|  | /* Copyright (c) 2014 The Chromium OS Authors. All rights reserved. | 
|  | * Use of this source code is governed by a BSD-style license that can be | 
|  | * found in the LICENSE file. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Implementation of RSA signature verification which uses a pre-processed key | 
|  | * for computation. The code extends Android's RSA verification code to support | 
|  | * multiple RSA key lengths and hash digest algorithms. | 
|  | */ | 
|  |  | 
|  | #include <crypto/2sysincludes.h> | 
|  | #include <crypto/2common.h> | 
|  | #include <crypto/2rsa.h> | 
|  | #include <crypto/2sha.h> | 
|  |  | 
|  | /** | 
|  | * a[] -= mod | 
|  | */ | 
|  | static void subM(const struct vb2_public_key *key, uint32_t *a) | 
|  | { | 
|  | int64_t A = 0; | 
|  | uint32_t i; | 
|  | for (i = 0; i < key->arrsize; ++i) { | 
|  | A += (uint64_t)a[i] - key->n[i]; | 
|  | a[i] = (uint32_t)A; | 
|  | A >>= 32; | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Return a[] >= mod | 
|  | */ | 
|  | int vb2_mont_ge(const struct vb2_public_key *key, uint32_t *a) | 
|  | { | 
|  | uint32_t i; | 
|  | for (i = key->arrsize; i;) { | 
|  | --i; | 
|  | if (a[i] < key->n[i]) | 
|  | return 0; | 
|  | if (a[i] > key->n[i]) | 
|  | return 1; | 
|  | } | 
|  | return 1;  /* equal */ | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Montgomery c[] += a * b[] / R % mod | 
|  | */ | 
|  | static void montMulAdd(const struct vb2_public_key *key, | 
|  | uint32_t *c, | 
|  | const uint32_t a, | 
|  | const uint32_t *b) | 
|  | { | 
|  | uint64_t A = (uint64_t)a * b[0] + c[0]; | 
|  | uint32_t d0 = (uint32_t)A * key->n0inv; | 
|  | uint64_t B = (uint64_t)d0 * key->n[0] + (uint32_t)A; | 
|  | uint32_t i; | 
|  |  | 
|  | for (i = 1; i < key->arrsize; ++i) { | 
|  | A = (A >> 32) + (uint64_t)a * b[i] + c[i]; | 
|  | B = (B >> 32) + (uint64_t)d0 * key->n[i] + (uint32_t)A; | 
|  | c[i - 1] = (uint32_t)B; | 
|  | } | 
|  |  | 
|  | A = (A >> 32) + (B >> 32); | 
|  |  | 
|  | c[i - 1] = (uint32_t)A; | 
|  |  | 
|  | if (A >> 32) { | 
|  | subM(key, c); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Montgomery c[] = a[] * b[] / R % mod | 
|  | */ | 
|  | static void montMul(const struct vb2_public_key *key, | 
|  | uint32_t *c, | 
|  | const uint32_t *a, | 
|  | const uint32_t *b) | 
|  | { | 
|  | uint32_t i; | 
|  | for (i = 0; i < key->arrsize; ++i) { | 
|  | c[i] = 0; | 
|  | } | 
|  | for (i = 0; i < key->arrsize; ++i) { | 
|  | montMulAdd(key, c, a[i], b); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * In-place public exponentiation. (65537} | 
|  | * | 
|  | * @param key		Key to use in signing | 
|  | * @param inout		Input and output big-endian byte array | 
|  | * @param workbuf32	Work buffer; caller must verify this is | 
|  | *			(3 * key->arrsize) elements long. | 
