|  | /** | 
|  | * @file buffer_sync.c | 
|  | * | 
|  | * @remark Copyright 2002-2009 OProfile authors | 
|  | * @remark Read the file COPYING | 
|  | * | 
|  | * @author John Levon <levon@movementarian.org> | 
|  | * @author Barry Kasindorf | 
|  | * @author Robert Richter <robert.richter@amd.com> | 
|  | * | 
|  | * This is the core of the buffer management. Each | 
|  | * CPU buffer is processed and entered into the | 
|  | * global event buffer. Such processing is necessary | 
|  | * in several circumstances, mentioned below. | 
|  | * | 
|  | * The processing does the job of converting the | 
|  | * transitory EIP value into a persistent dentry/offset | 
|  | * value that the profiler can record at its leisure. | 
|  | * | 
|  | * See fs/dcookies.c for a description of the dentry/offset | 
|  | * objects. | 
|  | */ | 
|  |  | 
|  | #include "oprofile_stats.h" | 
|  | #include "event_buffer.h" | 
|  | #include "cpu_buffer.h" | 
|  | #include "buffer_sync.h" | 
|  |  | 
|  | static LIST_HEAD(dying_tasks); | 
|  | static LIST_HEAD(dead_tasks); | 
|  | static cpumask_var_t marked_cpus; | 
|  | static DEFINE_SPINLOCK(task_mortuary); | 
|  | static void process_task_mortuary(void); | 
|  |  | 
|  | /* Take ownership of the task struct and place it on the | 
|  | * list for processing. Only after two full buffer syncs | 
|  | * does the task eventually get freed, because by then | 
|  | * we are sure we will not reference it again. | 
|  | * Can be invoked from softirq via RCU callback due to | 
|  | * call_rcu() of the task struct, hence the _irqsave. | 
|  | */ | 
|  | static int | 
|  | task_free_notify(struct notifier_block *self, unsigned long val, void *data) | 
|  | { | 
|  | unsigned long flags; | 
|  | struct task_struct *task = data; | 
|  | spin_lock_irqsave(&task_mortuary, flags); | 
|  | list_add(&task->tasks, &dying_tasks); | 
|  | spin_unlock_irqrestore(&task_mortuary, flags); | 
|  | return NOTIFY_OK; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* The task is on its way out. A sync of the buffer means we can catch | 
|  | * any remaining samples for this task. | 
|  | */ | 
|  | static int | 
|  | task_exit_notify(struct notifier_block *self, unsigned long val, void *data) | 
|  | { | 
|  | /* To avoid latency problems, we only process the current CPU, | 
|  | * hoping that most samples for the task are on this CPU | 
|  | */ | 
|  | sync_buffer(raw_smp_processor_id()); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* The task is about to try a do_munmap(). We peek at what it's going to | 
|  | * do, and if it's an executable region, process the samples first, so | 
|  | * we don't lose any. This does not have to be exact, it's a QoI issue | 
|  | * only. | 
|  | */ | 
|  | static int | 
|  | munmap_notify(struct notifier_block *self, unsigned long val, void *data) | 
|  | { | 
|  | unsigned long addr = (unsigned long)data; | 
|  | struct mm_struct *mm = current->mm; | 
|  | struct vm_area_struct *mpnt; | 
|  |  | 
|  | down_read(&mm->mmap_sem); | 
|  |  | 
|  | mpnt = find_vma(mm, addr); | 
|  | if (mpnt && mpnt->vm_file && (mpnt->vm_flags & VM_EXEC)) { | 
|  | up_read(&mm->mmap_sem); | 
|  | /* To avoid latency problems, we only process the current CPU, | 
|  | * hoping that most samples for the task are on this CPU | 
|  | */ | 
|  | sync_buffer(raw_smp_processor_id()); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | up_read(&mm->mmap_sem); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* We need to be told about new modules so we don't attribute to a previously | 
