab[i];
c->lim = 0;
i82563im(c, Lsc);
c->lsleep++;
rendez_sleep(&c->lrendez, i82563lim, c);
}
}
static void phylproc(void *v)
{
unsigned int a, i, phy, phyno;
struct ctlr *c;
struct ether *e;
e = v;
c = e->ctlr;
phyno = cttab[c->type].phyno;
if (c->type == i82573 && (phy = phyread(c, 1, Phyier)) != ~0)
phywrite(c, phyno, Phyier, phy | Lscie | Ancie | Spdie | Panie);
for (;;) {
phy = phyread(c, phyno, Physsr);
if (phy == ~0) {
phy = 0;
i = 3;
goto next;
}
i = (phy >> 14) & 3;
switch (c->type) {
default:
a = 0;
break;
case i82563:
case i82578:
case i82578m:
case i82583:
case i210:
a = phyread(c, phyno, Phyisr) & Ane;
break;
case i82571:
case i82572:
case i82575:
case i82576:
a = phyread(c, phyno, Phylhr) & Anf;
i = (i - 1) & 3;
break;
}
if (a)
phywrite(c, phyno, Phyctl, phyread(c, phyno, Phyctl) | Ran | Ean);
next:
e->netif.link = (phy & Rtlink) != 0;
if (e->netif.link == 0)
i = 3;
c->speeds[i]++;
e->netif.mbps = speedtab[i];
if (c->type == i82563)
phyerrata(e, c, phyno);
c->lim = 0;
i82563im(c, Lsc);
c->lsleep++;
rendez_sleep(&c->lrendez, i82563lim, c);
}
}
static void pcslproc(void *v)
{
unsigned int i, phy;
struct ctlr *c;
struct ether *e;
e = v;
c = e->ctlr;
if (c->type == i82575 || c->type == i82576)
csr32w(c, Connsw, Enrgirq);
for (;;) {
phy = csr32r(c, Pcsstat);
e->netif.link = phy & Linkok;
i = 3;
if (e->netif.link)
i = (phy & 6) >> 1;
else if (phy & Anbad)
csr32w(c, Pcsctl, csr32r(c, Pcsctl) | Pan | Prestart);
c->speeds[i]++;
e->netif.mbps = speedtab[i];
c->lim = 0;
i82563im(c, Lsc | Omed);
c->lsleep++;
rendez_sleep(&c->lrendez, i82563lim, c);
}
}
static void serdeslproc(void *v)
{
unsigned int i, tx, rx;
struct ctlr *c;
struct ether *e;
e = v;
c = e->ctlr;
for (;;) {
rx = csr32r(c, Rxcw);
tx = csr32r(c, Txcw);
e->netif.link = (rx & 1 << 31) != 0;
// e->netif.link = (csr32r(c, Status) & Lu) != 0;
i = 3;
if (e->netif.link)
i = 2;
c->speeds[i]++;
e->netif.mbps = speedtab[i];
c->lim = 0;
i82563im(c, Lsc);
c->lsleep++;
rendez_sleep(&c->lrendez, i82563lim, c);
}
}
static void i82563attach(struct ether *edev)
{
ERRSTACK(1);
char *lname, *rname, *tname;
int i;
struct block *bp;
struct ctlr *ctlr;
ctlr = edev->ctlr;
qlock(&ctlr->alock);
if (ctlr->alloc != NULL) {
qunlock(&ctlr->alock);
return;
}
ctlr->nrd = Nrd;
ctlr->ntd = Ntd;
ctlr->alloc =
kzmalloc(ctlr->nrd * sizeof(Rd) + ctlr->ntd * sizeof(Td) + 255, 0);
if (ctlr->alloc == NULL) {
qunlock(&ctlr->alock);
error(Enomem);
}
ctlr->rdba = (Rd *) ROUNDUP((uintptr_t) ctlr->alloc, 256);
ctlr->tdba = (Td *) (ctlr->rdba + ctlr->nrd);
ctlr->rb = kzmalloc(ctlr->nrd * sizeof(struct block *), 0);
ctlr->tb = kzmalloc(ctlr->ntd * sizeof(struct block *), 0);
if (waserror()) {
kfree(ctlr->tb);
ctlr->tb = NULL;
kfree(ctlr->rb);
ctlr->rb = NULL;
kfree(ctlr->alloc);
ctlr->alloc = NULL;
qunlock(&ctlr->alock);
nexterror();
}
/* the ktasks should free these names, if they ever exit */
lname = kmalloc(KNAMELEN, KMALLOC_WAIT);
rname = kmalloc(KNAMELEN, KMALLOC_WAIT);
tname = kmalloc(KNAMELEN, KMALLOC_WAIT);
