|  | /******************************************************************************* | 
|  |  | 
|  | Intel PRO/1000 Linux driver | 
|  | Copyright(c) 1999 - 2008 Intel Corporation. | 
|  |  | 
|  | This program is free software; you can redistribute it and/or modify it | 
|  | under the terms and conditions of the GNU General Public License, | 
|  | version 2, as published by the Free Software Foundation. | 
|  |  | 
|  | This program is distributed in the hope it will be useful, but WITHOUT | 
|  | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | 
|  | FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for | 
|  | more details. | 
|  |  | 
|  | You should have received a copy of the GNU General Public License along with | 
|  | this program; if not, write to the Free Software Foundation, Inc., | 
|  | 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. | 
|  |  | 
|  | The full GNU General Public License is included in this distribution in | 
|  | the file called "COPYING". | 
|  |  | 
|  | Contact Information: | 
|  | Linux NICS <linux.nics@intel.com> | 
|  | e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> | 
|  | Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 | 
|  |  | 
|  | *******************************************************************************/ | 
|  |  | 
|  | FILE_LICENCE(GPL2_OR_LATER); | 
|  |  | 
|  | #include "e1000_api.h" | 
|  |  | 
|  | static void e1000_reload_nvm_generic(struct e1000_hw *hw); | 
|  |  | 
|  | /** | 
|  | *  e1000_init_nvm_ops_generic - Initialize NVM function pointers | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Setups up the function pointers to no-op functions | 
|  | **/ | 
|  | void e1000_init_nvm_ops_generic(struct e1000_hw *hw) | 
|  | { | 
|  | struct e1000_nvm_info *nvm = &hw->nvm; | 
|  | DEBUGFUNC("e1000_init_nvm_ops_generic"); | 
|  |  | 
|  | /* Initialize function pointers */ | 
|  | nvm->ops.init_params = e1000_null_ops_generic; | 
|  | nvm->ops.acquire = e1000_null_ops_generic; | 
|  | nvm->ops.read = e1000_null_read_nvm; | 
|  | nvm->ops.release = e1000_null_nvm_generic; | 
|  | nvm->ops.reload = e1000_reload_nvm_generic; | 
|  | nvm->ops.update = e1000_null_ops_generic; | 
|  | nvm->ops.valid_led_default = e1000_null_led_default; | 
|  | nvm->ops.validate = e1000_null_ops_generic; | 
|  | nvm->ops.write = e1000_null_write_nvm; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_null_nvm_read - No-op function, return 0 | 
|  | *  @hw: pointer to the HW structure | 
|  | **/ | 
|  | s32 e1000_null_read_nvm(struct e1000_hw *hw __unused, u16 a __unused, | 
|  | u16 b __unused, u16 * c __unused) | 
|  | { | 
|  | DEBUGFUNC("e1000_null_read_nvm"); | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_null_nvm_generic - No-op function, return void | 
|  | *  @hw: pointer to the HW structure | 
|  | **/ | 
|  | void e1000_null_nvm_generic(struct e1000_hw *hw __unused) | 
|  | { | 
|  | DEBUGFUNC("e1000_null_nvm_generic"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_null_led_default - No-op function, return 0 | 
|  | *  @hw: pointer to the HW structure | 
|  | **/ | 
|  | s32 e1000_null_led_default(struct e1000_hw * hw __unused, u16 * data __unused) | 
|  | { | 
|  | DEBUGFUNC("e1000_null_led_default"); | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_null_write_nvm - No-op function, return 0 | 
|  | *  @hw: pointer to the HW structure | 
|  | **/ | 
|  | s32 e1000_null_write_nvm(struct e1000_hw * hw __unused, u16 a __unused, | 
|  | u16 b __unused, u16 * c __unused) | 
|  | { | 
