blob: 3bbec756158ca9fd188dd1aa771ac7d6793cc9b0 [file] [log] [blame] [edit]
/* Copyright (c) 2013 The Regents of the University of California
* Barret Rhoden <brho@cs.berkeley.edu>
* See LICENSE for details.
*
* Userspace alarm service, based off a slimmed down version of the kernel
* alarms. Under the hood, it uses the kernel alarm service for the root of
* the alarm chain.
*
* There's only one timer chain, unlike in the kernel, for the entire process.
* If you want one-off timers unrelated to the chain (and sent to other vcores),
* use #A directly.
*
* Your handlers will run from vcore context.
*
* Code differences from the kernel (for future porting):
* - init_alarm_service, run once out of init_awaiter (or wherever).
* - set_alarm() and friends are __tc_set_alarm(), passing global_tchain.
* - reset_tchain_interrupt() uses #A
* - removed anything related to semaphores or kthreads
* - spinlocks -> spin_pdr_locks
* - ev_q wrappers for converting #A events to __triggers
* - printks, and other minor stuff. */
#include <sys/queue.h>
#include <sys/time.h>
#include <alarm.h>
#include <stdio.h>
#include <assert.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <parlib.h>
#include <event.h>
#include <measure.h>
#include <uthread.h>
#include <spinlock.h>
#include <timing.h>
/* Helpers, basically renamed kernel interfaces, with the *tchain. */
static void __tc_locked_set_alarm(struct timer_chain *tchain,
struct alarm_waiter *waiter);
static void __tc_set_alarm(struct timer_chain *tchain,
struct alarm_waiter *waiter);
static bool __tc_unset_alarm(struct timer_chain *tchain,
struct alarm_waiter *waiter);
static void __tc_reset_alarm_abs(struct timer_chain *tchain,
struct alarm_waiter *waiter,
uint64_t abs_time);
static void handle_user_alarm(struct event_msg *ev_msg, unsigned int ev_type,
void *data);
/* One chain to rule them all. */
struct timer_chain global_tchain;
/* Unix time offsets so we can allow people to specify an absolute unix time to
* an alarm, rather than an absolute time in terms of raw tsc ticks. This
* value is initialized when the timer service is started. */
static struct {
uint64_t tod; // The initial time of day in microseconds
uint64_t tsc; // The initial value of the tsc counter
} unixtime_offsets;
static inline void init_unixtime_offsets()
{
struct timeval tv;
gettimeofday(&tv, NULL);
unixtime_offsets.tsc = read_tsc();
unixtime_offsets.tod = tv.tv_sec*1000000 + tv.tv_usec;
}
/* Helper, resets the earliest/latest times, based on the elements of the list.
* If the list is empty, we set the times to be the 12345 poison time. Since
* the list is empty, the alarm shouldn't be going off. */
static void reset_tchain_times(struct timer_chain *tchain)
{
if (TAILQ_EMPTY(&tchain->waiters)) {
tchain->earliest_time = ALARM_POISON_TIME;
tchain->latest_time = ALARM_POISON_TIME;
} else {
tchain->earliest_time = TAILQ_FIRST(&tchain->waiters)->wake_up_time;
tchain->latest_time =
TAILQ_LAST(&tchain->waiters, awaiters_tailq)->wake_up_time;
}
}
static void init_alarm_service(void)
{
int ctlfd, timerfd, alarmid, ret;
char buf[20];
char path[32];
struct event_queue *ev_q;
/* Initialize the unixtime_offsets */
init_unixtime_offsets();
/* Sets up timer chain (only one chain per process) */
spin_pdr_init(&global_tchain.lock);
TAILQ_INIT(&global_tchain.waiters);
reset_tchain_times(&global_tchain);
ctlfd = open("#A/clone", O_RDWR | O_CLOEXEC);
if (ctlfd < 0) {
perror("Useralarm: Can't clone an alarm");
return;
}
ret = read(ctlfd, buf, sizeof(buf) - 1);
if (ret <= 0) {
if (!ret)
printf("Useralarm: Got early EOF from ctl\n");
else
perror("Useralarm: Can't read ctl");
return;
}
buf[ret] = 0;
alarmid = atoi(buf);
snprintf(path, sizeof(path), "#A/a%s/timer", buf);
timerfd = open(path, O_RDWR | O_CLOEXEC);
if (timerfd < 0) {
perror("Useralarm: Can't open timer");
return;
}
/* Since we're doing SPAM_PUBLIC later, we actually don't need a big ev_q.