|  | */ | 
|  | static void modpowF4(const struct vb2_public_key *key, uint8_t *inout, | 
|  | uint32_t *workbuf32) | 
|  | { | 
|  | uint32_t *a = workbuf32; | 
|  | uint32_t *aR = a + key->arrsize; | 
|  | uint32_t *aaR = aR + key->arrsize; | 
|  | uint32_t *aaa = aaR;  /* Re-use location. */ | 
|  | int i; | 
|  |  | 
|  | /* Convert from big endian byte array to little endian word array. */ | 
|  | for (i = 0; i < (int)key->arrsize; ++i) { | 
|  | uint32_t tmp = | 
|  | (inout[((key->arrsize - 1 - i) * 4) + 0] << 24) | | 
|  | (inout[((key->arrsize - 1 - i) * 4) + 1] << 16) | | 
|  | (inout[((key->arrsize - 1 - i) * 4) + 2] << 8) | | 
|  | (inout[((key->arrsize - 1 - i) * 4) + 3] << 0); | 
|  | a[i] = tmp; | 
|  | } | 
|  |  | 
|  | montMul(key, aR, a, key->rr);  /* aR = a * RR / R mod M   */ | 
|  | for (i = 0; i < 16; i+=2) { | 
|  | montMul(key, aaR, aR, aR);  /* aaR = aR * aR / R mod M */ | 
|  | montMul(key, aR, aaR, aaR);  /* aR = aaR * aaR / R mod M */ | 
|  | } | 
|  | montMul(key, aaa, aR, a);  /* aaa = aR * a / R mod M */ | 
|  |  | 
|  |  | 
|  | /* Make sure aaa < mod; aaa is at most 1x mod too large. */ | 
|  | if (vb2_mont_ge(key, aaa)) { | 
|  | subM(key, aaa); | 
|  | } | 
|  |  | 
|  | /* Convert to bigendian byte array */ | 
|  | for (i = (int)key->arrsize - 1; i >= 0; --i) { | 
|  | uint32_t tmp = aaa[i]; | 
|  | *inout++ = (uint8_t)(tmp >> 24); | 
|  | *inout++ = (uint8_t)(tmp >> 16); | 
|  | *inout++ = (uint8_t)(tmp >>  8); | 
|  | *inout++ = (uint8_t)(tmp >>  0); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | static const uint8_t crypto_to_sig[] = { | 
|  | VB2_SIG_RSA1024, | 
|  | VB2_SIG_RSA1024, | 
|  | VB2_SIG_RSA1024, | 
|  | VB2_SIG_RSA2048, | 
|  | VB2_SIG_RSA2048, | 
|  | VB2_SIG_RSA2048, | 
|  | VB2_SIG_RSA4096, | 
|  | VB2_SIG_RSA4096, | 
|  | VB2_SIG_RSA4096, | 
|  | VB2_SIG_RSA8192, | 
|  | VB2_SIG_RSA8192, | 
|  | VB2_SIG_RSA8192, | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * Convert vb2_crypto_algorithm to vb2_signature_algorithm. | 
|  | * | 
|  | * @param algorithm	Crypto algorithm (vb2_crypto_algorithm) | 
|  | * | 
|  | * @return The signature algorithm for that crypto algorithm, or | 
|  | * VB2_SIG_INVALID if the crypto algorithm or its corresponding signature | 
|  | * algorithm is invalid or not supported. | 
|  | */ | 
|  | enum vb2_signature_algorithm vb2_crypto_to_signature(uint32_t algorithm) | 
|  | { | 
|  | if (algorithm < ARRAY_SIZE(crypto_to_sig)) | 
|  | return crypto_to_sig[algorithm]; | 
|  | else | 
|  | return VB2_SIG_INVALID; | 
|  | } | 
|  |  | 
|  | uint32_t vb2_rsa_sig_size(enum vb2_signature_algorithm sig_alg) | 
|  | { | 
|  | switch (sig_alg) { | 
|  | case VB2_SIG_RSA1024: | 
|  | return 1024 / 8; | 
|  | case VB2_SIG_RSA2048: | 
|  | return 2048 / 8; | 
|  | case VB2_SIG_RSA4096: | 
