| #include <arch/mmu.h> |
| #include <arch/x86.h> |
| #include <arch/arch.h> |
| #include <arch/console.h> |
| #include <arch/apic.h> |
| #include <arch/perfmon.h> |
| #include <ros/common.h> |
| #include <smp.h> |
| #include <assert.h> |
| #include <pmap.h> |
| #include <trap.h> |
| #include <monitor.h> |
| #include <process.h> |
| #include <mm.h> |
| #include <stdio.h> |
| #include <slab.h> |
| #include <syscall.h> |
| #include <kdebug.h> |
| #include <kmalloc.h> |
| #include <ex_table.h> |
| #include <arch/mptables.h> |
| #include <ros/procinfo.h> |
| |
| taskstate_t ts; |
| |
| /* Interrupt descriptor table. 64 bit needs 16 byte alignment (i think). */ |
| gatedesc_t __attribute__((aligned (16))) idt[256] = { { 0 } }; |
| pseudodesc_t idt_pd; |
| |
| /* interrupt handler table, each element is a linked list of handlers for a |
| * given IRQ. Modification requires holding the lock (TODO: RCU) */ |
| struct irq_handler *irq_handlers[NUM_IRQS]; |
| spinlock_t irq_handler_wlock = SPINLOCK_INITIALIZER_IRQSAVE; |
| |
| static bool try_handle_exception_fixup(struct hw_trapframe *hw_tf) |
| { |
| if (in_kernel(hw_tf)) { |
| uintptr_t fixup_ip = get_fixup_ip(hw_tf->tf_rip); |
| |
| if (fixup_ip != 0) { |
| hw_tf->tf_rip = fixup_ip; |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| const char *x86_trapname(int trapno) |
| { |
| static const char *const excnames[] = { |
| "Divide error", |
| "Debug", |
| "Non-Maskable Interrupt", |
| "Breakpoint", |
| "Overflow", |
| "BOUND Range Exceeded", |
| "Invalid Opcode", |
| "Device Not Available", |
| "Double Fault", |
| "Coprocessor Segment Overrun", |
| "Invalid TSS", |
| "Segment Not Present", |
| "Stack Fault", |
| "General Protection", |
| "Page Fault", |
| "(unknown trap)", |
| "x87 FPU Floating-Point Error", |
| "Alignment Check", |
| "Machine-Check", |
| "SIMD Floating-Point Exception" |
| }; |
| |
| if (trapno < sizeof(excnames)/sizeof(excnames[0])) |
| return excnames[trapno]; |
| if (trapno == T_SYSCALL) |
| return "System call"; |
| return "(unknown trap)"; |
| } |
| |
| /* Set stacktop for the current core to be the stack the kernel will start on |
| * when trapping/interrupting from userspace. Don't use this til after |
| * smp_percpu_init(). We can probably get the TSS by reading the task register |
| * and then the GDT. Still, it's a pain. */ |
| void set_stack_top(uintptr_t stacktop) |
| { |
| struct per_cpu_info *pcpui = &per_cpu_info[core_id()]; |
| /* No need to reload the task register, this takes effect immediately */ |
| x86_set_stacktop_tss(pcpui->tss, stacktop); |
| /* Also need to make sure sysenters come in correctly */ |
| x86_set_sysenter_stacktop(stacktop); |
| } |
| |
| /* Note the check implies we only are on a one page stack (or the first page) */ |
| uintptr_t get_stack_top(void) |
| { |
| struct per_cpu_info *pcpui = &per_cpu_info[core_id()]; |
| uintptr_t stacktop; |
| /* so we can check this in interrupt handlers (before smp_boot()) */ |
