blob: 1669d6c09fe743c716921c2aa285c02f363724b0 [file] [log] [blame]
/*
* Copyright (c) 2008 Marty Connor <mdc@etherboot.org>
* Copyright (c) 2008 Entity Cyber, Inc.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of the
* License, or any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*
* This driver is based on rtl8169 data sheets and work by:
*
* Copyright (c) 2002 ShuChen <shuchen@realtek.com.tw>
* Copyright (c) 2003 - 2007 Francois Romieu <romieu@fr.zoreil.com>
* Copyright (c) a lot of people too. Please respect their work.
*/
#include <vfs.h>
#include <kfs.h>
#include <slab.h>
#include <kmalloc.h>
#include <kref.h>
#include <string.h>
#include <stdio.h>
#include <assert.h>
#include <error.h>
#include <cpio.h>
#include <pmap.h>
#include <smp.h>
#include <ip.h>
#include <mii.h>
#include "r8169.h"
/*** Low level hardware routines ***/
static void mdio_write(void *ioaddr, int reg_addr, int value)
{
int i;
printd("mdio_write\n");
RTL_W32(PHYAR, 0x80000000 | (reg_addr & 0x1f) << 16 | (value & 0xffff));
for (i = 20; i > 0; i--) {
/*
* Check if the RTL8169 has completed writing to the specified
* MII register.
*/
if (!(RTL_R32(PHYAR) & 0x80000000))
break;
udelay(25);
}
}
static int mdio_read(void *ioaddr, int reg_addr)
{
int i, value = -1;
printd("mdio_read\n");
RTL_W32(PHYAR, 0x0 | (reg_addr & 0x1f) << 16);
for (i = 20; i > 0; i--) {
/*
* Check if the RTL8169 has completed retrieving data from
* the specified MII register.
*/
if (RTL_R32(PHYAR) & 0x80000000) {
value = RTL_R32(PHYAR) & 0xffff;
break;
}
udelay(25);
}
return value;
}
static void mdio_patch(void *ioaddr, int reg_addr, int value)
{
printd("mdio_patch\n");
mdio_write(ioaddr, reg_addr, mdio_read(ioaddr, reg_addr) | value);
}
static void rtl_ephy_write(void *ioaddr, int reg_addr, int value)
{
unsigned int i;
printd("rtl_ephy_write\n");
RTL_W32(EPHYAR, EPHYAR_WRITE_CMD | (value & EPHYAR_DATA_MASK) |
(reg_addr & EPHYAR_REG_MASK) << EPHYAR_REG_SHIFT);
for (i = 0; i < 100; i++) {
if (!(RTL_R32(EPHYAR) & EPHYAR_FLAG))
break;
udelay(10);
}
}
static uint16_t rtl_ephy_read(void *ioaddr, int reg_addr)
{
uint16_t value = 0xffff;
unsigned int i;
printd("rtl_ephy_read\n");
RTL_W32(EPHYAR, (reg_addr & EPHYAR_REG_MASK) << EPHYAR_REG_SHIFT);
for (i = 0; i < 100; i++) {
if (RTL_R32(EPHYAR) & EPHYAR_FLAG) {
value = RTL_R32(EPHYAR) & EPHYAR_DATA_MASK;
break;
}
udelay(10);
}
return value;
}
static void rtl_csi_write(void *ioaddr, int addr, int value)
{
unsigned int i;
printd("rtl_csi_write\n");
RTL_W32(CSIDR, value);
RTL_W32(CSIAR, CSIAR_WRITE_CMD | (addr & CSIAR_ADDR_MASK) |
CSIAR_BYTE_ENABLE << CSIAR_BYTE_ENABLE_SHIFT);
for (i = 0; i < 100; i++) {
if (!(RTL_R32(CSIAR) & CSIAR_FLAG))
break;
udelay(10);
}
}
static uint32_t rtl_csi_read(void *ioaddr, int addr)
{
uint32_t value = ~0x00;
unsigned int i;
printd("rtl_csi_read\n");
RTL_W32(CSIAR, (addr & CSIAR_ADDR_MASK) |
CSIAR_BYTE_ENABLE << CSIAR_BYTE_ENABLE_SHIFT);
for (i = 0; i < 100; i++) {
if (RTL_R32(CSIAR) & CSIAR_FLAG) {
value = RTL_R32(CSIDR);
break;
}
udelay(10);
}
return value;
}
static void rtl8169_irq_mask_and_ack(void *ioaddr)
{
printd("rtl8169_irq_mask_and_ack\n");
RTL_W16(IntrMask, 0x0000);
RTL_W16(IntrStatus, 0xffff);
}
static unsigned int rtl8169_tbi_reset_pending(void *ioaddr)
{
printd("rtl8169_tbi_reset_pending\n");
return RTL_R32(TBICSR) & TBIReset;
}
static unsigned int rtl8169_xmii_reset_pending(void *ioaddr)
{
printd("rtl8169_xmii_reset_pending\n");
return mdio_read(ioaddr, MII_BMCR) & BMCR_RESET;
}
static unsigned int rtl8169_tbi_link_ok(void *ioaddr)
{
printd("rtl8169_tbi_link_ok\n");
return RTL_R32(TBICSR) & TBILinkOk;
}
static unsigned int rtl8169_xmii_link_ok(void *ioaddr)
{
printd("rtl8169_xmii_link_ok\n");
return RTL_R8(PHYstatus) & LinkStatus;
}
static void rtl8169_tbi_reset_enable(void *ioaddr)
{
printd("rtl8169_tbi_reset_enable\n");
RTL_W32(TBICSR, RTL_R32(TBICSR) | TBIReset);
}
static void rtl8169_xmii_reset_enable(void *ioaddr)
{
unsigned int val;
printd("rtl8169_xmii_reset_enable\n");
val = mdio_read(ioaddr, MII_BMCR) | BMCR_RESET;
mdio_write(ioaddr, MII_BMCR, val & 0xffff);
}
static int rtl8169_set_speed_tbi(struct net_device *dev,
uint8_t autoneg,
uint16_t speed, uint8_t duplex)
{
struct rtl8169_private *tp = netdev_priv(dev);
void *ioaddr = tp->mmio_addr;
int ret = 0;
uint32_t reg;
printd("rtl8169_set_speed_tbi\n");
reg = RTL_R32(TBICSR);
if ((autoneg == AUTONEG_DISABLE) && (speed == SPEED_1000) &&
(duplex == DUPLEX_FULL)) {
RTL_W32(TBICSR, reg & ~(TBINwEnable | TBINwRestart));
} else if (autoneg == AUTONEG_ENABLE)
RTL_W32(TBICSR, reg | TBINwEnable | TBINwRestart);
else {
DBG("incorrect speed setting refused in TBI mode\n");
ret = -EOPNOTSUPP;
}
return ret;
}
static int rtl8169_set_speed_xmii(struct net_device *dev,
uint8_t autoneg,
uint16_t speed, uint8_t duplex)
{
struct rtl8169_private *tp = netdev_priv(dev);
void *ioaddr = tp->mmio_addr;
int auto_nego, giga_ctrl;
printd("rtl8169_set_speed_xmii\n");
auto_nego = mdio_read(ioaddr, MII_ADVERTISE);
auto_nego &= ~(ADVERTISE_10HALF | ADVERTISE_10FULL |
ADVERTISE_100HALF | ADVERTISE_100FULL);
giga_ctrl = mdio_read(ioaddr, MII_CTRL1000);
giga_ctrl &= ~(ADVERTISE_1000FULL | ADVERTISE_1000HALF);
if (autoneg == AUTONEG_ENABLE) {
auto_nego |= (ADVERTISE_10HALF | ADVERTISE_10FULL |
ADVERTISE_100HALF | ADVERTISE_100FULL);
giga_ctrl |= ADVERTISE_1000FULL | ADVERTISE_1000HALF;
} else {
if (speed == SPEED_10)
auto_nego |= ADVERTISE_10HALF | ADVERTISE_10FULL;
else if (speed == SPEED_100)
auto_nego |= ADVERTISE_100HALF | ADVERTISE_100FULL;
else if (speed == SPEED_1000)
giga_ctrl |= ADVERTISE_1000FULL | ADVERTISE_1000HALF;
if (duplex == DUPLEX_HALF)
auto_nego &= ~(ADVERTISE_10FULL | ADVERTISE_100FULL);
if (duplex == DUPLEX_FULL)
auto_nego &= ~(ADVERTISE_10HALF | ADVERTISE_100HALF);
/* This tweak comes straight from Realtek's driver. */
if ((speed == SPEED_100) && (duplex == DUPLEX_HALF) &&
((tp->mac_version == RTL_GIGA_MAC_VER_13) ||
(tp->mac_version == RTL_GIGA_MAC_VER_16))) {
auto_nego = ADVERTISE_100HALF | ADVERTISE_CSMA;
}
}
/* The 8100e/8101e/8102e do Fast Ethernet only. */
if ((tp->mac_version == RTL_GIGA_MAC_VER_07) ||
(tp->mac_version == RTL_GIGA_MAC_VER_08) ||
(tp->mac_version == RTL_GIGA_MAC_VER_09) ||
(tp->mac_version == RTL_GIGA_MAC_VER_10) ||
(tp->mac_version == RTL_GIGA_MAC_VER_13) ||
(tp->mac_version == RTL_GIGA_MAC_VER_14) ||
(tp->mac_version == RTL_GIGA_MAC_VER_15) ||
(tp->mac_version == RTL_GIGA_MAC_VER_16)) {
if ((giga_ctrl & (ADVERTISE_1000FULL | ADVERTISE_1000HALF))) {
DBG("PHY does not support 1000Mbps.\n");
}
giga_ctrl &= ~(ADVERTISE_1000FULL | ADVERTISE_1000HALF);
}
auto_nego |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
if ((tp->mac_version == RTL_GIGA_MAC_VER_11) ||
(tp->mac_version == RTL_GIGA_MAC_VER_12) ||
(tp->mac_version >= RTL_GIGA_MAC_VER_17)) {
/*
* Wake up the PHY.
