| /* Copyright (c) 2010-13 The Regents of the University of California |
| * Barret Rhoden <brho@cs.berkeley.edu> |
| * See LICENSE for details. |
| * |
| * Kernel threading. These are for blocking within the kernel for whatever |
| * reason, usually during blocking IO operations. */ |
| |
| #include <kthread.h> |
| #include <slab.h> |
| #include <page_alloc.h> |
| #include <pmap.h> |
| #include <smp.h> |
| #include <schedule.h> |
| #include <kstack.h> |
| |
| uintptr_t get_kstack(void) |
| { |
| uintptr_t stackbot; |
| if (KSTKSIZE == PGSIZE) |
| stackbot = (uintptr_t)kpage_alloc_addr(); |
| else |
| stackbot = (uintptr_t)get_cont_pages(KSTKSHIFT - PGSHIFT, 0); |
| assert(stackbot); |
| return stackbot + KSTKSIZE; |
| } |
| |
| void put_kstack(uintptr_t stacktop) |
| { |
| uintptr_t stackbot = stacktop - KSTKSIZE; |
| if (KSTKSIZE == PGSIZE) |
| page_decref(kva2page((void*)stackbot)); |
| else |
| free_cont_pages((void*)stackbot, KSTKSHIFT - PGSHIFT); |
| } |
| |
| uintptr_t *kstack_bottom_addr(uintptr_t stacktop) |
| { |
| /* canary at the bottom of the stack */ |
| assert(!PGOFF(stacktop)); |
| return (uintptr_t*)(stacktop - KSTKSIZE); |
| } |
| |
| struct kmem_cache *kthread_kcache; |
| |
| void kthread_init(void) |
| { |
| kthread_kcache = kmem_cache_create("kthread", sizeof(struct kthread), |
| __alignof__(struct kthread), 0, 0, 0); |
| } |
| |
| /* Used by early init routines (smp_boot, etc) */ |
| struct kthread *__kthread_zalloc(void) |
| { |
| struct kthread *kthread; |
| kthread = kmem_cache_alloc(kthread_kcache, 0); |
| assert(kthread); |
| memset(kthread, 0, sizeof(struct kthread)); |
| return kthread; |
| } |
| |
| /* Starts kthread on the calling core. This does not return, and will handle |
| * the details of cleaning up whatever is currently running (freeing its stack, |
| * etc). Pairs with sem_down(). */ |
| void restart_kthread(struct kthread *kthread) |
| { |
| struct per_cpu_info *pcpui = &per_cpu_info[core_id()]; |
| uintptr_t current_stacktop; |
| struct kthread *current_kthread; |
| /* Avoid messy complications. The kthread will enable_irqsave() when it |
| * comes back up. */ |
| disable_irq(); |
| /* Free any spare, since we need the current to become the spare. Without |
| * the spare, we can't free our current kthread/stack (we could free the |
| * kthread, but not the stack, since we're still on it). And we can't free |
| * anything after popping kthread, since we never return. */ |
| if (pcpui->spare) { |
| put_kstack(pcpui->spare->stacktop); |
| kmem_cache_free(kthread_kcache, pcpui->spare); |
| } |
| current_kthread = pcpui->cur_kthread; |
| current_stacktop = current_kthread->stacktop; |
| assert(!current_kthread->sysc); /* catch bugs, prev user should clear */ |
| /* Set the spare stuff (current kthread, which includes its stacktop) */ |
| pcpui->spare = current_kthread; |
| /* When a kthread runs, its stack is the default kernel stack */ |
| set_stack_top(kthread->stacktop); |
| pcpui->cur_kthread = kthread; |
| #ifdef CONFIG_KTHREAD_POISON |
| /* Assert and switch to cur stack not in use, kthr stack in use */ |
| uintptr_t *cur_stack_poison, *kth_stack_poison; |
| cur_stack_poison = kstack_bottom_addr(current_stacktop); |
| assert(*cur_stack_poison == 0xdeadbeef); |
| *cur_stack_poison = 0; |
| kth_stack_poison = kstack_bottom_addr(kthread->stacktop); |
| assert(!*kth_stack_poison); |
| *kth_stack_poison = 0xdeadbeef; |
| #endif /* CONFIG_KTHREAD_POISON */ |
| /* Only change current if we need to (the kthread was in process context) */ |
| if (kthread->proc) { |
| /* Load our page tables before potentially decreffing cur_proc */ |
| lcr3(kthread->proc->env_cr3); |
| /* Might have to clear out an existing current. If they need to be set |
| * later (like in restartcore), it'll be done on demand. */ |
| if (pcpui->cur_proc) |