|  | DEBUGFUNC("e1000_null_write_nvm"); | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_raise_eec_clk - Raise EEPROM clock | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @eecd: pointer to the EEPROM | 
|  | * | 
|  | *  Enable/Raise the EEPROM clock bit. | 
|  | **/ | 
|  | static void e1000_raise_eec_clk(struct e1000_hw *hw, u32 * eecd) | 
|  | { | 
|  | *eecd = *eecd | E1000_EECD_SK; | 
|  | E1000_WRITE_REG(hw, E1000_EECD, *eecd); | 
|  | E1000_WRITE_FLUSH(hw); | 
|  | usec_delay(hw->nvm.delay_usec); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_lower_eec_clk - Lower EEPROM clock | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @eecd: pointer to the EEPROM | 
|  | * | 
|  | *  Clear/Lower the EEPROM clock bit. | 
|  | **/ | 
|  | static void e1000_lower_eec_clk(struct e1000_hw *hw, u32 * eecd) | 
|  | { | 
|  | *eecd = *eecd & ~E1000_EECD_SK; | 
|  | E1000_WRITE_REG(hw, E1000_EECD, *eecd); | 
|  | E1000_WRITE_FLUSH(hw); | 
|  | usec_delay(hw->nvm.delay_usec); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_shift_out_eec_bits - Shift data bits our to the EEPROM | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @data: data to send to the EEPROM | 
|  | *  @count: number of bits to shift out | 
|  | * | 
|  | *  We need to shift 'count' bits out to the EEPROM.  So, the value in the | 
|  | *  "data" parameter will be shifted out to the EEPROM one bit at a time. | 
|  | *  In order to do this, "data" must be broken down into bits. | 
|  | **/ | 
|  | static void e1000_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count) | 
|  | { | 
|  | struct e1000_nvm_info *nvm = &hw->nvm; | 
|  | u32 eecd = E1000_READ_REG(hw, E1000_EECD); | 
|  | u32 mask; | 
|  |  | 
|  | DEBUGFUNC("e1000_shift_out_eec_bits"); | 
|  |  | 
|  | mask = 0x01 << (count - 1); | 
|  | if (nvm->type == e1000_nvm_eeprom_microwire) | 
|  | eecd &= ~E1000_EECD_DO; | 
|  | else if (nvm->type == e1000_nvm_eeprom_spi) | 
|  | eecd |= E1000_EECD_DO; | 
|  |  | 
|  | do { | 
|  | eecd &= ~E1000_EECD_DI; | 
|  |  | 
|  | if (data & mask) | 
|  | eecd |= E1000_EECD_DI; | 
|  |  | 
|  | E1000_WRITE_REG(hw, E1000_EECD, eecd); | 
|  | E1000_WRITE_FLUSH(hw); | 
|  |  | 
|  | usec_delay(nvm->delay_usec); | 
|  |  | 
|  | e1000_raise_eec_clk(hw, &eecd); | 
|  | e1000_lower_eec_clk(hw, &eecd); | 
|  |  | 
|  | mask >>= 1; | 
|  | } while (mask); | 
|  |  | 
|  | eecd &= ~E1000_EECD_DI; | 
|  | E1000_WRITE_REG(hw, E1000_EECD, eecd); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_shift_in_eec_bits - Shift data bits in from the EEPROM | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @count: number of bits to shift in | 
|  | * | 
|  | *  In order to read a register from the EEPROM, we need to shift 'count' bits | 
|  | *  in from the EEPROM.  Bits are "shifted in" by raising the clock input to | 
|  | *  the EEPROM (setting the SK bit), and then reading the value of the data out | 
|  | *  "DO" bit.  During this "shifting in" process the data in "DI" bit should | 
|  | *  always be clear. | 
|  | **/ | 
|  | static u16 e1000_shift_in_eec_bits(struct e1000_hw *hw, u16 count) | 
|  | { | 
|  | u32 eecd; | 
|  | u32 i; | 
|  | u16 data; | 
|  |  | 
|  | DEBUGFUNC("e1000_shift_in_eec_bits"); | 
|  |  | 
|  | eecd = E1000_READ_REG(hw, E1000_EECD); | 
|  |  | 
|  | eecd &= ~(E1000_EECD_DO | E1000_EECD_DI); | 
|  | data = 0; | 
|  |  | 
|  | for (i = 0; i < count; i++) { | 
|  | data <<= 1; | 
|  | e1000_raise_eec_clk(hw, &eecd); | 
|  |  | 
|  | eecd = E1000_READ_REG(hw, E1000_EECD); | 
|  |  | 
|  | eecd &= ~E1000_EECD_DI; | 
|  | if (eecd & E1000_EECD_DO) | 
|  | data |= 1; | 
|  |  | 
|  | e1000_lower_eec_clk(hw, &eecd); | 
|  | } | 
|  |  | 
