| /******************************************************************************* | 
 |  | 
 |   Intel PRO/1000 Linux driver | 
 |   Copyright(c) 1999 - 2008 Intel Corporation. | 
 |  | 
 |   This program is free software; you can redistribute it and/or modify it | 
 |   under the terms and conditions of the GNU General Public License, | 
 |   version 2, as published by the Free Software Foundation. | 
 |  | 
 |   This program is distributed in the hope it will be useful, but WITHOUT | 
 |   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | 
 |   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for | 
 |   more details. | 
 |  | 
 |   You should have received a copy of the GNU General Public License along with | 
 |   this program; if not, write to the Free Software Foundation, Inc., | 
 |   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. | 
 |  | 
 |   The full GNU General Public License is included in this distribution in | 
 |   the file called "COPYING". | 
 |  | 
 |   Contact Information: | 
 |   Linux NICS <linux.nics@intel.com> | 
 |   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> | 
 |   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 | 
 |  | 
 | *******************************************************************************/ | 
 |  | 
 | #include <vfs.h> | 
 | #include <kfs.h> | 
 | #include <slab.h> | 
 | #include <kmalloc.h> | 
 | #include <kref.h> | 
 | #include <string.h> | 
 | #include <stdio.h> | 
 | #include <assert.h> | 
 | #include <error.h> | 
 | #include <cpio.h> | 
 | #include <pmap.h> | 
 | #include <smp.h> | 
 | #include <ip.h> | 
 | #include "e1000_api.h" | 
 | #include "e1000_mac.h" | 
 | #include "e1000_nvm.h" | 
 |  | 
 | static int32_t e1000_validate_mdi_setting_generic(struct e1000_hw *hw); | 
 | static void e1000_set_lan_id_multi_port_pcie(struct e1000_hw *hw); | 
 |  | 
 | /** | 
 |  *  e1000_init_mac_ops_generic - Initialize MAC function pointers | 
 |  *  @hw: pointer to the HW structure | 
 |  * | 
 |  *  Setups up the function pointers to no-op functions | 
 |  **/ | 
 | void e1000_init_mac_ops_generic(struct e1000_hw *hw) | 
 | { | 
 | 	struct e1000_mac_info *mac = &hw->mac; | 
 | 	printd("e1000_init_mac_ops_generic"); | 
 |  | 
 | 	/* General Setup */ | 
 | 	mac->ops.init_params = e1000_null_ops_generic; | 
 | 	mac->ops.init_hw = e1000_null_ops_generic; | 
 | 	mac->ops.reset_hw = e1000_null_ops_generic; | 
 | 	mac->ops.setup_physical_interface = e1000_null_ops_generic; | 
 | 	mac->ops.get_bus_info = e1000_null_ops_generic; | 
 | 	mac->ops.set_lan_id = e1000_set_lan_id_multi_port_pcie; | 
 | 	mac->ops.read_mac_addr = e1000_read_mac_addr_generic; | 
 | 	mac->ops.config_collision_dist = e1000_config_collision_dist_generic; | 
 | 	mac->ops.clear_hw_cntrs = e1000_null_mac_generic; | 
 | 	/* LED */ | 
 | 	mac->ops.cleanup_led = e1000_null_ops_generic; | 
 | 	mac->ops.setup_led = e1000_null_ops_generic; | 
 | 	mac->ops.blink_led = e1000_null_ops_generic; | 
 | 	mac->ops.led_on = e1000_null_ops_generic; | 
 | 	mac->ops.led_off = e1000_null_ops_generic; | 
 | 	/* LINK */ | 
 | 	mac->ops.setup_link = e1000_null_ops_generic; | 
 | 	mac->ops.get_link_up_info = e1000_null_link_info; | 
 | 	mac->ops.check_for_link = e1000_null_ops_generic; | 
 | 	mac->ops.wait_autoneg = e1000_wait_autoneg_generic; | 
 | #if 0 | 
 | 	/* Management */ | 
 | 	mac->ops.check_mng_mode = e1000_null_mng_mode; | 
 | 	mac->ops.mng_host_if_write = e1000_mng_host_if_write_generic; | 
 | 	mac->ops.mng_write_cmd_header = e1000_mng_write_cmd_header_generic; | 
 | 	mac->ops.mng_enable_host_if = e1000_mng_enable_host_if_generic; | 
 | #endif | 
 | 	/* VLAN, MC, etc. */ | 
 | 	mac->ops.update_mc_addr_list = e1000_null_update_mc; | 
 | 	mac->ops.clear_vfta = e1000_null_mac_generic; | 
 | 	mac->ops.write_vfta = e1000_null_write_vfta; | 
 | 	mac->ops.mta_set = e1000_null_mta_set; | 
 | 	mac->ops.rar_set = e1000_rar_set_generic; | 
 | 	mac->ops.validate_mdi_setting = e1000_validate_mdi_setting_generic; | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000_null_ops_generic - No-op function, returns 0 | 
 |  *  @hw: pointer to the HW structure | 
 |  **/ | 
 | int32_t e1000_null_ops_generic(struct e1000_hw *hw) | 
 | { | 
 | 	printd("e1000_null_ops_generic"); | 
 | 	return E1000_SUCCESS; | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000_null_mac_generic - No-op function, return void | 
 |  *  @hw: pointer to the HW structure | 
 |  **/ | 
 | void e1000_null_mac_generic(struct e1000_hw *hw) | 
 | { | 
 | 	printd("e1000_null_mac_generic"); | 
 | 	return; | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000_null_link_info - No-op function, return 0 | 
 |  *  @hw: pointer to the HW structure | 
 |  **/ | 
 | int32_t e1000_null_link_info(struct e1000_hw * hw, uint16_t * s, uint16_t * d) | 
 | { | 
 | 	printd("e1000_null_link_info"); | 
 | 	return E1000_SUCCESS; | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000_null_mng_mode - No-op function, return false | 
 |  *  @hw: pointer to the HW structure | 
 |  **/ | 
 | bool e1000_null_mng_mode(struct e1000_hw * hw) | 
 | { | 
 | 	printd("e1000_null_mng_mode"); | 
 | 	return false; | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000_null_update_mc - No-op function, return void | 
 |  *  @hw: pointer to the HW structure | 
 |  **/ | 
 | void e1000_null_update_mc(struct e1000_hw *hw, uint8_t * h, uint32_t a) | 
 | { | 
 | 	printd("e1000_null_update_mc"); | 
 | 	return; | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000_null_write_vfta - No-op function, return void | 
 |  *  @hw: pointer to the HW structure | 
 |  **/ | 
 | void e1000_null_write_vfta(struct e1000_hw *hw, uint32_t a, uint32_t b) | 
 | { | 
 | 	printd("e1000_null_write_vfta"); | 
 | 	return; | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000_null_set_mta - No-op function, return void | 
 |  *  @hw: pointer to the HW structure | 
 |  **/ | 
 | void e1000_null_mta_set(struct e1000_hw *hw, uint32_t a) | 
 | { | 
 | 	printd("e1000_null_mta_set"); | 
 | 	return; | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000_null_rar_set - No-op function, return void | 
 |  *  @hw: pointer to the HW structure | 
 |  **/ | 
 | void e1000_null_rar_set(struct e1000_hw *hw, uint8_t * h, uint32_t a) | 
 | { | 
 | 	printd("e1000_null_rar_set"); | 
 | 	return; | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000_get_bus_info_pci_generic - Get PCI(x) bus information | 
 |  *  @hw: pointer to the HW structure | 
 |  * | 
 |  *  Determines and stores the system bus information for a particular | 
 |  *  network interface.  The following bus information is determined and stored: | 
 |  *  bus speed, bus width, type (PCI/PCIx), and PCI(-x) function. | 
 |  **/ | 
 | int32_t e1000_get_bus_info_pci_generic(struct e1000_hw * hw) | 
 | { | 
 | #if 0 | 
 | 	struct e1000_mac_info *mac = &hw->mac; | 
 | 	struct e1000_bus_info *bus = &hw->bus; | 
 | 	u32 status = E1000_READ_REG(hw, E1000_STATUS); | 
 | 	s32 ret_val = E1000_SUCCESS; | 
 |  | 
 | 	DEBUGFUNC("e1000_get_bus_info_pci_generic"); | 
 |  | 
 | 	/* PCI or PCI-X? */ | 
 | 	bus->type = (status & E1000_STATUS_PCIX_MODE) | 
 | 		? e1000_bus_type_pcix : e1000_bus_type_pci; | 
 |  | 
 | 	/* Bus speed */ | 
 | 	if (bus->type == e1000_bus_type_pci) { | 
 | 		bus->speed = (status & E1000_STATUS_PCI66) | 
 | 			? e1000_bus_speed_66 : e1000_bus_speed_33; | 
 | 	} else { | 
 | 		switch (status & E1000_STATUS_PCIX_SPEED) { | 
 | 			case E1000_STATUS_PCIX_SPEED_66: | 
 | 				bus->speed = e1000_bus_speed_66; | 
 | 				break; | 
 | 			case E1000_STATUS_PCIX_SPEED_100: | 
 | 				bus->speed = e1000_bus_speed_100; | 
 | 				break; | 
 | 			case E1000_STATUS_PCIX_SPEED_133: | 
 | 				bus->speed = e1000_bus_speed_133; | 
 | 				break; | 
 | 			default: | 
 | 				bus->speed = e1000_bus_speed_reserved; | 
 | 				break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Bus width */ | 
 | 	bus->width = (status & E1000_STATUS_BUS64) | 
 | 		? e1000_bus_width_64 : e1000_bus_width_32; | 
 |  | 
 | 	/* Which PCI(-X) function? */ | 
 | 	mac->ops.set_lan_id(hw); | 
 |  | 
 | 	return ret_val; | 
 | #endif | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000_get_bus_info_pcie_generic - Get PCIe bus information | 
 |  *  @hw: pointer to the HW structure | 
 |  * | 
 |  *  Determines and stores the system bus information for a particular | 
 |  *  network interface.  The following bus information is determined and stored: | 
 |  *  bus speed, bus width, type (PCIe), and PCIe function. | 
 |  **/ | 
 | int32_t e1000_get_bus_info_pcie_generic(struct e1000_hw * hw) | 
 | { | 
 | #if 0 | 
 | 	struct e1000_mac_info *mac = &hw->mac; | 
 | 	struct e1000_bus_info *bus = &hw->bus; | 
 |  | 
 | 	s32 ret_val; | 
 | 	u16 pcie_link_status; | 
 |  | 
 | 	DEBUGFUNC("e1000_get_bus_info_pcie_generic"); | 
 |  | 
 | 	bus->type = e1000_bus_type_pci_express; | 
 | 	bus->speed = e1000_bus_speed_2500; | 
 |  | 
 | 	ret_val = e1000_read_pcie_cap_reg(hw, PCIE_LINK_STATUS, &pcie_link_status); | 
 | 	if (ret_val) | 
 | 		bus->width = e1000_bus_width_unknown; | 
 | 	else | 
 | 		bus->width = (enum e1000_bus_width)((pcie_link_status & | 
 | 											 PCIE_LINK_WIDTH_MASK) >> | 
 | 											PCIE_LINK_WIDTH_SHIFT); | 
 |  | 
 | 	mac->ops.set_lan_id(hw); | 
 |  | 
 | 	return E1000_SUCCESS; | 
 | #endif | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices | 
 |  * | 
 |  *  @hw: pointer to the HW structure | 
 |  * | 
 |  *  Determines the LAN function id by reading memory-mapped registers | 
 |  *  and swaps the port value if requested. | 
 |  **/ | 
 | static void e1000_set_lan_id_multi_port_pcie(struct e1000_hw *hw) | 
 | { | 
 | 	struct e1000_bus_info *bus = &hw->bus; | 