| proc_decref(pcpui->cur_proc); |
| /* We also transfer our counted ref from kthread->proc to cur_proc */ |
| pcpui->cur_proc = kthread->proc; |
| } |
| /* Finally, restart our thread */ |
| longjmp(&kthread->context, 1); |
| } |
| |
| /* Kmsg handler to launch/run a kthread. This must be a routine message, since |
| * it does not return. */ |
| static void __launch_kthread(uint32_t srcid, long a0, long a1, long a2) |
| { |
| struct kthread *kthread = (struct kthread*)a0; |
| struct per_cpu_info *pcpui = &per_cpu_info[core_id()]; |
| struct proc *cur_proc = pcpui->cur_proc; |
| |
| /* Make sure we are a routine kmsg */ |
| assert(in_early_rkmsg_ctx(pcpui)); |
| if (pcpui->owning_proc && pcpui->owning_proc != kthread->proc) { |
| /* Some process should be running here that is not the same as the |
| * kthread. This means the _M is getting interrupted or otherwise |
| * delayed. If we want to do something other than run it (like send the |
| * kmsg to another pcore, or ship the context from here to somewhere |
| * else/deschedule it (like for an _S)), do it here. |
| * |
| * If you want to do something here, call out to the ksched, then |
| * abandon_core(). */ |
| cmb(); /* do nothing/placeholder */ |
| } |
| /* o/w, just run the kthread. any trapframes that are supposed to run or |
| * were interrupted will run whenever the kthread smp_idles() or otherwise |
| * finishes. We also need to clear the RKMSG context since we will not |
| * return from restart_kth. */ |
| clear_rkmsg(pcpui); |
| restart_kthread(kthread); |
| assert(0); |
| } |
| |
| /* Call this when a kthread becomes runnable/unblocked. We don't do anything |
| * particularly smart yet, but when we do, we can put it here. */ |
| void kthread_runnable(struct kthread *kthread) |
| { |
| uint32_t dst = core_id(); |
| #if 0 |
| /* turn this block on if you want to test migrating non-core0 kthreads */ |
| switch (dst) { |
| case 0: |
| break; |
| case 7: |
| dst = 2; |
| break; |
| default: |
| dst++; |
| } |
| #endif |
| /* For lack of anything better, send it to ourselves. (TODO: KSCHED) */ |
| send_kernel_message(dst, __launch_kthread, (long)kthread, 0, 0, |
| KMSG_ROUTINE); |
| } |
| |
| /* Kmsg helper for kthread_yield */ |
| static void __wake_me_up(uint32_t srcid, long a0, long a1, long a2) |
| { |
| struct semaphore *sem = (struct semaphore*)a0; |
| assert(sem_up(sem)); |
| } |
| |
| /* Stop the current kthread. It'll get woken up next time we run routine kmsgs, |
| * after all existing kmsgs are processed. */ |
| void kthread_yield(void) |
| { |
| struct semaphore local_sem, *sem = &local_sem; |
| sem_init(sem, 0); |
| send_kernel_message(core_id(), __wake_me_up, (long)sem, 0, 0, |
| KMSG_ROUTINE); |
| sem_down(sem); |
| } |
| |
| void kthread_usleep(uint64_t usec) |
| { |
| /* TODO: classic ksched issue: where do we want the wake up to happen? */ |
| struct timer_chain *tchain = &per_cpu_info[core_id()].tchain; |
| struct alarm_waiter a_waiter; |
| init_awaiter(&a_waiter, 0); |
| set_awaiter_rel(&a_waiter, usec); |
| set_alarm(tchain, &a_waiter); |
| sleep_on_awaiter(&a_waiter); |
| } |
| |
| static void __ktask_wrapper(uint32_t srcid, long a0, long a1, long a2) |
| { |
| ERRSTACK(1); |
| void (*fn)(void*) = (void (*)(void*))a0; |
| void *arg = (void*)a1; |
| char *name = (char*)a2; |
| struct per_cpu_info *pcpui = &per_cpu_info[core_id()]; |
| assert(pcpui->cur_kthread->is_ktask); |
| pcpui->cur_kthread->name = name; |
| /* There are some rendezs out there that aren't wrapped. Though no one can |
| * abort them. Yet. */ |
| if (waserror()) { |
| printk("Ktask %s threw error %s\n", name, current_errstr()); |
| goto out; |
| } |
| enable_irq(); |
| fn(arg); |
| out: |
| disable_irq(); |
| pcpui->cur_kthread->name = 0; |
| poperror(); |
| /* if we blocked, when we return, PRKM will smp_idle() */ |