|  | return data; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_poll_eerd_eewr_done - Poll for EEPROM read/write completion | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @ee_reg: EEPROM flag for polling | 
|  | * | 
|  | *  Polls the EEPROM status bit for either read or write completion based | 
|  | *  upon the value of 'ee_reg'. | 
|  | **/ | 
|  | s32 e1000_poll_eerd_eewr_done(struct e1000_hw * hw, int ee_reg) | 
|  | { | 
|  | u32 attempts = 100000; | 
|  | u32 i, reg = 0; | 
|  | s32 ret_val = -E1000_ERR_NVM; | 
|  |  | 
|  | DEBUGFUNC("e1000_poll_eerd_eewr_done"); | 
|  |  | 
|  | for (i = 0; i < attempts; i++) { | 
|  | if (ee_reg == E1000_NVM_POLL_READ) | 
|  | reg = E1000_READ_REG(hw, E1000_EERD); | 
|  | else | 
|  | reg = E1000_READ_REG(hw, E1000_EEWR); | 
|  |  | 
|  | if (reg & E1000_NVM_RW_REG_DONE) { | 
|  | ret_val = E1000_SUCCESS; | 
|  | break; | 
|  | } | 
|  |  | 
|  | usec_delay(5); | 
|  | } | 
|  |  | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_acquire_nvm_generic - Generic request for access to EEPROM | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Set the EEPROM access request bit and wait for EEPROM access grant bit. | 
|  | *  Return successful if access grant bit set, else clear the request for | 
|  | *  EEPROM access and return -E1000_ERR_NVM (-1). | 
|  | **/ | 
|  | s32 e1000_acquire_nvm_generic(struct e1000_hw * hw) | 
|  | { | 
|  | u32 eecd = E1000_READ_REG(hw, E1000_EECD); | 
|  | s32 timeout = E1000_NVM_GRANT_ATTEMPTS; | 
|  | s32 ret_val = E1000_SUCCESS; | 
|  |  | 
|  | DEBUGFUNC("e1000_acquire_nvm_generic"); | 
|  |  | 
|  | E1000_WRITE_REG(hw, E1000_EECD, eecd | E1000_EECD_REQ); | 
|  | eecd = E1000_READ_REG(hw, E1000_EECD); | 
|  |  | 
|  | while (timeout) { | 
|  | if (eecd & E1000_EECD_GNT) | 
|  | break; | 
|  | usec_delay(5); | 
|  | eecd = E1000_READ_REG(hw, E1000_EECD); | 
|  | timeout--; | 
|  | } | 
|  |  | 
|  | if (!timeout) { | 
|  | eecd &= ~E1000_EECD_REQ; | 
|  | E1000_WRITE_REG(hw, E1000_EECD, eecd); | 
|  | DEBUGOUT("Could not acquire NVM grant\n"); | 
|  | ret_val = -E1000_ERR_NVM; | 
|  | } | 
|  |  | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_standby_nvm - Return EEPROM to standby state | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Return the EEPROM to a standby state. | 
|  | **/ | 
|  | static void e1000_standby_nvm(struct e1000_hw *hw) | 
|  | { | 
|  | struct e1000_nvm_info *nvm = &hw->nvm; | 
|  | u32 eecd = E1000_READ_REG(hw, E1000_EECD); | 
|  |  | 
|  | DEBUGFUNC("e1000_standby_nvm"); | 
|  |  | 
|  | if (nvm->type == e1000_nvm_eeprom_microwire) { | 
|  | eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); | 
|  | E1000_WRITE_REG(hw, E1000_EECD, eecd); | 
|  | E1000_WRITE_FLUSH(hw); | 
|  | usec_delay(nvm->delay_usec); | 
|  |  | 
|  | e1000_raise_eec_clk(hw, &eecd); | 
|  |  | 
|  | /* Select EEPROM */ | 
|  | eecd |= E1000_EECD_CS; | 
|  | E1000_WRITE_REG(hw, E1000_EECD, eecd); | 
|  | E1000_WRITE_FLUSH(hw); | 
|  | usec_delay(nvm->delay_usec); | 
|  |  | 
|  | e1000_lower_eec_clk(hw, &eecd); | 
|  | } else if (nvm->type == e1000_nvm_eeprom_spi) { | 
|  | /* Toggle CS to flush commands */ | 
|  | eecd |= E1000_EECD_CS; | 
|  | E1000_WRITE_REG(hw, E1000_EECD, eecd); | 
|  | E1000_WRITE_FLUSH(hw); | 
|  | usec_delay(nvm->delay_usec); | 
|  | eecd &= ~E1000_EECD_CS; | 
|  | E1000_WRITE_REG(hw, E1000_EECD, eecd); | 
|  | E1000_WRITE_FLUSH(hw); | 
|  | usec_delay(nvm->delay_usec); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_stop_nvm - Terminate EEPROM command | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Terminates the current command by inverting the EEPROM's chip select pin. | 