 | 	uint32_t reg; | 
 |  | 
 | 	/* | 
 | 	 * The status register reports the correct function number | 
 | 	 * for the device regardless of function swap state. | 
 | 	 */ | 
 | 	reg = E1000_READ_REG((int)hw, E1000_STATUS); | 
 | 	bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT; | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000_set_lan_id_multi_port_pci - Set LAN id for PCI multiple port devices | 
 |  *  @hw: pointer to the HW structure | 
 |  * | 
 |  *  Determines the LAN function id by reading PCI config space. | 
 |  **/ | 
 | void e1000_set_lan_id_multi_port_pci(struct e1000_hw *hw) | 
 | { | 
 | 	struct e1000_bus_info *bus = &hw->bus; | 
 | 	uint16_t pci_header_type; | 
 | 	uint32_t status; | 
 |  | 
 | 	e1000_read_pci_cfg(hw, PCI_HEADER_TYPE_REGISTER, &pci_header_type); | 
 | 	if (pci_header_type & PCI_HEADER_TYPE_MULTIFUNC) { | 
 | 		status = E1000_READ_REG((int)hw, E1000_STATUS); | 
 | 		bus->func = (status & E1000_STATUS_FUNC_MASK) | 
 | 			>> E1000_STATUS_FUNC_SHIFT; | 
 | 	} else { | 
 | 		bus->func = 0; | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000_set_lan_id_single_port - Set LAN id for a single port device | 
 |  *  @hw: pointer to the HW structure | 
 |  * | 
 |  *  Sets the LAN function id to zero for a single port device. | 
 |  **/ | 
 | void e1000_set_lan_id_single_port(struct e1000_hw *hw) | 
 | { | 
 | 	struct e1000_bus_info *bus = &hw->bus; | 
 |  | 
 | 	bus->func = 0; | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000_clear_vfta_generic - Clear VLAN filter table | 
 |  *  @hw: pointer to the HW structure | 
 |  * | 
 |  *  Clears the register array which contains the VLAN filter table by | 
 |  *  setting all the values to 0. | 
 |  **/ | 
 | void e1000_clear_vfta_generic(struct e1000_hw *hw) | 
 | { | 
 | 	uint32_t offset; | 
 |  | 
 | 	printd("e1000_clear_vfta_generic"); | 
 |  | 
 | 	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) { | 
 | 		E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, 0); | 
 | 		E1000_WRITE_FLUSH(hw); | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000_write_vfta_generic - Write value to VLAN filter table | 
 |  *  @hw: pointer to the HW structure | 
 |  *  @offset: register offset in VLAN filter table | 
 |  *  @value: register value written to VLAN filter table | 
 |  * | 
 |  *  Writes value at the given offset in the register array which stores | 
 |  *  the VLAN filter table. | 
 |  **/ | 
 | void e1000_write_vfta_generic(struct e1000_hw *hw, uint32_t offset, | 
 | 							  uint32_t value) | 
 | { | 
 | 	printd("e1000_write_vfta_generic"); | 
 |  | 
 | 	E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value); | 
 | 	E1000_WRITE_FLUSH(hw); | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000_init_rx_addrs_generic - Initialize receive address's | 
 |  *  @hw: pointer to the HW structure | 
 |  *  @rar_count: receive address registers | 
 |  * | 
 |  *  Setups the receive address registers by setting the base receive address | 
 |  *  register to the devices MAC address and clearing all the other receive | 
 |  *  address registers to 0. | 
 |  **/ | 
 | void e1000_init_rx_addrs_generic(struct e1000_hw *hw, uint16_t rar_count) | 
 | { | 
 | 	uint32_t i; | 
 | 	uint8_t mac_addr[ETH_ADDR_LEN] = { 0 }; | 
 |  | 
 | 	printd("e1000_init_rx_addrs_generic"); | 
 |  | 
 | 	/* Setup the receive address */ | 
 | 	DEBUGOUT("Programming MAC Address into RAR[0]\n"); | 
 |  | 
 | 	hw->mac.ops.rar_set(hw, hw->mac.addr, 0); | 
 |  | 
 | 	/* Zero out the other (rar_entry_count - 1) receive addresses */ | 
 | 	DEBUGOUT1("Clearing RAR[1-%u]\n", rar_count - 1); | 
 | 	for (i = 1; i < rar_count; i++) | 
 | 		hw->mac.ops.rar_set(hw, mac_addr, i); | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000_check_alt_mac_addr_generic - Check for alternate MAC addr | 
 |  *  @hw: pointer to the HW structure | 
 |  * | 
 |  *  Checks the nvm for an alternate MAC address.  An alternate MAC address | 
 |  *  can be setup by pre-boot software and must be treated like a permanent | 
 |  *  address and must override the actual permanent MAC address. If an | 
 |  *  alternate MAC address is found it is programmed into RAR0, replacing | 
 |  *  the permanent address that was installed into RAR0 by the Si on reset. | 
 |  *  This function will return SUCCESS unless it encounters an error while | 
 |  *  reading the EEPROM. | 
 |  **/ | 
 | int32_t e1000_check_alt_mac_addr_generic(struct e1000_hw *hw) | 
 | { | 
 | 	uint32_t i; | 
 | 	int32_t ret_val = E1000_SUCCESS; | 
 | 	uint16_t offset, nvm_alt_mac_addr_offset, nvm_data; | 
 | 	uint8_t alt_mac_addr[ETH_ADDR_LEN]; | 
 |  | 
 | 	printd("e1000_check_alt_mac_addr_generic"); | 
 |  | 
 | 	ret_val = hw->nvm.ops.read(hw, NVM_ALT_MAC_ADDR_PTR, 1, | 
 | 							   &nvm_alt_mac_addr_offset); | 
 | 	if (ret_val) { | 
 | 		DEBUGOUT("NVM Read Error\n"); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (nvm_alt_mac_addr_offset == 0xFFFF) { | 
 | 		/* There is no Alternate MAC Address */ | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (hw->bus.func == E1000_FUNC_1) | 
 | 		nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1; | 
 | 	for (i = 0; i < ETH_ADDR_LEN; i += 2) { | 
 | 		offset = nvm_alt_mac_addr_offset + (i >> 1); | 
 | 		ret_val = hw->nvm.ops.read(hw, offset, 1, &nvm_data); | 
 | 		if (ret_val) { | 
 | 			DEBUGOUT("NVM Read Error\n"); | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		alt_mac_addr[i] = (uint8_t) (nvm_data & 0xFF); | 
 | 		alt_mac_addr[i + 1] = (uint8_t) (nvm_data >> 8); | 
 | 	} | 
 |  | 
 | 	/* if multicast bit is set, the alternate address will not be used */ | 
 | 	if (alt_mac_addr[0] & 0x01) { | 
 | 		DEBUGOUT("Ignoring Alternate Mac Address with MC bit set\n"); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * We have a valid alternate MAC address, and we want to treat it the | 
 | 	 * same as the normal permanent MAC address stored by the HW into the | 
 | 	 * RAR. Do this by mapping this address into RAR0. | 
 | 	 */ | 
 | 	hw->mac.ops.rar_set(hw, alt_mac_addr, 0); | 
 |  | 
 | out: | 
 | 	return ret_val; | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000_rar_set_generic - Set receive address register | 
 |  *  @hw: pointer to the HW structure | 
 |  *  @addr: pointer to the receive address | 
 |  *  @index: receive address array register | 
 |  * | 
 |  *  Sets the receive address array register at index to the address passed | 
 |  *  in by addr. | 
 |  **/ | 
 | void e1000_rar_set_generic(struct e1000_hw *hw, uint8_t * addr, uint32_t index) | 
 | { | 
 | 	uint32_t rar_low, rar_high; | 
 |  | 
 | 	printd("e1000_rar_set_generic"); | 
 |  | 
 | 	/* | 
 | 	 * HW expects these in little endian so we reverse the byte order | 
 | 	 * from network order (big endian) to little endian | 
 | 	 */ | 
 | 	rar_low = ((uint32_t) addr[0] | | 
 | 			   ((uint32_t) addr[1] << 8) | | 
 | 			   ((uint32_t) addr[2] << 16) | ((uint32_t) addr[3] << 24)); | 
 |  | 
 | 	rar_high = ((uint32_t) addr[4] | ((uint32_t) addr[5] << 8)); | 
 |  | 
 | 	/* If MAC address zero, no need to set the AV bit */ | 
 | 	if (rar_low || rar_high) | 
 | 		rar_high |= E1000_RAH_AV; | 
 |  | 
 | 	/* | 
 | 	 * Some bridges will combine consecutive 32-bit writes into | 
 | 	 * a single burst write, which will malfunction on some parts. | 
 | 	 * The flushes avoid this. | 
 | 	 */ | 
 | 	E1000_WRITE_REG(hw, E1000_RAL(index), rar_low); | 
 | 	E1000_WRITE_FLUSH(hw); | 
 | 	E1000_WRITE_REG(hw, E1000_RAH(index), rar_high); | 
 | 	E1000_WRITE_FLUSH(hw); | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000_mta_set_generic - Set multicast filter table address | 
 |  *  @hw: pointer to the HW structure | 
 |  *  @hash_value: determines the MTA register and bit to set | 
 |  * | 
 |  *  The multicast table address is a register array of 32-bit registers. | 
 |  *  The hash_value is used to determine what register the bit is in, the | 
 |  *  current value is read, the new bit is OR'd in and the new value is | 
 |  *  written back into the register. | 
 |  **/ | 
 | void e1000_mta_set_generic(struct e1000_hw *hw, uint32_t hash_value) | 
 | { | 
 | 	uint32_t hash_bit, hash_reg, mta; | 
 |  | 
 | 	printd("e1000_mta_set_generic"); | 
 | 	/* | 
 | 	 * The MTA is a register array of 32-bit registers. It is | 
 | 	 * treated like an array of (32*mta_reg_count) bits.  We want to | 
 | 	 * set bit BitArray[hash_value]. So we figure out what register | 
 | 	 * the bit is in, read it, OR in the new bit, then write | 
 | 	 * back the new value.  The (hw->mac.mta_reg_count - 1) serves as a | 
 | 	 * mask to bits 31:5 of the hash value which gives us the | 
 | 	 * register we're modifying.  The hash bit within that register | 
 | 	 * is determined by the lower 5 bits of the hash value. | 
 | 	 */ | 
 | 	hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1); | 
 | 	hash_bit = hash_value & 0x1F; | 
 |  | 
 | 	mta = E1000_READ_REG_ARRAY(hw, E1000_MTA, hash_reg); | 
 |  | 
 | 	mta |= (1 << hash_bit); | 
 |  | 
 | 	E1000_WRITE_REG_ARRAY(hw, E1000_MTA, hash_reg, mta); | 
 | 	E1000_WRITE_FLUSH(hw); | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000_update_mc_addr_list_generic - Update Multicast addresses | 
 |  *  @hw: pointer to the HW structure | 
 |  *  @mc_addr_list: array of multicast addresses to program | 
 |  *  @mc_addr_count: number of multicast addresses to program | 
 |  * | 
 |  *  Updates entire Multicast Table Array. | 
 |  *  The caller must have a packed mc_addr_list of multicast addresses. | 
 |  **/ | 
 | void e1000_update_mc_addr_list_generic(struct e1000_hw *hw, | 
 | 									   uint8_t * mc_addr_list, | 
 | 									   uint32_t mc_addr_count) | 