| } |
| |
| /* Creates a kernel task, running fn(arg), named "name". This is just a routine |
| * kernel message that happens to have a name, and is allowed to block. It |
| * won't be associated with any process. For lack of a better place, we'll just |
| * start it on the calling core. Caller (and/or fn) need to deal with the |
| * storage for *name. */ |
| void ktask(char *name, void (*fn)(void*), void *arg) |
| { |
| send_kernel_message(core_id(), __ktask_wrapper, (long)fn, (long)arg, |
| (long)name, KMSG_ROUTINE); |
| } |
| |
| void check_poison(char *msg) |
| { |
| #ifdef CONFIG_KTHREAD_POISON |
| struct per_cpu_info *pcpui = &per_cpu_info[core_id()]; |
| assert(pcpui->cur_kthread && pcpui->cur_kthread->stacktop); |
| if (*kstack_bottom_addr(pcpui->cur_kthread->stacktop) != 0xdeadbeef) { |
| printk("\nBad kthread canary, msg: %s\n", msg); |
| panic(""); |
| } |
| #endif /* CONFIG_KTHREAD_POISON */ |
| } |
| |
| /* Semaphores, using kthreads directly */ |
| static void debug_downed_sem(struct semaphore *sem); |
| static void debug_upped_sem(struct semaphore *sem); |
| |
| static void sem_init_common(struct semaphore *sem, int signals) |
| { |
| TAILQ_INIT(&sem->waiters); |
| sem->nr_signals = signals; |
| #ifdef CONFIG_SEMAPHORE_DEBUG |
| sem->is_on_list = FALSE; |
| sem->bt_pc = 0; |
| sem->bt_fp = 0; |
| sem->calling_core = 0; |
| #endif |
| } |
| |
| void sem_init(struct semaphore *sem, int signals) |
| { |
| sem_init_common(sem, signals); |
| spinlock_init(&sem->lock); |
| sem->irq_okay = FALSE; |
| } |
| |
| void sem_init_irqsave(struct semaphore *sem, int signals) |
| { |
| sem_init_common(sem, signals); |
| spinlock_init_irqsave(&sem->lock); |
| sem->irq_okay = TRUE; |
| } |
| |
| bool sem_trydown(struct semaphore *sem) |
| { |
| bool ret = FALSE; |
| /* lockless peek */ |
| if (sem->nr_signals <= 0) |
| return ret; |
| spin_lock(&sem->lock); |
| if (sem->nr_signals > 0) { |
| sem->nr_signals--; |
| ret = TRUE; |
| debug_downed_sem(sem); |
| } |
| spin_unlock(&sem->lock); |
| return ret; |
| } |
| |
| /* This downs the semaphore and suspends the current kernel context on its |
| * waitqueue if there are no pending signals. Note that the case where the |
| * signal is already there is not optimized. */ |
| void sem_down(struct semaphore *sem) |
| { |
| struct kthread *kthread, *new_kthread; |
| register uintptr_t new_stacktop; |
| struct per_cpu_info *pcpui = &per_cpu_info[core_id()]; |
| bool irqs_were_on = irq_is_enabled(); |
| |
| assert(can_block(pcpui)); |
| /* Make sure we aren't holding any locks (only works if SPINLOCK_DEBUG) */ |
| if (pcpui->lock_depth) |
| panic("Kthread tried to sleep, with lockdepth %d\n", pcpui->lock_depth); |
| assert(pcpui->cur_kthread); |
| /* Try to down the semaphore. If there is a signal there, we can skip all |
| * of the sleep prep and just return. */ |
| #ifdef CONFIG_SEM_SPINWAIT |
| for (int i = 0; i < CONFIG_SEM_SPINWAIT_NR_LOOPS; i++) { |
| if (sem_trydown(sem)) |
| goto block_return_path; |
| cpu_relax(); |
| } |
| #else |
| if (sem_trydown(sem)) |
| goto block_return_path; |
| #endif |
| #ifdef CONFIG_SEM_TRACE_BLOCKERS |
| TRACEME(); |
| #endif |
| /* We're probably going to sleep, so get ready. We'll check again later. */ |
| kthread = pcpui->cur_kthread; |
| /* We need to have a spare slot for restart, so we also use it when |
| * sleeping. Right now, we need a new kthread to take over if/when our |
| * current kthread sleeps. Use the spare, and if not, get a new one. |
| * |
| * Note we do this with interrupts disabled (which protects us from |
| * concurrent modifications). */ |
| if (pcpui->spare) { |
| new_kthread = pcpui->spare; |
| new_stacktop = new_kthread->stacktop; |
| pcpui->spare = 0; |
| /* Based on how we set is_ktask (in PRKM), we'll usually have a spare |