|  | **/ | 
|  | void e1000_stop_nvm(struct e1000_hw *hw) | 
|  | { | 
|  | u32 eecd; | 
|  |  | 
|  | DEBUGFUNC("e1000_stop_nvm"); | 
|  |  | 
|  | eecd = E1000_READ_REG(hw, E1000_EECD); | 
|  | if (hw->nvm.type == e1000_nvm_eeprom_spi) { | 
|  | /* Pull CS high */ | 
|  | eecd |= E1000_EECD_CS; | 
|  | e1000_lower_eec_clk(hw, &eecd); | 
|  | } else if (hw->nvm.type == e1000_nvm_eeprom_microwire) { | 
|  | /* CS on Microwire is active-high */ | 
|  | eecd &= ~(E1000_EECD_CS | E1000_EECD_DI); | 
|  | E1000_WRITE_REG(hw, E1000_EECD, eecd); | 
|  | e1000_raise_eec_clk(hw, &eecd); | 
|  | e1000_lower_eec_clk(hw, &eecd); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_release_nvm_generic - Release exclusive access to EEPROM | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Stop any current commands to the EEPROM and clear the EEPROM request bit. | 
|  | **/ | 
|  | void e1000_release_nvm_generic(struct e1000_hw *hw) | 
|  | { | 
|  | u32 eecd; | 
|  |  | 
|  | DEBUGFUNC("e1000_release_nvm_generic"); | 
|  |  | 
|  | e1000_stop_nvm(hw); | 
|  |  | 
|  | eecd = E1000_READ_REG(hw, E1000_EECD); | 
|  | eecd &= ~E1000_EECD_REQ; | 
|  | E1000_WRITE_REG(hw, E1000_EECD, eecd); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_ready_nvm_eeprom - Prepares EEPROM for read/write | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Setups the EEPROM for reading and writing. | 
|  | **/ | 
|  | static s32 e1000_ready_nvm_eeprom(struct e1000_hw *hw) | 
|  | { | 
|  | struct e1000_nvm_info *nvm = &hw->nvm; | 
|  | u32 eecd = E1000_READ_REG(hw, E1000_EECD); | 
|  | s32 ret_val = E1000_SUCCESS; | 
|  | u16 timeout = 0; | 
|  | u8 spi_stat_reg; | 
|  |  | 
|  | DEBUGFUNC("e1000_ready_nvm_eeprom"); | 
|  |  | 
|  | if (nvm->type == e1000_nvm_eeprom_microwire) { | 
|  | /* Clear SK and DI */ | 
|  | eecd &= ~(E1000_EECD_DI | E1000_EECD_SK); | 
|  | E1000_WRITE_REG(hw, E1000_EECD, eecd); | 
|  | /* Set CS */ | 
|  | eecd |= E1000_EECD_CS; | 
|  | E1000_WRITE_REG(hw, E1000_EECD, eecd); | 
|  | } else if (nvm->type == e1000_nvm_eeprom_spi) { | 
|  | /* Clear SK and CS */ | 
|  | eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); | 
|  | E1000_WRITE_REG(hw, E1000_EECD, eecd); | 
|  | usec_delay(1); | 
|  | timeout = NVM_MAX_RETRY_SPI; | 
|  |  | 
|  | /* | 
|  | * Read "Status Register" repeatedly until the LSB is cleared. | 
|  | * The EEPROM will signal that the command has been completed | 
|  | * by clearing bit 0 of the internal status register.  If it's | 
|  | * not cleared within 'timeout', then error out. | 
|  | */ | 
|  | while (timeout) { | 
|  | e1000_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI, | 
|  | hw->nvm.opcode_bits); | 
|  | spi_stat_reg = (u8) e1000_shift_in_eec_bits(hw, 8); | 
|  | if (!(spi_stat_reg & NVM_STATUS_RDY_SPI)) | 
|  | break; | 
|  |  | 
|  | usec_delay(5); | 
|  | e1000_standby_nvm(hw); | 
|  | timeout--; | 
|  | } | 
|  |  | 
|  | if (!timeout) { | 
|  | DEBUGOUT("SPI NVM Status error\n"); | 
|  | ret_val = -E1000_ERR_NVM; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | out: | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_read_nvm_spi - Read EEPROM's using SPI | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @offset: offset of word in the EEPROM to read | 
|  | *  @words: number of words to read | 
|  | *  @data: word read from the EEPROM | 
|  | * | 
|  | *  Reads a 16 bit word from the EEPROM. | 
|  | **/ | 
|  | s32 e1000_read_nvm_spi(struct e1000_hw * hw, u16 offset, u16 words, u16 * data) | 
|  | { | 
|  | struct e1000_nvm_info *nvm = &hw->nvm; | 
|  | u32 i = 0; | 