| /* TODO: These are dangerous - it assumes we're on a one-page stack. If we |
| * change it to KSTKSIZE, then we assume stacks are KSTKSIZE-aligned */ |
| if (!pcpui->tss) |
| return ROUNDUP(read_sp(), PGSIZE); |
| stacktop = x86_get_stacktop_tss(pcpui->tss); |
| if (stacktop != ROUNDUP(read_sp(), PGSIZE)) |
| panic("Bad stacktop: %p esp one is %p\n", stacktop, |
| ROUNDUP(read_sp(), PGSIZE)); |
| return stacktop; |
| } |
| |
| /* Sends a non-maskable interrupt; the handler will print a trapframe. */ |
| void send_nmi(uint32_t os_coreid) |
| { |
| /* NMI / IPI for x86 are limited to 8 bits */ |
| uint8_t hw_core = (uint8_t)get_hw_coreid(os_coreid); |
| __send_nmi(hw_core); |
| } |
| |
| void idt_init(void) |
| { |
| /* This table is made in trapentry$BITS.S by each macro in that file. |
| * It is layed out such that the ith entry is the ith's traphandler's |
| * (uintptr_t) trap addr, then (uint32_t) trap number. */ |
| struct trapinfo { uintptr_t trapaddr; uint32_t trapnumber; } |
| __attribute__((packed)); |
| extern struct trapinfo trap_tbl[]; |
| extern struct trapinfo trap_tbl_end[]; |
| int i, trap_tbl_size = trap_tbl_end - trap_tbl; |
| extern void ISR_default(void); |
| extern void ISR_syscall(void); |
| |
| /* set all to default, to catch everything */ |
| for (i = 0; i < 256; i++) |
| SETGATE(idt[i], 0, GD_KT, &ISR_default, 0); |
| |
| /* set all entries that have real trap handlers |
| * we need to stop short of the last one, since the last is the default |
| * handler with a fake interrupt number (500) that is out of bounds of |
| * the idt[] */ |
| for (i = 0; i < trap_tbl_size - 1; i++) |
| SETGATE(idt[trap_tbl[i].trapnumber], 0, GD_KT, trap_tbl[i].trapaddr, 0); |
| /* Sanity check */ |
| assert((uintptr_t)ISR_syscall == |
| ((uintptr_t)idt[T_SYSCALL].gd_off_63_32 << 32 | |
| (uintptr_t)idt[T_SYSCALL].gd_off_31_16 << 16 | |
| (uintptr_t)idt[T_SYSCALL].gd_off_15_0)); |
| /* turn on trap-based syscall handling and other user-accessible ints |
| * DPL 3 means this can be triggered by the int instruction */ |
| idt[T_SYSCALL].gd_dpl = 3; |
| idt[T_BRKPT].gd_dpl = 3; |
| |
| /* Set up our kernel stack when changing rings */ |
| /* Note: we want 16 byte aligned kernel stack frames (AMD 2:8.9.3) */ |
| x86_set_stacktop_tss(&ts, (uintptr_t)bootstacktop); |
| x86_sysenter_init((uintptr_t)bootstacktop); |
| |
| #ifdef CONFIG_KTHREAD_POISON |
| *kstack_bottom_addr((uintptr_t)bootstacktop) = 0xdeadbeef; |
| #endif /* CONFIG_KTHREAD_POISON */ |
| |
| /* Initialize the TSS field of the gdt. The size of the TSS desc differs |
| * between 64 and 32 bit, hence the pointer acrobatics */ |
| syssegdesc_t *ts_slot = (syssegdesc_t*)&gdt[GD_TSS >> 3]; |
| *ts_slot = (syssegdesc_t)SEG_SYS_SMALL(STS_T32A, (uintptr_t)&ts, |
| sizeof(taskstate_t), 0); |
| |
| /* Init the IDT PD. Need to do this before ltr for some reason. (Doing |
| * this between ltr and lidt causes the machine to reboot... */ |