| * with is_ktask set, even though the default setting is off. The |
| * reason is that the launching of blocked kthreads also uses PRKM, and |
| * that KMSG (__launch_kthread) doesn't return. Thus the soon-to-be |
| * spare kthread, that is launching another, has is_ktask set. */ |
| new_kthread->is_ktask = FALSE; |
| new_kthread->proc = 0; |
| new_kthread->name = 0; |
| } else { |
| new_kthread = __kthread_zalloc(); |
| new_stacktop = get_kstack(); |
| new_kthread->stacktop = new_stacktop; |
| #ifdef CONFIG_KTHREAD_POISON |
| *kstack_bottom_addr(new_stacktop) = 0; |
| #endif /* CONFIG_KTHREAD_POISON */ |
| } |
| /* Set the core's new default stack and kthread */ |
| set_stack_top(new_stacktop); |
| pcpui->cur_kthread = new_kthread; |
| #ifdef CONFIG_KTHREAD_POISON |
| /* Mark the new stack as in-use, and unmark the current kthread */ |
| uintptr_t *new_stack_poison, *kth_stack_poison; |
| new_stack_poison = kstack_bottom_addr(new_stacktop); |
| assert(!*new_stack_poison); |
| *new_stack_poison = 0xdeadbeef; |
| kth_stack_poison = kstack_bottom_addr(kthread->stacktop); |
| assert(*kth_stack_poison == 0xdeadbeef); |
| *kth_stack_poison = 0; |
| #endif /* CONFIG_KTHREAD_POISON */ |
| /* Kthreads that are ktasks are not related to any process, and do not need |
| * to work in a process's address space. They can operate in any address |
| * space that has the kernel mapped (like boot_pgdir, or any pgdir). |
| * |
| * Other kthreads need to stay in the process context (if there is one), but |
| * we want the core (which could be a vcore) to stay in the context too. In |
| * the future, we could check owning_proc. If it isn't set, we could leave |
| * the process context and transfer the refcnt to kthread->proc. */ |
| if (!kthread->is_ktask) { |
| kthread->proc = current; |
| if (kthread->proc) /* still could be none, like during init */ |
| proc_incref(kthread->proc, 1); |
| } else { |
| kthread->proc = 0; |
| } |
| if (setjmp(&kthread->context)) |
| goto block_return_path; |
| spin_lock(&sem->lock); |
| if (sem->nr_signals-- <= 0) { |
| TAILQ_INSERT_TAIL(&sem->waiters, kthread, link); |
| debug_downed_sem(sem); /* need to debug after inserting */ |
| /* At this point, we know we'll sleep and change stacks later. Once we |
| * unlock, we could have the kthread restarted (possibly on another |
| * core), so we need to disable irqs until we are on our new stack. |
| * Otherwise, if we take an IRQ, we'll be using our stack while another |
| * core is using it (restarted kthread). Basically, disabling irqs |
| * allows us to atomically unlock and 'yield'. Also, IRQs might have |
| * already been disabled if this was an irqsave sem. */ |
| disable_irq(); |
| spin_unlock(&sem->lock); |
| /* Switch to the core's default stack. After this, don't use local |
| * variables. */ |
| set_stack_pointer(new_stacktop); |
| smp_idle(); /* reenables irqs eventually */ |
| assert(0); |
| } |
| /* We get here if we should not sleep on sem (the signal beat the sleep). |
| * We debug_downed_sem since we actually downed it - just didn't sleep. */ |
| debug_downed_sem(sem); |
| spin_unlock(&sem->lock); |
| printd("[kernel] Didn't sleep, unwinding...\n"); |
| /* Restore the core's current and default stacktop */ |
| current = kthread->proc; /* arguably unnecessary */ |
| if (kthread->proc) |
| proc_decref(kthread->proc); |
| set_stack_top(kthread->stacktop); |
| pcpui->cur_kthread = kthread; |
| /* Save the allocs as the spare */ |
| assert(!pcpui->spare); |
| pcpui->spare = new_kthread; |
| #ifdef CONFIG_KTHREAD_POISON |
| /* switch back to old stack in use, new one not */ |
| *new_stack_poison = 0; |
| *kth_stack_poison = 0xdeadbeef; |
| #endif /* CONFIG_KTHREAD_POISON */ |
| block_return_path: |
| printd("[kernel] Returning from being 'blocked'! at %llu\n", read_tsc()); |
| /* restart_kthread and longjmp did not reenable IRQs. We need to make sure |