* Vendor specific (0x1f) and reserved (0x0e) MII registers.
*/
mdio_write(ioaddr, 0x1f, 0x0000);
mdio_write(ioaddr, 0x0e, 0x0000);
}
tp->phy_auto_nego_reg = auto_nego;
tp->phy_1000_ctrl_reg = giga_ctrl;
mdio_write(ioaddr, MII_ADVERTISE, auto_nego);
mdio_write(ioaddr, MII_CTRL1000, giga_ctrl);
mdio_write(ioaddr, MII_BMCR, BMCR_ANENABLE | BMCR_ANRESTART);
return 0;
}
static int rtl8169_set_speed(struct net_device *dev,
uint8_t autoneg, uint16_t speed, uint8_t duplex)
{
struct rtl8169_private *tp = netdev_priv(dev);
int ret;
printd("rtl8169_set_speed\n");
#warning "this should be a write to a ctl file"
ret = 0; // tp->set_speed(dev, autoneg, speed, duplex);
return ret;
}
static void rtl8169_write_gmii_reg_bit(void *ioaddr, int reg,
int bitnum, int bitval)
{
int val;
printd("rtl8169_write_gmii_reg_bit\n");
val = mdio_read(ioaddr, reg);
val = (bitval == 1) ? val | (bitval << bitnum) : val & ~(0x0001 << bitnum);
mdio_write(ioaddr, reg, val & 0xffff);
}
static void rtl8169_get_mac_version(struct rtl8169_private *tp, void *ioaddr)
{
/*
* The driver currently handles the 8168Bf and the 8168Be identically
* but they can be identified more specifically through the test below
* if needed:
*
* (RTL_R32(TxConfig) & 0x700000) == 0x500000 ? 8168Bf : 8168Be
*
* Same thing for the 8101Eb and the 8101Ec:
*
* (RTL_R32(TxConfig) & 0x700000) == 0x200000 ? 8101Eb : 8101Ec
*/
const struct {
uint32_t mask;
uint32_t val;
int mac_version;
} mac_info[] = {
/* 8168D family. */
{
0x7c800000, 0x28000000, RTL_GIGA_MAC_VER_25},
/* 8168C family. */
{
0x7cf00000, 0x3ca00000, RTL_GIGA_MAC_VER_24}, {
0x7cf00000, 0x3c900000, RTL_GIGA_MAC_VER_23}, {
0x7cf00000, 0x3c800000, RTL_GIGA_MAC_VER_18}, {
0x7c800000, 0x3c800000, RTL_GIGA_MAC_VER_24}, {
0x7cf00000, 0x3c000000, RTL_GIGA_MAC_VER_19}, {
0x7cf00000, 0x3c200000, RTL_GIGA_MAC_VER_20}, {
0x7cf00000, 0x3c300000, RTL_GIGA_MAC_VER_21}, {
0x7cf00000, 0x3c400000, RTL_GIGA_MAC_VER_22}, {
0x7c800000, 0x3c000000, RTL_GIGA_MAC_VER_22},
/* 8168B family. */
{
0x7cf00000, 0x38000000, RTL_GIGA_MAC_VER_12}, {
0x7cf00000, 0x38500000, RTL_GIGA_MAC_VER_17}, {
0x7c800000, 0x38000000, RTL_GIGA_MAC_VER_17}, {
0x7c800000, 0x30000000, RTL_GIGA_MAC_VER_11},
/* 8101 family. */
{
0x7cf00000, 0x34a00000, RTL_GIGA_MAC_VER_09}, {
0x7cf00000, 0x24a00000, RTL_GIGA_MAC_VER_09}, {
0x7cf00000, 0x34900000, RTL_GIGA_MAC_VER_08}, {
0x7cf00000, 0x24900000, RTL_GIGA_MAC_VER_08}, {
0x7cf00000, 0x34800000, RTL_GIGA_MAC_VER_07}, {
0x7cf00000, 0x24800000, RTL_GIGA_MAC_VER_07}, {
0x7cf00000, 0x34000000, RTL_GIGA_MAC_VER_13}, {
0x7cf00000, 0x34300000, RTL_GIGA_MAC_VER_10}, {
0x7cf00000, 0x34200000, RTL_GIGA_MAC_VER_16}, {
0x7c800000, 0x34800000, RTL_GIGA_MAC_VER_09}, {
0x7c800000, 0x24800000, RTL_GIGA_MAC_VER_09}, {
0x7c800000, 0x34000000, RTL_GIGA_MAC_VER_16},
/* FIXME: where did these entries come from ? -- FR */
{
0xfc800000, 0x38800000, RTL_GIGA_MAC_VER_15}, {
0xfc800000, 0x30800000, RTL_GIGA_MAC_VER_14},
/* 8110 family. */
{
0xfc800000, 0x98000000, RTL_GIGA_MAC_VER_06}, {
0xfc800000, 0x18000000, RTL_GIGA_MAC_VER_05}, {
0xfc800000, 0x10000000, RTL_GIGA_MAC_VER_04}, {
0xfc800000, 0x04000000, RTL_GIGA_MAC_VER_03}, {
0xfc800000, 0x00800000, RTL_GIGA_MAC_VER_02}, {
0xfc800000, 0x00000000, RTL_GIGA_MAC_VER_01}, {
0x00000000, 0x00000000, RTL_GIGA_MAC_VER_01} /* Catch-all */
}, *p = mac_info;
uint32_t reg;
printd("rtl8169_get_mac_version\n");
reg = RTL_R32(TxConfig);
while ((reg & p->mask) != p->val)
p++;
tp->mac_version = p->mac_version;
DBG("tp->mac_version = %d\n", tp->mac_version);
if (p->mask == 0x00000000) {
DBG("unknown MAC (%08x)\n", reg);
}
}
struct phy_reg {
uint16_t reg;
uint16_t val;
};
static void rtl_phy_write(void *ioaddr, struct phy_reg *regs, int len)
{
printd("rtl_phy_write\n");
while (len-- > 0) {
mdio_write(ioaddr, regs->reg, regs->val);
regs++;
}
}
static void rtl8169s_hw_phy_config(void *ioaddr)
{
struct {
uint16_t regs[5]; /* Beware of bit-sign propagation */
} phy_magic[5] = { {
{
0x0000, //w 4 15 12 0
0x00a1, //w 3 15 0 00a1
0x0008, //w 2 15 0 0008
0x1020, //w 1 15 0 1020
0x1000}}, { //w 0 15 0 1000
{
0x7000, //w 4 15 12 7
0xff41, //w 3 15 0 ff41
0xde60, //w 2 15 0 de60
0x0140, //w 1 15 0 0140
0x0077}}, { //w 0 15 0 0077
{
0xa000, //w 4 15 12 a
0xdf01, //w 3 15 0 df01
0xdf20, //w 2 15 0 df20
0xff95, //w 1 15 0 ff95
0xfa00}}, { //w 0 15 0 fa00
{
0xb000, //w 4 15 12 b
0xff41, //w 3 15 0 ff41
0xde20, //w 2 15 0 de20
0x0140, //w 1 15 0 0140
0x00bb}}, { //w 0 15 0 00bb
{
0xf000, //w 4 15 12 f
0xdf01, //w 3 15 0 df01
0xdf20, //w 2 15 0 df20
0xff95, //w 1 15 0 ff95
0xbf00} //w 0 15 0 bf00
}
}, *p = phy_magic;
unsigned int i;
printd("rtl8169s_hw_phy_config\n");
mdio_write(ioaddr, 0x1f, 0x0001); //w 31 2 0 1
mdio_write(ioaddr, 0x15, 0x1000); //w 21 15 0 1000
mdio_write(ioaddr, 0x18, 0x65c7); //w 24 15 0 65c7
rtl8169_write_gmii_reg_bit(ioaddr, 4, 11, 0); //w 4 11 11 0
for (i = 0; i < ARRAY_SIZE(phy_magic); i++, p++) {
int val, pos = 4;
val = (mdio_read(ioaddr, pos) & 0x0fff) | (p->regs[0] & 0xffff);
mdio_write(ioaddr, pos, val);
while (--pos >= 0)
mdio_write(ioaddr, pos, p->regs[4 - pos] & 0xffff);
rtl8169_write_gmii_reg_bit(ioaddr, 4, 11, 1); //w 4 11 11 1
rtl8169_write_gmii_reg_bit(ioaddr, 4, 11, 0); //w 4 11 11 0
}
mdio_write(ioaddr, 0x1f, 0x0000); //w 31 2 0 0
}
static void rtl8169sb_hw_phy_config(void *ioaddr)
{
struct phy_reg phy_reg_init[] = {
{0x1f, 0x0002},
{0x01, 0x90d0},
{0x1f, 0x0000}
};
printd("rtl8169sb_hw_phy_config\n");
rtl_phy_write(ioaddr, phy_reg_init, ARRAY_SIZE(phy_reg_init));
}
static void rtl8168bb_hw_phy_config(void *ioaddr)
{
struct phy_reg phy_reg_init[] = {
{0x10, 0xf41b},
{0x1f, 0x0000}
};
mdio_write(ioaddr, 0x1f, 0x0001);