* But someone might copy/paste this and change a flag. */
register_ev_handler(EV_ALARM, handle_user_alarm, 0);
if (!(ev_q = get_big_event_q())) {
perror("Useralarm: Failed ev_q");
return;
}
ev_q->ev_vcore = 0;
/* We could get multiple events for a single alarm. It's okay, since
* __trigger can handle spurious upcalls. If it ever is not okay, then use
* an INDIR/FALLBACK instead of SPAM_PUBLIC. */
ev_q->ev_flags = EVENT_IPI | EVENT_SPAM_PUBLIC;
ret = snprintf(path, sizeof(path), "evq %llx", ev_q);
ret = write(ctlfd, path, ret);
if (ret <= 0) {
perror("Useralarm: Failed to write ev_q");
return;
}
/* now the alarm is all set, just need to write the timer whenever we want
* it to go off. */
global_tchain.alarmid = alarmid;
global_tchain.ctlfd = ctlfd;
global_tchain.timerfd = timerfd;
global_tchain.ev_q = ev_q; /* mostly for debugging */
}
/* Initializes a new awaiter. Pass 0 for the function if you want it to be a
* kthread-alarm, and sleep on it after you set the alarm later. */
void init_awaiter(struct alarm_waiter *waiter,
void (*func) (struct alarm_waiter *awaiter))
{
run_once_racy(init_alarm_service());
waiter->wake_up_time = ALARM_POISON_TIME;
assert(func);
waiter->func = func;
waiter->on_tchain = FALSE;
}
/* Give this the absolute time. For now, abs_time is the TSC time that you want
* the alarm to go off. */
void set_awaiter_abs(struct alarm_waiter *waiter, uint64_t abs_time)
{
waiter->wake_up_time = abs_time;
}
/* Give this the absolute unix time (in microseconds) that you want the alarm
* to go off. */
void set_awaiter_abs_unix(struct alarm_waiter *waiter, uint64_t abs_time)
{
abs_time = usec2tsc(abs_time - unixtime_offsets.tod) + unixtime_offsets.tsc;
set_awaiter_abs(waiter, abs_time);
}
/* Give this a relative time from now, in microseconds. This might be easier to
* use than dealing with the TSC. */
void set_awaiter_rel(struct alarm_waiter *waiter, uint64_t usleep)
{
uint64_t now, then;
now = read_tsc();
then = now + usec2tsc(usleep);
/* This will go off if we wrap-around the TSC. It'll never happen for legit
* values, but this might catch some bugs with large usleeps. */
assert(now <= then);
set_awaiter_abs(waiter, then);
}
/* Increment the timer that was already set, so that it goes off usleep usec
* from the previous tick. This is different than 'rel' in that it doesn't care
* about when 'now' is. */
void set_awaiter_inc(struct alarm_waiter *waiter, uint64_t usleep)
{
assert(waiter->wake_up_time != ALARM_POISON_TIME);
waiter->wake_up_time += usec2tsc(usleep);
}
/* User interface to the global tchain */
void __set_alarm(struct alarm_waiter *waiter)
{
__tc_locked_set_alarm(&global_tchain, waiter);
}
void set_alarm(struct alarm_waiter *waiter)
{
__tc_set_alarm(&global_tchain, waiter);
}
bool unset_alarm(struct alarm_waiter *waiter)
{
return __tc_unset_alarm(&global_tchain, waiter);
}
void reset_alarm_abs(struct alarm_waiter *waiter, uint64_t abs_time)
{
__tc_reset_alarm_abs(&global_tchain, waiter, abs_time);
}
/* Helper, makes sure the kernel alarm is turned on at the right time. */
static void reset_tchain_interrupt(struct timer_chain *tchain)
{
int ret;
char buf[20];
if (TAILQ_EMPTY(&tchain->waiters)) {
/* Turn it off */
printd("Turning alarm off\n");
ret = write(tchain->ctlfd, "cancel", sizeof("cancel"));
if (ret <= 0) {
printf("Useralarm: unable to disarm alarm!\n");
return;
}
} else {
/* Make sure it is on and set to the earliest time */
assert(tchain->earliest_time != ALARM_POISON_TIME);
/* TODO: check for times in the past or very close to now */
printd("Turning alarm on for %llu\n", tchain->earliest_time);
ret = snprintf(buf, sizeof(buf), "%llx", tchain->earliest_time);
ret = write(tchain->timerfd, buf, ret);
if (ret <= 0) {
perror("Useralarm: Failed to set timer");
return;
}
}
}
/* When an awaiter's time has come, this gets called. */
static void wake_awaiter(struct alarm_waiter *waiter)