 | { | 
 | 	uint32_t hash_value, hash_bit, hash_reg; | 
 | 	int i; | 
 |  | 
 | 	printd("e1000_update_mc_addr_list_generic"); | 
 |  | 
 | 	/* clear mta_shadow */ | 
 | 	memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow)); | 
 |  | 
 | 	/* update mta_shadow from mc_addr_list */ | 
 | 	for (i = 0; (uint32_t) i < mc_addr_count; i++) { | 
 | 		hash_value = e1000_hash_mc_addr_generic(hw, mc_addr_list); | 
 |  | 
 | 		hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1); | 
 | 		hash_bit = hash_value & 0x1F; | 
 |  | 
 | 		hw->mac.mta_shadow[hash_reg] |= (1 << hash_bit); | 
 | 		mc_addr_list += (ETH_ADDR_LEN); | 
 | 	} | 
 |  | 
 | 	/* replace the entire MTA table */ | 
 | 	for (i = hw->mac.mta_reg_count - 1; i >= 0; i--) | 
 | 		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, hw->mac.mta_shadow[i]); | 
 | 	E1000_WRITE_FLUSH(hw); | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000_hash_mc_addr_generic - Generate a multicast hash value | 
 |  *  @hw: pointer to the HW structure | 
 |  *  @mc_addr: pointer to a multicast address | 
 |  * | 
 |  *  Generates a multicast address hash value which is used to determine | 
 |  *  the multicast filter table array address and new table value.  See | 
 |  *  e1000_mta_set_generic() | 
 |  **/ | 
 | uint32_t e1000_hash_mc_addr_generic(struct e1000_hw *hw, uint8_t * mc_addr) | 
 | { | 
 | 	uint32_t hash_value, hash_mask; | 
 | 	uint8_t bit_shift = 0; | 
 |  | 
 | 	printd("e1000_hash_mc_addr_generic"); | 
 |  | 
 | 	/* Register count multiplied by bits per register */ | 
 | 	hash_mask = (hw->mac.mta_reg_count * 32) - 1; | 
 |  | 
 | 	/* | 
 | 	 * For a mc_filter_type of 0, bit_shift is the number of left-shifts | 
 | 	 * where 0xFF would still fall within the hash mask. | 
 | 	 */ | 
 | 	while (hash_mask >> bit_shift != 0xFF) | 
 | 		bit_shift++; | 
 |  | 
 | 	/* | 
 | 	 * The portion of the address that is used for the hash table | 
 | 	 * is determined by the mc_filter_type setting. | 
 | 	 * The algorithm is such that there is a total of 8 bits of shifting. | 
 | 	 * The bit_shift for a mc_filter_type of 0 represents the number of | 
 | 	 * left-shifts where the MSB of mc_addr[5] would still fall within | 
 | 	 * the hash_mask.  Case 0 does this exactly.  Since there are a total | 
 | 	 * of 8 bits of shifting, then mc_addr[4] will shift right the | 
 | 	 * remaining number of bits. Thus 8 - bit_shift.  The rest of the | 
 | 	 * cases are a variation of this algorithm...essentially raising the | 
 | 	 * number of bits to shift mc_addr[5] left, while still keeping the | 
 | 	 * 8-bit shifting total. | 
 | 	 * | 
 | 	 * For example, given the following Destination MAC Address and an | 
 | 	 * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask), | 
 | 	 * we can see that the bit_shift for case 0 is 4.  These are the hash | 
 | 	 * values resulting from each mc_filter_type... | 
 | 	 * [0] [1] [2] [3] [4] [5] | 
 | 	 * 01  AA  00  12  34  56 | 
 | 	 * LSB                 MSB | 
 | 	 * | 
 | 	 * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563 | 
 | 	 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6 | 
 | 	 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163 | 
 | 	 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634 | 
 | 	 */ | 
 | 	switch (hw->mac.mc_filter_type) { | 
 | 		default: | 
 | 		case 0: | 
 | 			break; | 
 | 		case 1: | 
 | 			bit_shift += 1; | 
 | 			break; | 
 | 		case 2: | 
 | 			bit_shift += 2; | 
 | 			break; | 
 | 		case 3: | 
 | 			bit_shift += 4; | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) | | 
 | 							   (((uint16_t) mc_addr[5]) << bit_shift))); | 
 |  | 
 | 	return hash_value; | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000_pcix_mmrbc_workaround_generic - Fix incorrect MMRBC value | 
 |  *  @hw: pointer to the HW structure | 
 |  * | 
 |  *  In certain situations, a system BIOS may report that the PCIx maximum | 
 |  *  memory read byte count (MMRBC) value is higher than than the actual | 
 |  *  value. We check the PCIx command register with the current PCIx status | 
 |  *  register. | 
 |  **/ | 
 | void e1000_pcix_mmrbc_workaround_generic(struct e1000_hw *hw) | 
 | { | 
 | 	uint16_t cmd_mmrbc; | 
 | 	uint16_t pcix_cmd; | 
 | 	uint16_t pcix_stat_hi_word; | 
 | 	uint16_t stat_mmrbc; | 
 |  | 
 | 	printd("e1000_pcix_mmrbc_workaround_generic"); | 
 |  | 
 | 	/* Workaround for PCI-X issue when BIOS sets MMRBC incorrectly */ | 
 | 	if (hw->bus.type != e1000_bus_type_pcix) | 
 | 		return; | 
 |  | 
 | 	e1000_read_pci_cfg(hw, PCIX_COMMAND_REGISTER, &pcix_cmd); | 
 | 	e1000_read_pci_cfg(hw, PCIX_STATUS_REGISTER_HI, &pcix_stat_hi_word); | 
 | 	cmd_mmrbc = (pcix_cmd & PCIX_COMMAND_MMRBC_MASK) >> | 
 | 		PCIX_COMMAND_MMRBC_SHIFT; | 
 | 	stat_mmrbc = (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >> | 
 | 		PCIX_STATUS_HI_MMRBC_SHIFT; | 
 | 	if (stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K) | 
 | 		stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K; | 
 | 	if (cmd_mmrbc > stat_mmrbc) { | 
 | 		pcix_cmd &= ~PCIX_COMMAND_MMRBC_MASK; | 
 | 		pcix_cmd |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT; | 
 | 		e1000_write_pci_cfg(hw, PCIX_COMMAND_REGISTER, &pcix_cmd); | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000_clear_hw_cntrs_base_generic - Clear base hardware counters | 
 |  *  @hw: pointer to the HW structure | 
 |  * | 
 |  *  Clears the base hardware counters by reading the counter registers. | 
 |  **/ | 
 | void e1000_clear_hw_cntrs_base_generic(struct e1000_hw *hw) | 
 | { | 
 | 	printd("e1000_clear_hw_cntrs_base_generic"); | 
 |  | 
 | #if 0 | 
 | 	E1000_READ_REG(hw, E1000_CRCERRS); | 
 | 	E1000_READ_REG(hw, E1000_SYMERRS); | 
 | 	E1000_READ_REG(hw, E1000_MPC); | 
 | 	E1000_READ_REG(hw, E1000_SCC); | 
 | 	E1000_READ_REG(hw, E1000_ECOL); | 
 | 	E1000_READ_REG(hw, E1000_MCC); | 
 | 	E1000_READ_REG(hw, E1000_LATECOL); | 
 | 	E1000_READ_REG(hw, E1000_COLC); | 
 | 	E1000_READ_REG(hw, E1000_DC); | 
 | 	E1000_READ_REG(hw, E1000_SEC); | 
 | 	E1000_READ_REG(hw, E1000_RLEC); | 
 | 	E1000_READ_REG(hw, E1000_XONRXC); | 
 | 	E1000_READ_REG(hw, E1000_XONTXC); | 
 | 	E1000_READ_REG(hw, E1000_XOFFRXC); | 
 | 	E1000_READ_REG(hw, E1000_XOFFTXC); | 
 | 	E1000_READ_REG(hw, E1000_FCRUC); | 
 | 	E1000_READ_REG(hw, E1000_GPRC); | 
 | 	E1000_READ_REG(hw, E1000_BPRC); | 
 | 	E1000_READ_REG(hw, E1000_MPRC); | 
 | 	E1000_READ_REG(hw, E1000_GPTC); | 
 | 	E1000_READ_REG(hw, E1000_GORCL); | 
 | 	E1000_READ_REG(hw, E1000_GORCH); | 
 | 	E1000_READ_REG(hw, E1000_GOTCL); | 
 | 	E1000_READ_REG(hw, E1000_GOTCH); | 
 | 	E1000_READ_REG(hw, E1000_RNBC); | 
 | 	E1000_READ_REG(hw, E1000_RUC); | 
 | 	E1000_READ_REG(hw, E1000_RFC); | 
 | 	E1000_READ_REG(hw, E1000_ROC); | 
 | 	E1000_READ_REG(hw, E1000_RJC); | 
 | 	E1000_READ_REG(hw, E1000_TORL); | 
 | 	E1000_READ_REG(hw, E1000_TORH); | 
 | 	E1000_READ_REG(hw, E1000_TOTL); | 
 | 	E1000_READ_REG(hw, E1000_TOTH); | 
 | 	E1000_READ_REG(hw, E1000_TPR); | 
 | 	E1000_READ_REG(hw, E1000_TPT); | 
 | 	E1000_READ_REG(hw, E1000_MPTC); | 
 | 	E1000_READ_REG(hw, E1000_BPTC); | 
 | #endif | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000_check_for_copper_link_generic - Check for link (Copper) | 
 |  *  @hw: pointer to the HW structure | 
 |  * | 
 |  *  Checks to see of the link status of the hardware has changed.  If a | 
 |  *  change in link status has been detected, then we read the PHY registers | 
 |  *  to get the current speed/duplex if link exists. | 
 |  **/ | 
 | int32_t e1000_check_for_copper_link_generic(struct e1000_hw *hw) | 
 | { | 
 | 	struct e1000_mac_info *mac = &hw->mac; | 
 | 	int32_t ret_val; | 
 | 	bool link; | 
 |  | 
 | 	printd("e1000_check_for_copper_link"); | 
 |  | 
 | 	/* | 
 | 	 * We only want to go out to the PHY registers to see if Auto-Neg | 
 | 	 * has completed and/or if our link status has changed.  The | 
 | 	 * get_link_status flag is set upon receiving a Link Status | 
 | 	 * Change or Rx Sequence Error interrupt. | 
 | 	 */ | 
 | 	if (!mac->get_link_status) { | 
 | 		ret_val = E1000_SUCCESS; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * First we want to see if the MII Status Register reports | 
 | 	 * link.  If so, then we want to get the current speed/duplex | 
 | 	 * of the PHY. | 
 | 	 */ | 
 | 	ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link); | 
 | 	if (ret_val) | 
 | 		goto out; | 
 |  | 
 | 	if (!link) | 
 | 		goto out;	/* No link detected */ | 
 |  | 
 | 	mac->get_link_status = false; | 
 |  | 
 | 	/* | 
 | 	 * Check if there was DownShift, must be checked | 
 | 	 * immediately after link-up | 
 | 	 */ | 
 | 	e1000_check_downshift_generic(hw); | 
 |  | 
 | 	/* | 
 | 	 * If we are forcing speed/duplex, then we simply return since | 
 | 	 * we have already determined whether we have link or not. | 
 | 	 */ | 
 | 	if (!mac->autoneg) { | 
 | 		ret_val = -E1000_ERR_CONFIG; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Auto-Neg is enabled.  Auto Speed Detection takes care | 
 | 	 * of MAC speed/duplex configuration.  So we only need to | 
 | 	 * configure Collision Distance in the MAC. | 
 | 	 */ | 
 | 	e1000_config_collision_dist_generic(hw); | 
 |  | 
 | 	/* | 
 | 	 * Configure Flow Control now that Auto-Neg has completed. | 
 | 	 * First, we need to restore the desired flow control | 
 | 	 * settings because we may have had to re-autoneg with a | 
 | 	 * different link partner. | 
 | 	 */ | 
 | 	ret_val = e1000_config_fc_after_link_up_generic(hw); | 
 | 	if (ret_val) | 
 | 		DEBUGOUT("Error configuring flow control\n"); | 
 |  | 
 | out: | 
 | 	return ret_val; | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000_check_for_fiber_link_generic - Check for link (Fiber) | 