mdio_patch(ioaddr, 0x16, 1 << 0);
printd("rtl8168bb_hw_phy_config\n");
rtl_phy_write(ioaddr, phy_reg_init, ARRAY_SIZE(phy_reg_init));
}
static void rtl8168bef_hw_phy_config(void *ioaddr)
{
struct phy_reg phy_reg_init[] = {
{0x1f, 0x0001},
{0x10, 0xf41b},
{0x1f, 0x0000}
};
printd("rtl8168bef_hw_phy_config\n");
rtl_phy_write(ioaddr, phy_reg_init, ARRAY_SIZE(phy_reg_init));
}
static void rtl8168cp_1_hw_phy_config(void *ioaddr)
{
struct phy_reg phy_reg_init[] = {
{0x1f, 0x0000},
{0x1d, 0x0f00},
{0x1f, 0x0002},
{0x0c, 0x1ec8},
{0x1f, 0x0000}
};
printd("rtl8168cp_1_hw_phy_config\n");
rtl_phy_write(ioaddr, phy_reg_init, ARRAY_SIZE(phy_reg_init));
}
static void rtl8168cp_2_hw_phy_config(void *ioaddr)
{
struct phy_reg phy_reg_init[] = {
{0x1f, 0x0001},
{0x1d, 0x3d98},
{0x1f, 0x0000}
};
printd("rtl8168cp_2_hw_phy_config\n");
mdio_write(ioaddr, 0x1f, 0x0000);
mdio_patch(ioaddr, 0x14, 1 << 5);
mdio_patch(ioaddr, 0x0d, 1 << 5);
rtl_phy_write(ioaddr, phy_reg_init, ARRAY_SIZE(phy_reg_init));
}
static void rtl8168c_1_hw_phy_config(void *ioaddr)
{
struct phy_reg phy_reg_init[] = {
{0x1f, 0x0001},
{0x12, 0x2300},
{0x1f, 0x0002},
{0x00, 0x88d4},
{0x01, 0x82b1},
{0x03, 0x7002},
{0x08, 0x9e30},
{0x09, 0x01f0},
{0x0a, 0x5500},
{0x0c, 0x00c8},
{0x1f, 0x0003},
{0x12, 0xc096},
{0x16, 0x000a},
{0x1f, 0x0000},
{0x1f, 0x0000},
{0x09, 0x2000},
{0x09, 0x0000}
};
printd("rtl8168c_1_hw_phy_config\n");
rtl_phy_write(ioaddr, phy_reg_init, ARRAY_SIZE(phy_reg_init));
mdio_patch(ioaddr, 0x14, 1 << 5);
mdio_patch(ioaddr, 0x0d, 1 << 5);
mdio_write(ioaddr, 0x1f, 0x0000);
}
static void rtl8168c_2_hw_phy_config(void *ioaddr)
{
struct phy_reg phy_reg_init[] = {
{0x1f, 0x0001},
{0x12, 0x2300},
{0x03, 0x802f},
{0x02, 0x4f02},
{0x01, 0x0409},
{0x00, 0xf099},
{0x04, 0x9800},
{0x04, 0x9000},
{0x1d, 0x3d98},
{0x1f, 0x0002},
{0x0c, 0x7eb8},
{0x06, 0x0761},
{0x1f, 0x0003},
{0x16, 0x0f0a},
{0x1f, 0x0000}
};
printd("rtl8168c_2_hw_phy_config\n");
rtl_phy_write(ioaddr, phy_reg_init, ARRAY_SIZE(phy_reg_init));
mdio_patch(ioaddr, 0x16, 1 << 0);
mdio_patch(ioaddr, 0x14, 1 << 5);
mdio_patch(ioaddr, 0x0d, 1 << 5);
mdio_write(ioaddr, 0x1f, 0x0000);
}
static void rtl8168c_3_hw_phy_config(void *ioaddr)
{
struct phy_reg phy_reg_init[] = {
{0x1f, 0x0001},
{0x12, 0x2300},
{0x1d, 0x3d98},
{0x1f, 0x0002},
{0x0c, 0x7eb8},
{0x06, 0x5461},
{0x1f, 0x0003},
{0x16, 0x0f0a},
{0x1f, 0x0000}
};
printd("rtl8168c_3_hw_phy_config\n");
rtl_phy_write(ioaddr, phy_reg_init, ARRAY_SIZE(phy_reg_init));
mdio_patch(ioaddr, 0x16, 1 << 0);
mdio_patch(ioaddr, 0x14, 1 << 5);
mdio_patch(ioaddr, 0x0d, 1 << 5);
mdio_write(ioaddr, 0x1f, 0x0000);
}
static void rtl8168c_4_hw_phy_config(void *ioaddr)
{
printd("rtl8168c_4_hw_phy_config\n");
rtl8168c_3_hw_phy_config(ioaddr);
}
static void rtl8168d_hw_phy_config(void *ioaddr)
{
struct phy_reg phy_reg_init_0[] = {
{0x1f, 0x0001},
{0x09, 0x2770},
{0x08, 0x04d0},
{0x0b, 0xad15},
{0x0c, 0x5bf0},
{0x1c, 0xf101},
{0x1f, 0x0003},
{0x14, 0x94d7},
{0x12, 0xf4d6},
{0x09, 0xca0f},
{0x1f, 0x0002},
{0x0b, 0x0b10},
{0x0c, 0xd1f7},
{0x1f, 0x0002},
{0x06, 0x5461},
{0x1f, 0x0002},
{0x05, 0x6662},
{0x1f, 0x0000},
{0x14, 0x0060},
{0x1f, 0x0000},
{0x0d, 0xf8a0},
{0x1f, 0x0005},
{0x05, 0xffc2}
};
printd("rtl8168d_hw_phy_config\n");
rtl_phy_write(ioaddr, phy_reg_init_0, ARRAY_SIZE(phy_reg_init_0));
if (mdio_read(ioaddr, 0x06) == 0xc400) {
struct phy_reg phy_reg_init_1[] = {
{0x1f, 0x0005},
{0x01, 0x0300},
{0x1f, 0x0000},
{0x11, 0x401c},
{0x16, 0x4100},
{0x1f, 0x0005},
{0x07, 0x0010},
{0x05, 0x83dc},
{0x06, 0x087d},
{0x05, 0x8300},
{0x06, 0x0101},
{0x06, 0x05f8},
{0x06, 0xf9fa},
{0x06, 0xfbef},
{0x06, 0x79e2},
{0x06, 0x835f},
{0x06, 0xe0f8},
{0x06, 0x9ae1},
{0x06, 0xf89b},
{0x06, 0xef31},
{0x06, 0x3b65},
{0x06, 0xaa07},
{0x06, 0x81e4},
{0x06, 0xf89a},
{0x06, 0xe5f8},
{0x06, 0x9baf},
{0x06, 0x06ae},
{0x05, 0x83dc},
{0x06, 0x8300},
};
rtl_phy_write(ioaddr, phy_reg_init_1, ARRAY_SIZE(phy_reg_init_1));
}
mdio_write(ioaddr, 0x1f, 0x0000);
}
static void rtl8102e_hw_phy_config(void *ioaddr)
{
struct phy_reg phy_reg_init[] = {
{0x1f, 0x0003},
{0x08, 0x441d},
{0x01, 0x9100},
{0x1f, 0x0000}
};
printd("rtl8102e_hw_phy_config\n");
mdio_write(ioaddr, 0x1f, 0x0000);
mdio_patch(ioaddr, 0x11, 1 << 12);
mdio_patch(ioaddr, 0x19, 1 << 13);
rtl_phy_write(ioaddr, phy_reg_init, ARRAY_SIZE(phy_reg_init));
}
static void rtl_hw_phy_config(struct net_device *dev)
{
struct rtl8169_private *tp = netdev_priv(dev);
void *ioaddr = tp->mmio_addr;
printd("rtl_hw_phy_config\n");
DBG("mac_version = 0x%02x\n", tp->mac_version);
switch (tp->mac_version) {
case RTL_GIGA_MAC_VER_01:
break;
case RTL_GIGA_MAC_VER_02:
case RTL_GIGA_MAC_VER_03:
rtl8169s_hw_phy_config(ioaddr);
break;
case RTL_GIGA_MAC_VER_04:
rtl8169sb_hw_phy_config(ioaddr);
break;
case RTL_GIGA_MAC_VER_07:
case RTL_GIGA_MAC_VER_08:
case RTL_GIGA_MAC_VER_09:
rtl8102e_hw_phy_config(ioaddr);
break;
case RTL_GIGA_MAC_VER_11:
rtl8168bb_hw_phy_config(ioaddr);
break;
case RTL_GIGA_MAC_VER_12:
rtl8168bef_hw_phy_config(ioaddr);
break;
case RTL_GIGA_MAC_VER_17:
rtl8168bef_hw_phy_config(ioaddr);
break;
case RTL_GIGA_MAC_VER_18:
rtl8168cp_1_hw_phy_config(ioaddr);
break;
case RTL_GIGA_MAC_VER_19:
rtl8168c_1_hw_phy_config(ioaddr);
break;
case RTL_GIGA_MAC_VER_20:
rtl8168c_2_hw_phy_config(ioaddr);
break;
case RTL_GIGA_MAC_VER_21:
rtl8168c_3_hw_phy_config(ioaddr);
break;
case RTL_GIGA_MAC_VER_22:
rtl8168c_4_hw_phy_config(ioaddr);
break;
case RTL_GIGA_MAC_VER_23:
case RTL_GIGA_MAC_VER_24:
rtl8168cp_2_hw_phy_config(ioaddr);
break;
case RTL_GIGA_MAC_VER_25:
rtl8168d_hw_phy_config(ioaddr);
break;
default:
break;
}
}
/* N.B. in Ken c, you omit the parameter name, voila -- it's unused.