|  | * loaded module, or drop the samples on the floor. | 
|  | */ | 
|  | static int | 
|  | module_load_notify(struct notifier_block *self, unsigned long val, void *data) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | static struct notifier_block task_free_nb = { | 
|  | .notifier_call	= task_free_notify, | 
|  | }; | 
|  |  | 
|  | static struct notifier_block task_exit_nb = { | 
|  | .notifier_call	= task_exit_notify, | 
|  | }; | 
|  |  | 
|  | static struct notifier_block munmap_nb = { | 
|  | .notifier_call	= munmap_notify, | 
|  | }; | 
|  |  | 
|  | static struct notifier_block module_load_nb = { | 
|  | .notifier_call = module_load_notify, | 
|  | }; | 
|  |  | 
|  | static void free_all_tasks(void) | 
|  | { | 
|  | /* make sure we don't leak task structs */ | 
|  | process_task_mortuary(); | 
|  | process_task_mortuary(); | 
|  | } | 
|  |  | 
|  | int sync_start(void) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | if (!zalloc_cpumask_var(&marked_cpus, GFP_KERNEL)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | err = task_handoff_register(&task_free_nb); | 
|  | if (err) | 
|  | goto out1; | 
|  | err = profile_event_register(PROFILE_TASK_EXIT, &task_exit_nb); | 
|  | if (err) | 
|  | goto out2; | 
|  | err = profile_event_register(PROFILE_MUNMAP, &munmap_nb); | 
|  | if (err) | 
|  | goto out3; | 
|  | err = register_module_notifier(&module_load_nb); | 
|  | if (err) | 
|  | goto out4; | 
|  |  | 
|  | start_cpu_work(); | 
|  |  | 
|  | out: | 
|  | return err; | 
|  | out4: | 
|  | profile_event_unregister(PROFILE_MUNMAP, &munmap_nb); | 
|  | out3: | 
|  | profile_event_unregister(PROFILE_TASK_EXIT, &task_exit_nb); | 
|  | out2: | 
|  | task_handoff_unregister(&task_free_nb); | 
|  | free_all_tasks(); | 
|  | out1: | 
|  | free_cpumask_var(marked_cpus); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  |  | 
|  | void sync_stop(void) | 
|  | { | 
|  | end_cpu_work(); | 
|  | unregister_module_notifier(&module_load_nb); | 
|  | profile_event_unregister(PROFILE_MUNMAP, &munmap_nb); | 
|  | profile_event_unregister(PROFILE_TASK_EXIT, &task_exit_nb); | 
|  | task_handoff_unregister(&task_free_nb); | 
|  | cmb();			/* do all of the above first */ | 
|  |  | 
|  | flush_cpu_work(); | 
|  |  | 
|  | free_all_tasks(); | 
|  | free_cpumask_var(marked_cpus); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Optimisation. We can manage without taking the dcookie sem | 
|  | * because we cannot reach this code without at least one | 
|  | * dcookie user still being registered (namely, the reader | 
|  | * of the event buffer). */ | 
|  | static inline unsigned long fast_get_dcookie(struct path *path) | 
|  | { | 
|  | unsigned long cookie; | 
|  |  | 
|  | if (path->dentry->d_flags & DCACHE_COOKIE) | 
|  | return (unsigned long)path->dentry; | 
|  | get_dcookie(path, &cookie); | 
|  | return cookie; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Look up the dcookie for the task's mm->exe_file, | 
|  | * which corresponds loosely to "application name". This is | 
|  | * not strictly necessary but allows oprofile to associate | 
|  | * shared-library samples with particular applications | 
|  | */ | 
|  | static unsigned long get_exec_dcookie(struct mm_struct *mm) | 
|  | { | 
|  | unsigned long cookie = NO_COOKIE; | 
|  |  | 
|  | if (mm && mm->exe_file) | 