| * irqs are on if they were on when we started to block. If they were |
| * already on and we short-circuited the block, it's harmless to reenable |
| * them. */ |
| if (irqs_were_on) |
| enable_irq(); |
| return; |
| } |
| |
| /* Ups the semaphore. If it was < 0, we need to wake up someone, which we do. |
| * Returns TRUE if we woke someone, FALSE o/w (used for debugging in some |
| * places). If we need more control, we can implement a version of the old |
| * __up_sem() again. */ |
| bool sem_up(struct semaphore *sem) |
| { |
| struct kthread *kthread = 0; |
| spin_lock(&sem->lock); |
| if (sem->nr_signals++ < 0) { |
| assert(!TAILQ_EMPTY(&sem->waiters)); |
| /* could do something with 'priority' here */ |
| kthread = TAILQ_FIRST(&sem->waiters); |
| TAILQ_REMOVE(&sem->waiters, kthread, link); |
| } else { |
| assert(TAILQ_EMPTY(&sem->waiters)); |
| } |
| debug_upped_sem(sem); |
| spin_unlock(&sem->lock); |
| /* Note that once we call kthread_runnable(), we cannot touch the sem again. |
| * Some sems are on stacks. The caller can touch sem, if it knows about the |
| * memory/usage of the sem. Likewise, we can't touch the kthread either. */ |
| if (kthread) { |
| kthread_runnable(kthread); |
| return TRUE; |
| } |
| return FALSE; |
| } |
| |
| bool sem_trydown_irqsave(struct semaphore *sem, int8_t *irq_state) |
| { |
| bool ret; |
| disable_irqsave(irq_state); |
| ret = sem_trydown(sem); |
| enable_irqsave(irq_state); |
| return ret; |
| } |
| |
| void sem_down_irqsave(struct semaphore *sem, int8_t *irq_state) |
| { |
| disable_irqsave(irq_state); |
| sem_down(sem); |
| enable_irqsave(irq_state); |
| } |
| |
| bool sem_up_irqsave(struct semaphore *sem, int8_t *irq_state) |
| { |
| bool retval; |
| disable_irqsave(irq_state); |
| retval = sem_up(sem); |
| enable_irqsave(irq_state); |
| return retval; |
| } |
| |
| /* Sem debugging */ |
| |
| #ifdef CONFIG_SEMAPHORE_DEBUG |
| struct semaphore_tailq sems_with_waiters = |
| TAILQ_HEAD_INITIALIZER(sems_with_waiters); |
| spinlock_t sems_with_waiters_lock = SPINLOCK_INITIALIZER_IRQSAVE; |
| |
| /* this gets called any time we downed the sem, regardless of whether or not we |
| * waited */ |
| static void debug_downed_sem(struct semaphore *sem) |
| { |
| sem->bt_pc = read_pc(); |
| sem->bt_fp = read_bp(); |
| sem->calling_core = core_id(); |
| if (TAILQ_EMPTY(&sem->waiters) || sem->is_on_list) |
| return; |
| spin_lock_irqsave(&sems_with_waiters_lock); |
| TAILQ_INSERT_HEAD(&sems_with_waiters, sem, link); |
| spin_unlock_irqsave(&sems_with_waiters_lock); |
| sem->is_on_list = TRUE; |
| } |
| |
| /* Called when a sem is upped. It may or may not have waiters, and it may or |
| * may not be on the list. (we could up several times past 0). */ |
| static void debug_upped_sem(struct semaphore *sem) |
| { |
| if (TAILQ_EMPTY(&sem->waiters) && sem->is_on_list) { |
| spin_lock_irqsave(&sems_with_waiters_lock); |
| TAILQ_REMOVE(&sems_with_waiters, sem, link); |
| spin_unlock_irqsave(&sems_with_waiters_lock); |
| sem->is_on_list = FALSE; |
| } |
| } |
| |
| #else |
| |
| static void debug_downed_sem(struct semaphore *sem) |
| { |
| /* no debugging */ |
| } |
| |
| static void debug_upped_sem(struct semaphore *sem) |
| { |
| /* no debugging */ |
| } |
| |
| #endif /* CONFIG_SEMAPHORE_DEBUG */ |
| |
| void print_sem_info(struct semaphore *sem) |
| { |
| struct kthread *kth_i; |
| /* Always safe to irqsave */ |
| spin_lock_irqsave(&sem->lock); |
| printk("Semaphore %p has %d signals (neg = waiters)", sem, sem->nr_signals); |
| #ifdef CONFIG_SEMAPHORE_DEBUG |
| printk(", recently downed on core %d with pc/frame %p %p\n", |
| sem->calling_core, sem->bt_pc, sem->bt_fp); |
| #else |
| printk("\n"); |
| #endif /* CONFIG_SEMAPHORE_DEBUG */ |
| TAILQ_FOREACH(kth_i, &sem->waiters, link) |
