|  | /* | 
|  | * We need the mmu code to access both 32-bit and 64-bit guest ptes, | 
|  | * so the code in this file is compiled twice, once per pte size. | 
|  | */ | 
|  |  | 
|  | #pragma once | 
|  |  | 
|  | #if PTTYPE == 64 | 
|  | #define pt_element_t uint64_t | 
|  | #define guest_walker guest_walker64 | 
|  | #define FNAME(name) paging##64_##name | 
|  | #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK | 
|  | #define PT_DIR_BASE_ADDR_MASK PT64_DIR_BASE_ADDR_MASK | 
|  | #define PT_INDEX(addr, level) PT64_INDEX(addr, level) | 
|  | #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level) | 
|  | #define PT_LEVEL_MASK(level) PT64_LEVEL_MASK(level) | 
|  | #define PT_PTE_COPY_MASK PT64_PTE_COPY_MASK | 
|  | #define PT_NON_PTE_COPY_MASK PT64_NON_PTE_COPY_MASK | 
|  | #elif PTTYPE == 32 | 
|  | #define pt_element_t uint32_t | 
|  | #define guest_walker guest_walker32 | 
|  | #define FNAME(name) paging##32_##name | 
|  | #define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK | 
|  | #define PT_DIR_BASE_ADDR_MASK PT32_DIR_BASE_ADDR_MASK | 
|  | #define PT_INDEX(addr, level) PT32_INDEX(addr, level) | 
|  | #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level) | 
|  | #define PT_LEVEL_MASK(level) PT32_LEVEL_MASK(level) | 
|  | #define PT_PTE_COPY_MASK PT32_PTE_COPY_MASK | 
|  | #define PT_NON_PTE_COPY_MASK PT32_NON_PTE_COPY_MASK | 
|  | #else | 
|  | #error Invalid PTTYPE value | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * The guest_walker structure emulates the behavior of the hardware page | 
|  | * table walker. | 
|  | */ | 
|  | struct guest_walker { | 
|  | int level; | 
|  | pt_element_t *table; | 
|  | pt_element_t inherited_ar; | 
|  | }; | 
|  |  | 
|  | static void FNAME(init_walker) (struct guest_walker * walker, | 
|  | struct litevm_vcpu * vcpu) { | 
|  | hpa_t hpa; | 
|  | struct litevm_memory_slot *slot; | 
|  |  | 
|  | walker->level = vcpu->mmu.root_level; | 
|  | slot = gfn_to_memslot(vcpu->litevm, | 
|  | (vcpu->cr3 & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT); | 
|  | hpa = safe_gpa_to_hpa(vcpu, vcpu->cr3 & PT64_BASE_ADDR_MASK); | 
|  | // well, it seems that stuff is always addressable in akaros. I hope. | 
|  | //walker->table = vmap_pmem(ppn2page(hpa >> PAGE_SHIFT), PAGE_SIZE); | 
|  | walker->table = KADDR(hpa); | 
|  |  | 
|  | ASSERT((!is_long_mode() && is_pae()) || | 
|  | (vcpu->cr3 & ~(PAGE_MASK | CR3_FLAGS_MASK)) == 0); | 
|  |  | 
|  | walker->table = (pt_element_t *) ((unsigned long)walker->table | | 
|  | (unsigned long)(vcpu-> | 
|  | cr3 & ~(PAGE_MASK | | 
|  | CR3_FLAGS_MASK))); | 
|  | walker->inherited_ar = PT_USER_MASK | PT_WRITABLE_MASK; | 
|  | } | 
|  |  | 
|  | static void FNAME(release_walker) (struct guest_walker * walker) { | 
|  | //vunmap_pmem(walker->table, PAGE_SIZE); | 
|  | } | 
|  |  | 
|  | static void FNAME(set_pte) (struct litevm_vcpu * vcpu, uint64_t guest_pte, | 
|  | uint64_t * shadow_pte, uint64_t access_bits) { | 
|  | ASSERT(*shadow_pte == 0); | 
|  | access_bits &= guest_pte; | 
|  | *shadow_pte = (guest_pte & PT_PTE_COPY_MASK); | 
|  | set_pte_common(vcpu, shadow_pte, guest_pte & PT_BASE_ADDR_MASK, | 
|  | guest_pte & PT_DIRTY_MASK, access_bits); | 
|  | } | 
|  |  | 
|  | static void FNAME(set_pde) (struct litevm_vcpu * vcpu, uint64_t guest_pde, | 