snprintf(lname, KNAMELEN, "#l%dlproc", edev->ctlrno);
if (csr32r(ctlr, Status) & Tbimode)
ktask(lname, serdeslproc, edev); /* mac based serdes */
else if ((csr32r(ctlr, Ctrlext) & Linkmode) == Serdes)
ktask(lname, pcslproc, edev); /* phy based serdes */
else if (cttab[ctlr->type].flag & F79phy)
ktask(lname, phyl79proc, edev);
else
ktask(lname, phylproc, edev);
snprintf(rname, KNAMELEN, "#l%drproc", edev->ctlrno);
ktask(rname, i82563rproc, edev);
snprintf(tname, KNAMELEN, "#l%dtproc", edev->ctlrno);
ktask(tname, i82563tproc, edev);
qunlock(&ctlr->alock);
poperror();
}
static void i82563interrupt(struct hw_trapframe *hw_tf, void *arg)
{
struct ctlr *ctlr;
struct ether *edev;
uint32_t icr, im;
edev = arg;
ctlr = edev->ctlr;
spin_lock_irqsave(&ctlr->imlock);
csr32w(ctlr, Imc, ~0);
im = ctlr->im;
while ((icr = csr32r(ctlr, Icr)) & ctlr->im) {
if (icr & (Lsc | Omed)) {
im &= ~(Lsc | Omed);
ctlr->lim = icr & (Lsc | Omed);
rendez_wakeup(&ctlr->lrendez);
ctlr->lintr++;
}
if (icr & (Rxt0 | Rxo | Rxdmt0 | Rxseq | Ack)) {
ctlr->rim = icr & (Rxt0 | Rxo | Rxdmt0 | Rxseq | Ack);
im &= ~(Rxt0 | Rxo | Rxdmt0 | Rxseq | Ack);
rendez_wakeup(&ctlr->rrendez);
ctlr->rintr++;
}
if (icr & Txdw) {
im &= ~Txdw;
ctlr->tintr++;
rendez_wakeup(&ctlr->trendez);
}
}
ctlr->im = im;
csr32w(ctlr, Ims, im);
spin_unlock_irqsave(&ctlr->imlock);
}
static int i82563detach(struct ctlr *ctlr)
{
int r, timeo;
/* balance rx/tx packet buffer; survives reset */
if (ctlr->rbsz > 8192 && cttab[ctlr->type].flag & Fpba) {
ctlr->pba = csr32r(ctlr, Pba);
r = ctlr->pba >> 16;
r += ctlr->pba & 0xffff;
r >>= 1;
csr32w(ctlr, Pba, r);
} else if (ctlr->type == i82573 && ctlr->rbsz > 1514)
csr32w(ctlr, Pba, 14);
ctlr->pba = csr32r(ctlr, Pba);
/*
* Perform a device reset to get the chip back to the
* power-on state, followed by an EEPROM reset to read
* the defaults for some internal registers.
*/
csr32w(ctlr, Imc, ~0);
csr32w(ctlr, Rctl, 0);
csr32w(ctlr, Tctl, csr32r(ctlr, Tctl) & ~Ten);
udelay(1000 * 1000);
r = csr32r(ctlr, Ctrl);
if (ctlr->type == i82566 || ctlr->type == i82579)
r |= Phyrst;
csr32w(ctlr, Ctrl, Devrst | r);
udelay(1000 * 1000);
for (timeo = 0;; timeo++) {
if ((csr32r(ctlr, Ctrl) & (Devrst | Phyrst)) == 0)
break;
if (timeo >= 1000)
return -1;
udelay(1000);
}
r = csr32r(ctlr, Ctrl);
csr32w(ctlr, Ctrl, Slu | r);
r = csr32r(ctlr, Ctrlext);
csr32w(ctlr, Ctrlext, r | Eerst);
udelay(1000);
for (timeo = 0; timeo < 1000; timeo++) {
if (!(csr32r(ctlr, Ctrlext) & Eerst))
break;
udelay(1000);
}
if (csr32r(ctlr, Ctrlext) & Eerst)
return -1;
csr32w(ctlr, Imc, ~0);
udelay(1000);
for (timeo = 0; timeo < 1000; timeo++) {
if ((csr32r(ctlr, Icr) & ~Rxcfg) == 0)
break;
udelay(1000);
}
if (csr32r(ctlr, Icr) & ~Rxcfg)
return -1;
return 0;
}
static void i82563shutdown(struct ether *edev)
{
i82563detach(edev->ctlr);
}
static uint16_t eeread(struct ctlr *ctlr, int adr)
{
csr32w(ctlr, Eerd, EEstart | adr << 2);
while ((csr32r(ctlr, Eerd) & EEdone) == 0)
cpu_relax();