| printk("\tKthread %p (%s), proc %d (%p), sysc %p\n", kth_i, kth_i->name, |
| kth_i->proc ? kth_i->proc->pid : 0, kth_i->proc, kth_i->sysc); |
| printk("\n"); |
| spin_unlock_irqsave(&sem->lock); |
| } |
| |
| void print_all_sem_info(void) |
| { |
| #ifdef CONFIG_SEMAPHORE_DEBUG |
| struct semaphore *sem_i; |
| printk("All sems with waiters:\n"); |
| spin_lock_irqsave(&sems_with_waiters_lock); |
| TAILQ_FOREACH(sem_i, &sems_with_waiters, link) |
| print_sem_info(sem_i); |
| spin_unlock_irqsave(&sems_with_waiters_lock); |
| #else |
| printk("Failed to print all sems: build with CONFIG_SEMAPHORE_DEBUG\n"); |
| #endif |
| } |
| |
| /* Condition variables, using semaphores and kthreads */ |
| void cv_init(struct cond_var *cv) |
| { |
| sem_init(&cv->sem, 0); |
| cv->lock = &cv->internal_lock; |
| spinlock_init(cv->lock); |
| cv->nr_waiters = 0; |
| cv->irq_okay = FALSE; |
| } |
| |
| void cv_init_irqsave(struct cond_var *cv) |
| { |
| sem_init_irqsave(&cv->sem, 0); |
| cv->lock = &cv->internal_lock; |
| spinlock_init_irqsave(cv->lock); |
| cv->nr_waiters = 0; |
| cv->irq_okay = TRUE; |
| } |
| |
| void cv_init_with_lock(struct cond_var *cv, spinlock_t *lock) |
| { |
| sem_init(&cv->sem, 0); |
| cv->nr_waiters = 0; |
| cv->lock = lock; |
| cv->irq_okay = FALSE; |
| } |
| |
| void cv_init_irqsave_with_lock(struct cond_var *cv, spinlock_t *lock) |
| { |
| sem_init_irqsave(&cv->sem, 0); |
| cv->nr_waiters = 0; |
| cv->lock = lock; |
| cv->irq_okay = TRUE; |
| } |
| |
| void cv_lock(struct cond_var *cv) |
| { |
| spin_lock(cv->lock); |
| } |
| |
| void cv_unlock(struct cond_var *cv) |
| { |
| spin_unlock(cv->lock); |
| } |
| |
| void cv_lock_irqsave(struct cond_var *cv, int8_t *irq_state) |
| { |
| disable_irqsave(irq_state); |
| cv_lock(cv); |
| } |
| |
| void cv_unlock_irqsave(struct cond_var *cv, int8_t *irq_state) |
| { |
| cv_unlock(cv); |
| enable_irqsave(irq_state); |
| } |
| |
| /* Helper to clarify the wait/signalling code */ |
| static int nr_sem_waiters(struct semaphore *sem) |
| { |
| int retval; |
| retval = 0 - sem->nr_signals; |
| assert(retval >= 0); |
| return retval; |
| } |
| |
| /* Comes in locked. Note we don't mess with enabling/disabling irqs. The |
| * initial cv_lock would have disabled irqs (if applicable), and we don't mess |
| * with that setting at all. */ |
| void cv_wait_and_unlock(struct cond_var *cv) |
| { |
| unsigned long nr_prev_waiters; |
| nr_prev_waiters = cv->nr_waiters++; |
| spin_unlock(cv->lock); |
| /* Wait til our turn. This forces an ordering of all waiters such that the |
| * order in which they wait is the order in which they down the sem. */ |
| while (nr_prev_waiters != nr_sem_waiters(&cv->sem)) |
| cpu_relax(); |
| printd("core %d, sees nr_sem_waiters: %d, cv_nr_waiters %d\n", |
| core_id(), nr_sem_waiters(&cv->sem), cv->nr_waiters); |
| /* Atomically sleeps and 'unlocks' the next kthread from its busy loop (the |
| * one right above this), when it changes the sems nr_signals/waiters. */ |
| sem_down(&cv->sem); |
| } |
| |
| /* Comes in locked. Note cv_lock does not disable irqs. They should still be |
| * disabled from the initial cv_lock_irqsave(). */ |
| void cv_wait(struct cond_var *cv) |
| { |
| cv_wait_and_unlock(cv); |
| if (cv->irq_okay) |
| assert(!irq_is_enabled()); |
| cv_lock(cv); |
| } |
| |
| /* Helper, wakes exactly one, and there should have been at least one waiter. */ |
| static void sem_wake_one(struct semaphore *sem) |
| { |
| struct kthread *kthread; |
| /* these locks will be irqsaved if the CV is irqsave (only need the one) */ |
| spin_lock(&sem->lock); |
| assert(sem->nr_signals < 0); |
| sem->nr_signals++; |
| kthread = TAILQ_FIRST(&sem->waiters); |
| TAILQ_REMOVE(&sem->waiters, kthread, link); |
| debug_upped_sem(sem); |
| spin_unlock(&sem->lock); |
| kthread_runnable(kthread); |
| } |
| |
| void __cv_signal(struct cond_var *cv) |