|  | uint64_t * shadow_pte, uint64_t access_bits, | 
|  | int index) { | 
|  | gpa_t gaddr; | 
|  |  | 
|  | ASSERT(*shadow_pte == 0); | 
|  | access_bits &= guest_pde; | 
|  | gaddr = (guest_pde & PT_DIR_BASE_ADDR_MASK) + PAGE_SIZE * index; | 
|  | if (PTTYPE == 32 && is_cpuid_PSE36()) | 
|  | gaddr |= (guest_pde & PT32_DIR_PSE36_MASK) << | 
|  | (32 - PT32_DIR_PSE36_SHIFT); | 
|  | *shadow_pte = (guest_pde & PT_NON_PTE_COPY_MASK) | | 
|  | ((guest_pde & PT_DIR_PAT_MASK) >> (PT_DIR_PAT_SHIFT - PT_PAT_SHIFT)); | 
|  | set_pte_common(vcpu, shadow_pte, gaddr, | 
|  | guest_pde & PT_DIRTY_MASK, access_bits); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Fetch a guest pte from a specific level in the paging hierarchy. | 
|  | */ | 
|  | static pt_element_t *FNAME(fetch_guest) (struct litevm_vcpu * vcpu, | 
|  | struct guest_walker * walker, | 
|  | int level, gva_t addr) { | 
|  |  | 
|  | ASSERT(level > 0 && level <= walker->level); | 
|  |  | 
|  | for (;;) { | 
|  | int index = PT_INDEX(addr, walker->level); | 
|  | hpa_t paddr; | 
|  |  | 
|  | ASSERT(((unsigned long)walker->table & PAGE_MASK) == | 
|  | ((unsigned long)&walker->table[index] & PAGE_MASK)); | 
|  | if (level == walker->level || | 
|  | !is_present_pte(walker->table[index]) || | 
|  | (walker->level == PT_DIRECTORY_LEVEL && | 
|  | (walker->table[index] & PT_PAGE_SIZE_MASK) && | 
|  | (PTTYPE == 64 || is_pse()))) | 
|  | return &walker->table[index]; | 
|  | if (walker->level != 3 || is_long_mode()) | 
|  | walker->inherited_ar &= walker->table[index]; | 
|  | paddr = safe_gpa_to_hpa(vcpu, walker->table[index] & PT_BASE_ADDR_MASK); | 
|  | //kunmap_atomic(walker->table); | 
|  | //walker->table = vmap_pmem(ppn2page(paddr >> PAGE_SHIFT), PAGE_SIZE); | 
|  | walker->table = KADDR(paddr >> PAGE_SHIFT); | 
|  | --walker->level; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Fetch a shadow pte for a specific level in the paging hierarchy. | 
|  | */ | 
|  | static uint64_t *FNAME(fetch) (struct litevm_vcpu * vcpu, gva_t addr, | 
|  | struct guest_walker * walker) { | 
|  | hpa_t shadow_addr; | 
|  | int level; | 
|  | uint64_t *prev_shadow_ent = NULL; | 
|  |  | 
|  | shadow_addr = vcpu->mmu.root_hpa; | 
|  | level = vcpu->mmu.shadow_root_level; | 
|  |  | 
|  | for (;; level--) { | 
|  | uint32_t index = SHADOW_PT_INDEX(addr, level); | 
|  | uint64_t *shadow_ent = ((uint64_t *) KADDR(shadow_addr)) + index; | 
|  | pt_element_t *guest_ent; | 
|  |  | 
|  | if (is_present_pte(*shadow_ent) || is_io_pte(*shadow_ent)) { | 
|  | if (level == PT_PAGE_TABLE_LEVEL) | 
|  | return shadow_ent; | 
|  | shadow_addr = *shadow_ent & PT64_BASE_ADDR_MASK; | 
|  | prev_shadow_ent = shadow_ent; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (PTTYPE == 32 && level > PT32_ROOT_LEVEL) { | 
|  | ASSERT(level == PT32E_ROOT_LEVEL); | 
|  | guest_ent = FNAME(fetch_guest) (vcpu, walker, | 
|  | PT32_ROOT_LEVEL, addr); | 
|  | } else | 
|  | guest_ent = FNAME(fetch_guest) (vcpu, walker, level, addr); | 
|  |  | 
|  | if (!is_present_pte(*guest_ent)) | 
|  | return NULL; | 
|  |  | 
|  | /* Don't set accessed bit on PAE PDPTRs */ | 
|  | if (vcpu->mmu.root_level != 3 || walker->level != 3) | 
|  | *guest_ent |= PT_ACCESSED_MASK; | 
|  |  | 