* Many others tend to come up with much harder solutions, such
* as tagging the declaration with another attribute like __whatever(unused)
* whatever. The bazaar can really be bizarre.
*/
static void rtl8169_phy_reset(struct net_device *unused_dev /* __unused */ ,
struct rtl8169_private *tp)
{
void *ioaddr = tp->mmio_addr;
unsigned int i;
printd("rtl8169_phy_reset\n");
tp->phy_reset_enable(ioaddr);
for (i = 0; i < 100; i++) {
if (!tp->phy_reset_pending(ioaddr))
return;
mdelay(1);
}
DBG("PHY reset failed.\n");
}
static void rtl8169_init_phy(struct net_device *dev, struct rtl8169_private *tp)
{
void *ioaddr = tp->mmio_addr;
printd("rtl8169_init_phy\n");
rtl_hw_phy_config(dev);
if (tp->mac_version <= RTL_GIGA_MAC_VER_06) {
DBG("Set MAC Reg C+CR Offset 0x82h = 0x01h\n");
RTL_W8(0x82, 0x01);
}
#warning "fix all the pci bits; please try to do an spatch if possible."
//pci_write_config_byte(tp->pci_dev, PCI_LATENCY_TIMER, 0x40);
if (tp->mac_version <= RTL_GIGA_MAC_VER_06) ; //pci_write_config_byte(tp->pci_dev, PCI_CACHE_LINE_SIZE, 0x08);
if (tp->mac_version == RTL_GIGA_MAC_VER_02) {
printd("Set MAC Reg C+CR Offset 0x82h = 0x01h\n");
RTL_W8(0x82, 0x01);
printd("Set PHY Reg 0x0bh = 0x00h\n");
mdio_write(ioaddr, 0x0b, 0x0000); //w 0x0b 15 0 0
}
rtl8169_phy_reset(dev, tp);
/*
* rtl8169_set_speed_xmii takes good care of the Fast Ethernet
* only 8101. Don't panic.
*/
rtl8169_set_speed(dev, AUTONEG_ENABLE, SPEED_1000, DUPLEX_FULL);
if ((RTL_R8(PHYstatus) & TBI_Enable))
printd("TBI auto-negotiating\n");
}
static const struct rtl_cfg_info {
//void (*hw_start)(struct net_device *);
unsigned int region;
unsigned int align;
uint16_t intr_event;
uint16_t napi_event;
unsigned features;
} rtl_cfg_infos[] = {
[RTL_CFG_0] = {
// .hw_start = rtl_hw_start_8169,
.region = 1,.align = 0,.intr_event = SYSErr | LinkChg | RxOverflow |
RxFIFOOver | TxErr | TxOK | RxOK | RxErr,.napi_event =
RxFIFOOver | TxErr | TxOK | RxOK | RxOverflow,.features =
RTL_FEATURE_GMII},[RTL_CFG_1] = {
// .hw_start = rtl_hw_start_8168,
.region = 2,.align = 8,.intr_event = SYSErr | LinkChg | RxOverflow |
TxErr | TxOK | RxOK | RxErr,.napi_event =
TxErr | TxOK | RxOK | RxOverflow,.features =
RTL_FEATURE_GMII},[RTL_CFG_2] = {
// .hw_start = rtl_hw_start_8101,
.region = 2,.align = 8,.intr_event =
SYSErr | LinkChg | RxOverflow | PCSTimeout | RxFIFOOver | TxErr
| TxOK | RxOK | RxErr,.napi_event =
RxFIFOOver | TxErr | TxOK | RxOK | RxOverflow,}
};
static void rtl8169_hw_reset(void *ioaddr)
{
printd("rtl8169_hw_reset\n");
/* Disable interrupts */
rtl8169_irq_mask_and_ack(ioaddr);
/* Reset the chipset */
RTL_W8(ChipCmd, CmdReset);
/* PCI commit */
RTL_R8(ChipCmd);
}
static void rtl_set_rx_tx_config_registers(struct rtl8169_private *tp)
{
void *ioaddr = tp->mmio_addr;
uint32_t cfg = rtl8169_rx_config;
printd("rtl_set_rx_tx_config_registers\n");
cfg |= (RTL_R32(RxConfig) & rtl_chip_info[tp->chipset].RxConfigMask);
RTL_W32(RxConfig, cfg);
/* Set DMA burst size and Interframe Gap Time */
RTL_W32(TxConfig, (TX_DMA_BURST << TxDMAShift) |
(InterFrameGap << TxInterFrameGapShift));
}
static void rtl_soft_reset(struct net_device *dev)
{
struct rtl8169_private *tp = netdev_priv(dev);
void *ioaddr = tp->mmio_addr;
unsigned int i;
printd("rtl_hw_soft_reset\n");
/* Soft reset the chip. */
RTL_W8(ChipCmd, CmdReset);
/* Check that the chip has finished the reset. */
for (i = 0; i < 100; i++) {
if ((RTL_R8(ChipCmd) & CmdReset) == 0)
break;
mdelay(1);
}
if (i == 100) {
printd("Reset Failed! (> 100 iterations)\n");
}
}
static void rtl_hw_start(struct net_device *dev)
{
struct rtl8169_private *tp = netdev_priv(dev);
printd("rtl_hw_start\n");
/* Soft reset NIC */
rtl_soft_reset(dev);
//tp->hw_start ( dev );
}
static void rtl_set_rx_tx_desc_registers(struct rtl8169_private *tp,
void *ioaddr)
{
printd("rtl_set_rx_tx_desc_registers\n");
/*
* Magic spell: some iop3xx ARM board needs the TxDescAddrHigh
* register to be written before TxDescAddrLow to work.
* Switching from MMIO to I/O access fixes the issue as well.
*/
RTL_W32(TxDescStartAddrHigh, 0);
RTL_W32(TxDescStartAddrLow, virt_to_bus(tp->tx_base));
RTL_W32(RxDescAddrHigh, 0);
RTL_W32(RxDescAddrLow, virt_to_bus(tp->rx_base));
}
static uint16_t rtl_rw_cpluscmd(void *ioaddr)
{
uint16_t cmd;
printd("rtl_rw_cpluscmd\n");
cmd = RTL_R16(CPlusCmd);
RTL_W16(CPlusCmd, cmd);
return cmd;
}
static void rtl_set_rx_max_size(void *ioaddr)
{
printd("rtl_set_rx_max_size\n");
RTL_W16(RxMaxSize, RX_BUF_SIZE);
}
static void rtl8169_set_magic_reg(void *ioaddr, unsigned mac_version)
{
struct {
uint32_t mac_version;
uint32_t clk;
uint32_t val;
} cfg2_info[] = {
{
RTL_GIGA_MAC_VER_05, PCI_Clock_33MHz, 0x000fff00}, // 8110SCd
{
RTL_GIGA_MAC_VER_05, PCI_Clock_66MHz, 0x000fffff}, {
RTL_GIGA_MAC_VER_06, PCI_Clock_33MHz, 0x00ffff00}, // 8110SCe
{
RTL_GIGA_MAC_VER_06, PCI_Clock_66MHz, 0x00ffffff}
}, *p = cfg2_info;
unsigned int i;
uint32_t clk;
printd("rtl8169_set_magic_reg\n");
clk = RTL_R8(Config2) & PCI_Clock_66MHz;
for (i = 0; i < ARRAY_SIZE(cfg2_info); i++, p++) {
if ((p->mac_version == mac_version) && (p->clk == clk)) {
RTL_W32(0x7c, p->val);
break;
}
}
}
static void rtl_set_rx_mode(struct net_device *netdev)
{
struct rtl8169_private *tp = netdev_priv(netdev);
void *ioaddr = tp->mmio_addr;
uint32_t tmp;
printd("rtl_set_rx_mode\n");
/* Accept all Multicast Packets */
RTL_W32(MAR0 + 0, 0xffffffff);
RTL_W32(MAR0 + 4, 0xffffffff);
tmp = rtl8169_rx_config | AcceptBroadcast | AcceptMulticast | AcceptMyPhys |
(RTL_R32(RxConfig) & rtl_chip_info[tp->chipset].RxConfigMask);
RTL_W32(RxConfig, tmp);
}
static void rtl_hw_start_8169(struct net_device *dev)
{
struct rtl8169_private *tp = netdev_priv(dev);
void *ioaddr = tp->mmio_addr;
// struct pci_device *pdev = tp->pci_dev;
printd("rtl_hw_start_8169\n");
if (tp->mac_version == RTL_GIGA_MAC_VER_05) {
RTL_W16(CPlusCmd, RTL_R16(CPlusCmd) | PCIMulRW);
//pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, 0x08);
}
RTL_W8(Cfg9346, Cfg9346_Unlock);
if ((tp->mac_version == RTL_GIGA_MAC_VER_01) ||
(tp->mac_version == RTL_GIGA_MAC_VER_02) ||
(tp->mac_version == RTL_GIGA_MAC_VER_03) ||
(tp->mac_version == RTL_GIGA_MAC_VER_04))
RTL_W8(ChipCmd, CmdTxEnb | CmdRxEnb);
RTL_W8(EarlyTxThres, EarlyTxThld);
rtl_set_rx_max_size(ioaddr);
if ((tp->mac_version == RTL_GIGA_MAC_VER_01) ||
(tp->mac_version == RTL_GIGA_MAC_VER_02) ||
(tp->mac_version == RTL_GIGA_MAC_VER_03) ||
(tp->mac_version == RTL_GIGA_MAC_VER_04))
rtl_set_rx_tx_config_registers(tp);
tp->cp_cmd |= rtl_rw_cpluscmd(ioaddr) | PCIMulRW;
if ((tp->mac_version == RTL_GIGA_MAC_VER_02) ||
(tp->mac_version == RTL_GIGA_MAC_VER_03)) {