|  | return 4096 / 8; | 
|  | case VB2_SIG_RSA8192: | 
|  | return 8192 / 8; | 
|  | default: | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | uint32_t vb2_packed_key_size(enum vb2_signature_algorithm sig_alg) | 
|  | { | 
|  | uint32_t sig_size = vb2_rsa_sig_size(sig_alg); | 
|  |  | 
|  | if (!sig_size) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * Total size needed by a RSAPublicKey buffer is = | 
|  | *  2 * key_len bytes for the n and rr arrays | 
|  | *  + sizeof len + sizeof n0inv. | 
|  | */ | 
|  | return 2 * sig_size + 2 * sizeof(uint32_t); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * PKCS 1.5 padding (from the RSA PKCS#1 v2.1 standard) | 
|  | * | 
|  | * Depending on the RSA key size and hash function, the padding is calculated | 
|  | * as follows: | 
|  | * | 
|  | * 0x00 || 0x01 || PS || 0x00 || T | 
|  | * | 
|  | * T: DER Encoded DigestInfo value which depends on the hash function used. | 
|  | * | 
|  | * SHA-1:   (0x)30 21 30 09 06 05 2b 0e 03 02 1a 05 00 04 14 || H. | 
|  | * SHA-256: (0x)30 31 30 0d 06 09 60 86 48 01 65 03 04 02 01 05 00 04 20 || H. | 
|  | * SHA-512: (0x)30 51 30 0d 06 09 60 86 48 01 65 03 04 02 03 05 00 04 40 || H. | 
|  | * | 
|  | * Length(T) = 35 octets for SHA-1 | 
|  | * Length(T) = 51 octets for SHA-256 | 
|  | * Length(T) = 83 octets for SHA-512 | 
|  | * | 
|  | * PS: octet string consisting of {Length(RSA Key) - Length(T) - 3} 0xFF | 
|  | */ | 
|  | static const uint8_t sha1_tail[] = { | 
|  | 0x00,0x30,0x21,0x30,0x09,0x06,0x05,0x2b, | 
|  | 0x0e,0x03,0x02,0x1a,0x05,0x00,0x04,0x14 | 
|  | }; | 
|  |  | 
|  | static const uint8_t sha256_tail[] = { | 
|  | 0x00,0x30,0x31,0x30,0x0d,0x06,0x09,0x60, | 
|  | 0x86,0x48,0x01,0x65,0x03,0x04,0x02,0x01, | 
|  | 0x05,0x00,0x04,0x20 | 
|  | }; | 
|  |  | 
|  | static const uint8_t sha512_tail[] = { | 
|  | 0x00,0x30,0x51,0x30,0x0d,0x06,0x09,0x60, | 
|  | 0x86,0x48,0x01,0x65,0x03,0x04,0x02,0x03, | 
|  | 0x05,0x00,0x04,0x40 | 
|  | }; | 
|  |  | 
|  | int vb2_check_padding(const uint8_t *sig, const struct vb2_public_key *key) | 
|  | { | 
|  | /* Determine padding to use depending on the signature type */ | 
|  | uint32_t sig_size = vb2_rsa_sig_size(key->sig_alg); | 
|  | uint32_t hash_size = vb2_digest_size(key->hash_alg); | 
|  | uint32_t pad_size = sig_size - hash_size; | 
|  | const uint8_t *tail; | 
|  | uint32_t tail_size; | 
|  | int result = 0; | 
|  | int i; | 
|  |  | 
|  | if (!sig_size || !hash_size || hash_size > sig_size) | 
|  | return VB2_ERROR_RSA_PADDING_SIZE; | 
|  |  | 
|  | switch (key->hash_alg) { | 
|  | case VB2_HASH_SHA1: | 
|  | tail = sha1_tail; | 
|  | tail_size = sizeof(sha1_tail); | 
|  | break; | 
|  | case VB2_HASH_SHA256: | 
|  | tail = sha256_tail; | 
|  | tail_size = sizeof(sha256_tail); | 
|  | break; | 
|  | case VB2_HASH_SHA512: | 