| idt_pd.pd_lim = sizeof(idt) - 1; |
| idt_pd.pd_base = (uintptr_t)idt; |
| |
| ltr(GD_TSS); |
| |
| asm volatile("lidt %0" : : "m"(idt_pd)); |
| |
| pic_remap(); |
| pic_mask_all(); |
| |
| int ncleft = MAX_NUM_CORES; |
| int num_cores_mpacpi; |
| |
| ncleft = mpsinit(ncleft); |
| ncleft = mpacpi(ncleft); |
| num_cores_mpacpi = MAX_NUM_CORES - ncleft; |
| printk("MP and ACPI found %d cores\n", num_cores_mpacpi); |
| if (num_cores != num_cores_mpacpi) |
| warn("Topology (%d) and MP/ACPI (%d) differ on num_cores!", num_cores, |
| num_cores_mpacpi); |
| |
| apiconline(); |
| ioapiconline(); |
| |
| /* the lapic IRQs need to be unmasked on a per-core basis */ |
| register_irq(IdtLAPIC_TIMER, timer_interrupt, NULL, |
| MKBUS(BusLAPIC, 0, 0, 0)); |
| register_irq(IdtLAPIC_ERROR, handle_lapic_error, NULL, |
| MKBUS(BusLAPIC, 0, 0, 0)); |
| register_irq(IdtLAPIC_PCINT, perfmon_interrupt, NULL, |
| MKBUS(BusLAPIC, 0, 0, 0)); |
| register_irq(I_KERNEL_MSG, handle_kmsg_ipi, NULL, MKBUS(BusIPI, 0, 0, 0)); |
| } |
| |
| static void handle_fperr(struct hw_trapframe *hw_tf) |
| { |
| uint16_t fpcw, fpsw; |
| uint32_t mxcsr; |
| asm volatile ("fnstcw %0" : "=m"(fpcw)); |
| asm volatile ("fnstsw %0" : "=m"(fpsw)); |
| asm volatile ("stmxcsr %0" : "=m"(mxcsr)); |
| print_trapframe(hw_tf); |
| printk("Core %d: FP ERR, CW: 0x%04x, SW: 0x%04x, MXCSR 0x%08x\n", core_id(), |
| fpcw, fpsw, mxcsr); |
| printk("Core %d: The following faults are unmasked:\n", core_id()); |
| if (fpsw & ~fpcw & FP_EXCP_IE) { |
| printk("\tInvalid Operation: "); |
| if (fpsw & FP_SW_SF) { |
| if (fpsw & FP_SW_C1) |
| printk("Stack overflow\n"); |
| else |
| printk("Stack underflow\n"); |
| } else { |
| printk("invalid arithmetic operand\n"); |
| } |
| } |
| if (fpsw & ~fpcw & FP_EXCP_DE) |
| printk("\tDenormalized operand\n"); |
| if (fpsw & ~fpcw & FP_EXCP_ZE) |
| printk("\tDivide by zero\n"); |
| if (fpsw & ~fpcw & FP_EXCP_OE) |
| printk("\tNumeric Overflow\n"); |
| if (fpsw & ~fpcw & FP_EXCP_UE) |
| printk("\tNumeric Underflow\n"); |
| if (fpsw & ~fpcw & FP_EXCP_PE) |
| printk("\tInexact result (precision)\n"); |
| printk("Killing the process.\n"); |
| proc_destroy(current); |
| } |
| |
| static bool __handler_user_page_fault(struct hw_trapframe *hw_tf, |
| uintptr_t fault_va, int prot) |
| { |
| struct per_cpu_info *pcpui = &per_cpu_info[core_id()]; |
| int err; |
| |
| assert(pcpui->owning_proc == pcpui->cur_proc); |
| enable_irq(); |
| err = handle_page_fault(pcpui->owning_proc, fault_va, prot); |
| disable_irq(); |
| if (err) { |
| if (err == -EAGAIN) |
| hw_tf->tf_err |= PF_VMR_BACKED; |
| return FALSE; |
| } |
| return TRUE; |
| } |
| |
| static bool __handler_kernel_page_fault(struct hw_trapframe *hw_tf, |
| uintptr_t fault_va, int prot) |
| { |
| struct per_cpu_info *pcpui = &per_cpu_info[core_id()]; |
| int err; |
| |
| /* In general, if there's no cur_proc, a KPF is a bug. */ |
| if (!pcpui->cur_proc) { |