|  | if (level == PT_PAGE_TABLE_LEVEL) { | 
|  |  | 
|  | if (walker->level == PT_DIRECTORY_LEVEL) { | 
|  | if (prev_shadow_ent) | 
|  | *prev_shadow_ent |= PT_SHADOW_PS_MARK; | 
|  | FNAME(set_pde) (vcpu, *guest_ent, shadow_ent, | 
|  | walker->inherited_ar, | 
|  | PT_INDEX(addr, PT_PAGE_TABLE_LEVEL)); | 
|  | } else { | 
|  | ASSERT(walker->level == PT_PAGE_TABLE_LEVEL); | 
|  | FNAME(set_pte) (vcpu, *guest_ent, shadow_ent, | 
|  | walker->inherited_ar); | 
|  | } | 
|  | return shadow_ent; | 
|  | } | 
|  |  | 
|  | shadow_addr = litevm_mmu_alloc_page(vcpu, shadow_ent); | 
|  | if (!VALID_PAGE(shadow_addr)) | 
|  | return ERR_PTR(-ENOMEM); | 
|  | if (!is_long_mode() && level == 3) | 
|  | *shadow_ent = shadow_addr | | 
|  | (*guest_ent & (PT_PRESENT_MASK | PT_PWT_MASK | PT_PCD_MASK)); | 
|  | else { | 
|  | *shadow_ent = shadow_addr | (*guest_ent & PT_NON_PTE_COPY_MASK); | 
|  | *shadow_ent |= (PT_WRITABLE_MASK | PT_USER_MASK); | 
|  | } | 
|  | prev_shadow_ent = shadow_ent; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The guest faulted for write.  We need to | 
|  | * | 
|  | * - check write permissions | 
|  | * - update the guest pte dirty bit | 
|  | * - update our own dirty page tracking structures | 
|  | */ | 
|  | static int FNAME(fix_write_pf) (struct litevm_vcpu * vcpu, | 
|  | uint64_t * shadow_ent, | 
|  | struct guest_walker * walker, | 
|  | gva_t addr, int user) { | 
|  | pt_element_t *guest_ent; | 
|  | int writable_shadow; | 
|  | gfn_t gfn; | 
|  |  | 
|  | if (is_writeble_pte(*shadow_ent)) | 
|  | return 0; | 
|  |  | 
|  | writable_shadow = *shadow_ent & PT_SHADOW_WRITABLE_MASK; | 
|  | if (user) { | 
|  | /* | 
|  | * User mode access.  Fail if it's a kernel page or a read-only | 
|  | * page. | 
|  | */ | 
|  | if (!(*shadow_ent & PT_SHADOW_USER_MASK) || !writable_shadow) | 
|  | return 0; | 
|  | ASSERT(*shadow_ent & PT_USER_MASK); | 
|  | } else | 
|  | /* | 
|  | * Kernel mode access.  Fail if it's a read-only page and | 
|  | * supervisor write protection is enabled. | 
|  | */ | 
|  | if (!writable_shadow) { | 
|  | if (is_write_protection()) | 
|  | return 0; | 
|  | *shadow_ent &= ~PT_USER_MASK; | 
|  | } | 
|  |  | 
|  | guest_ent = FNAME(fetch_guest) (vcpu, walker, PT_PAGE_TABLE_LEVEL, addr); | 
|  |  | 
|  | if (!is_present_pte(*guest_ent)) { | 
|  | *shadow_ent = 0; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | gfn = (*guest_ent & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT; | 
|  | mark_page_dirty(vcpu->litevm, gfn); | 
|  | *shadow_ent |= PT_WRITABLE_MASK; | 
|  | *guest_ent |= PT_DIRTY_MASK; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Page fault handler.  There are several causes for a page fault: | 
|  | *   - there is no shadow pte for the guest pte | 
|  | *   - write access through a shadow pte marked read only so that we can set | 
|  | *     the dirty bit | 
|  | *   - write access to a shadow pte marked read only so we can update the page | 
|  | *     dirty bitmap, when userspace requests it | 
|  | *   - mmio access; in this case we will never install a present shadow pte | 
|  | *   - normal guest page fault due to the guest pte marked not present, not | 
|  | *     writable, or not executable | 
|  | * | 
|  | *  Returns: 1 if we need to emulate the instruction, 0 otherwise | 