{
waiter->on_tchain = FALSE;
cmb(); /* enforce the on_tchain write before the handlers */
waiter->func(waiter);
}
/* This is called when the kernel alarm triggers a tchain, and needs to wake up
* everyone whose time is up. Called from vcore context. */
static void __trigger_tchain(struct timer_chain *tchain)
{
struct alarm_waiter *i, *temp;
uint64_t now = read_tsc();
bool changed_list = FALSE;
spin_pdr_lock(&tchain->lock);
TAILQ_FOREACH_SAFE(i, &tchain->waiters, next, temp) {
printd("Trying to wake up %p who is due at %llu and now is %llu\n",
i, i->wake_up_time, now);
/* TODO: Could also do something in cases where we're close to now */
if (i->wake_up_time <= now) {
changed_list = TRUE;
TAILQ_REMOVE(&tchain->waiters, i, next);
/* Don't touch the waiter after waking it, since it could be in use
* on another core (and the waiter can be clobbered as the kthread
* unwinds its stack). Or it could be kfreed */
wake_awaiter(i);
} else {
break;
}
}
if (changed_list) {
reset_tchain_times(tchain);
}
/* Need to reset the interrupt no matter what */
reset_tchain_interrupt(tchain);
spin_pdr_unlock(&tchain->lock);
}
static void handle_user_alarm(struct event_msg *ev_msg, unsigned int ev_type,
void *data)
{
assert(ev_type == EV_ALARM);
if (ev_msg && (ev_msg->ev_arg2 == global_tchain.alarmid))
__trigger_tchain(&global_tchain);
}
/* Helper, inserts the waiter into the tchain, returning TRUE if we still need
* to reset the tchain interrupt. Caller holds the lock. */
static bool __insert_awaiter(struct timer_chain *tchain,
struct alarm_waiter *waiter)
{
struct alarm_waiter *i, *temp;
/* This will fail if you don't set a time */
assert(waiter->wake_up_time != ALARM_POISON_TIME);
waiter->on_tchain = TRUE;
/* Either the list is empty, or not. */
if (TAILQ_EMPTY(&tchain->waiters)) {
tchain->earliest_time = waiter->wake_up_time;
tchain->latest_time = waiter->wake_up_time;
TAILQ_INSERT_HEAD(&tchain->waiters, waiter, next);
/* Need to turn on the timer interrupt later */
return TRUE;
}
/* If not, either we're first, last, or in the middle. Reset the interrupt
* and adjust the tchain's times accordingly. */
if (waiter->wake_up_time < tchain->earliest_time) {
tchain->earliest_time = waiter->wake_up_time;
TAILQ_INSERT_HEAD(&tchain->waiters, waiter, next);
/* Changed the first entry; we'll need to reset the interrupt later */
return TRUE;
}
/* If there is a tie for last, the newer one will really go last. We need
* to handle equality here since the loop later won't catch it. */
if (waiter->wake_up_time >= tchain->latest_time) {
tchain->latest_time = waiter->wake_up_time;
/* Proactively put it at the end if we know we're last */
TAILQ_INSERT_TAIL(&tchain->waiters, waiter, next);
return FALSE;
}
/* Insert before the first one you are earlier than. This won't scale well
* (TODO) if we have a lot of inserts. The proactive insert_tail up above
* will help a bit. */
TAILQ_FOREACH_SAFE(i, &tchain->waiters, next, temp) {
if (waiter->wake_up_time < i->wake_up_time) {
TAILQ_INSERT_BEFORE(i, waiter, next);
return FALSE;
}
}
printf("Could not find a spot for awaiter %p\n", waiter);
}
/* Sets the alarm. If it is a kthread-style alarm (func == 0), sleep on it
* later. This version assumes you have the lock held. That only makes sense
* from alarm handlers, which are called with this lock held from IRQ context */
static void __tc_locked_set_alarm(struct timer_chain *tchain,
struct alarm_waiter *waiter)
{
if (__insert_awaiter(tchain, waiter))
reset_tchain_interrupt(tchain);
}
/* Sets the alarm. Don't call this from an alarm handler, since you already
* have the lock held. Call __set_alarm() instead. */
static void __tc_set_alarm(struct timer_chain *tchain,
struct alarm_waiter *waiter)
{
spin_pdr_lock(&tchain->lock);
__set_alarm(waiter);
spin_pdr_unlock(&tchain->lock);
}
/* Helper, rips the waiter from the tchain, knowing that it is on the list.