printd("Set MAC Reg C+CR Offset 0xE0. " "Bit-3 and bit-14 MUST be 1\n");
tp->cp_cmd |= (1 << 14);
}
RTL_W16(CPlusCmd, tp->cp_cmd);
rtl8169_set_magic_reg(ioaddr, tp->mac_version);
/*
* Undocumented corner. Supposedly:
* (TxTimer << 12) | (TxPackets << 8) | (RxTimer << 4) | RxPackets
*/
RTL_W16(IntrMitigate, 0x0000);
rtl_set_rx_tx_desc_registers(tp, ioaddr);
if ((tp->mac_version != RTL_GIGA_MAC_VER_01) &&
(tp->mac_version != RTL_GIGA_MAC_VER_02) &&
(tp->mac_version != RTL_GIGA_MAC_VER_03) &&
(tp->mac_version != RTL_GIGA_MAC_VER_04)) {
RTL_W8(ChipCmd, CmdTxEnb | CmdRxEnb);
rtl_set_rx_tx_config_registers(tp);
}
RTL_W8(Cfg9346, Cfg9346_Lock);
/* Initially a 10 us delay. Turned it into a PCI commit. - FR */
RTL_R8(IntrMask);
RTL_W32(RxMissed, 0);
rtl_set_rx_mode(dev);
/* no early-rx interrupts */
RTL_W16(MultiIntr, RTL_R16(MultiIntr) & 0xF000);
// RTL_W16(IntrMask, tp->intr_event);
}
static void rtl_tx_performance_tweak(struct pci_device *pdev, uint16_t force)
{
struct net_device *dev = pci_get_drvdata(pdev);
struct rtl8169_private *tp = netdev_priv(dev);
int cap = tp->pcie_cap;
printd("rtl_tx_performance_tweak\n");
if (cap) {
uint16_t ctl;
pci_read_config_word(pdev, cap + PCI_EXP_DEVCTL, &ctl);
ctl = (ctl & ~PCI_EXP_DEVCTL_READRQ) | force;
pci_write_config_word(pdev, cap + PCI_EXP_DEVCTL, ctl);
}
}
static void rtl_csi_access_enable(void *ioaddr)
{
uint32_t csi;
printd("rtl_csi_access_enable\n");
csi = rtl_csi_read(ioaddr, 0x070c) & 0x00ffffff;
rtl_csi_write(ioaddr, 0x070c, csi | 0x27000000);
}
struct ephy_info {
unsigned int offset;
uint16_t mask;
uint16_t bits;
};
static void rtl_ephy_init(void *ioaddr, struct ephy_info *e, int len)
{
uint16_t w;
printd("rtl_ephy_init\n");
while (len-- > 0) {
w = (rtl_ephy_read(ioaddr, e->offset) & ~e->mask) | e->bits;
rtl_ephy_write(ioaddr, e->offset, w);
e++;
}
}
static void rtl_disable_clock_request(struct pci_device *pdev)
{
struct net_device *dev = pci_get_drvdata(pdev);
struct rtl8169_private *tp = netdev_priv(dev);
int cap = tp->pcie_cap;
printd("rtl_disable_clock_request\n");
if (cap) {
uint16_t ctl;
pci_read_config_word(pdev, cap + PCI_EXP_LNKCTL, &ctl);
ctl &= ~PCI_EXP_LNKCTL_CLKREQ_EN;
pci_write_config_word(pdev, cap + PCI_EXP_LNKCTL, ctl);
}
}
#define R8168_CPCMD_QUIRK_MASK (\
EnableBist | \
Mac_dbgo_oe | \
Force_half_dup | \
Force_rxflow_en | \
Force_txflow_en | \
Cxpl_dbg_sel | \
ASF | \
PktCntrDisable | \
Mac_dbgo_sel)
static void rtl_hw_start_8168bb(void *ioaddr, struct pci_device *pdev)
{
printd("rtl_hw_start_8168bb\n");
RTL_W8(Config3, RTL_R8(Config3) & ~Beacon_en);
RTL_W16(CPlusCmd, RTL_R16(CPlusCmd) & ~R8168_CPCMD_QUIRK_MASK);
rtl_tx_performance_tweak(pdev,
(0x5 << MAX_READ_REQUEST_SHIFT) |
PCI_EXP_DEVCTL_NOSNOOP_EN);
}
static void rtl_hw_start_8168bef(void *ioaddr, struct pci_device *pdev)
{
printd("rtl_hw_start_8168bef\n");
rtl_hw_start_8168bb(ioaddr, pdev);
RTL_W8(EarlyTxThres, EarlyTxThld);
RTL_W8(Config4, RTL_R8(Config4) & ~(1 << 0));
}
static void __rtl_hw_start_8168cp(void *ioaddr, struct pci_device *pdev)
{
printd("__rtl_hw_start_8168cp\n");
RTL_W8(Config1, RTL_R8(Config1) | Speed_down);
RTL_W8(Config3, RTL_R8(Config3) & ~Beacon_en);
rtl_tx_performance_tweak(pdev, 0x5 << MAX_READ_REQUEST_SHIFT);
rtl_disable_clock_request(pdev);
RTL_W16(CPlusCmd, RTL_R16(CPlusCmd) & ~R8168_CPCMD_QUIRK_MASK);
}
static void rtl_hw_start_8168cp_1(void *ioaddr, struct pci_device *pdev)
{
static struct ephy_info e_info_8168cp[] = {
{0x01, 0, 0x0001},
{0x02, 0x0800, 0x1000},
{0x03, 0, 0x0042},
{0x06, 0x0080, 0x0000},
{0x07, 0, 0x2000}
};
printd("rtl_hw_start_8168cp_1\n");
rtl_csi_access_enable(ioaddr);
rtl_ephy_init(ioaddr, e_info_8168cp, ARRAY_SIZE(e_info_8168cp));
__rtl_hw_start_8168cp(ioaddr, pdev);
}
static void rtl_hw_start_8168cp_2(void *ioaddr, struct pci_device *pdev)
{
printd("rtl_hw_start_8168cp_2\n");
rtl_csi_access_enable(ioaddr);
RTL_W8(Config3, RTL_R8(Config3) & ~Beacon_en);
rtl_tx_performance_tweak(pdev, 0x5 << MAX_READ_REQUEST_SHIFT);
RTL_W16(CPlusCmd, RTL_R16(CPlusCmd) & ~R8168_CPCMD_QUIRK_MASK);
}
static void rtl_hw_start_8168cp_3(void *ioaddr, struct pci_device *pdev)
{
printd("rtl_hw_start_8168cp_3\n");
rtl_csi_access_enable(ioaddr);
RTL_W8(Config3, RTL_R8(Config3) & ~Beacon_en);
/* Magic. */
RTL_W8(DBG_REG, 0x20);
RTL_W8(EarlyTxThres, EarlyTxThld);
rtl_tx_performance_tweak(pdev, 0x5 << MAX_READ_REQUEST_SHIFT);
RTL_W16(CPlusCmd, RTL_R16(CPlusCmd) & ~R8168_CPCMD_QUIRK_MASK);
}
static void rtl_hw_start_8168c_1(void *ioaddr, struct pci_device *pdev)
{
static struct ephy_info e_info_8168c_1[] = {
{0x02, 0x0800, 0x1000},
{0x03, 0, 0x0002},
{0x06, 0x0080, 0x0000}
};
printd("rtl_hw_start_8168c_1\n");
rtl_csi_access_enable(ioaddr);
RTL_W8(DBG_REG, 0x06 | FIX_NAK_1 | FIX_NAK_2);
rtl_ephy_init(ioaddr, e_info_8168c_1, ARRAY_SIZE(e_info_8168c_1));
__rtl_hw_start_8168cp(ioaddr, pdev);
}
static void rtl_hw_start_8168c_2(void *ioaddr, struct pci_device *pdev)
{
static struct ephy_info e_info_8168c_2[] = {
{0x01, 0, 0x0001},
{0x03, 0x0400, 0x0220}
};
printd("rtl_hw_start_8168c_2\n");
rtl_csi_access_enable(ioaddr);
rtl_ephy_init(ioaddr, e_info_8168c_2, ARRAY_SIZE(e_info_8168c_2));
__rtl_hw_start_8168cp(ioaddr, pdev);
}
static void rtl_hw_start_8168c_3(void *ioaddr, struct pci_device *pdev)
{
printd("rtl_hw_start_8168c_3\n");
rtl_hw_start_8168c_2(ioaddr, pdev);
}
static void rtl_hw_start_8168c_4(void *ioaddr, struct pci_device *pdev)
{
printd("rtl_hw_start_8168c_4\n");
rtl_csi_access_enable(ioaddr);
__rtl_hw_start_8168cp(ioaddr, pdev);
}
static void rtl_hw_start_8168d(void *ioaddr, struct pci_device *pdev)
{
printd("rtl_hw_start_8168d\n");
rtl_csi_access_enable(ioaddr);
rtl_disable_clock_request(pdev);
RTL_W8(EarlyTxThres, EarlyTxThld);
rtl_tx_performance_tweak(pdev, 0x5 << MAX_READ_REQUEST_SHIFT);
RTL_W16(CPlusCmd, RTL_R16(CPlusCmd) & ~R8168_CPCMD_QUIRK_MASK);
}
static void rtl_hw_start_8168(void /*struct net_device *dev */ )
{
#if 0
struct rtl8169_private *tp = netdev_priv(dev);
void *ioaddr = tp->mmio_addr;
struct pci_device *pdev = tp->pci_dev;
printd("rtl_hw_start_8168\n");
RTL_W8(Cfg9346, Cfg9346_Unlock);
RTL_W8(EarlyTxThres, EarlyTxThld);
rtl_set_rx_max_size(ioaddr);
tp->cp_cmd |= RTL_R16(CPlusCmd) | PktCntrDisable | INTT_1;
RTL_W16(CPlusCmd, tp->cp_cmd);
RTL_W16(IntrMitigate, 0x5151);
/* Work around for RxFIFO overflow. */
if (tp->mac_version == RTL_GIGA_MAC_VER_11) {
tp->intr_event |= RxFIFOOver | PCSTimeout;
tp->intr_event &= ~RxOverflow;
}
rtl_set_rx_tx_desc_registers(tp, ioaddr);
rtl_set_rx_mode(dev);
RTL_W32(TxConfig, (TX_DMA_BURST << TxDMAShift) |
(InterFrameGap << TxInterFrameGapShift));