|  | s32 ret_val; | 
|  | u16 word_in; | 
|  | u8 read_opcode = NVM_READ_OPCODE_SPI; | 
|  |  | 
|  | DEBUGFUNC("e1000_read_nvm_spi"); | 
|  |  | 
|  | /* | 
|  | * A check for invalid values:  offset too large, too many words, | 
|  | * and not enough words. | 
|  | */ | 
|  | if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || | 
|  | (words == 0)) { | 
|  | DEBUGOUT("nvm parameter(s) out of bounds\n"); | 
|  | ret_val = -E1000_ERR_NVM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ret_val = nvm->ops.acquire(hw); | 
|  | if (ret_val) | 
|  | goto out; | 
|  |  | 
|  | ret_val = e1000_ready_nvm_eeprom(hw); | 
|  | if (ret_val) | 
|  | goto release; | 
|  |  | 
|  | e1000_standby_nvm(hw); | 
|  |  | 
|  | if ((nvm->address_bits == 8) && (offset >= 128)) | 
|  | read_opcode |= NVM_A8_OPCODE_SPI; | 
|  |  | 
|  | /* Send the READ command (opcode + addr) */ | 
|  | e1000_shift_out_eec_bits(hw, read_opcode, nvm->opcode_bits); | 
|  | e1000_shift_out_eec_bits(hw, (u16) (offset * 2), nvm->address_bits); | 
|  |  | 
|  | /* | 
|  | * Read the data.  SPI NVMs increment the address with each byte | 
|  | * read and will roll over if reading beyond the end.  This allows | 
|  | * us to read the whole NVM from any offset | 
|  | */ | 
|  | for (i = 0; i < words; i++) { | 
|  | word_in = e1000_shift_in_eec_bits(hw, 16); | 
|  | data[i] = (word_in >> 8) | (word_in << 8); | 
|  | } | 
|  |  | 
|  | release: | 
|  | nvm->ops.release(hw); | 
|  |  | 
|  | out: | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_read_nvm_microwire - Reads EEPROM's using microwire | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @offset: offset of word in the EEPROM to read | 
|  | *  @words: number of words to read | 
|  | *  @data: word read from the EEPROM | 
|  | * | 
|  | *  Reads a 16 bit word from the EEPROM. | 
|  | **/ | 
|  | s32 e1000_read_nvm_microwire(struct e1000_hw * hw, u16 offset, u16 words, | 
|  | u16 * data) | 
|  | { | 
|  | struct e1000_nvm_info *nvm = &hw->nvm; | 
|  | u32 i = 0; | 
|  | s32 ret_val; | 
|  | u8 read_opcode = NVM_READ_OPCODE_MICROWIRE; | 
|  |  | 
|  | DEBUGFUNC("e1000_read_nvm_microwire"); | 
|  |  | 
|  | /* | 
|  | * A check for invalid values:  offset too large, too many words, | 
|  | * and not enough words. | 
|  | */ | 
|  | if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || | 
|  | (words == 0)) { | 
|  | DEBUGOUT("nvm parameter(s) out of bounds\n"); | 
|  | ret_val = -E1000_ERR_NVM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ret_val = nvm->ops.acquire(hw); | 
|  | if (ret_val) | 
|  | goto out; | 
|  |  | 
|  | ret_val = e1000_ready_nvm_eeprom(hw); | 
|  | if (ret_val) | 
|  | goto release; | 
|  |  | 
|  | for (i = 0; i < words; i++) { | 
|  | /* Send the READ command (opcode + addr) */ | 
|  | e1000_shift_out_eec_bits(hw, read_opcode, nvm->opcode_bits); | 
|  | e1000_shift_out_eec_bits(hw, (u16) (offset + i), nvm->address_bits); | 
|  |  | 
|  | /* | 
|  | * Read the data.  For microwire, each word requires the | 
|  | * overhead of setup and tear-down. | 
|  | */ | 
|  | data[i] = e1000_shift_in_eec_bits(hw, 16); | 
|  | e1000_standby_nvm(hw); | 
|  | } | 
|  |  | 
|  | release: | 
|  | nvm->ops.release(hw); | 
|  |  | 
|  | out: | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_read_nvm_eerd - Reads EEPROM using EERD register | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @offset: offset of word in the EEPROM to read | 
|  | *  @words: number of words to read | 
|  | *  @data: word read from the EEPROM | 
|  | * | 
|  | *  Reads a 16 bit word from the EEPROM using the EERD register. | 
|  | **/ | 