|  | tail = sha512_tail; | 
|  | tail_size = sizeof(sha512_tail); | 
|  | break; | 
|  | default: | 
|  | return VB2_ERROR_RSA_PADDING_ALGORITHM; | 
|  | } | 
|  |  | 
|  | /* First 2 bytes are always 0x00 0x01 */ | 
|  | result |= *sig++ ^ 0x00; | 
|  | result |= *sig++ ^ 0x01; | 
|  |  | 
|  | /* Then 0xff bytes until the tail */ | 
|  | for (i = 0; i < pad_size - tail_size - 2; i++) | 
|  | result |= *sig++ ^ 0xff; | 
|  |  | 
|  | /* | 
|  | * Then the tail.  Even though there are probably no timing issues | 
|  | * here, we use vb2_safe_memcmp() just to be on the safe side. | 
|  | */ | 
|  | result |= vb2_safe_memcmp(sig, tail, tail_size); | 
|  |  | 
|  | return result ? VB2_ERROR_RSA_PADDING : VB2_SUCCESS; | 
|  | } | 
|  |  | 
|  | int vb2_rsa_verify_digest(const struct vb2_public_key *key, | 
|  | uint8_t *sig, | 
|  | const uint8_t *digest, | 
|  | const struct vb2_workbuf *wb) | 
|  | { | 
|  | struct vb2_workbuf wblocal = *wb; | 
|  | uint32_t *workbuf32; | 
|  | uint32_t key_bytes; | 
|  | int sig_size; | 
|  | int pad_size; | 
|  | int rv; | 
|  |  | 
|  | if (!key || !sig || !digest) | 
|  | return VB2_ERROR_RSA_VERIFY_PARAM; | 
|  |  | 
|  | sig_size = vb2_rsa_sig_size(key->sig_alg); | 
|  | if (!sig_size) { | 
|  | VB2_DEBUG("Invalid signature type!\n"); | 
|  | return VB2_ERROR_RSA_VERIFY_ALGORITHM; | 
|  | } | 
|  |  | 
|  | /* Signature length should be same as key length */ | 
|  | key_bytes = key->arrsize * sizeof(uint32_t); | 
|  | if (key_bytes != sig_size) { | 
|  | VB2_DEBUG("Signature is of incorrect length!\n"); | 
|  | return VB2_ERROR_RSA_VERIFY_SIG_LEN; | 
|  | } | 
|  |  | 
|  | workbuf32 = vb2_workbuf_alloc(&wblocal, 3 * key_bytes); | 
|  | if (!workbuf32) { | 
|  | VB2_DEBUG("ERROR - vboot2 work buffer too small!\n"); | 
|  | return VB2_ERROR_RSA_VERIFY_WORKBUF; | 
|  | } | 
|  |  | 
|  | modpowF4(key, sig, workbuf32); | 
|  |  | 
|  | vb2_workbuf_free(&wblocal, 3 * key_bytes); | 
|  |  | 
|  | /* | 
|  | * Check padding.  Only fail immediately if the padding size is bad. | 
|  | * Otherwise, continue on to check the digest to reduce the risk of | 
|  | * timing based attacks. | 
|  | */ | 
|  | rv = vb2_check_padding(sig, key); | 
|  | if (rv == VB2_ERROR_RSA_PADDING_SIZE) | 
|  | return rv; | 
|  |  | 
|  | /* | 
|  | * Check digest.  Even though there are probably no timing issues here, | 
|  | * use vb2_safe_memcmp() just to be on the safe side.  (That's also why | 
|  | * we don't return before this check if the padding check failed.) | 
|  | */ | 
|  | pad_size = sig_size - vb2_digest_size(key->hash_alg); | 
|  | if (vb2_safe_memcmp(sig + pad_size, digest, key_bytes - pad_size)) { | 
|  | VB2_DEBUG("Digest check failed!\n"); | 
|  | if (!rv) | 
|  | rv = VB2_ERROR_RSA_VERIFY_DIGEST; | 
|  | } | 
|  |  | 
|  | return rv; | 
|  | } |