RTL_R8(IntrMask);
switch (tp->mac_version) {
case RTL_GIGA_MAC_VER_11:
rtl_hw_start_8168bb(ioaddr, pdev);
break;
case RTL_GIGA_MAC_VER_12:
case RTL_GIGA_MAC_VER_17:
rtl_hw_start_8168bef(ioaddr, pdev);
break;
case RTL_GIGA_MAC_VER_18:
rtl_hw_start_8168cp_1(ioaddr, pdev);
break;
case RTL_GIGA_MAC_VER_19:
rtl_hw_start_8168c_1(ioaddr, pdev);
break;
case RTL_GIGA_MAC_VER_20:
rtl_hw_start_8168c_2(ioaddr, pdev);
break;
case RTL_GIGA_MAC_VER_21:
rtl_hw_start_8168c_3(ioaddr, pdev);
break;
case RTL_GIGA_MAC_VER_22:
rtl_hw_start_8168c_4(ioaddr, pdev);
break;
case RTL_GIGA_MAC_VER_23:
rtl_hw_start_8168cp_2(ioaddr, pdev);
break;
case RTL_GIGA_MAC_VER_24:
rtl_hw_start_8168cp_3(ioaddr, pdev);
break;
case RTL_GIGA_MAC_VER_25:
rtl_hw_start_8168d(ioaddr, pdev);
break;
default:
printd("Unknown chipset (mac_version = %d).\n", tp->mac_version);
break;
}
RTL_W8(ChipCmd, CmdTxEnb | CmdRxEnb);
RTL_W8(Cfg9346, Cfg9346_Lock);
RTL_W16(MultiIntr, RTL_R16(MultiIntr) & 0xF000);
// RTL_W16(IntrMask, tp->intr_event);
#endif
}
#define R810X_CPCMD_QUIRK_MASK (\
EnableBist | \
Mac_dbgo_oe | \
Force_half_dup | \
Force_half_dup | \
Force_txflow_en | \
Cxpl_dbg_sel | \
ASF | \
PktCntrDisable | \
PCIDAC | \
PCIMulRW)
static void rtl_hw_start_8102e_1(void *ioaddr, struct pci_device *pdev)
{
#if 0
static struct ephy_info e_info_8102e_1[] = {
{0x01, 0, 0x6e65},
{0x02, 0, 0x091f},
{0x03, 0, 0xc2f9},
{0x06, 0, 0xafb5},
{0x07, 0, 0x0e00},
{0x19, 0, 0xec80},
{0x01, 0, 0x2e65},
{0x01, 0, 0x6e65}
};
uint8_t cfg1;
printd("rtl_hw_start_8102e_1\n");
rtl_csi_access_enable(ioaddr);
RTL_W8(DBG_REG, FIX_NAK_1);
rtl_tx_performance_tweak(pdev, 0x5 << MAX_READ_REQUEST_SHIFT);
RTL_W8(Config1,
LEDS1 | LEDS0 | Speed_down | MEMMAP | IOMAP | VPD8169 | PMEnable);
RTL_W8(Config3, RTL_R8(Config3) & ~Beacon_en);
cfg1 = RTL_R8(Config1);
if ((cfg1 & LEDS0) && (cfg1 & LEDS1))
RTL_W8(Config1, cfg1 & ~LEDS0);
RTL_W16(CPlusCmd, RTL_R16(CPlusCmd) & ~R810X_CPCMD_QUIRK_MASK);
rtl_ephy_init(ioaddr, e_info_8102e_1, ARRAY_SIZE(e_info_8102e_1));
#endif
}
static void rtl_hw_start_8102e_2(void *ioaddr, struct pci_device *pdev)
{
#if 0
printd("rtl_hw_start_8102e_2\n");
rtl_csi_access_enable(ioaddr);
rtl_tx_performance_tweak(pdev, 0x5 << MAX_READ_REQUEST_SHIFT);
RTL_W8(Config1, MEMMAP | IOMAP | VPD8169 | PMEnable);
RTL_W8(Config3, RTL_R8(Config3) & ~Beacon_en);
RTL_W16(CPlusCmd, RTL_R16(CPlusCmd) & ~R810X_CPCMD_QUIRK_MASK);
#endif
}
static void rtl_hw_start_8102e_3(void *ioaddr, struct pci_device *pdev)
{
#if 0
printd("rtl_hw_start_8102e_3\n");
rtl_hw_start_8102e_2(ioaddr, pdev);
rtl_ephy_write(ioaddr, 0x03, 0xc2f9);
#endif
}
static void rtl_hw_start_8101(struct net_device *dev)
{
#if 0
struct rtl8169_private *tp = netdev_priv(dev);
void *ioaddr = tp->mmio_addr;
struct pci_device *pdev = tp->pci_dev;
printd("rtl_hw_start_8101\n");
if ((tp->mac_version == RTL_GIGA_MAC_VER_13) ||
(tp->mac_version == RTL_GIGA_MAC_VER_16)) {
int cap = tp->pcie_cap;
if (cap) {
pci_write_config_word(pdev, cap + PCI_EXP_DEVCTL,
PCI_EXP_DEVCTL_NOSNOOP_EN);
}
}
switch (tp->mac_version) {
case RTL_GIGA_MAC_VER_07:
rtl_hw_start_8102e_1(ioaddr, pdev);
break;
case RTL_GIGA_MAC_VER_08:
rtl_hw_start_8102e_3(ioaddr, pdev);
break;
case RTL_GIGA_MAC_VER_09:
rtl_hw_start_8102e_2(ioaddr, pdev);
break;
}
RTL_W8(Cfg9346, Cfg9346_Unlock);
RTL_W8(EarlyTxThres, EarlyTxThld);
rtl_set_rx_max_size(ioaddr);
tp->cp_cmd |= rtl_rw_cpluscmd(ioaddr) | PCIMulRW;
RTL_W16(CPlusCmd, tp->cp_cmd);
RTL_W16(IntrMitigate, 0x0000);
rtl_set_rx_tx_desc_registers(tp, ioaddr);
RTL_W8(ChipCmd, CmdTxEnb | CmdRxEnb);
rtl_set_rx_tx_config_registers(tp);
RTL_W8(Cfg9346, Cfg9346_Lock);
RTL_R8(IntrMask);
rtl_set_rx_mode(dev);
RTL_W8(ChipCmd, CmdTxEnb | CmdRxEnb);
RTL_W16(MultiIntr, RTL_R16(MultiIntr) & 0xf000);
// RTL_W16(IntrMask, tp->intr_event);
#endif
}
#if 0
/*** gPXE API Support Routines ***/
/**
* setup_tx_resources - allocate tx resources (descriptors)
*
* @v tp Driver private storage
*
* @ret rc Returns 0 on success, negative on failure
**/
static int rtl8169_setup_tx_resources(struct rtl8169_private *tp)
{
printd("rtl8169_setup_tx_resources\n");
tp->tx_base = malloc_dma(R8169_TX_RING_BYTES, TX_RING_ALIGN);
if (!tp->tx_base) {
return -ENOMEM;
}
memset(tp->tx_base, 0, R8169_TX_RING_BYTES);
printd("tp->tx_base = %#08lx\n", virt_to_bus(tp->tx_base));
tp->tx_fill_ctr = 0;
tp->tx_curr = 0;
tp->tx_tail = 0;
return 0;
}
static void rtl8169_process_tx_packets(struct net_device *netdev)
{
struct rtl8169_private *tp = netdev_priv(netdev);
uint32_t tx_status;
struct TxDesc *tx_curr_desc;
printd("rtl8169_process_tx_packets\n");
while (tp->tx_tail != tp->tx_curr) {
tx_curr_desc = tp->tx_base + tp->tx_tail;
tx_status = tx_curr_desc->opts1;
DBG2("Before DescOwn check tx_status: %#08x\n", tx_status);
/* if the packet at tx_tail is not owned by hardware it is for us */
if (tx_status & DescOwn)
break;
printd("Transmitted packet.\n");
printd("tp->tx_fill_ctr = %d\n", tp->tx_fill_ctr);
printd("tp->tx_tail = %d\n", tp->tx_tail);
printd("tp->tx_curr = %d\n", tp->tx_curr);
printd("tx_status = %d\n", tx_status);
printd("tx_curr_desc = %#08lx\n", virt_to_bus(tx_curr_desc));
/* Pass packet to core for processing */
netdev_tx_complete(netdev, tp->tx_iobuf[tp->tx_tail]);
memset(tx_curr_desc, 0, sizeof(*tx_curr_desc));
/* Decrement count of used descriptors */
tp->tx_fill_ctr--;
/* Increment sent packets index */
tp->tx_tail = (tp->tx_tail + 1) % NUM_TX_DESC;
}
}
static void rtl8169_free_tx_resources(struct rtl8169_private *tp)
{
printd("rtl8169_free_tx_resources\n");
free_dma(tp->tx_base, R8169_TX_RING_BYTES);
}
static void
rtl8169_populate_rx_descriptor(struct rtl8169_private *tp,
struct RxDesc *rx_desc, uint32_t index)
{
printd("rtl8169_populate_rx_descriptor\n");
printd("Populating rx descriptor %d\n", index);
memset(rx_desc, 0, sizeof(*rx_desc));
rx_desc->addr_hi = 0;
rx_desc->addr_lo = virt_to_bus(tp->rx_iobuf[index]->data);
rx_desc->opts2 = 0;
rx_desc->opts1 = (index == (NUM_RX_DESC - 1) ? RingEnd : 0) | RX_BUF_SIZE;
rx_desc->opts1 |= DescOwn;
}
/**
* Refill descriptor ring
*
* @v netdev Net device
*/
static void rtl8169_refill_rx_ring(struct rtl8169_private *tp)
{
struct RxDesc *rx_curr_desc;
int i;
printd("rtl8169_refill_rx_ring\n");
for (i = 0; i < NUM_RX_DESC; i++) {
rx_curr_desc = (tp->rx_base) + i;
/* Don't touch descriptors owned by the NIC */
if (rx_curr_desc->opts1 & DescOwn)
continue;
/* Don't touch descriptors with iobufs, they still need to be
processed by the poll routine */
if (tp->rx_iobuf[tp->rx_curr] != NULL)
continue;
/** If we can't get an iobuf for this descriptor
try again later (next poll).