|  | cookie = fast_get_dcookie(&mm->exe_file->f_path); | 
|  |  | 
|  | return cookie; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Convert the EIP value of a sample into a persistent dentry/offset | 
|  | * pair that can then be added to the global event buffer. We make | 
|  | * sure to do this lookup before a mm->mmap modification happens so | 
|  | * we don't lose track. | 
|  | */ | 
|  | static unsigned long | 
|  | lookup_dcookie(struct mm_struct *mm, unsigned long addr, off_t *offset) | 
|  | { | 
|  | unsigned long cookie = NO_COOKIE; | 
|  | struct vm_area_struct *vma; | 
|  |  | 
|  | for (vma = find_vma(mm, addr); vma; vma = vma->vm_next) { | 
|  |  | 
|  | if (addr < vma->vm_start || addr >= vma->vm_end) | 
|  | continue; | 
|  |  | 
|  | if (vma->vm_file) { | 
|  | cookie = fast_get_dcookie(&vma->vm_file->f_path); | 
|  | *offset = (vma->vm_pgoff << PAGE_SHIFT) + addr - | 
|  | vma->vm_start; | 
|  | } else { | 
|  | /* must be an anonymous map */ | 
|  | *offset = addr; | 
|  | } | 
|  |  | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (!vma) | 
|  | cookie = INVALID_COOKIE; | 
|  |  | 
|  | return cookie; | 
|  | } | 
|  |  | 
|  | static unsigned long last_cookie = INVALID_COOKIE; | 
|  |  | 
|  | static void add_cpu_switch(int i) | 
|  | { | 
|  | add_event_entry(ESCAPE_CODE); | 
|  | add_event_entry(CPU_SWITCH_CODE); | 
|  | add_event_entry(i); | 
|  | last_cookie = INVALID_COOKIE; | 
|  | } | 
|  |  | 
|  | static void add_kernel_ctx_switch(unsigned int in_kernel) | 
|  | { | 
|  | add_event_entry(ESCAPE_CODE); | 
|  | if (in_kernel) | 
|  | add_event_entry(KERNEL_ENTER_SWITCH_CODE); | 
|  | else | 
|  | add_event_entry(KERNEL_EXIT_SWITCH_CODE); | 
|  | } | 
|  |  | 
|  | static void | 
|  | add_user_ctx_switch(struct task_struct const *task, unsigned long cookie) | 
|  | { | 
|  | add_event_entry(ESCAPE_CODE); | 
|  | add_event_entry(CTX_SWITCH_CODE); | 
|  | add_event_entry(task->pid); | 
|  | add_event_entry(cookie); | 
|  | /* Another code for daemon back-compat */ | 
|  | add_event_entry(ESCAPE_CODE); | 
|  | add_event_entry(CTX_TGID_CODE); | 
|  | add_event_entry(task->tgid); | 
|  | } | 
|  |  | 
|  |  | 
|  | static void add_cookie_switch(unsigned long cookie) | 
|  | { | 
|  | add_event_entry(ESCAPE_CODE); | 
|  | add_event_entry(COOKIE_SWITCH_CODE); | 
|  | add_event_entry(cookie); | 
|  | } | 
|  |  | 
|  |  | 
|  | static void add_trace_begin(void) | 
|  | { | 
|  | add_event_entry(ESCAPE_CODE); | 
|  | add_event_entry(TRACE_BEGIN_CODE); | 
|  | } | 
|  |  | 
|  | static void add_data(struct op_entry *entry, struct mm_struct *mm) | 
|  | { | 
|  | unsigned long code, pc, val; | 
|  | unsigned long cookie; | 
|  | off_t offset; | 
|  |  | 
|  | if (!op_cpu_buffer_get_data(entry, &code)) | 
|  | return; | 
|  | if (!op_cpu_buffer_get_data(entry, &pc)) | 
|  | return; | 
|  | if (!op_cpu_buffer_get_size(entry)) | 
|  | return; | 
|  |  | 
|  | if (mm) { | 
|  | cookie = lookup_dcookie(mm, pc, &offset); | 
|  |  | 
|  | if (cookie == NO_COOKIE) | 
|  | offset = pc; | 
|  | if (cookie == INVALID_COOKIE) { | 
|  | atomic_inc(&oprofile_stats.sample_lost_no_mapping); | 
|  | offset = pc; | 
|  | } | 
|  | if (cookie != last_cookie) { | 
|  | add_cookie_switch(cookie); | 
|  | last_cookie = cookie; | 
|  | } | 
|  | } else | 
|  | offset = pc; | 
|  |  | 
|  | add_event_entry(ESCAPE_CODE); | 
|  | add_event_entry(code); | 
|  | add_event_entry(offset);	/* Offset from Dcookie */ | 