* Returns TRUE if the tchain interrupt needs to be reset. Callers hold the
* lock. */
static bool __remove_awaiter(struct timer_chain *tchain,
struct alarm_waiter *waiter)
{
struct alarm_waiter *temp;
bool reset_int = FALSE; /* whether or not to reset the interrupt */
/* Need to make sure earliest and latest are set, in case we're mucking with
* the first and/or last element of the chain. */
if (TAILQ_FIRST(&tchain->waiters) == waiter) {
temp = TAILQ_NEXT(waiter, next);
tchain->earliest_time = (temp) ? temp->wake_up_time : ALARM_POISON_TIME;
reset_int = TRUE; /* we'll need to reset the timer later */
}
if (TAILQ_LAST(&tchain->waiters, awaiters_tailq) == waiter) {
temp = TAILQ_PREV(waiter, awaiters_tailq, next);
tchain->latest_time = (temp) ? temp->wake_up_time : ALARM_POISON_TIME;
}
TAILQ_REMOVE(&tchain->waiters, waiter, next);
return reset_int;
}
/* Removes waiter from the tchain before it goes off. Returns TRUE if we
* disarmed before the alarm went off, FALSE if it already fired. */
static bool __tc_unset_alarm(struct timer_chain *tchain,
struct alarm_waiter *waiter)
{
spin_pdr_lock(&tchain->lock);
if (!waiter->on_tchain) {
/* the alarm has already gone off. its not even on this tchain's list,
* though the concurrent change to on_tchain (specifically, the setting
* of it to FALSE), happens under the tchain's lock. */
spin_pdr_unlock(&tchain->lock);
return FALSE;
}
if (__remove_awaiter(tchain, waiter))
reset_tchain_interrupt(tchain);
spin_pdr_unlock(&tchain->lock);
return TRUE;
}
/* waiter may be on the tchain, or it might have fired already and be off the
* tchain. Either way, this will put the waiter on the list, set to go off at
* abs_time. If you know the alarm has fired, don't call this. Just set the
* awaiter, and then set_alarm() */
static void __tc_reset_alarm_abs(struct timer_chain *tchain,
struct alarm_waiter *waiter, uint64_t abs_time)
{
bool reset_int = FALSE; /* whether or not to reset the interrupt */
spin_pdr_lock(&tchain->lock);
/* We only need to remove/unset when the alarm has not fired yet (is still
* on the tchain). If it has fired, it's like a fresh insert */
if (waiter->on_tchain)
reset_int = __remove_awaiter(tchain, waiter);
set_awaiter_abs(waiter, abs_time);
/* regardless, we need to be reinserted */
if (__insert_awaiter(tchain, waiter) || reset_int)
reset_tchain_interrupt(tchain);
spin_pdr_unlock(&tchain->lock);
}
/* Debug helpers */
void print_chain(struct timer_chain *tchain)
{
struct alarm_waiter *i;
spin_pdr_lock(&tchain->lock);
printf("Chain %p is%s empty, early: %llu latest: %llu\n", tchain,
TAILQ_EMPTY(&tchain->waiters) ? "" : " not",
tchain->earliest_time,
tchain->latest_time);
spin_pdr_unlock(&tchain->lock);
}
/* "parlib" alarm handlers */
void alarm_abort_sysc(struct alarm_waiter *awaiter)
{
struct uthread *uth = awaiter->data;
assert(uth);
if (!uth->sysc) {
/* It's possible the sysc hasn't blocked yet or is in the process of
* unblocking, or even has returned, but hasn't cancelled the alarm.
* regardless, we request a new alarm (the uthread will cancel us one
* way or another). */
set_awaiter_inc(awaiter, 1000000);
__set_alarm(awaiter);
return;
}
sys_abort_sysc(uth->sysc);
}