|  | s32 e1000_read_nvm_eerd(struct e1000_hw * hw, u16 offset, u16 words, u16 * data) | 
|  | { | 
|  | struct e1000_nvm_info *nvm = &hw->nvm; | 
|  | u32 i, eerd = 0; | 
|  | s32 ret_val = E1000_SUCCESS; | 
|  |  | 
|  | DEBUGFUNC("e1000_read_nvm_eerd"); | 
|  |  | 
|  | /* | 
|  | * A check for invalid values:  offset too large, too many words, | 
|  | * too many words for the offset, and not enough words. | 
|  | */ | 
|  | if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || | 
|  | (words == 0)) { | 
|  | DEBUGOUT("nvm parameter(s) out of bounds\n"); | 
|  | ret_val = -E1000_ERR_NVM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < words; i++) { | 
|  | eerd = ((offset + i) << E1000_NVM_RW_ADDR_SHIFT) + | 
|  | E1000_NVM_RW_REG_START; | 
|  |  | 
|  | E1000_WRITE_REG(hw, E1000_EERD, eerd); | 
|  | ret_val = e1000_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ); | 
|  | if (ret_val) | 
|  | break; | 
|  |  | 
|  | data[i] = (E1000_READ_REG(hw, E1000_EERD) >> E1000_NVM_RW_REG_DATA); | 
|  | } | 
|  |  | 
|  | out: | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_write_nvm_spi - Write to EEPROM using SPI | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @offset: offset within the EEPROM to be written to | 
|  | *  @words: number of words to write | 
|  | *  @data: 16 bit word(s) to be written to the EEPROM | 
|  | * | 
|  | *  Writes data to EEPROM at offset using SPI interface. | 
|  | * | 
|  | *  If e1000_update_nvm_checksum is not called after this function , the | 
|  | *  EEPROM will most likely contain an invalid checksum. | 
|  | **/ | 
|  | s32 e1000_write_nvm_spi(struct e1000_hw * hw, u16 offset, u16 words, u16 * data) | 
|  | { | 
|  | struct e1000_nvm_info *nvm = &hw->nvm; | 
|  | s32 ret_val; | 
|  | u16 widx = 0; | 
|  |  | 
|  | DEBUGFUNC("e1000_write_nvm_spi"); | 
|  |  | 
|  | /* | 
|  | * A check for invalid values:  offset too large, too many words, | 
|  | * and not enough words. | 
|  | */ | 
|  | if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || | 
|  | (words == 0)) { | 
|  | DEBUGOUT("nvm parameter(s) out of bounds\n"); | 
|  | ret_val = -E1000_ERR_NVM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ret_val = nvm->ops.acquire(hw); | 
|  | if (ret_val) | 
|  | goto out; | 
|  |  | 
|  | while (widx < words) { | 
|  | u8 write_opcode = NVM_WRITE_OPCODE_SPI; | 
|  |  | 
|  | ret_val = e1000_ready_nvm_eeprom(hw); | 
|  | if (ret_val) | 
|  | goto release; | 
|  |  | 
|  | e1000_standby_nvm(hw); | 
|  |  | 
|  | /* Send the WRITE ENABLE command (8 bit opcode) */ | 
|  | e1000_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI, nvm->opcode_bits); | 
|  |  | 
|  | e1000_standby_nvm(hw); | 
|  |  | 
|  | /* | 
|  | * Some SPI eeproms use the 8th address bit embedded in the | 
|  | * opcode | 
|  | */ | 
|  | if ((nvm->address_bits == 8) && (offset >= 128)) | 
|  | write_opcode |= NVM_A8_OPCODE_SPI; | 
|  |  | 
|  | /* Send the Write command (8-bit opcode + addr) */ | 
|  | e1000_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits); | 
|  | e1000_shift_out_eec_bits(hw, (u16) ((offset + widx) * 2), | 
|  | nvm->address_bits); | 
|  |  | 
|  | /* Loop to allow for up to whole page write of eeprom */ | 
|  | while (widx < words) { | 
|  | u16 word_out = data[widx]; | 
|  | word_out = (word_out >> 8) | (word_out << 8); | 
|  | e1000_shift_out_eec_bits(hw, word_out, 16); | 
|  | widx++; | 
|  |  | 
|  | if ((((offset + widx) * 2) % nvm->page_size) == 0) { | 
|  | e1000_standby_nvm(hw); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | msec_delay(10); | 
|  | release: | 
|  | nvm->ops.release(hw); | 
|  |  | 