 |  *  @hw: pointer to the HW structure | 
 |  * | 
 |  *  Checks for link up on the hardware.  If link is not up and we have | 
 |  *  a signal, then we need to force link up. | 
 |  **/ | 
 | int32_t e1000_check_for_fiber_link_generic(struct e1000_hw * hw) | 
 | { | 
 | 	struct e1000_mac_info *mac = &hw->mac; | 
 | 	uint32_t rxcw; | 
 | 	uint32_t ctrl; | 
 | 	uint32_t status; | 
 | 	int32_t ret_val = E1000_SUCCESS; | 
 |  | 
 | 	printd("e1000_check_for_fiber_link_generic"); | 
 |  | 
 | 	ctrl = E1000_READ_REG(hw, E1000_CTRL); | 
 | 	status = E1000_READ_REG(hw, E1000_STATUS); | 
 | 	rxcw = E1000_READ_REG(hw, E1000_RXCW); | 
 |  | 
 | 	/* | 
 | 	 * If we don't have link (auto-negotiation failed or link partner | 
 | 	 * cannot auto-negotiate), the cable is plugged in (we have signal), | 
 | 	 * and our link partner is not trying to auto-negotiate with us (we | 
 | 	 * are receiving idles or data), we need to force link up. We also | 
 | 	 * need to give auto-negotiation time to complete, in case the cable | 
 | 	 * was just plugged in. The autoneg_failed flag does this. | 
 | 	 */ | 
 | 	/* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */ | 
 | 	if ((ctrl & E1000_CTRL_SWDPIN1) && (!(status & E1000_STATUS_LU)) && | 
 | 		(!(rxcw & E1000_RXCW_C))) { | 
 | 		if (mac->autoneg_failed == 0) { | 
 | 			mac->autoneg_failed = 1; | 
 | 			goto out; | 
 | 		} | 
 | 		DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\n"); | 
 |  | 
 | 		/* Disable auto-negotiation in the TXCW register */ | 
 | 		E1000_WRITE_REG(hw, E1000_TXCW, (mac->txcw & ~E1000_TXCW_ANE)); | 
 |  | 
 | 		/* Force link-up and also force full-duplex. */ | 
 | 		ctrl = E1000_READ_REG(hw, E1000_CTRL); | 
 | 		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD); | 
 | 		E1000_WRITE_REG(hw, E1000_CTRL, ctrl); | 
 |  | 
 | 		/* Configure Flow Control after forcing link up. */ | 
 | 		ret_val = e1000_config_fc_after_link_up_generic(hw); | 
 | 		if (ret_val) { | 
 | 			DEBUGOUT("Error configuring flow control\n"); | 
 | 			goto out; | 
 | 		} | 
 | 	} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) { | 
 | 		/* | 
 | 		 * If we are forcing link and we are receiving /C/ ordered | 
 | 		 * sets, re-enable auto-negotiation in the TXCW register | 
 | 		 * and disable forced link in the Device Control register | 
 | 		 * in an attempt to auto-negotiate with our link partner. | 
 | 		 */ | 
 | 		DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\n"); | 
 | 		E1000_WRITE_REG(hw, E1000_TXCW, mac->txcw); | 
 | 		E1000_WRITE_REG(hw, E1000_CTRL, (ctrl & ~E1000_CTRL_SLU)); | 
 |  | 
 | 		mac->serdes_has_link = true; | 
 | 	} | 
 |  | 
 | out: | 
 | 	return ret_val; | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000_check_for_serdes_link_generic - Check for link (Serdes) | 
 |  *  @hw: pointer to the HW structure | 
 |  * | 
 |  *  Checks for link up on the hardware.  If link is not up and we have | 
 |  *  a signal, then we need to force link up. | 
 |  **/ | 
 | int32_t e1000_check_for_serdes_link_generic(struct e1000_hw * hw) | 
 | { | 
 | 	struct e1000_mac_info *mac = &hw->mac; | 
 | 	uint32_t rxcw; | 
 | 	uint32_t ctrl; | 
 | 	uint32_t status; | 
 | 	int32_t ret_val = E1000_SUCCESS; | 
 |  | 
 | 	printd("e1000_check_for_serdes_link_generic"); | 
 |  | 
 | 	ctrl = E1000_READ_REG(hw, E1000_CTRL); | 
 | 	status = E1000_READ_REG(hw, E1000_STATUS); | 
 | 	rxcw = E1000_READ_REG(hw, E1000_RXCW); | 
 |  | 
 | 	/* | 
 | 	 * If we don't have link (auto-negotiation failed or link partner | 
 | 	 * cannot auto-negotiate), and our link partner is not trying to | 
 | 	 * auto-negotiate with us (we are receiving idles or data), | 
 | 	 * we need to force link up. We also need to give auto-negotiation | 
 | 	 * time to complete. | 
 | 	 */ | 
 | 	/* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */ | 
 | 	if ((!(status & E1000_STATUS_LU)) && (!(rxcw & E1000_RXCW_C))) { | 
 | 		if (mac->autoneg_failed == 0) { | 
 | 			mac->autoneg_failed = 1; | 
 | 			goto out; | 
 | 		} | 
 | 		DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\n"); | 
 |  | 
 | 		/* Disable auto-negotiation in the TXCW register */ | 
 | 		E1000_WRITE_REG(hw, E1000_TXCW, (mac->txcw & ~E1000_TXCW_ANE)); | 
 |  | 
 | 		/* Force link-up and also force full-duplex. */ | 
 | 		ctrl = E1000_READ_REG(hw, E1000_CTRL); | 
 | 		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD); | 
 | 		E1000_WRITE_REG(hw, E1000_CTRL, ctrl); | 
 |  | 
 | 		/* Configure Flow Control after forcing link up. */ | 
 | 		ret_val = e1000_config_fc_after_link_up_generic(hw); | 
 | 		if (ret_val) { | 
 | 			DEBUGOUT("Error configuring flow control\n"); | 
 | 			goto out; | 
 | 		} | 
 | 	} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) { | 
 | 		/* | 
 | 		 * If we are forcing link and we are receiving /C/ ordered | 
 | 		 * sets, re-enable auto-negotiation in the TXCW register | 
 | 		 * and disable forced link in the Device Control register | 
 | 		 * in an attempt to auto-negotiate with our link partner. | 
 | 		 */ | 
 | 		DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\n"); | 
 | 		E1000_WRITE_REG(hw, E1000_TXCW, mac->txcw); | 
 | 		E1000_WRITE_REG(hw, E1000_CTRL, (ctrl & ~E1000_CTRL_SLU)); | 
 |  | 
 | 		mac->serdes_has_link = true; | 
 | 	} else if (!(E1000_TXCW_ANE & E1000_READ_REG(hw, E1000_TXCW))) { | 
 | 		/* | 
 | 		 * If we force link for non-auto-negotiation switch, check | 
 | 		 * link status based on MAC synchronization for internal | 
 | 		 * serdes media type. | 
 | 		 */ | 
 | 		/* SYNCH bit and IV bit are sticky. */ | 
 | 		usec_delay(10); | 
 | 		rxcw = E1000_READ_REG(hw, E1000_RXCW); | 
 | 		if (rxcw & E1000_RXCW_SYNCH) { | 
 | 			if (!(rxcw & E1000_RXCW_IV)) { | 
 | 				mac->serdes_has_link = true; | 
 | 				DEBUGOUT("SERDES: Link up - forced.\n"); | 
 | 			} | 
 | 		} else { | 
 | 			mac->serdes_has_link = false; | 
 | 			DEBUGOUT("SERDES: Link down - force failed.\n"); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (E1000_TXCW_ANE & E1000_READ_REG(hw, E1000_TXCW)) { | 
 | 		status = E1000_READ_REG(hw, E1000_STATUS); | 
 | 		if (status & E1000_STATUS_LU) { | 
 | 			/* SYNCH bit and IV bit are sticky, so reread rxcw. */ | 
 | 			usec_delay(10); | 
 | 			rxcw = E1000_READ_REG(hw, E1000_RXCW); | 
 | 			if (rxcw & E1000_RXCW_SYNCH) { | 
 | 				if (!(rxcw & E1000_RXCW_IV)) { | 
 | 					mac->serdes_has_link = true; | 
 | 					DEBUGOUT("SERDES: Link up - autoneg " | 
 | 							 "completed sucessfully.\n"); | 
 | 				} else { | 
 | 					mac->serdes_has_link = false; | 
 | 					DEBUGOUT("SERDES: Link down - invalid" | 
 | 							 "codewords detected in autoneg.\n"); | 
 | 				} | 
 | 			} else { | 
 | 				mac->serdes_has_link = false; | 
 | 				DEBUGOUT("SERDES: Link down - no sync.\n"); | 
 | 			} | 
 | 		} else { | 
 | 			mac->serdes_has_link = false; | 
 | 			DEBUGOUT("SERDES: Link down - autoneg failed\n"); | 
 | 		} | 
 | 	} | 
 |  | 
 | out: | 
 | 	return ret_val; | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000_setup_link_generic - Setup flow control and link settings | 
 |  *  @hw: pointer to the HW structure | 
 |  * | 
 |  *  Determines which flow control settings to use, then configures flow | 
 |  *  control.  Calls the appropriate media-specific link configuration | 
 |  *  function.  Assuming the adapter has a valid link partner, a valid link | 
 |  *  should be established.  Assumes the hardware has previously been reset | 
 |  *  and the transmitter and receiver are not enabled. | 
 |  **/ | 
 | int32_t e1000_setup_link_generic(struct e1000_hw * hw) | 
 | { | 
 | 	int32_t ret_val = E1000_SUCCESS; | 
 |  | 
 | 	printd("e1000_setup_link_generic"); | 
 |  | 
 | 	/* | 
 | 	 * In the case of the phy reset being blocked, we already have a link. | 
 | 	 * We do not need to set it up again. | 
 | 	 */ | 
 | 	if (hw->phy.ops.check_reset_block) | 
 | 		if (hw->phy.ops.check_reset_block(hw)) | 
 | 			goto out; | 
 |  | 
 | 	/* | 
 | 	 * If requested flow control is set to default, set flow control | 
 | 	 * based on the EEPROM flow control settings. | 
 | 	 */ | 
 | 	if (hw->fc.requested_mode == e1000_fc_default) { | 
 | 		ret_val = e1000_set_default_fc_generic(hw); | 
 | 		if (ret_val) | 
 | 			goto out; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Save off the requested flow control mode for use later.  Depending | 
 | 	 * on the link partner's capabilities, we may or may not use this mode. | 
 | 	 */ | 
 | 	hw->fc.current_mode = hw->fc.requested_mode; | 
 |  | 
 | 	DEBUGOUT1("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode); | 
 |  | 
 | 	/* Call the necessary media_type subroutine to configure the link. */ | 
 | 	ret_val = hw->mac.ops.setup_physical_interface(hw); | 
 | 	if (ret_val) | 
 | 		goto out; | 
 |  | 
 | 	/* | 
 | 	 * Initialize the flow control address, type, and PAUSE timer | 
 | 	 * registers to their default values.  This is done even if flow | 
 | 	 * control is disabled, because it does not hurt anything to | 
 | 	 * initialize these registers. | 
 | 	 */ | 
 | 	DEBUGOUT("Initializing the Flow Control address, type and timer regs\n"); | 
 | 	E1000_WRITE_REG(hw, E1000_FCT, FLOW_CONTROL_TYPE); | 
 | 	E1000_WRITE_REG(hw, E1000_FCAH, FLOW_CONTROL_ADDRESS_HIGH); | 
 | 	E1000_WRITE_REG(hw, E1000_FCAL, FLOW_CONTROL_ADDRESS_LOW); | 
 |  | 
 | 	E1000_WRITE_REG(hw, E1000_FCTTV, hw->fc.pause_time); | 
 |  | 
 | 	ret_val = e1000_set_fc_watermarks_generic(hw); | 
 |  | 
 | out: | 
 | 	return ret_val; | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000_setup_fiber_serdes_link_generic - Setup link for fiber/serdes | 
 |  *  @hw: pointer to the HW structure | 
 |  * | 
 |  *  Configures collision distance and flow control for fiber and serdes | 