| { |
| /* Can't short circuit this stuff. We need to make sure any waiters that |
| * made it past upping the cv->nr_waiters has also downed the sem. |
| * Otherwise we muck with nr_waiters, which could break the ordering |
| * required by the waiters. We also need to lock while making this check, |
| * o/w a new waiter can slip in after our while loop. */ |
| while (cv->nr_waiters != nr_sem_waiters(&cv->sem)) |
| cpu_relax(); |
| if (cv->nr_waiters) { |
| cv->nr_waiters--; |
| sem_wake_one(&cv->sem); |
| } |
| } |
| |
| void __cv_broadcast(struct cond_var *cv) |
| { |
| while (cv->nr_waiters != nr_sem_waiters(&cv->sem)) |
| cpu_relax(); |
| while (cv->nr_waiters) { |
| cv->nr_waiters--; |
| sem_wake_one(&cv->sem); |
| } |
| } |
| |
| void cv_signal(struct cond_var *cv) |
| { |
| spin_lock(cv->lock); |
| __cv_signal(cv); |
| spin_unlock(cv->lock); |
| } |
| |
| void cv_broadcast(struct cond_var *cv) |
| { |
| spin_lock(cv->lock); |
| __cv_broadcast(cv); |
| spin_unlock(cv->lock); |
| } |
| |
| void cv_signal_irqsave(struct cond_var *cv, int8_t *irq_state) |
| { |
| disable_irqsave(irq_state); |
| cv_signal(cv); |
| enable_irqsave(irq_state); |
| } |
| |
| void cv_broadcast_irqsave(struct cond_var *cv, int8_t *irq_state) |
| { |
| disable_irqsave(irq_state); |
| cv_broadcast(cv); |
| enable_irqsave(irq_state); |
| } |
| |
| /* Helper, aborts and releases a CLE. dereg_ spinwaits on abort_in_progress. */ |
| static void __abort_and_release_cle(struct cv_lookup_elm *cle) |
| { |
| int8_t irq_state = 0; |
| /* At this point, we have a handle on the syscall that we want to abort (via |
| * the cle), and we know none of the memory will disappear on us (deregers |
| * wait on the flag). So we'll signal ABORT, which rendez will pick up next |
| * time it is awake. Then we make sure it is awake with a broadcast. */ |
| atomic_or(&cle->sysc->flags, SC_ABORT); |
| cmb(); /* flags write before signal; atomic op provided CPU mb */ |
| cv_broadcast_irqsave(cle->cv, &irq_state); |
| cmb(); /* broadcast writes before abort flag; atomic op provided CPU mb */ |
| atomic_dec(&cle->abort_in_progress); |
| } |
| |
| /* Attempts to abort p's sysc. It will only do so if the sysc lookup succeeds, |
| * so we can handle "guesses" for syscalls that might not be sleeping. This |
| * style of "do it if you know you can" is the best way here - anything else |
| * runs into situations where you don't know if the memory is safe to touch or |
| * not (we're doing a lookup via pointer address, and only dereferencing if that |
| * succeeds). Even something simple like letting userspace write SC_ABORT is |
| * very hard for them, since they don't know a sysc's state for sure (under the |
| * current system). |
| * |
| * Here are the rules: |
| * - if you're flagged SC_ABORT, you don't sleep |
| * - if you sleep, you're on the list |
| * - if you are on the list or abort_in_progress is set, CV is signallable, and |
| * all the memory for CLE is safe */ |
| bool abort_sysc(struct proc *p, struct syscall *sysc) |
| { |
| struct cv_lookup_elm *cle; |
| int8_t irq_state = 0; |
| spin_lock_irqsave(&p->abort_list_lock); |
| TAILQ_FOREACH(cle, &p->abortable_sleepers, link) { |
| if (cle->sysc == sysc) { |
| /* Note: we could have multiple aborters, so we need to use a |
| * numeric refcnt instead of a flag. */ |
| atomic_inc(&cle->abort_in_progress); |
| break; |
| } |
| } |
| spin_unlock_irqsave(&p->abort_list_lock); |
| if (!cle) |
| return FALSE; |
| __abort_and_release_cle(cle); |
| return TRUE; |
| } |
| |
| /* This will abort any abortables at the time the call was started for which |
| * should_abort(cle, arg) returns true. New abortables could be registered |
| * concurrently. The original for this is proc_destroy(), so DYING will be set, |