return csr32r(ctlr, Eerd) >> 16;
}
static int eeload(struct ctlr *ctlr)
{
uint16_t sum;
int data, adr;
sum = 0;
for (adr = 0; adr < 0x40; adr++) {
data = eeread(ctlr, adr);
ctlr->eeprom[adr] = data;
sum += data;
}
return sum;
}
static int fcycle(struct ctlr *unused, Flash * f)
{
uint16_t s, i;
s = f->reg[Fsts];
if ((s & Fvalid) == 0)
return -1;
f->reg[Fsts] |= Fcerr | Ael;
for (i = 0; i < 10; i++) {
if ((s & Scip) == 0)
return 0;
udelay(1000);
s = f->reg[Fsts];
}
return -1;
}
static int fread(struct ctlr *c, Flash * f, int ladr)
{
uint16_t s;
udelay(1000);
if (fcycle(c, f) == -1)
return -1;
f->reg[Fsts] |= Fdone;
f->reg32[Faddr] = ladr;
/* setup flash control register */
s = f->reg[Fctl] & ~0x3ff;
f->reg[Fctl] = s | 1 << 8 | Fgo; /* 2 byte read */
while ((f->reg[Fsts] & Fdone) == 0) ;
if (f->reg[Fsts] & (Fcerr | Ael))
return -1;
return f->reg32[Fdata] & 0xffff;
}
static int fload(struct ctlr *c)
{
unsigned int data, r, adr;
uint16_t sum;
uintptr_t mmio_paddr;
struct pci_device *pcidev = c->pcidev;
Flash f;
mmio_paddr = pcidev->bar[1].mmio_base32 ? pcidev->bar[1].mmio_base32 :
pcidev->bar[1].mmio_base64;
f.reg = (void*)vmap_pmem(mmio_paddr, pcidev->bar[1].mmio_sz);
if (f.reg == NULL)
return -1;
f.reg32 = (uint32_t *) f.reg;
f.base = f.reg32[Bfpr] & 0x1fff;
f.lim = f.reg32[Bfpr] >> 16 & 0x1fff;
if (csr32r(c, Eec) & Sec1val)
f.base += (f.lim + 1) - (f.base >> 1);
r = f.base << 12;
sum = 0;
for (adr = 0; adr < 0x40; adr++) {
data = fread(c, &f, r + adr * 2);
if (data == -1)
return -1;
c->eeprom[adr] = data;
sum += data;
}
vunmap_vmem((uintptr_t)f.reg, c->pcidev->bar[1].mmio_sz);
return sum;
}
static void defaultea(struct ctlr *ctlr, uint8_t * ra)
{
unsigned int i, r;
uint64_t u;
static uint8_t NULLea[Eaddrlen];
if (memcmp(ra, NULLea, Eaddrlen) != 0)
return;
if (cttab[ctlr->type].flag & Fflashea) {
/* intel mb bug */
u = (uint64_t) csr32r(ctlr, Rah) << 32u | (unsigned int)csr32r(ctlr,
Ral);
for (i = 0; i < Eaddrlen; i++)
ra[i] = u >> 8 * i;
}
if (memcmp(ra, NULLea, Eaddrlen) != 0)
return;
for (i = 0; i < Eaddrlen / 2; i++) {
ra[2 * i] = ctlr->eeprom[Ea + i];
ra[2 * i + 1] = ctlr->eeprom[Ea + i] >> 8;
}
r = (csr32r(ctlr, Status) & Lanid) >> 2;
ra[5] += r; /* ea ctlr[n] = ea ctlr[0]+n */
}
static int i82563reset(struct ctlr *ctlr)
{
uint8_t *ra;
int i, r;
if (i82563detach(ctlr))
return -1;
if (cttab[ctlr->type].flag & Fload)
r = fload(ctlr);
else
r = eeload(ctlr);
if (r != 0 && r != 0xbaba) {
printd("%s: bad eeprom checksum - %#.4ux\n", cname(ctlr), r);
return -1;
}
ra = ctlr->ra;
defaultea(ctlr, ra);
csr32w(ctlr, Ral, ra[3] << 24 | ra[2] << 16 | ra[1] << 8 | ra[0]);
csr32w(ctlr, Rah, 1 << 31 | ra[5] << 8 | ra[4]);
for (i = 1; i < 16; i++) {
csr32w(ctlr, Ral + i * 8, 0);
csr32w(ctlr, Rah + i * 8, 0);
}
memset(ctlr->mta, 0, sizeof(ctlr->mta));
for (i = 0; i < 128; i++)
csr32w(ctlr, Mta + i * 4, 0);
csr32w(ctlr, Fcal, 0x00C28001);
csr32w(ctlr, Fcah, 0x0100);
if ((cttab[ctlr->type].flag & Fnofct) == 0)
csr32w(ctlr, Fct, 0x8808);