 |  *  links.  Upon successful setup, poll for link. | 
 |  **/ | 
 | int32_t e1000_setup_fiber_serdes_link_generic(struct e1000_hw * hw) | 
 | { | 
 | 	uint32_t ctrl; | 
 | 	int32_t ret_val = E1000_SUCCESS; | 
 |  | 
 | 	printd("e1000_setup_fiber_serdes_link_generic"); | 
 |  | 
 | 	ctrl = E1000_READ_REG(hw, E1000_CTRL); | 
 |  | 
 | 	/* Take the link out of reset */ | 
 | 	ctrl &= ~E1000_CTRL_LRST; | 
 |  | 
 | 	e1000_config_collision_dist_generic(hw); | 
 |  | 
 | 	ret_val = e1000_commit_fc_settings_generic(hw); | 
 | 	if (ret_val) | 
 | 		goto out; | 
 |  | 
 | 	/* | 
 | 	 * Since auto-negotiation is enabled, take the link out of reset (the | 
 | 	 * link will be in reset, because we previously reset the chip). This | 
 | 	 * will restart auto-negotiation.  If auto-negotiation is successful | 
 | 	 * then the link-up status bit will be set and the flow control enable | 
 | 	 * bits (RFCE and TFCE) will be set according to their negotiated value. | 
 | 	 */ | 
 | 	DEBUGOUT("Auto-negotiation enabled\n"); | 
 |  | 
 | 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl); | 
 | 	E1000_WRITE_FLUSH(hw); | 
 | 	msec_delay(1); | 
 |  | 
 | 	/* | 
 | 	 * For these adapters, the SW definable pin 1 is set when the optics | 
 | 	 * detect a signal.  If we have a signal, then poll for a "Link-Up" | 
 | 	 * indication. | 
 | 	 */ | 
 | 	if (hw->phy.media_type == e1000_media_type_internal_serdes || | 
 | 		(E1000_READ_REG(hw, E1000_CTRL) & E1000_CTRL_SWDPIN1)) { | 
 | 		ret_val = e1000_poll_fiber_serdes_link_generic(hw); | 
 | 	} else { | 
 | 		DEBUGOUT("No signal detected\n"); | 
 | 	} | 
 |  | 
 | out: | 
 | 	return ret_val; | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000_config_collision_dist_generic - Configure collision distance | 
 |  *  @hw: pointer to the HW structure | 
 |  * | 
 |  *  Configures the collision distance to the default value and is used | 
 |  *  during link setup. Currently no func pointer exists and all | 
 |  *  implementations are handled in the generic version of this function. | 
 |  **/ | 
 | void e1000_config_collision_dist_generic(struct e1000_hw *hw) | 
 | { | 
 | 	uint32_t tctl; | 
 |  | 
 | 	printd("e1000_config_collision_dist_generic"); | 
 |  | 
 | 	tctl = E1000_READ_REG(hw, E1000_TCTL); | 
 |  | 
 | 	tctl &= ~E1000_TCTL_COLD; | 
 | 	tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT; | 
 |  | 
 | 	E1000_WRITE_REG(hw, E1000_TCTL, tctl); | 
 | 	E1000_WRITE_FLUSH(hw); | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000_poll_fiber_serdes_link_generic - Poll for link up | 
 |  *  @hw: pointer to the HW structure | 
 |  * | 
 |  *  Polls for link up by reading the status register, if link fails to come | 
 |  *  up with auto-negotiation, then the link is forced if a signal is detected. | 
 |  **/ | 
 | int32_t e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw) | 
 | { | 
 | 	struct e1000_mac_info *mac = &hw->mac; | 
 | 	uint32_t i, status; | 
 | 	int32_t ret_val = E1000_SUCCESS; | 
 |  | 
 | 	printd("e1000_poll_fiber_serdes_link_generic"); | 
 |  | 
 | 	/* | 
 | 	 * If we have a signal (the cable is plugged in, or assumed true for | 
 | 	 * serdes media) then poll for a "Link-Up" indication in the Device | 
 | 	 * Status Register.  Time-out if a link isn't seen in 500 milliseconds | 
 | 	 * seconds (Auto-negotiation should complete in less than 500 | 
 | 	 * milliseconds even if the other end is doing it in SW). | 
 | 	 */ | 
 | 	for (i = 0; i < FIBER_LINK_UP_LIMIT; i++) { | 
 | 		msec_delay(10); | 
 | 		status = E1000_READ_REG(hw, E1000_STATUS); | 
 | 		if (status & E1000_STATUS_LU) | 
 | 			break; | 
 | 	} | 
 | 	if (i == FIBER_LINK_UP_LIMIT) { | 
 | 		DEBUGOUT("Never got a valid link from auto-neg!!!\n"); | 
 | 		mac->autoneg_failed = 1; | 
 | 		/* | 
 | 		 * AutoNeg failed to achieve a link, so we'll call | 
 | 		 * mac->check_for_link. This routine will force the | 
 | 		 * link up if we detect a signal. This will allow us to | 
 | 		 * communicate with non-autonegotiating link partners. | 
 | 		 */ | 
 | 		ret_val = hw->mac.ops.check_for_link(hw); | 
 | 		if (ret_val) { | 
 | 			DEBUGOUT("Error while checking for link\n"); | 
 | 			goto out; | 
 | 		} | 
 | 		mac->autoneg_failed = 0; | 
 | 	} else { | 
 | 		mac->autoneg_failed = 0; | 
 | 		DEBUGOUT("Valid Link Found\n"); | 
 | 	} | 
 |  | 
 | out: | 
 | 	return ret_val; | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000_commit_fc_settings_generic - Configure flow control | 
 |  *  @hw: pointer to the HW structure | 
 |  * | 
 |  *  Write the flow control settings to the Transmit Config Word Register (TXCW) | 
 |  *  base on the flow control settings in e1000_mac_info. | 
 |  **/ | 
 | int32_t e1000_commit_fc_settings_generic(struct e1000_hw * hw) | 
 | { | 
 | 	struct e1000_mac_info *mac = &hw->mac; | 
 | 	uint32_t txcw; | 
 | 	int32_t ret_val = E1000_SUCCESS; | 
 |  | 
 | 	printd("e1000_commit_fc_settings_generic"); | 
 |  | 
 | 	/* | 
 | 	 * Check for a software override of the flow control settings, and | 
 | 	 * setup the device accordingly.  If auto-negotiation is enabled, then | 
 | 	 * software will have to set the "PAUSE" bits to the correct value in | 
 | 	 * the Transmit Config Word Register (TXCW) and re-start auto- | 
 | 	 * negotiation.  However, if auto-negotiation is disabled, then | 
 | 	 * software will have to manually configure the two flow control enable | 
 | 	 * bits in the CTRL register. | 
 | 	 * | 
 | 	 * The possible values of the "fc" parameter are: | 
 | 	 *      0:  Flow control is completely disabled | 
 | 	 *      1:  Rx flow control is enabled (we can receive pause frames, | 
 | 	 *          but not send pause frames). | 
 | 	 *      2:  Tx flow control is enabled (we can send pause frames but we | 
 | 	 *          do not support receiving pause frames). | 
 | 	 *      3:  Both Rx and Tx flow control (symmetric) are enabled. | 
 | 	 */ | 
 | 	switch (hw->fc.current_mode) { | 
 | 		case e1000_fc_none: | 
 | 			/* Flow control completely disabled by a software over-ride. */ | 
 | 			txcw = (E1000_TXCW_ANE | E1000_TXCW_FD); | 
 | 			break; | 
 | 		case e1000_fc_rx_pause: | 
 | 			/* | 
 | 			 * Rx Flow control is enabled and Tx Flow control is disabled | 
 | 			 * by a software over-ride. Since there really isn't a way to | 
 | 			 * advertise that we are capable of Rx Pause ONLY, we will | 
 | 			 * advertise that we support both symmetric and asymmetric RX | 
 | 			 * PAUSE.  Later, we will disable the adapter's ability to send | 
 | 			 * PAUSE frames. | 
 | 			 */ | 
 | 			txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); | 
 | 			break; | 
 | 		case e1000_fc_tx_pause: | 
 | 			/* | 
 | 			 * Tx Flow control is enabled, and Rx Flow control is disabled, | 
 | 			 * by a software over-ride. | 
 | 			 */ | 
 | 			txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR); | 
 | 			break; | 
 | 		case e1000_fc_full: | 
 | 			/* | 
 | 			 * Flow control (both Rx and Tx) is enabled by a software | 
 | 			 * over-ride. | 
 | 			 */ | 
 | 			txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); | 
 | 			break; | 
 | 		default: | 
 | 			DEBUGOUT("Flow control param set incorrectly\n"); | 
 | 			ret_val = -E1000_ERR_CONFIG; | 
 | 			goto out; | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	E1000_WRITE_REG(hw, E1000_TXCW, txcw); | 
 | 	mac->txcw = txcw; | 
 |  | 
 | out: | 
 | 	return ret_val; | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000_set_fc_watermarks_generic - Set flow control high/low watermarks | 
 |  *  @hw: pointer to the HW structure | 
 |  * | 
 |  *  Sets the flow control high/low threshold (watermark) registers.  If | 
 |  *  flow control XON frame transmission is enabled, then set XON frame | 
 |  *  transmission as well. | 
 |  **/ | 
 | int32_t e1000_set_fc_watermarks_generic(struct e1000_hw * hw) | 
 | { | 
 | 	int32_t ret_val = E1000_SUCCESS; | 
 | 	uint32_t fcrtl = 0, fcrth = 0; | 
 |  | 
 | 	printd("e1000_set_fc_watermarks_generic"); | 
 |  | 
 | 	/* | 
 | 	 * Set the flow control receive threshold registers.  Normally, | 
 | 	 * these registers will be set to a default threshold that may be | 
 | 	 * adjusted later by the driver's runtime code.  However, if the | 
 | 	 * ability to transmit pause frames is not enabled, then these | 
 | 	 * registers will be set to 0. | 
 | 	 */ | 
 | 	if (hw->fc.current_mode & e1000_fc_tx_pause) { | 
 | 		/* | 
 | 		 * We need to set up the Receive Threshold high and low water | 
 | 		 * marks as well as (optionally) enabling the transmission of | 
 | 		 * XON frames. | 
 | 		 */ | 
 | 		fcrtl = hw->fc.low_water; | 
 | 		if (hw->fc.send_xon) | 
 | 			fcrtl |= E1000_FCRTL_XONE; | 
 |  | 
 | 		fcrth = hw->fc.high_water; | 
 | 	} | 
 | 	E1000_WRITE_REG(hw, E1000_FCRTL, fcrtl); | 
 | 	E1000_WRITE_REG(hw, E1000_FCRTH, fcrth); | 
 |  | 
 | 	return ret_val; | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000_set_default_fc_generic - Set flow control default values | 
 |  *  @hw: pointer to the HW structure | 
 |  * | 
 |  *  Read the EEPROM for the default values for flow control and store the | 
 |  *  values. | 
 |  **/ | 
 | int32_t e1000_set_default_fc_generic(struct e1000_hw * hw) | 
 | { | 
 | 	int32_t ret_val = E1000_SUCCESS; | 
 | 	uint16_t nvm_data; | 
 |  | 
 | 	printd("e1000_set_default_fc_generic"); | 
 |  | 
 | 	/* | 
 | 	 * Read and store word 0x0F of the EEPROM. This word contains bits | 
 | 	 * that determine the hardware's default PAUSE (flow control) mode, | 
 | 	 * a bit that determines whether the HW defaults to enabling or | 
 | 	 * disabling auto-negotiation, and the direction of the | 
 | 	 * SW defined pins. If there is no SW over-ride of the flow | 