|  | out: | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_write_nvm_microwire - Writes EEPROM using microwire | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @offset: offset within the EEPROM to be written to | 
|  | *  @words: number of words to write | 
|  | *  @data: 16 bit word(s) to be written to the EEPROM | 
|  | * | 
|  | *  Writes data to EEPROM at offset using microwire interface. | 
|  | * | 
|  | *  If e1000_update_nvm_checksum is not called after this function , the | 
|  | *  EEPROM will most likely contain an invalid checksum. | 
|  | **/ | 
|  | s32 e1000_write_nvm_microwire(struct e1000_hw * hw, u16 offset, u16 words, | 
|  | u16 * data) | 
|  | { | 
|  | struct e1000_nvm_info *nvm = &hw->nvm; | 
|  | s32 ret_val; | 
|  | u32 eecd; | 
|  | u16 words_written = 0; | 
|  | u16 widx = 0; | 
|  |  | 
|  | DEBUGFUNC("e1000_write_nvm_microwire"); | 
|  |  | 
|  | /* | 
|  | * A check for invalid values:  offset too large, too many words, | 
|  | * and not enough words. | 
|  | */ | 
|  | if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || | 
|  | (words == 0)) { | 
|  | DEBUGOUT("nvm parameter(s) out of bounds\n"); | 
|  | ret_val = -E1000_ERR_NVM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ret_val = nvm->ops.acquire(hw); | 
|  | if (ret_val) | 
|  | goto out; | 
|  |  | 
|  | ret_val = e1000_ready_nvm_eeprom(hw); | 
|  | if (ret_val) | 
|  | goto release; | 
|  |  | 
|  | e1000_shift_out_eec_bits(hw, NVM_EWEN_OPCODE_MICROWIRE, | 
|  | (u16) (nvm->opcode_bits + 2)); | 
|  |  | 
|  | e1000_shift_out_eec_bits(hw, 0, (u16) (nvm->address_bits - 2)); | 
|  |  | 
|  | e1000_standby_nvm(hw); | 
|  |  | 
|  | while (words_written < words) { | 
|  | e1000_shift_out_eec_bits(hw, NVM_WRITE_OPCODE_MICROWIRE, | 
|  | nvm->opcode_bits); | 
|  |  | 
|  | e1000_shift_out_eec_bits(hw, (u16) (offset + words_written), | 
|  | nvm->address_bits); | 
|  |  | 
|  | e1000_shift_out_eec_bits(hw, data[words_written], 16); | 
|  |  | 
|  | e1000_standby_nvm(hw); | 
|  |  | 
|  | for (widx = 0; widx < 200; widx++) { | 
|  | eecd = E1000_READ_REG(hw, E1000_EECD); | 
|  | if (eecd & E1000_EECD_DO) | 
|  | break; | 
|  | usec_delay(50); | 
|  | } | 
|  |  | 
|  | if (widx == 200) { | 
|  | DEBUGOUT("NVM Write did not complete\n"); | 
|  | ret_val = -E1000_ERR_NVM; | 
|  | goto release; | 
|  | } | 
|  |  | 
|  | e1000_standby_nvm(hw); | 
|  |  | 
|  | words_written++; | 
|  | } | 
|  |  | 
|  | e1000_shift_out_eec_bits(hw, NVM_EWDS_OPCODE_MICROWIRE, | 
|  | (u16) (nvm->opcode_bits + 2)); | 
|  |  | 
|  | e1000_shift_out_eec_bits(hw, 0, (u16) (nvm->address_bits - 2)); | 
|  |  | 
|  | release: | 
|  | nvm->ops.release(hw); | 
|  |  | 
|  | out: | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_read_pba_num_generic - Read device part number | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @pba_num: pointer to device part number | 
|  | * | 
|  | *  Reads the product board assembly (PBA) number from the EEPROM and stores | 
|  | *  the value in pba_num. | 
|  | **/ | 
|  | s32 e1000_read_pba_num_generic(struct e1000_hw * hw, u32 * pba_num) | 
|  | { | 
|  | s32 ret_val; | 
|  | u16 nvm_data; | 
|  |  | 
|  | DEBUGFUNC("e1000_read_pba_num_generic"); | 
|  |  | 
|  | ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_0, 1, &nvm_data); | 
|  | if (ret_val) { | 
|  | DEBUGOUT("NVM Read Error\n"); | 
|  | goto out; | 
|  | } | 
|  | *pba_num = (u32) (nvm_data << 16); | 
|  |  | 
|  | ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_1, 1, &nvm_data); | 
|  | if (ret_val) { | 
|  | DEBUGOUT("NVM Read Error\n"); | 
|  | goto out; | 
|  | } | 