|  | */ | 
|  | static int FNAME(page_fault) (struct litevm_vcpu * vcpu, gva_t addr, | 
|  | uint32_t error_code) { | 
|  | int write_fault = error_code & PFERR_WRITE_MASK; | 
|  | int pte_present = error_code & PFERR_PRESENT_MASK; | 
|  | int user_fault = error_code & PFERR_USER_MASK; | 
|  | struct guest_walker walker; | 
|  | uint64_t *shadow_pte; | 
|  | int fixed; | 
|  |  | 
|  | /* | 
|  | * Look up the shadow pte for the faulting address. | 
|  | */ | 
|  | for (;;) { | 
|  | FNAME(init_walker) (&walker, vcpu); | 
|  | shadow_pte = FNAME(fetch) (vcpu, addr, &walker); | 
|  | if (IS_ERR(shadow_pte)) {	/* must be -ENOMEM */ | 
|  | nonpaging_flush(vcpu); | 
|  | FNAME(release_walker) (&walker); | 
|  | continue; | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The page is not mapped by the guest.  Let the guest handle it. | 
|  | */ | 
|  | if (!shadow_pte) { | 
|  | inject_page_fault(vcpu, addr, error_code); | 
|  | FNAME(release_walker) (&walker); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Update the shadow pte. | 
|  | */ | 
|  | if (write_fault) | 
|  | fixed = FNAME(fix_write_pf) (vcpu, shadow_pte, &walker, addr, | 
|  | user_fault); | 
|  | else | 
|  | fixed = fix_read_pf(shadow_pte); | 
|  |  | 
|  | FNAME(release_walker) (&walker); | 
|  |  | 
|  | /* | 
|  | * mmio: emulate if accessible, otherwise its a guest fault. | 
|  | */ | 
|  | if (is_io_pte(*shadow_pte)) { | 
|  | if (may_access(*shadow_pte, write_fault, user_fault)) | 
|  | return 1; | 
|  | pgprintk("%s: io work, no access\n", __FUNCTION__); | 
|  | inject_page_fault(vcpu, addr, error_code | PFERR_PRESENT_MASK); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * pte not present, guest page fault. | 
|  | */ | 
|  | if (pte_present && !fixed) { | 
|  | inject_page_fault(vcpu, addr, error_code); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | ++litevm_stat.pf_fixed; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static gpa_t FNAME(gva_to_gpa) (struct litevm_vcpu * vcpu, gva_t vaddr) { | 
|  | struct guest_walker walker; | 
|  | pt_element_t guest_pte; | 
|  | gpa_t gpa; | 
|  |  | 
|  | FNAME(init_walker) (&walker, vcpu); | 
|  | guest_pte = *FNAME(fetch_guest) (vcpu, &walker, PT_PAGE_TABLE_LEVEL, vaddr); | 
|  | FNAME(release_walker) (&walker); | 
|  |  | 
|  | if (!is_present_pte(guest_pte)) | 
|  | return UNMAPPED_GVA; | 
|  |  | 
|  | if (walker.level == PT_DIRECTORY_LEVEL) { | 
|  | ASSERT((guest_pte & PT_PAGE_SIZE_MASK)); | 
|  | ASSERT(PTTYPE == 64 || is_pse()); | 
|  |  | 
|  | gpa = (guest_pte & PT_DIR_BASE_ADDR_MASK) | (vaddr & | 
|  | (PT_LEVEL_MASK | 
|  | (PT_PAGE_TABLE_LEVEL) | | 
|  | ~PAGE_MASK)); | 
|  |  | 
|  | if (PTTYPE == 32 && is_cpuid_PSE36()) | 
|  | gpa |= (guest_pte & PT32_DIR_PSE36_MASK) << | 
|  | (32 - PT32_DIR_PSE36_SHIFT); | 
|  | } else { | 
|  | gpa = (guest_pte & PT_BASE_ADDR_MASK); | 
|  | gpa |= (vaddr & ~PAGE_MASK); | 
|  | } | 
|  |  | 
|  | return gpa; | 
|  | } | 
|  |  | 
|  | #undef pt_element_t | 
|  | #undef guest_walker | 
|  | #undef FNAME | 
|  | #undef PT_BASE_ADDR_MASK | 
|  | #undef PT_INDEX | 
|  | #undef SHADOW_PT_INDEX | 
|  | #undef PT_LEVEL_MASK | 
|  | #undef PT_PTE_COPY_MASK | 
|  | #undef PT_NON_PTE_COPY_MASK | 
|  | #undef PT_DIR_BASE_ADDR_MASK |