 | 	 * control setting, then the variable hw->fc will | 
 | 	 * be initialized based on a value in the EEPROM. | 
 | 	 */ | 
 | 	ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL2_REG, 1, &nvm_data); | 
 |  | 
 | 	if (ret_val) { | 
 | 		DEBUGOUT("NVM Read Error\n"); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 0) | 
 | 		hw->fc.requested_mode = e1000_fc_none; | 
 | 	else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == NVM_WORD0F_ASM_DIR) | 
 | 		hw->fc.requested_mode = e1000_fc_tx_pause; | 
 | 	else | 
 | 		hw->fc.requested_mode = e1000_fc_full; | 
 |  | 
 | out: | 
 | 	return ret_val; | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000_force_mac_fc_generic - Force the MAC's flow control settings | 
 |  *  @hw: pointer to the HW structure | 
 |  * | 
 |  *  Force the MAC's flow control settings.  Sets the TFCE and RFCE bits in the | 
 |  *  device control register to reflect the adapter settings.  TFCE and RFCE | 
 |  *  need to be explicitly set by software when a copper PHY is used because | 
 |  *  autonegotiation is managed by the PHY rather than the MAC.  Software must | 
 |  *  also configure these bits when link is forced on a fiber connection. | 
 |  **/ | 
 | int32_t e1000_force_mac_fc_generic(struct e1000_hw * hw) | 
 | { | 
 | 	uint32_t ctrl; | 
 | 	int32_t ret_val = E1000_SUCCESS; | 
 |  | 
 | 	printd("e1000_force_mac_fc_generic"); | 
 |  | 
 | 	ctrl = E1000_READ_REG(hw, E1000_CTRL); | 
 |  | 
 | 	/* | 
 | 	 * Because we didn't get link via the internal auto-negotiation | 
 | 	 * mechanism (we either forced link or we got link via PHY | 
 | 	 * auto-neg), we have to manually enable/disable transmit an | 
 | 	 * receive flow control. | 
 | 	 * | 
 | 	 * The "Case" statement below enables/disable flow control | 
 | 	 * according to the "hw->fc.current_mode" parameter. | 
 | 	 * | 
 | 	 * The possible values of the "fc" parameter are: | 
 | 	 *      0:  Flow control is completely disabled | 
 | 	 *      1:  Rx flow control is enabled (we can receive pause | 
 | 	 *          frames but not send pause frames). | 
 | 	 *      2:  Tx flow control is enabled (we can send pause frames | 
 | 	 *          frames but we do not receive pause frames). | 
 | 	 *      3:  Both Rx and Tx flow control (symmetric) is enabled. | 
 | 	 *  other:  No other values should be possible at this point. | 
 | 	 */ | 
 | 	DEBUGOUT1("hw->fc.current_mode = %u\n", hw->fc.current_mode); | 
 |  | 
 | 	switch (hw->fc.current_mode) { | 
 | 		case e1000_fc_none: | 
 | 			ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE)); | 
 | 			break; | 
 | 		case e1000_fc_rx_pause: | 
 | 			ctrl &= (~E1000_CTRL_TFCE); | 
 | 			ctrl |= E1000_CTRL_RFCE; | 
 | 			break; | 
 | 		case e1000_fc_tx_pause: | 
 | 			ctrl &= (~E1000_CTRL_RFCE); | 
 | 			ctrl |= E1000_CTRL_TFCE; | 
 | 			break; | 
 | 		case e1000_fc_full: | 
 | 			ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE); | 
 | 			break; | 
 | 		default: | 
 | 			DEBUGOUT("Flow control param set incorrectly\n"); | 
 | 			ret_val = -E1000_ERR_CONFIG; | 
 | 			goto out; | 
 | 	} | 
 |  | 
 | 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl); | 
 |  | 
 | out: | 
 | 	return ret_val; | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000_config_fc_after_link_up_generic - Configures flow control after link | 
 |  *  @hw: pointer to the HW structure | 
 |  * | 
 |  *  Checks the status of auto-negotiation after link up to ensure that the | 
 |  *  speed and duplex were not forced.  If the link needed to be forced, then | 
 |  *  flow control needs to be forced also.  If auto-negotiation is enabled | 
 |  *  and did not fail, then we configure flow control based on our link | 
 |  *  partner. | 
 |  **/ | 
 | int32_t e1000_config_fc_after_link_up_generic(struct e1000_hw * hw) | 
 | { | 
 | 	struct e1000_mac_info *mac = &hw->mac; | 
 | 	int32_t ret_val = E1000_SUCCESS; | 
 | 	uint16_t mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg; | 
 | 	uint16_t speed, duplex; | 
 |  | 
 | 	printd("e1000_config_fc_after_link_up_generic"); | 
 |  | 
 | 	/* | 
 | 	 * Check for the case where we have fiber media and auto-neg failed | 
 | 	 * so we had to force link.  In this case, we need to force the | 
 | 	 * configuration of the MAC to match the "fc" parameter. | 
 | 	 */ | 
 | 	if (mac->autoneg_failed) { | 
 | 		if (hw->phy.media_type == e1000_media_type_fiber || | 
 | 			hw->phy.media_type == e1000_media_type_internal_serdes) | 
 | 			ret_val = e1000_force_mac_fc_generic(hw); | 
 | 	} else { | 
 | 		if (hw->phy.media_type == e1000_media_type_copper) | 
 | 			ret_val = e1000_force_mac_fc_generic(hw); | 
 | 	} | 
 |  | 
 | 	if (ret_val) { | 
 | 		DEBUGOUT("Error forcing flow control settings\n"); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Check for the case where we have copper media and auto-neg is | 
 | 	 * enabled.  In this case, we need to check and see if Auto-Neg | 
 | 	 * has completed, and if so, how the PHY and link partner has | 
 | 	 * flow control configured. | 
 | 	 */ | 
 | 	if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) { | 
 | 		/* | 
 | 		 * Read the MII Status Register and check to see if AutoNeg | 
 | 		 * has completed.  We read this twice because this reg has | 
 | 		 * some "sticky" (latched) bits. | 
 | 		 */ | 
 | 		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &mii_status_reg); | 
 | 		if (ret_val) | 
 | 			goto out; | 
 | 		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &mii_status_reg); | 
 | 		if (ret_val) | 
 | 			goto out; | 
 |  | 
 | 		if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) { | 
 | 			DEBUGOUT("Copper PHY and Auto Neg " "has not completed.\n"); | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * The AutoNeg process has completed, so we now need to | 
 | 		 * read both the Auto Negotiation Advertisement | 
 | 		 * Register (Address 4) and the Auto_Negotiation Base | 
 | 		 * Page Ability Register (Address 5) to determine how | 
 | 		 * flow control was negotiated. | 
 | 		 */ | 
 | 		ret_val = hw->phy.ops.read_reg(hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg); | 
 | 		if (ret_val) | 
 | 			goto out; | 
 | 		ret_val = hw->phy.ops.read_reg(hw, PHY_LP_ABILITY, | 
 | 									   &mii_nway_lp_ability_reg); | 
 | 		if (ret_val) | 
 | 			goto out; | 
 |  | 
 | 		/* | 
 | 		 * Two bits in the Auto Negotiation Advertisement Register | 
 | 		 * (Address 4) and two bits in the Auto Negotiation Base | 
 | 		 * Page Ability Register (Address 5) determine flow control | 
 | 		 * for both the PHY and the link partner.  The following | 
 | 		 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25, | 
 | 		 * 1999, describes these PAUSE resolution bits and how flow | 
 | 		 * control is determined based upon these settings. | 
 | 		 * NOTE:  DC = Don't Care | 
 | 		 * | 
 | 		 *   LOCAL DEVICE  |   LINK PARTNER | 
 | 		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution | 
 | 		 *-------|---------|-------|---------|-------------------- | 
 | 		 *   0   |    0    |  DC   |   DC    | e1000_fc_none | 
 | 		 *   0   |    1    |   0   |   DC    | e1000_fc_none | 
 | 		 *   0   |    1    |   1   |    0    | e1000_fc_none | 
 | 		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause | 
 | 		 *   1   |    0    |   0   |   DC    | e1000_fc_none | 
 | 		 *   1   |   DC    |   1   |   DC    | e1000_fc_full | 
 | 		 *   1   |    1    |   0   |    0    | e1000_fc_none | 
 | 		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause | 
 | 		 * | 
 | 		 * Are both PAUSE bits set to 1?  If so, this implies | 
 | 		 * Symmetric Flow Control is enabled at both ends.  The | 
 | 		 * ASM_DIR bits are irrelevant per the spec. | 
 | 		 * | 
 | 		 * For Symmetric Flow Control: | 
 | 		 * | 
 | 		 *   LOCAL DEVICE  |   LINK PARTNER | 
 | 		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result | 
 | 		 *-------|---------|-------|---------|-------------------- | 
 | 		 *   1   |   DC    |   1   |   DC    | E1000_fc_full | 
 | 		 * | 
 | 		 */ | 
 | 		if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && | 
 | 			(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) { | 
 | 			/* | 
 | 			 * Now we need to check if the user selected Rx ONLY | 
 | 			 * of pause frames.  In this case, we had to advertise | 
 | 			 * FULL flow control because we could not advertise RX | 
 | 			 * ONLY. Hence, we must now check to see if we need to | 
 | 			 * turn OFF  the TRANSMISSION of PAUSE frames. | 
 | 			 */ | 
 | 			if (hw->fc.requested_mode == e1000_fc_full) { | 
 | 				hw->fc.current_mode = e1000_fc_full; | 
 | 				DEBUGOUT("Flow Control = FULL.\r\n"); | 
 | 			} else { | 
 | 				hw->fc.current_mode = e1000_fc_rx_pause; | 
 | 				DEBUGOUT("Flow Control = " "RX PAUSE frames only.\r\n"); | 
 | 			} | 
 | 		} | 
 | 		/* | 
 | 		 * For receiving PAUSE frames ONLY. | 
 | 		 * | 
 | 		 *   LOCAL DEVICE  |   LINK PARTNER | 
 | 		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result | 
 | 		 *-------|---------|-------|---------|-------------------- | 
 | 		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause | 
 | 		 */ | 
 | 		else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) && | 
 | 				 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && | 
 | 				 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && | 
 | 				 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { | 
 | 			hw->fc.current_mode = e1000_fc_tx_pause; | 
 | 			DEBUGOUT("Flow Control = TX PAUSE frames only.\r\n"); | 
 | 		} | 
 | 		/* | 
 | 		 * For transmitting PAUSE frames ONLY. | 
 | 		 * | 
 | 		 *   LOCAL DEVICE  |   LINK PARTNER | 
 | 		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result | 