|  |  | 
|  | while (op_cpu_buffer_get_data(entry, &val)) | 
|  | add_event_entry(val); | 
|  | } | 
|  |  | 
|  | static inline void add_sample_entry(unsigned long offset, unsigned long event) | 
|  | { | 
|  | add_event_entry(offset); | 
|  | add_event_entry(event); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Add a sample to the global event buffer. If possible the | 
|  | * sample is converted into a persistent dentry/offset pair | 
|  | * for later lookup from userspace. Return 0 on failure. | 
|  | */ | 
|  | static int | 
|  | add_sample(struct mm_struct *mm, struct op_sample *s, int in_kernel) | 
|  | { | 
|  | unsigned long cookie; | 
|  | off_t offset; | 
|  |  | 
|  | if (in_kernel) { | 
|  | add_sample_entry(s->eip, s->event); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* add userspace sample */ | 
|  |  | 
|  | if (!mm) { | 
|  | atomic_inc(&oprofile_stats.sample_lost_no_mm); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | cookie = lookup_dcookie(mm, s->eip, &offset); | 
|  |  | 
|  | if (cookie == INVALID_COOKIE) { | 
|  | atomic_inc(&oprofile_stats.sample_lost_no_mapping); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (cookie != last_cookie) { | 
|  | add_cookie_switch(cookie); | 
|  | last_cookie = cookie; | 
|  | } | 
|  |  | 
|  | add_sample_entry(offset, s->event); | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  |  | 
|  | static void release_mm(struct mm_struct *mm) | 
|  | { | 
|  | if (!mm) | 
|  | return; | 
|  | up_read(&mm->mmap_sem); | 
|  | mmput(mm); | 
|  | } | 
|  |  | 
|  |  | 
|  | static struct mm_struct *take_tasks_mm(struct task_struct *task) | 
|  | { | 
|  | struct mm_struct *mm = get_task_mm(task); | 
|  | if (mm) | 
|  | down_read(&mm->mmap_sem); | 
|  | return mm; | 
|  | } | 
|  |  | 
|  |  | 
|  | static inline int is_code(unsigned long val) | 
|  | { | 
|  | return val == ESCAPE_CODE; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Move tasks along towards death. Any tasks on dead_tasks | 
|  | * will definitely have no remaining references in any | 
|  | * CPU buffers at this point, because we use two lists, | 
|  | * and to have reached the list, it must have gone through | 
|  | * one full sync already. | 
|  | */ | 
|  | static void process_task_mortuary(void) | 
|  | { | 
|  | unsigned long flags; | 
|  | LIST_HEAD(local_dead_tasks); | 
|  | struct task_struct *task; | 
|  | struct task_struct *ttask; | 
|  |  | 
|  | spin_lock_irqsave(&task_mortuary, flags); | 
|  |  | 
|  | list_splice_init(&dead_tasks, &local_dead_tasks); | 
|  | list_splice_init(&dying_tasks, &dead_tasks); | 
|  |  | 
|  | spin_unlock_irqrestore(&task_mortuary, flags); | 
|  |  | 
|  | list_for_each_entry_safe(task, ttask, &local_dead_tasks, tasks) { | 
|  | list_del(&task->tasks); | 
|  | free_task(task); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | static void mark_done(int cpu) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | cpumask_set_cpu(cpu, marked_cpus); | 
|  |  | 
|  | for_each_online_cpu(i) { | 
|  | if (!cpumask_test_cpu(i, marked_cpus)) | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* All CPUs have been processed at least once, | 
|  | * we can process the mortuary once | 
|  | */ | 
|  | process_task_mortuary(); | 
|  |  | 
|  | cpumask_clear(marked_cpus); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* FIXME: this is not sufficient if we implement syscall barrier backtrace | 