*/
if (!(tp->rx_iobuf[i] = alloc_iob(RX_BUF_SIZE))) {
printd("Refill rx ring failed!!\n");
break;
}
rtl8169_populate_rx_descriptor(tp, rx_curr_desc, i);
}
}
/**
* setup_rx_resources - allocate Rx resources (Descriptors)
*
* @v tp: Driver private structure
*
* @ret rc Returns 0 on success, negative on failure
*
**/
static int rtl8169_setup_rx_resources(struct rtl8169_private *tp)
{
printd("rtl8169_setup_rx_resources\n");
tp->rx_base = malloc_dma(R8169_RX_RING_BYTES, RX_RING_ALIGN);
printd("tp->rx_base = %#08lx\n", virt_to_bus(tp->rx_base));
if (!tp->rx_base) {
return -ENOMEM;
}
memset(tp->rx_base, 0, R8169_RX_RING_BYTES);
rtl8169_refill_rx_ring(tp);
tp->rx_curr = 0;
return 0;
}
static void rtl8169_process_rx_packets(struct net_device *netdev)
{
struct rtl8169_private *tp = netdev_priv(netdev);
uint32_t rx_status;
uint16_t rx_len;
struct RxDesc *rx_curr_desc;
int i;
printd("rtl8169_process_rx_packets\n");
for (i = 0; i < NUM_RX_DESC; i++) {
rx_curr_desc = tp->rx_base + tp->rx_curr;
rx_status = rx_curr_desc->opts1;
DBG2("Before DescOwn check rx_status: %#08x\n", rx_status);
/* Hardware still owns the descriptor */
if (rx_status & DescOwn)
break;
/* We own the descriptor, but it has not been refilled yet */
if (tp->rx_iobuf[tp->rx_curr] == NULL)
break;
rx_len = rx_status & 0x3fff;
printd("Received packet.\n");
printd("tp->rx_curr = %d\n", tp->rx_curr);
printd("rx_len = %d\n", rx_len);
printd("rx_status = %#08x\n", rx_status);
printd("rx_curr_desc = %#08lx\n", virt_to_bus(rx_curr_desc));
if (rx_status & RxRES) {
netdev_rx_err(netdev, tp->rx_iobuf[tp->rx_curr], -EINVAL);
printd("rtl8169_poll: Corrupted packet received!\n"
" rx_status: %#08x\n", rx_status);
} else {
/* Adjust size of the iobuf to reflect received data */
iob_put(tp->rx_iobuf[tp->rx_curr], rx_len);
/* Add this packet to the receive queue. */
netdev_rx(netdev, tp->rx_iobuf[tp->rx_curr]);
}
/* Invalidate this iobuf and descriptor */
tp->rx_iobuf[tp->rx_curr] = NULL;
memset(rx_curr_desc, 0, sizeof(*rx_curr_desc));
/* Update pointer to next available rx descriptor */
tp->rx_curr = (tp->rx_curr + 1) % NUM_RX_DESC;
}
rtl8169_refill_rx_ring(tp);
}
static void rtl8169_free_rx_resources(struct rtl8169_private *tp)
{
int i;
printd("rtl8169_free_rx_resources\n");
free_dma(tp->rx_base, R8169_RX_RING_BYTES);
for (i = 0; i < NUM_RX_DESC; i++) {
free_iob(tp->rx_iobuf[i]);
tp->rx_iobuf[i] = NULL;
}
}
static void rtl8169_irq_enable(struct rtl8169_private *tp)
{
void *ioaddr = tp->mmio_addr;
printd("rtl8169_irq_enable\n");
RTL_W16(IntrMask, tp->intr_event);
}
static void rtl8169_irq_disable(struct rtl8169_private *tp)
{
void *ioaddr = tp->mmio_addr;
printd("rtl8169_irq_disable\n");
rtl8169_irq_mask_and_ack(ioaddr);
}
/*** gPXE Core API Routines ***/
/**
* open - Called when a network interface is made active
*
* @v netdev network interface device structure
* @ret rc Return status code, 0 on success, negative value on failure
*
**/
static int rtl8169_open(struct net_device *netdev)
{
struct rtl8169_private *tp = netdev_priv(netdev);
void *ioaddr = tp->mmio_addr;
int rc;
printd("rtl8169_open\n");
/* allocate transmit descriptors */
rc = rtl8169_setup_tx_resources(tp);
if (rc) {
printd("Error setting up TX resources!\n");
goto err_setup_tx;
}
/* allocate receive descriptors */
rc = rtl8169_setup_rx_resources(tp);
if (rc) {
printd("Error setting up RX resources!\n");
goto err_setup_rx;
}
rtl_hw_start(netdev);
printd("TxDescStartAddrHigh = %#08lx\n", RTL_R32(TxDescStartAddrHigh));
printd("TxDescStartAddrLow = %#08lx\n", RTL_R32(TxDescStartAddrLow));
printd("RxDescAddrHigh = %#08lx\n", RTL_R32(RxDescAddrHigh));
printd("RxDescAddrLow = %#08lx\n", RTL_R32(RxDescAddrLow));
return 0;
err_setup_rx:
rtl8169_free_tx_resources(tp);
err_setup_tx:
rtl8169_hw_reset(ioaddr);
return rc;
}
/**
* transmit - Transmit a packet
*
* @v netdev Network device
* @v iobuf I/O buffer
*
* @ret rc Returns 0 on success, negative on failure
*/
static int rtl8169_transmit(struct net_device *netdev, struct io_buffer *iobuf)
{
struct rtl8169_private *tp = netdev_priv(netdev);
void *ioaddr = tp->mmio_addr;
uint32_t tx_len = iob_len(iobuf);
struct TxDesc *tx_curr_desc;
printd("rtl8169_transmit\n");
if (tp->tx_fill_ctr == NUM_TX_DESC) {
printd("TX overflow\n");
return -ENOBUFS;
}
/**
* The rtl8169 family automatically pads short packets to a
* minimum size, but if it did not, like some older cards,
* we could do:
* iob_pad ( iobuf, ETH_ZLEN );
*/
/* Save pointer to this iobuf we have been given to transmit so
we can pass it to netdev_tx_complete() later */
tp->tx_iobuf[tp->tx_curr] = iobuf;
tx_curr_desc = tp->tx_base + tp->tx_curr;
printd("tp->tx_fill_ctr = %d\n", tp->tx_fill_ctr);
printd("tp->tx_curr = %d\n", tp->tx_curr);
printd("tx_curr_desc = %#08lx\n", virt_to_bus(tx_curr_desc));
printd("iobuf->data = %#08lx\n", virt_to_bus(iobuf->data));
printd("tx_len = %d\n", tx_len);
/* Configure current descriptor to transmit supplied packet */
tx_curr_desc->addr_hi = 0;
tx_curr_desc->addr_lo = virt_to_bus(iobuf->data);
tx_curr_desc->opts2 = 0;
tx_curr_desc->opts1 = FirstFrag | LastFrag |
(tp->tx_curr == (NUM_TX_DESC - 1) ? RingEnd : 0) | tx_len;
/* Mark descriptor as owned by NIC */
tx_curr_desc->opts1 |= DescOwn;
printd("tx_curr_desc->opts1 = %#08x\n", tx_curr_desc->opts1);
printd("tx_curr_desc->opts2 = %#08x\n", tx_curr_desc->opts2);
printd("tx_curr_desc->addr_hi = %#08x\n", tx_curr_desc->addr_hi);
printd("tx_curr_desc->addr_lo = %#08x\n", tx_curr_desc->addr_lo);
RTL_W8(TxPoll, NPQ); /* set polling bit */
/* Point to next free descriptor */
tp->tx_curr = (tp->tx_curr + 1) % NUM_TX_DESC;
/* Increment number of tx descriptors in use */
tp->tx_fill_ctr++;
return 0;
}
/**
* poll - Poll for received packets
*
* @v netdev Network device
*/
static void rtl8169_poll(struct net_device *netdev)
{
struct rtl8169_private *tp = netdev_priv(netdev);
void *ioaddr = tp->mmio_addr;
uint16_t intr_status;
uint16_t intr_mask;