| /* This only runs from test_uaccess(), where it is expected to fail. */ |
| if (try_handle_exception_fixup(hw_tf)) |
| return TRUE; |
| print_trapframe(hw_tf); |
| backtrace_hwtf(hw_tf); |
| panic("Proc-less Page Fault in the Kernel at %p!", fault_va); |
| } |
| /* TODO - handle kernel page faults. This is dangerous, since we might be |
| * holding locks in the kernel and could deadlock when we HPF. For now, I'm |
| * just disabling the lock checker, since it'll flip out when it sees there |
| * is a kernel trap. Will need to think about this a bit, esp when we |
| * properly handle bad addrs and whatnot. */ |
| pcpui->__lock_checking_enabled--; |
| /* It is a bug for the kernel to access user memory while holding locks that |
| * are used by handle_page_fault. At a minimum, this includes p->vmr_lock |
| * and memory allocation locks. |
| * |
| * In an effort to reduce the number of locks (both now and in the future), |
| * the kernel will not attempt to handle faults on file-back VMRs. We |
| * probably can turn that on in the future, but I'd rather keep things safe |
| * for now. (We'll probably need to change this when we stop |
| * MAP_POPULATE | MAP_LOCKED entire binaries). |
| * |
| * Note that we do not enable IRQs here, unlike in the user case. Again, |
| * this is to limit the locks we could be grabbing. */ |
| err = handle_page_fault_nofile(pcpui->cur_proc, fault_va, prot); |
| pcpui->__lock_checking_enabled++; |
| if (err) { |
| if (try_handle_exception_fixup(hw_tf)) |
| return TRUE; |
| print_trapframe(hw_tf); |
| backtrace_hwtf(hw_tf); |
| /* Turn this on to help debug bad function pointers */ |
| printd("rsp %p\n\t 0(rsp): %p\n\t 8(rsp): %p\n\t 16(rsp): %p\n" |
| "\t24(rsp): %p\n", hw_tf->tf_rsp, |
| *(uintptr_t*)(hw_tf->tf_rsp + 0), |
| *(uintptr_t*)(hw_tf->tf_rsp + 8), |
| *(uintptr_t*)(hw_tf->tf_rsp + 16), |
| *(uintptr_t*)(hw_tf->tf_rsp + 24)); |
| panic("Proc-ful Page Fault in the Kernel at %p!", fault_va); |
| /* if we want to do something like kill a process or other code, be |
| * aware we are in a sort of irq-like context, meaning the main |
| * kernel code we 'interrupted' could be holding locks - even |
| * irqsave locks. */ |
| } |
| return TRUE; |
| } |
| |
| static bool __handle_page_fault(struct hw_trapframe *hw_tf, unsigned long *aux) |
| { |
| uintptr_t fault_va = rcr2(); |
| int prot = hw_tf->tf_err & PF_ERROR_WRITE ? PROT_WRITE : PROT_READ; |
| |
| *aux = fault_va; |
| if (in_kernel(hw_tf)) |
| return __handler_kernel_page_fault(hw_tf, fault_va, prot); |
| else |
| return __handler_user_page_fault(hw_tf, fault_va, prot); |
| } |
| |
| /* Certain traps want IRQs enabled, such as the syscall. Others can't handle |
| * it, like the page fault handler. Turn them on on a case-by-case basis. */ |
| static void trap_dispatch(struct hw_trapframe *hw_tf) |
| { |
| struct per_cpu_info *pcpui; |
| bool handled = TRUE; |
| unsigned long aux = 0; |
| uintptr_t fixup_ip; |
| |
| // Handle processor exceptions. |