|  | * traversal, the code switch to sb_sample_start at first kernel enter/exit | 
|  | * switch so we need a fifth state and some special handling in sync_buffer() | 
|  | */ | 
|  | typedef enum { | 
|  | sb_bt_ignore = -2, | 
|  | sb_buffer_start, | 
|  | sb_bt_start, | 
|  | sb_sample_start, | 
|  | } sync_buffer_state; | 
|  |  | 
|  | /* Sync one of the CPU's buffers into the global event buffer. | 
|  | * Here we need to go through each batch of samples punctuated | 
|  | * by context switch notes, taking the task's mmap_sem and doing | 
|  | * lookup in task->mm->mmap to convert EIP into dcookie/offset | 
|  | * value. | 
|  | */ | 
|  | void sync_buffer(int cpu) | 
|  | { | 
|  | struct mm_struct *mm = NULL; | 
|  | struct mm_struct *oldmm; | 
|  | unsigned long val; | 
|  | struct task_struct *new; | 
|  | unsigned long cookie = 0; | 
|  | int in_kernel = 1; | 
|  | sync_buffer_state state = sb_buffer_start; | 
|  | unsigned int i; | 
|  | unsigned long available; | 
|  | unsigned long flags; | 
|  | struct op_entry entry; | 
|  | struct op_sample *sample; | 
|  |  | 
|  | mutex_lock(&buffer_mutex); | 
|  |  | 
|  | add_cpu_switch(cpu); | 
|  |  | 
|  | op_cpu_buffer_reset(cpu); | 
|  | available = op_cpu_buffer_entries(cpu); | 
|  |  | 
|  | for (i = 0; i < available; ++i) { | 
|  | sample = op_cpu_buffer_read_entry(&entry, cpu); | 
|  | if (!sample) | 
|  | break; | 
|  |  | 
|  | if (is_code(sample->eip)) { | 
|  | flags = sample->event; | 
|  | if (flags & TRACE_BEGIN) { | 
|  | state = sb_bt_start; | 
|  | add_trace_begin(); | 
|  | } | 
|  | if (flags & KERNEL_CTX_SWITCH) { | 
|  | /* kernel/userspace switch */ | 
|  | in_kernel = flags & IS_KERNEL; | 
|  | if (state == sb_buffer_start) | 
|  | state = sb_sample_start; | 
|  | add_kernel_ctx_switch(flags & IS_KERNEL); | 
|  | } | 
|  | if (flags & USER_CTX_SWITCH | 
|  | && op_cpu_buffer_get_data(&entry, &val)) { | 
|  | /* userspace context switch */ | 
|  | new = (struct task_struct *)val; | 
|  | oldmm = mm; | 
|  | release_mm(oldmm); | 
|  | mm = take_tasks_mm(new); | 
|  | if (mm != oldmm) | 
|  | cookie = get_exec_dcookie(mm); | 
|  | add_user_ctx_switch(new, cookie); | 
|  | } | 
|  | if (op_cpu_buffer_get_size(&entry)) | 
|  | add_data(&entry, mm); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (state < sb_bt_start) | 
|  | /* ignore sample */ | 
|  | continue; | 
|  |  | 
|  | if (add_sample(mm, sample, in_kernel)) | 
|  | continue; | 
|  |  | 
|  | /* ignore backtraces if failed to add a sample */ | 
|  | if (state == sb_bt_start) { | 
|  | state = sb_bt_ignore; | 
|  | atomic_inc(&oprofile_stats.bt_lost_no_mapping); | 
|  | } | 
|  | } | 
|  | release_mm(mm); | 
|  |  | 
|  | mark_done(cpu); | 
|  |  | 
|  | mutex_unlock(&buffer_mutex); | 
|  | } | 
|  |  | 
|  | /* The function can be used to add a buffer worth of data directly to | 
|  | * the kernel buffer. The buffer is assumed to be a circular buffer. | 
|  | * Take the entries from index start and end at index end, wrapping | 
|  | * at max_entries. | 
|  | */ | 
|  | void oprofile_put_buff(unsigned long *buf, unsigned int start, | 
|  | unsigned int stop, unsigned int max) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | i = start; | 
|  |  | 
|  | mutex_lock(&buffer_mutex); | 
|  | while (i != stop) { | 
|  | add_event_entry(buf[i++]); | 
|  |  | 
|  | if (i >= max) | 
|  | i = 0; | 
|  | } | 
|  |  | 
|  | mutex_unlock(&buffer_mutex); | 
|  | } | 
|  |  |