| * and new abortables will quickly abort and dereg when they see their proc is |
| * DYING. */ |
| static int __abort_all_sysc(struct proc *p, |
| bool (*should_abort)(struct cv_lookup_elm*, void*), |
| void *arg) |
| { |
| struct cv_lookup_elm *cle; |
| int8_t irq_state = 0; |
| struct cv_lookup_tailq abortall_list; |
| struct proc *old_proc = switch_to(p); |
| int ret = 0; |
| /* Concerns: we need to not remove them from their original list, since |
| * concurrent wake ups will cause a dereg, which will remove from the list. |
| * We also can't touch freed memory, so we need a refcnt to keep cles |
| * around. */ |
| TAILQ_INIT(&abortall_list); |
| spin_lock_irqsave(&p->abort_list_lock); |
| TAILQ_FOREACH(cle, &p->abortable_sleepers, link) { |
| if (!should_abort(cle, arg)) |
| continue; |
| atomic_inc(&cle->abort_in_progress); |
| TAILQ_INSERT_HEAD(&abortall_list, cle, abortall_link); |
| ret++; |
| } |
| spin_unlock_irqsave(&p->abort_list_lock); |
| TAILQ_FOREACH(cle, &abortall_list, abortall_link) |
| __abort_and_release_cle(cle); |
| switch_back(p, old_proc); |
| return ret; |
| } |
| |
| static bool always_abort(struct cv_lookup_elm *cle, void *arg) |
| { |
| return TRUE; |
| } |
| |
| void abort_all_sysc(struct proc *p) |
| { |
| __abort_all_sysc(p, always_abort, 0); |
| } |
| |
| static bool sysc_uses_fd(struct cv_lookup_elm *cle, void *fd) |
| { |
| return syscall_uses_fd(cle->sysc, (int)(long)fd); |
| } |
| |
| int abort_all_sysc_fd(struct proc *p, int fd) |
| { |
| return __abort_all_sysc(p, sysc_uses_fd, (void*)(long)fd); |
| } |
| |
| /* Being on the abortable list means that the CLE, KTH, SYSC, and CV are valid |
| * memory. The lock ordering is {CV lock, list_lock}. Callers to this *will* |
| * have CV held. This is done to avoid excessive locking in places like |
| * rendez_sleep, which want to check the condition before registering. */ |
| void __reg_abortable_cv(struct cv_lookup_elm *cle, struct cond_var *cv) |
| { |
| struct per_cpu_info *pcpui = &per_cpu_info[core_id()]; |
| cle->cv = cv; |
| cle->kthread = pcpui->cur_kthread; |
| /* Could be a ktask. Can build in support for aborting these later */ |
| if (cle->kthread->is_ktask) { |
| cle->sysc = 0; |
| return; |
| } |
| cle->sysc = cle->kthread->sysc; |
| assert(cle->sysc); |
| cle->proc = pcpui->cur_proc; |
| atomic_init(&cle->abort_in_progress, 0); |
| spin_lock_irqsave(&cle->proc->abort_list_lock); |
| TAILQ_INSERT_HEAD(&cle->proc->abortable_sleepers, cle, link); |
| spin_unlock_irqsave(&cle->proc->abort_list_lock); |
| } |
| |
| /* We're racing with the aborter too, who will hold the flag in cle to protect |
| * its ref on our cle. While the lock ordering is CV, list, callers to this |
| * must *not* have the cv lock held. The reason is this waits on a successful |
| * abort_sysc, which is trying to cv_{signal,broadcast}, which could wait on the |
| * CV lock. So if we hold the CV lock, we can deadlock (circular dependency).*/ |
| void dereg_abortable_cv(struct cv_lookup_elm *cle) |
| { |
| if (cle->kthread->is_ktask) |
| return; |
| assert(cle->proc); |
| spin_lock_irqsave(&cle->proc->abort_list_lock); |
| TAILQ_REMOVE(&cle->proc->abortable_sleepers, cle, link); |
| spin_unlock_irqsave(&cle->proc->abort_list_lock); |
| /* If we won the race and yanked it out of the list before abort claimed it, |
| * this will already be FALSE. */ |
| while (atomic_read(&cle->abort_in_progress)) |
| cpu_relax(); |
| } |
| |
| /* Helper to sleepers to know if they should abort or not. I'll probably extend |
| * this with things for ktasks in the future. */ |
| bool should_abort(struct cv_lookup_elm *cle) |
| { |
| if (cle->kthread->is_ktask) |
| return FALSE; |
| if (cle->proc && (cle->proc->state == PROC_DYING)) |
| return TRUE; |
| if (cle->sysc && (atomic_read(&cle->sysc->flags) & SC_ABORT)) |
| return TRUE; |
| return FALSE; |
| } |