| switch(hw_tf->tf_trapno) { |
| case T_NMI: |
| /* Temporarily disable deadlock detection when we print. We could |
| * deadlock if we were printing when we NMIed. */ |
| pcpui = &per_cpu_info[core_id()]; |
| pcpui->__lock_checking_enabled--; |
| /* This is a bit hacky, but we don't have a decent API yet */ |
| extern bool mon_verbose_trace; |
| if (mon_verbose_trace) { |
| print_trapframe(hw_tf); |
| backtrace_hwtf(hw_tf); |
| } |
| char *fn_name = get_fn_name(get_hwtf_pc(hw_tf)); |
| |
| printk("Core %d is at %p (%s)\n", core_id(), get_hwtf_pc(hw_tf), |
| fn_name); |
| kfree(fn_name); |
| print_kmsgs(core_id()); |
| pcpui->__lock_checking_enabled++; |
| break; |
| case T_BRKPT: |
| enable_irq(); |
| monitor(hw_tf); |
| disable_irq(); |
| break; |
| case T_ILLOP: |
| { |
| /* TODO: this can PF if there is a concurrent unmap/PM removal. */ |
| uintptr_t ip = get_hwtf_pc(hw_tf); |
| pcpui = &per_cpu_info[core_id()]; |
| pcpui->__lock_checking_enabled--; /* for print debugging */ |
| /* We will muck with the actual TF. If we're dealing with |
| * userspace, we need to make sure we edit the actual TF that will |
| * get restarted (pcpui), and not the TF on the kstack (which aren't |
| * the same). See set_current_ctx() for more info. */ |
| if (!in_kernel(hw_tf)) |
| hw_tf = &pcpui->cur_ctx->tf.hw_tf; |
| printd("bad opcode, eip: %p, next 3 bytes: %x %x %x\n", ip, |
| *(uint8_t*)(ip + 0), |
| *(uint8_t*)(ip + 1), |
| *(uint8_t*)(ip + 2)); |
| /* rdtscp: 0f 01 f9 */ |
| if (*(uint8_t*)(ip + 0) == 0x0f, |
| *(uint8_t*)(ip + 1) == 0x01, |
| *(uint8_t*)(ip + 2) == 0xf9) { |
| x86_fake_rdtscp(hw_tf); |
| pcpui->__lock_checking_enabled++; /* for print debugging */ |
| return; |
| } |
| enable_irq(); |
| monitor(hw_tf); |
| disable_irq(); |
| pcpui->__lock_checking_enabled++; /* for print debugging */ |
| break; |
| } |
| case T_PGFLT: |
| handled = __handle_page_fault(hw_tf, &aux); |
| break; |
| case T_FPERR: |
| handled = try_handle_exception_fixup(hw_tf); |
| if (!handled) |
| handle_fperr(hw_tf); |
| break; |
| case T_SYSCALL: |
| enable_irq(); |
| // check for userspace, for now |
| assert(hw_tf->tf_cs != GD_KT); |
| /* Set up and run the async calls */ |
| /* TODO: this is using the wrong reg1 for traps for 32 bit */ |
| prep_syscalls(current, |
| (struct syscall*)x86_get_systrap_arg0(hw_tf), |
| (unsigned int)x86_get_systrap_arg1(hw_tf)); |
| disable_irq(); |
| break; |
| default: |
| if (hw_tf->tf_cs == GD_KT) { |
| handled = try_handle_exception_fixup(hw_tf); |
| if (!handled) { |
| print_trapframe(hw_tf); |
| panic("Damn Damn! Unhandled trap in the kernel!"); |
| } |
| } else { |
| handled = FALSE; |
| } |
| } |
| |
| if (!handled) |
| reflect_unhandled_trap(hw_tf->tf_trapno, hw_tf->tf_err, aux); |
| } |
| |
| /* Helper. For now, this copies out the TF to pcpui. Eventually, we should |
| * consider doing this in trapentry.S |
| * |
| * TODO: consider having this return the tf used, so we can set tf in trap and |