printd("rtl8169_poll\n");
intr_status = RTL_R16(IntrStatus);
intr_mask = RTL_R16(IntrMask);
DBG2("rtl8169_poll (before): intr_mask = %#04x intr_status = %#04x\n",
intr_mask, intr_status);
RTL_W16(IntrStatus, 0xffff);
/* hotplug / major error / no more work / shared irq */
if (intr_status == 0xffff)
return;
/* Process transmitted packets */
rtl8169_process_tx_packets(netdev);
/* Process received packets */
rtl8169_process_rx_packets(netdev);
}
/**
* close - Disable network interface
*
* @v netdev network interface device structure
*
**/
static void rtl8169_close(struct net_device *netdev)
{
struct rtl8169_private *tp = netdev_priv(netdev);
void *ioaddr = tp->mmio_addr;
printd("r8169_close\n");
rtl8169_hw_reset(ioaddr);
rtl8169_free_tx_resources(tp);
rtl8169_free_rx_resources(tp);
}
/**
* irq - enable or Disable interrupts
*
* @v netdev network adapter
* @v action requested interrupt action
*
**/
static void rtl8169_irq(struct net_device *netdev, int action)
{
struct rtl8169_private *tp = netdev_priv(netdev);
printd("rtl8169_irq\n");
switch (action) {
case 0:
rtl8169_irq_disable(tp);
break;
default:
rtl8169_irq_enable(tp);
break;
}
}
static struct net_device_operations rtl8169_operations = {
.open = rtl8169_open,
.transmit = rtl8169_transmit,
.poll = rtl8169_poll,
.close = rtl8169_close,
.irq = rtl8169_irq,
};
/**
* probe - Initial configuration of NIC
*
* @v pci PCI device
* @v id PCI IDs
*
* @ret rc Return status code
**/
static int
rtl8169_probe(struct pci_device *pdev, const struct pci_device_id *ent)
{
int i, rc;
struct net_device *netdev;
struct rtl8169_private *tp;
void *ioaddr;
const struct rtl_cfg_info *cfg = rtl_cfg_infos + ent->driver_data;
printd("rtl8169_probe\n");
printd("ent->vendor = %#04x, ent->device = %#04x\n", ent->vendor,
ent->device);
printd("cfg->intr_event = %#04x\n", cfg->intr_event);
rc = -ENOMEM;
/* Allocate net device ( also allocates memory for netdev->priv
and makes netdev-priv point to it )
*/
netdev = alloc_etherdev(sizeof(*tp));
if (!netdev)
goto err_alloc_etherdev;
/* Associate driver-specific network operations with
generic network device layer
*/
netdev_init(netdev, &rtl8169_operations);
/* Associate this network device with the given PCI device */
pci_set_drvdata(pdev, netdev);
netdev->dev = &pdev->dev;
/* Initialize driver private storage */
tp = netdev_priv(netdev);
memset(tp, 0, (sizeof(*tp)));
tp->pci_dev = pdev;
tp->irqno = pdev->irq;
tp->netdev = netdev;
tp->intr_event = cfg->intr_event;
tp->cp_cmd = PCIMulRW;
tp->hw_start = cfg->hw_start;
rc = -EIO;
adjust_pci_device(pdev);
/* ioremap MMIO region */
ioaddr = ioremap(pdev->membase, R8169_REGS_SIZE);
if (!ioaddr) {
printd("cannot remap MMIO\n");
rc = -EIO;
goto err_ioremap;
}
tp->mmio_addr = ioaddr;
tp->pcie_cap = pci_find_capability(pdev, PCI_CAP_ID_EXP);
if (tp->pcie_cap) {
printd("PCI Express capability\n");
} else {
printd("No PCI Express capability\n");
}
/* Mask interrupts just in case */
rtl8169_irq_mask_and_ack(ioaddr);
/* Soft reset NIC */
rtl_soft_reset(netdev);
/* Identify chip attached to board */
rtl8169_get_mac_version(tp, ioaddr);
for (i = 0; (uint32_t) i < ARRAY_SIZE(rtl_chip_info); i++) {
if (tp->mac_version == rtl_chip_info[i].mac_version)
break;
}
if (i == ARRAY_SIZE(rtl_chip_info)) {
/* Unknown chip: assume array element #0, original RTL-8169 */
printd("Unknown chip version, assuming %s\n", rtl_chip_info[0].name);
i = 0;
}
tp->chipset = i;
if ((tp->mac_version <= RTL_GIGA_MAC_VER_06) &&
(RTL_R8(PHYstatus) & TBI_Enable)) {
tp->set_speed = rtl8169_set_speed_tbi;
tp->phy_reset_enable = rtl8169_tbi_reset_enable;
tp->phy_reset_pending = rtl8169_tbi_reset_pending;
tp->link_ok = rtl8169_tbi_link_ok;
tp->phy_1000_ctrl_reg = ADVERTISE_1000FULL; /* Implied by TBI */
} else {
tp->set_speed = rtl8169_set_speed_xmii;
tp->phy_reset_enable = rtl8169_xmii_reset_enable;
tp->phy_reset_pending = rtl8169_xmii_reset_pending;
tp->link_ok = rtl8169_xmii_link_ok;
}
/* Get MAC address */
for (i = 0; i < MAC_ADDR_LEN; i++)
netdev->hw_addr[i] = RTL_R8(MAC0 + i);
printd("%s\n", eth_ntoa(netdev->hw_addr));
rtl8169_init_phy(netdev, tp);
if ((rc = register_netdev(netdev)) != 0)
goto err_register;
/* Mark as link up; we don't yet handle link state */
netdev_link_up(netdev);
printd("rtl8169_probe succeeded!\n");
/* No errors, return success */
return 0;
/* Error return paths */
err_register:
err_ioremap:
netdev_put(netdev);
err_alloc_etherdev:
return rc;
}
/**
* remove - Device Removal Routine
*
* @v pdev PCI device information struct
*
**/
static void rtl8169_remove(struct pci_device *pdev)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct rtl8169_private *tp = netdev_priv(netdev);
void *ioaddr = tp->mmio_addr;
printd("rtl8169_remove\n");
rtl8169_hw_reset(ioaddr);
unregister_netdev(netdev);
netdev_nullify(netdev);
netdev_put(netdev);
}
static struct pci_device_id rtl8169_nics[] = {
PCI_ROM(0x10ec, 0x8129, "rtl8169-0x8129", "rtl8169-0x8129", RTL_CFG_0),
PCI_ROM(0x10ec, 0x8136, "rtl8169-0x8136", "rtl8169-0x8136", RTL_CFG_2),
PCI_ROM(0x10ec, 0x8167, "rtl8169-0x8167", "rtl8169-0x8167", RTL_CFG_0),
PCI_ROM(0x10ec, 0x8168, "rtl8169-0x8168", "rtl8169-0x8168", RTL_CFG_1),
PCI_ROM(0x10ec, 0x8169, "rtl8169-0x8169", "rtl8169-0x8169", RTL_CFG_0),
PCI_ROM(0x1186, 0x4300, "rtl8169-0x4300", "rtl8169-0x4300", RTL_CFG_0),
PCI_ROM(0x1259, 0xc107, "rtl8169-0xc107", "rtl8169-0xc107", RTL_CFG_0),
PCI_ROM(0x16ec, 0x0116, "rtl8169-0x0116", "rtl8169-0x0116", RTL_CFG_0),
PCI_ROM(0x1737, 0x1032, "rtl8169-0x1032", "rtl8169-0x1032", RTL_CFG_0),
PCI_ROM(0x0001, 0x8168, "rtl8169-0x8168", "rtl8169-0x8168", RTL_CFG_2),
};
struct pci_driver rtl8169_driver __pci_driver = {
.ids = rtl8169_nics,
.id_count = (sizeof(rtl8169_nics) / sizeof(rtl8169_nics[0])),
.probe = rtl8169_probe,
.remove = rtl8169_remove,
};
#endif
linker_func_3(ether8169link)
{
//addethercard("rtl8169", rtl8169pnp);
}
/*
* Local variables:
* c-basic-offset: 8
* c-indent-level: 8
* tab-width: 8
* End:
*/