 | 		 *-------|---------|-------|---------|-------------------- | 
 | 		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause | 
 | 		 */ | 
 | 		else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && | 
 | 				 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && | 
 | 				 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && | 
 | 				 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { | 
 | 			hw->fc.current_mode = e1000_fc_rx_pause; | 
 | 			DEBUGOUT("Flow Control = RX PAUSE frames only.\r\n"); | 
 | 		} else { | 
 | 			/* | 
 | 			 * Per the IEEE spec, at this point flow control | 
 | 			 * should be disabled. | 
 | 			 */ | 
 | 			hw->fc.current_mode = e1000_fc_none; | 
 | 			DEBUGOUT("Flow Control = NONE.\r\n"); | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Now we need to do one last check...  If we auto- | 
 | 		 * negotiated to HALF DUPLEX, flow control should not be | 
 | 		 * enabled per IEEE 802.3 spec. | 
 | 		 */ | 
 | 		ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex); | 
 | 		if (ret_val) { | 
 | 			DEBUGOUT("Error getting link speed and duplex\n"); | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		if (duplex == HALF_DUPLEX) | 
 | 			hw->fc.current_mode = e1000_fc_none; | 
 |  | 
 | 		/* | 
 | 		 * Now we call a subroutine to actually force the MAC | 
 | 		 * controller to use the correct flow control settings. | 
 | 		 */ | 
 | 		ret_val = e1000_force_mac_fc_generic(hw); | 
 | 		if (ret_val) { | 
 | 			DEBUGOUT("Error forcing flow control settings\n"); | 
 | 			goto out; | 
 | 		} | 
 | 	} | 
 |  | 
 | out: | 
 | 	return ret_val; | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000_get_speed_and_duplex_copper_generic - Retrieve current speed/duplex | 
 |  *  @hw: pointer to the HW structure | 
 |  *  @speed: stores the current speed | 
 |  *  @duplex: stores the current duplex | 
 |  * | 
 |  *  Read the status register for the current speed/duplex and store the current | 
 |  *  speed and duplex for copper connections. | 
 |  **/ | 
 | int32_t e1000_get_speed_and_duplex_copper_generic(struct e1000_hw * hw, | 
 | 												  uint16_t * speed, | 
 | 												  uint16_t * duplex) | 
 | { | 
 | 	uint32_t status; | 
 |  | 
 | 	printd("e1000_get_speed_and_duplex_copper_generic"); | 
 |  | 
 | 	status = E1000_READ_REG(hw, E1000_STATUS); | 
 | 	if (status & E1000_STATUS_SPEED_1000) { | 
 | 		*speed = SPEED_1000; | 
 | 		DEBUGOUT("1000 Mbs, "); | 
 | 	} else if (status & E1000_STATUS_SPEED_100) { | 
 | 		*speed = SPEED_100; | 
 | 		DEBUGOUT("100 Mbs, "); | 
 | 	} else { | 
 | 		*speed = SPEED_10; | 
 | 		DEBUGOUT("10 Mbs, "); | 
 | 	} | 
 |  | 
 | 	if (status & E1000_STATUS_FD) { | 
 | 		*duplex = FULL_DUPLEX; | 
 | 		DEBUGOUT("Full Duplex\n"); | 
 | 	} else { | 
 | 		*duplex = HALF_DUPLEX; | 
 | 		DEBUGOUT("Half Duplex\n"); | 
 | 	} | 
 |  | 
 | 	return E1000_SUCCESS; | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000_get_speed_and_duplex_fiber_generic - Retrieve current speed/duplex | 
 |  *  @hw: pointer to the HW structure | 
 |  *  @speed: stores the current speed | 
 |  *  @duplex: stores the current duplex | 
 |  * | 
 |  *  Sets the speed and duplex to gigabit full duplex (the only possible option) | 
 |  *  for fiber/serdes links. | 
 |  **/ | 
 | int32_t e1000_get_speed_and_duplex_fiber_serdes_generic(struct e1000_hw * hw, | 
 | 														uint16_t * speed, | 
 | 														uint16_t * duplex) | 
 | { | 
 | 	printd("e1000_get_speed_and_duplex_fiber_serdes_generic"); | 
 |  | 
 | 	*speed = SPEED_1000; | 
 | 	*duplex = FULL_DUPLEX; | 
 |  | 
 | 	return E1000_SUCCESS; | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000_get_hw_semaphore_generic - Acquire hardware semaphore | 
 |  *  @hw: pointer to the HW structure | 
 |  * | 
 |  *  Acquire the HW semaphore to access the PHY or NVM | 
 |  **/ | 
 | int32_t e1000_get_hw_semaphore_generic(struct e1000_hw * hw) | 
 | { | 
 | #if 0 | 
 | 	u32 swsm; | 
 | 	s32 ret_val = E1000_SUCCESS; | 
 | 	s32 timeout = hw->nvm.word_size + 1; | 
 | 	s32 i = 0; | 
 |  | 
 | 	DEBUGFUNC("e1000_get_hw_semaphore_generic"); | 
 |  | 
 | 	/* Get the SW semaphore */ | 
 | 	while (i < timeout) { | 
 | 		swsm = E1000_READ_REG(hw, E1000_SWSM); | 
 | 		if (!(swsm & E1000_SWSM_SMBI)) | 
 | 			break; | 
 |  | 
 | 		usec_delay(50); | 
 | 		i++; | 
 | 	} | 
 |  | 
 | 	if (i == timeout) { | 
 | 		DEBUGOUT("Driver can't access device - SMBI bit is set.\n"); | 
 | 		ret_val = -E1000_ERR_NVM; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* Get the FW semaphore. */ | 
 | 	for (i = 0; i < timeout; i++) { | 
 | 		swsm = E1000_READ_REG(hw, E1000_SWSM); | 
 | 		E1000_WRITE_REG(hw, E1000_SWSM, swsm | E1000_SWSM_SWESMBI); | 
 |  | 
 | 		/* Semaphore acquired if bit latched */ | 
 | 		if (E1000_READ_REG(hw, E1000_SWSM) & E1000_SWSM_SWESMBI) | 
 | 			break; | 
 |  | 
 | 		usec_delay(50); | 
 | 	} | 
 |  | 
 | 	if (i == timeout) { | 
 | 		/* Release semaphores */ | 
 | 		e1000_put_hw_semaphore_generic(hw); | 
 | 		DEBUGOUT("Driver can't access the NVM\n"); | 
 | 		ret_val = -E1000_ERR_NVM; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | out: | 
 | 	return ret_val; | 
 | #endif | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000_put_hw_semaphore_generic - Release hardware semaphore | 
 |  *  @hw: pointer to the HW structure | 
 |  * | 
 |  *  Release hardware semaphore used to access the PHY or NVM | 
 |  **/ | 
 | void e1000_put_hw_semaphore_generic(struct e1000_hw *hw) | 
 | { | 
 | #if 0 | 
 | 	u32 swsm; | 
 |  | 
 | 	DEBUGFUNC("e1000_put_hw_semaphore_generic"); | 
 |  | 
 | 	swsm = E1000_READ_REG(hw, E1000_SWSM); | 
 |  | 
 | 	swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI); | 
 |  | 
 | 	E1000_WRITE_REG(hw, E1000_SWSM, swsm); | 
 | #endif | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000_get_auto_rd_done_generic - Check for auto read completion | 
 |  *  @hw: pointer to the HW structure | 
 |  * | 
 |  *  Check EEPROM for Auto Read done bit. | 
 |  **/ | 
 | int32_t e1000_get_auto_rd_done_generic(struct e1000_hw *hw) | 
 | { | 
 | 	int32_t i = 0; | 
 | 	int32_t ret_val = E1000_SUCCESS; | 
 |  | 
 | 	printd("e1000_get_auto_rd_done_generic"); | 
 |  | 
 | 	while (i < AUTO_READ_DONE_TIMEOUT) { | 
 | 		if (E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_AUTO_RD) | 
 | 			break; | 
 | 		msec_delay(1); | 
 | 		i++; | 
 | 	} | 
 |  | 
 | 	if (i == AUTO_READ_DONE_TIMEOUT) { | 
 | 		DEBUGOUT("Auto read by HW from NVM has not completed.\n"); | 
 | 		ret_val = -E1000_ERR_RESET; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | out: | 
 | 	return ret_val; | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000_valid_led_default_generic - Verify a valid default LED config | 
 |  *  @hw: pointer to the HW structure | 
 |  *  @data: pointer to the NVM (EEPROM) | 
 |  * | 
 |  *  Read the EEPROM for the current default LED configuration.  If the | 
 |  *  LED configuration is not valid, set to a valid LED configuration. | 
 |  **/ | 
 | int32_t e1000_valid_led_default_generic(struct e1000_hw * hw, uint16_t * data) | 
 | { | 
 | 	int32_t ret_val; | 
 |  | 
 | 	printd("e1000_valid_led_default_generic"); | 
 |  | 
 | 	ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data); | 
 | 	if (ret_val) { | 
 | 		DEBUGOUT("NVM Read Error\n"); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) | 
 | 		*data = ID_LED_DEFAULT; | 
 |  | 
 | out: | 
 | 	return ret_val; | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000_id_led_init_generic - | 
 |  *  @hw: pointer to the HW structure | 
 |  * | 
 |  **/ | 
 | int32_t e1000_id_led_init_generic(struct e1000_hw * hw) | 
 | { | 
 | #if 0 | 
 | 	struct e1000_mac_info *mac = &hw->mac; | 
 | 	s32 ret_val; | 
 | 	const u32 ledctl_mask = 0x000000FF; | 
 | 	const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON; | 
 | 	const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF; | 
 | 	u16 data, i, temp; | 
 | 	const u16 led_mask = 0x0F; | 
 |  | 
 | 	DEBUGFUNC("e1000_id_led_init_generic"); | 
 |  | 
 | 	ret_val = hw->nvm.ops.valid_led_default(hw, &data); | 
 | 	if (ret_val) | 
 | 		goto out; | 
 |  | 
 | 	mac->ledctl_default = E1000_READ_REG(hw, E1000_LEDCTL); | 
 | 	mac->ledctl_mode1 = mac->ledctl_default; | 
 | 	mac->ledctl_mode2 = mac->ledctl_default; | 
 |  | 
 | 	for (i = 0; i < 4; i++) { | 
 | 		temp = (data >> (i << 2)) & led_mask; | 
 | 		switch (temp) { | 
 | 			case ID_LED_ON1_DEF2: | 
 | 			case ID_LED_ON1_ON2: | 
 | 			case ID_LED_ON1_OFF2: | 
 | 				mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); | 
 | 				mac->ledctl_mode1 |= ledctl_on << (i << 3); | 
 | 				break; | 
 | 			case ID_LED_OFF1_DEF2: | 
 | 			case ID_LED_OFF1_ON2: | 
 | 			case ID_LED_OFF1_OFF2: | 
 | 				mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); | 
 | 				mac->ledctl_mode1 |= ledctl_off << (i << 3); | 
 | 				break; | 
 | 			default: | 
 | 				/* Do nothing */ | 
 | 				break; | 
 | 		} | 
 | 		switch (temp) { | 
 | 			case ID_LED_DEF1_ON2: | 
 | 			case ID_LED_ON1_ON2: | 
 | 			case ID_LED_OFF1_ON2: | 
 | 				mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); | 
 | 				mac->ledctl_mode2 |= ledctl_on << (i << 3); | 
 | 				break; | 
 | 			case ID_LED_DEF1_OFF2: | 
 | 			case ID_LED_ON1_OFF2: | 
 | 			case ID_LED_OFF1_OFF2: | 
 | 				mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); | 
 | 				mac->ledctl_mode2 |= ledctl_off << (i << 3); | 
 | 				break; | 
 | 			default: | 
 | 				/* Do nothing */ | 
 | 				break; | 
 | 		} | 
 | 	} | 
 |  | 
 | out: | 
 | 	return ret_val; | 
 | #endif | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000_setup_led_generic - Configures SW controllable LED | 