|  | *pba_num |= nvm_data; | 
|  |  | 
|  | out: | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_read_mac_addr_generic - Read device MAC address | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Reads the device MAC address from the EEPROM and stores the value. | 
|  | *  Since devices with two ports use the same EEPROM, we increment the | 
|  | *  last bit in the MAC address for the second port. | 
|  | **/ | 
|  | s32 e1000_read_mac_addr_generic(struct e1000_hw * hw) | 
|  | { | 
|  | u32 rar_high; | 
|  | u32 rar_low; | 
|  | u16 i; | 
|  |  | 
|  | rar_high = E1000_READ_REG(hw, E1000_RAH(0)); | 
|  | rar_low = E1000_READ_REG(hw, E1000_RAL(0)); | 
|  |  | 
|  | for (i = 0; i < E1000_RAL_MAC_ADDR_LEN; i++) | 
|  | hw->mac.perm_addr[i] = (u8) (rar_low >> (i * 8)); | 
|  |  | 
|  | for (i = 0; i < E1000_RAH_MAC_ADDR_LEN; i++) | 
|  | hw->mac.perm_addr[i + 4] = (u8) (rar_high >> (i * 8)); | 
|  |  | 
|  | for (i = 0; i < ETH_ADDR_LEN; i++) | 
|  | hw->mac.addr[i] = hw->mac.perm_addr[i]; | 
|  |  | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_validate_nvm_checksum_generic - Validate EEPROM checksum | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM | 
|  | *  and then verifies that the sum of the EEPROM is equal to 0xBABA. | 
|  | **/ | 
|  | s32 e1000_validate_nvm_checksum_generic(struct e1000_hw * hw) | 
|  | { | 
|  | s32 ret_val = E1000_SUCCESS; | 
|  | u16 checksum = 0; | 
|  | u16 i, nvm_data; | 
|  |  | 
|  | DEBUGFUNC("e1000_validate_nvm_checksum_generic"); | 
|  |  | 
|  | for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) { | 
|  | ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data); | 
|  | if (ret_val) { | 
|  | DEBUGOUT("NVM Read Error\n"); | 
|  | goto out; | 
|  | } | 
|  | checksum += nvm_data; | 
|  | } | 
|  |  | 
|  | if (checksum != (u16) NVM_SUM) { | 
|  | DEBUGOUT("NVM Checksum Invalid\n"); | 
|  | ret_val = -E1000_ERR_NVM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | out: | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_update_nvm_checksum_generic - Update EEPROM checksum | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Updates the EEPROM checksum by reading/adding each word of the EEPROM | 
|  | *  up to the checksum.  Then calculates the EEPROM checksum and writes the | 
|  | *  value to the EEPROM. | 
|  | **/ | 
|  | s32 e1000_update_nvm_checksum_generic(struct e1000_hw * hw) | 
|  | { | 
|  | s32 ret_val; | 
|  | u16 checksum = 0; | 
|  | u16 i, nvm_data; | 
|  |  | 
|  | DEBUGFUNC("e1000_update_nvm_checksum"); | 
|  |  | 
|  | for (i = 0; i < NVM_CHECKSUM_REG; i++) { | 
|  | ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data); | 
|  | if (ret_val) { | 
|  | DEBUGOUT("NVM Read Error while updating checksum.\n"); | 
|  | goto out; | 
|  | } | 
|  | checksum += nvm_data; | 
|  | } | 
|  | checksum = (u16) NVM_SUM - checksum; | 
|  | ret_val = hw->nvm.ops.write(hw, NVM_CHECKSUM_REG, 1, &checksum); | 
|  | if (ret_val) | 
|  | DEBUGOUT("NVM Write Error while updating checksum.\n"); | 
|  |  | 
|  | out: | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_reload_nvm_generic - Reloads EEPROM | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the | 
|  | *  extended control register. | 
|  | **/ | 
|  | static void e1000_reload_nvm_generic(struct e1000_hw *hw) | 
|  | { | 
|  | u32 ctrl_ext; | 
|  |  | 
|  | DEBUGFUNC("e1000_reload_nvm_generic"); | 
|  |  | 
|  | usec_delay(10); | 
|  | ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); | 
|  | ctrl_ext |= E1000_CTRL_EXT_EE_RST; | 
|  | E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); | 
|  | E1000_WRITE_FLUSH(hw); | 
|  | } |