csr32w(ctlr, Fcttv, 0x0100);
csr32w(ctlr, Fcrtl, ctlr->fcrtl);
csr32w(ctlr, Fcrth, ctlr->fcrth);
if (cttab[ctlr->type].flag & F75)
csr32w(ctlr, Eitr, 128 << 2); /* 128 ¼ microsecond intervals */
return 0;
}
enum {
CMrdtr,
CMradv,
CMpause,
CMan,
};
static struct cmdtab i82563ctlmsg[] = {
{CMrdtr, "rdtr", 2},
{CMradv, "radv", 2},
{CMpause, "pause", 1},
{CMan, "an", 1},
};
static long i82563ctl(struct ether *edev, void *buf, long n)
{
ERRSTACK(1);
char *p;
uint32_t v;
struct ctlr *ctlr;
struct cmdbuf *cb;
struct cmdtab *ct;
if ((ctlr = edev->ctlr) == NULL)
error(Enonexist);
cb = parsecmd(buf, n);
if (waserror()) {
kfree(cb);
nexterror();
}
ct = lookupcmd(cb, i82563ctlmsg, ARRAY_SIZE(i82563ctlmsg));
switch (ct->index) {
case CMrdtr:
v = strtoul(cb->f[1], &p, 0);
if (*p || v > 0xffff)
error(Ebadarg);
ctlr->rdtr = v;
csr32w(ctlr, Rdtr, v);
break;
case CMradv:
v = strtoul(cb->f[1], &p, 0);
if (*p || v > 0xffff)
error(Ebadarg);
ctlr->radv = v;
csr32w(ctlr, Radv, v);
break;
case CMpause:
csr32w(ctlr, Ctrl, csr32r(ctlr, Ctrl) ^ (Rfce | Tfce));
break;
case CMan:
csr32w(ctlr, Ctrl, csr32r(ctlr, Ctrl) | Lrst | Phyrst);
break;
}
kfree(cb);
poperror();
return n;
}
static int didtype(int d)
{
switch (d) {
case 0x1096:
case 0x10ba: /* “gilgal” */
case 0x1098: /* serdes; not seen */
case 0x10bb: /* serdes */
return i82563;
case 0x1049: /* mm */
case 0x104a: /* dm */
case 0x104b: /* dc */
case 0x104d: /* v “ninevah” */
case 0x10bd: /* dm-2 */
case 0x294c: /* ich 9 */
return i82566;
case 0x10de: /* lm ich10d */
case 0x10df: /* lf ich10 */
case 0x10e5: /* lm ich9 */
case 0x10f5: /* lm ich9m; “boazman” */
return i82567;
case 0x10bf: /* lf ich9m */
case 0x10cb: /* v ich9m */
case 0x10cd: /* lf ich10 */
case 0x10ce: /* v ich10 */
case 0x10cc: /* lm ich10 */
return i82567m;
case 0x105e: /* eb */
case 0x105f: /* eb */
case 0x1060: /* eb */
case 0x10a4: /* eb */
case 0x10a5: /* eb fiber */
case 0x10bc: /* eb */
case 0x10d9: /* eb serdes */
case 0x10da: /* eb serdes “ophir” */
return i82571;
case 0x107d: /* eb copper */
case 0x107e: /* ei fiber */
case 0x107f: /* ei */
case 0x10b9: /* ei “rimon” */
return i82572;
case 0x108b: /* e “vidalia” */
case 0x108c: /* e (iamt) */
case 0x109a: /* l “tekoa” */
return i82573;
case 0x10d3: /* l or it; “hartwell” */
return i82574;
case 0x10a7:
case 0x10a9: /* fiber/serdes */
return i82575;
case 0x10c9: /* copper */
case 0x10e6: /* fiber */
case 0x10e7: /* serdes; “kawela” */
case 0x150d: /* backplane */
return i82576;
case 0x10ea: /* lc “calpella”; aka pch lan */
return i82577;
case 0x10eb: /* lm “calpella” */
return i82577m;
case 0x10ef: /* dc “piketon” */
return i82578;
case 0x1502: /* lm */
case 0x1503: /* v “lewisville” */
return i82579;
case 0x10f0: /* dm “king's creek” */
return i82578m;
case 0x150e: /* “barton hills” */
case 0x150f: /* fiber */
case 0x1510: /* backplane */
case 0x1511: /* sfp */
case 0x1516:
return i82580;
case 0x1506: /* v */
return i82583;
case 0x1533: /* i210-t1 */
case 0x1534:
case 0x1536: /* fiber */
case 0x1537: /* backplane */
case 0x1538:
case 0x1539: /* i211 */
return i210;
case 0x153a: /* i217-lm */
case 0x153b: /* i217-v */
case 0x15a0: /* i218-lm */
case 0x15a1: /* i218-v */
case 0x15a2: /* i218-lm */
case 0x15a3: /* i218-v */
return i217;
case 0x151f: /* “powerville” eeprom-less */
case 0x1521: /* copper */
case 0x1522: /* fiber */
case 0x1523: /* serdes */
case 0x1524: /* sgmii */
return i350;
}
return -1;
}
static void hbafixup(struct pci_device *p)
{
unsigned int i;
i = pcidev_read32(p, PciSVID);
if ((i & 0xffff) == 0x1b52 && p->dev_id == 1)
p->dev_id = i >> 16;
}
static void i82563pci(void)
{
int type;
struct ctlr *c, **cc;
struct pci_device *p;
cc = &i82563ctlr;
STAILQ_FOREACH(p, &pci_devices, all_dev) {
if (p->ven_id != 0x8086)
continue;
hbafixup(p);
if ((type = didtype(p->dev_id)) == -1)
continue;
c = kzmalloc(sizeof *c, KMALLOC_WAIT);
qlock_init(&c->alock);
spinlock_init_irqsave(&c->imlock);
rendez_init(&c->lrendez);
qlock_init(&c->slock);
rendez_init(&c->rrendez);
rendez_init(&c->trendez);
qlock_init(&c->tlock);
c->type = type;
c->pcidev = p;
c->rbsz = cttab[type].mtu;
/* plan9 called this c->port, and just used the top of the raw bar,
* regardless of the type. */
c->mmio_paddr = p->bar[0].mmio_base32 ? p->bar[0].mmio_base32 :
p->bar[0].mmio_base64;
*cc = c;
cc = &c->next;
}
}
static int setup(struct ctlr *ctlr)
{
struct pci_device *p;
p = ctlr->pcidev;
ctlr->nic = (void*)vmap_pmem(ctlr->mmio_paddr, p->bar[0].mmio_sz);
if (ctlr->nic == NULL) {
printd("%s: can't map %p\n", cname(ctlr), ctlr->mmio_paddr);
return -1;
}
pci_set_bus_master(p);
if (i82563reset(ctlr)) {
vunmap_vmem((uintptr_t)ctlr->nic, p->bar[0].mmio_sz);
return -1;
}
return 0;
}
static void i82563_init(void)
{
i82563pci();
}
static int pnp(struct ether *edev, int type)
{
struct ctlr *ctlr;
run_once(i82563_init());
/*
* Any adapter matches if no edev->port is supplied,
* otherwise the ports must match.
*/
for (ctlr = i82563ctlr;; ctlr = ctlr->next) {
if (ctlr == NULL)
return -1;
if (ctlr->active)
continue;
if (type != -1 && ctlr->type != type)
continue;
if (edev->port == 0 || edev->port == ctlr->mmio_paddr) {
ctlr->active = 1;
memmove(ctlr->ra, edev->ea, Eaddrlen);
if (setup(ctlr) == 0)
break;
}
}
edev->ctlr = ctlr;
edev->port = ctlr->mmio_paddr;
edev->irq = ctlr->pcidev->irqline;
edev->tbdf = MKBUS(BusPCI, ctlr->pcidev->bus, ctlr->pcidev->dev,
ctlr->pcidev->func);
edev->netif.mbps = 1000;
edev->maxmtu = ctlr->rbsz;
memmove(edev->ea, ctlr->ra, Eaddrlen);
/*
* Linkage to the generic ethernet driver.
*/
edev->attach = i82563attach;
edev->ifstat = i82563ifstat;
edev->ctl = i82563ctl;
edev->netif.arg = edev;
edev->netif.promiscuous = i82563promiscuous;
edev->shutdown = i82563shutdown;
edev->netif.multicast = i82563multicast;
register_irq(edev->irq, i82563interrupt, edev, edev->tbdf);
return 0;
}
static int anypnp(struct ether *e)
{
return pnp(e, -1);
}
linker_func_3(ether82563link)
{
addethercard("i82563", anypnp);
}