 |  *  @hw: pointer to the HW structure | 
 |  * | 
 |  *  This prepares the SW controllable LED for use and saves the current state | 
 |  *  of the LED so it can be later restored. | 
 |  **/ | 
 | int32_t e1000_setup_led_generic(struct e1000_hw * hw) | 
 | { | 
 | #if 0 | 
 | 	u32 ledctl; | 
 | 	s32 ret_val = E1000_SUCCESS; | 
 |  | 
 | 	DEBUGFUNC("e1000_setup_led_generic"); | 
 |  | 
 | 	if (hw->mac.ops.setup_led != e1000_setup_led_generic) { | 
 | 		ret_val = -E1000_ERR_CONFIG; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (hw->phy.media_type == e1000_media_type_fiber) { | 
 | 		ledctl = E1000_READ_REG(hw, E1000_LEDCTL); | 
 | 		hw->mac.ledctl_default = ledctl; | 
 | 		/* Turn off LED0 */ | 
 | 		ledctl &= ~(E1000_LEDCTL_LED0_IVRT | | 
 | 					E1000_LEDCTL_LED0_BLINK | E1000_LEDCTL_LED0_MODE_MASK); | 
 | 		ledctl |= (E1000_LEDCTL_MODE_LED_OFF << E1000_LEDCTL_LED0_MODE_SHIFT); | 
 | 		E1000_WRITE_REG(hw, E1000_LEDCTL, ledctl); | 
 | 	} else if (hw->phy.media_type == e1000_media_type_copper) { | 
 | 		E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode1); | 
 | 	} | 
 |  | 
 | out: | 
 | 	return ret_val; | 
 | #endif | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000_cleanup_led_generic - Set LED config to default operation | 
 |  *  @hw: pointer to the HW structure | 
 |  * | 
 |  *  Remove the current LED configuration and set the LED configuration | 
 |  *  to the default value, saved from the EEPROM. | 
 |  **/ | 
 | int32_t e1000_cleanup_led_generic(struct e1000_hw * hw) | 
 | { | 
 | #if 0 | 
 | 	s32 ret_val = E1000_SUCCESS; | 
 |  | 
 | 	DEBUGFUNC("e1000_cleanup_led_generic"); | 
 |  | 
 | 	if (hw->mac.ops.cleanup_led != e1000_cleanup_led_generic) { | 
 | 		ret_val = -E1000_ERR_CONFIG; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_default); | 
 |  | 
 | out: | 
 | 	return ret_val; | 
 | #endif | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000_blink_led_generic - Blink LED | 
 |  *  @hw: pointer to the HW structure | 
 |  * | 
 |  *  Blink the LEDs which are set to be on. | 
 |  **/ | 
 | int32_t e1000_blink_led_generic(struct e1000_hw * hw) | 
 | { | 
 | #if 0 | 
 | 	u32 ledctl_blink = 0; | 
 | 	u32 i; | 
 |  | 
 | 	DEBUGFUNC("e1000_blink_led_generic"); | 
 |  | 
 | 	if (hw->phy.media_type == e1000_media_type_fiber) { | 
 | 		/* always blink LED0 for PCI-E fiber */ | 
 | 		ledctl_blink = E1000_LEDCTL_LED0_BLINK | | 
 | 			(E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT); | 
 | 	} else { | 
 | 		/* | 
 | 		 * set the blink bit for each LED that's "on" (0x0E) | 
 | 		 * in ledctl_mode2 | 
 | 		 */ | 
 | 		ledctl_blink = hw->mac.ledctl_mode2; | 
 | 		for (i = 0; i < 4; i++) | 
 | 			if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) == | 
 | 				E1000_LEDCTL_MODE_LED_ON) | 
 | 				ledctl_blink |= (E1000_LEDCTL_LED0_BLINK << (i * 8)); | 
 | 	} | 
 |  | 
 | 	E1000_WRITE_REG(hw, E1000_LEDCTL, ledctl_blink); | 
 |  | 
 | 	return E1000_SUCCESS; | 
 | #endif | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000_led_on_generic - Turn LED on | 
 |  *  @hw: pointer to the HW structure | 
 |  * | 
 |  *  Turn LED on. | 
 |  **/ | 
 | int32_t e1000_led_on_generic(struct e1000_hw * hw) | 
 | { | 
 | #if 0 | 
 | 	u32 ctrl; | 
 |  | 
 | 	DEBUGFUNC("e1000_led_on_generic"); | 
 |  | 
 | 	switch (hw->phy.media_type) { | 
 | 		case e1000_media_type_fiber: | 
 | 			ctrl = E1000_READ_REG(hw, E1000_CTRL); | 
 | 			ctrl &= ~E1000_CTRL_SWDPIN0; | 
 | 			ctrl |= E1000_CTRL_SWDPIO0; | 
 | 			E1000_WRITE_REG(hw, E1000_CTRL, ctrl); | 
 | 			break; | 
 | 		case e1000_media_type_copper: | 
 | 			E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode2); | 
 | 			break; | 
 | 		default: | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	return E1000_SUCCESS; | 
 | #endif | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000_led_off_generic - Turn LED off | 
 |  *  @hw: pointer to the HW structure | 
 |  * | 
 |  *  Turn LED off. | 
 |  **/ | 
 | int32_t e1000_led_off_generic(struct e1000_hw * hw) | 
 | { | 
 | #if 0 | 
 | 	u32 ctrl; | 
 |  | 
 | 	DEBUGFUNC("e1000_led_off_generic"); | 
 |  | 
 | 	switch (hw->phy.media_type) { | 
 | 		case e1000_media_type_fiber: | 
 | 			ctrl = E1000_READ_REG(hw, E1000_CTRL); | 
 | 			ctrl |= E1000_CTRL_SWDPIN0; | 
 | 			ctrl |= E1000_CTRL_SWDPIO0; | 
 | 			E1000_WRITE_REG(hw, E1000_CTRL, ctrl); | 
 | 			break; | 
 | 		case e1000_media_type_copper: | 
 | 			E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode1); | 
 | 			break; | 
 | 		default: | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	return E1000_SUCCESS; | 
 | #endif | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000_set_pcie_no_snoop_generic - Set PCI-express capabilities | 
 |  *  @hw: pointer to the HW structure | 
 |  *  @no_snoop: bitmap of snoop events | 
 |  * | 
 |  *  Set the PCI-express register to snoop for events enabled in 'no_snoop'. | 
 |  **/ | 
 | void e1000_set_pcie_no_snoop_generic(struct e1000_hw *hw, uint32_t no_snoop) | 
 | { | 
 | 	uint32_t gcr; | 
 |  | 
 | 	printd("e1000_set_pcie_no_snoop_generic"); | 
 |  | 
 | 	if (hw->bus.type != e1000_bus_type_pci_express) | 
 | 		goto out; | 
 |  | 
 | 	if (no_snoop) { | 
 | 		gcr = E1000_READ_REG(hw, E1000_GCR); | 
 | 		gcr &= ~(PCIE_NO_SNOOP_ALL); | 
 | 		gcr |= no_snoop; | 
 | 		E1000_WRITE_REG(hw, E1000_GCR, gcr); | 
 | 	} | 
 | out: | 
 | 	return; | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000_disable_pcie_master_generic - Disables PCI-express master access | 
 |  *  @hw: pointer to the HW structure | 
 |  * | 
 |  *  Returns 0 (E1000_SUCCESS) if successful, else returns -10 | 
 |  *  (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused | 
 |  *  the master requests to be disabled. | 
 |  * | 
 |  *  Disables PCI-Express master access and verifies there are no pending | 
 |  *  requests. | 
 |  **/ | 
 | int32_t e1000_disable_pcie_master_generic(struct e1000_hw * hw) | 
 | { | 
 | 	uint32_t ctrl; | 
 | 	int32_t timeout = MASTER_DISABLE_TIMEOUT; | 
 | 	int32_t ret_val = E1000_SUCCESS; | 
 |  | 
 | 	printd("e1000_disable_pcie_master_generic"); | 
 |  | 
 | 	if (hw->bus.type != e1000_bus_type_pci_express) | 
 | 		goto out; | 
 |  | 
 | 	ctrl = E1000_READ_REG(hw, E1000_CTRL); | 
 | 	ctrl |= E1000_CTRL_GIO_MASTER_DISABLE; | 
 | 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl); | 
 |  | 
 | 	while (timeout) { | 
 | 		if (!(E1000_READ_REG(hw, E1000_STATUS) & | 
 | 			  E1000_STATUS_GIO_MASTER_ENABLE)) | 
 | 			break; | 
 | 		usec_delay(100); | 
 | 		timeout--; | 
 | 	} | 
 |  | 
 | 	if (!timeout) { | 
 | 		DEBUGOUT("Master requests are pending.\n"); | 
 | 		ret_val = -E1000_ERR_MASTER_REQUESTS_PENDING; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | out: | 
 | 	return ret_val; | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000_reset_adaptive_generic - Reset Adaptive Interframe Spacing | 
 |  *  @hw: pointer to the HW structure | 
 |  * | 
 |  *  Reset the Adaptive Interframe Spacing throttle to default values. | 
 |  **/ | 
 | void e1000_reset_adaptive_generic(struct e1000_hw *hw) | 
 | { | 
 | 	struct e1000_mac_info *mac = &hw->mac; | 
 |  | 
 | 	printd("e1000_reset_adaptive_generic"); | 
 |  | 
 | 	if (!mac->adaptive_ifs) { | 
 | 		DEBUGOUT("Not in Adaptive IFS mode!\n"); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	mac->current_ifs_val = 0; | 
 | 	mac->ifs_min_val = IFS_MIN; | 
 | 	mac->ifs_max_val = IFS_MAX; | 
 | 	mac->ifs_step_size = IFS_STEP; | 
 | 	mac->ifs_ratio = IFS_RATIO; | 
 |  | 
 | 	mac->in_ifs_mode = false; | 
 | 	E1000_WRITE_REG(hw, E1000_AIT, 0); | 
 | out: | 
 | 	return; | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000_update_adaptive_generic - Update Adaptive Interframe Spacing | 
 |  *  @hw: pointer to the HW structure | 
 |  * | 
 |  *  Update the Adaptive Interframe Spacing Throttle value based on the | 
 |  *  time between transmitted packets and time between collisions. | 
 |  **/ | 
 | void e1000_update_adaptive_generic(struct e1000_hw *hw) | 
 | { | 
 | 	struct e1000_mac_info *mac = &hw->mac; | 
 |  | 
 | 	printd("e1000_update_adaptive_generic"); | 
 |  | 
 | 	if (!mac->adaptive_ifs) { | 
 | 		DEBUGOUT("Not in Adaptive IFS mode!\n"); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if ((mac->collision_delta * mac->ifs_ratio) > mac->tx_packet_delta) { | 
 | 		if (mac->tx_packet_delta > MIN_NUM_XMITS) { | 
 | 			mac->in_ifs_mode = true; | 
 | 			if (mac->current_ifs_val < mac->ifs_max_val) { | 
 | 				if (!mac->current_ifs_val) | 
 | 					mac->current_ifs_val = mac->ifs_min_val; | 
 | 				else | 
 | 					mac->current_ifs_val += mac->ifs_step_size; | 
 | 				E1000_WRITE_REG(hw, E1000_AIT, mac->current_ifs_val); | 
 | 			} | 
 | 		} | 
 | 	} else { | 
 | 		if (mac->in_ifs_mode && (mac->tx_packet_delta <= MIN_NUM_XMITS)) { | 
 | 			mac->current_ifs_val = 0; | 
 | 			mac->in_ifs_mode = false; | 
 | 			E1000_WRITE_REG(hw, E1000_AIT, 0); | 
 | 		} | 
 | 	} | 
 | out: | 
 | 	return; | 
 | } | 
 |  | 
 | /** | 
 |  *  e1000_validate_mdi_setting_generic - Verify MDI/MDIx settings | 
 |  *  @hw: pointer to the HW structure | 
 |  * | 
 |  *  Verify that when not using auto-negotiation that MDI/MDIx is correctly | 
 |  *  set, which is forced to MDI mode only. | 
 |  **/ | 
 | static int32_t e1000_validate_mdi_setting_generic(struct e1000_hw *hw) | 
 | { | 
 | 	int32_t ret_val = E1000_SUCCESS; | 
 |  | 
 | 	printd("e1000_validate_mdi_setting_generic"); | 
 |  | 
 | 	if (!hw->mac.autoneg && (hw->phy.mdix == 0 || hw->phy.mdix == 3)) { | 
 | 		DEBUGOUT("Invalid MDI setting detected\n"); | 
 | 		hw->phy.mdix = 1; | 
 | 		ret_val = -E1000_ERR_CONFIG; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | out: | 
 | 	return ret_val; | 
 | } |