| * irq handlers to edit the TF that will get restarted. Right now, the kernel |
| * uses and restarts tf, but userspace restarts the old pcpui tf. It is |
| * tempting to do this, but note that tf stays on the stack of the kthread, |
| * while pcpui->cur_ctx is for the core we trapped in on. Meaning if we ever |
| * block, suddenly cur_ctx is pointing to some old clobbered state that was |
| * already returned to and can't be trusted. Meanwhile tf can always be trusted |
| * (like with an in_kernel() check). The only types of traps from the user that |
| * can be expected to have editable trapframes are ones that don't block. */ |
| static void set_current_ctx_hw(struct per_cpu_info *pcpui, |
| struct hw_trapframe *hw_tf) |
| { |
| assert(!irq_is_enabled()); |
| pcpui->actual_ctx.type = ROS_HW_CTX; |
| pcpui->actual_ctx.tf.hw_tf = *hw_tf; |
| pcpui->cur_ctx = &pcpui->actual_ctx; |
| } |
| |
| static void set_current_ctx_sw(struct per_cpu_info *pcpui, |
| struct sw_trapframe *sw_tf) |
| { |
| assert(!irq_is_enabled()); |
| pcpui->actual_ctx.type = ROS_SW_CTX; |
| pcpui->actual_ctx.tf.sw_tf = *sw_tf; |
| pcpui->cur_ctx = &pcpui->actual_ctx; |
| } |
| |
| static void set_current_ctx_vm(struct per_cpu_info *pcpui, |
| struct vm_trapframe *vm_tf) |
| { |
| assert(!irq_is_enabled()); |
| pcpui->actual_ctx.type = ROS_VM_CTX; |
| pcpui->actual_ctx.tf.vm_tf = *vm_tf; |
| pcpui->cur_ctx = &pcpui->actual_ctx; |
| } |
| |
| void trap(struct hw_trapframe *hw_tf) |
| { |
| struct per_cpu_info *pcpui = &per_cpu_info[core_id()]; |
| /* Copy out the TF for now */ |
| if (!in_kernel(hw_tf)) { |
| set_current_ctx_hw(pcpui, hw_tf); |
| /* ignoring state for nested kernel traps. should be rare. */ |
| __set_cpu_state(pcpui, CPU_STATE_KERNEL); |
| } else { |
| inc_ktrap_depth(pcpui); |
| } |
| printd("Incoming TRAP %d on core %d, TF at %p\n", hw_tf->tf_trapno, |
| core_id(), hw_tf); |
| if ((hw_tf->tf_cs & ~3) != GD_UT && (hw_tf->tf_cs & ~3) != GD_KT) { |
| print_trapframe(hw_tf); |
| panic("Trapframe with invalid CS!"); |
| } |
| trap_dispatch(hw_tf); |
| /* Return to the current process, which should be runnable. If we're the |
| * kernel, we should just return naturally. Note that current and tf need |
| * to still be okay (might not be after blocking) */ |
| if (in_kernel(hw_tf)) { |
| dec_ktrap_depth(pcpui); |
| return; |
| } |
| proc_restartcore(); |
| assert(0); |
| } |
| |
| static bool vector_is_irq(int apic_vec) |
| { |
| /* arguably, we could limit them to MaxIdtIOAPIC */ |
| return (IdtPIC <= apic_vec) && (apic_vec <= IdtMAX); |
| } |
| |
| static void irq_dispatch(struct hw_trapframe *hw_tf) |
| { |
| struct per_cpu_info *pcpui = &per_cpu_info[core_id()]; |
| struct irq_handler *irq_h; |
| |
| if (!in_irq_ctx(pcpui)) |
| __set_cpu_state(pcpui, CPU_STATE_IRQ); |
| inc_irq_depth(pcpui); |
| //if (core_id()) |
| if (hw_tf->tf_trapno != IdtLAPIC_TIMER) /* timer irq */ |
| if (hw_tf->tf_trapno != I_KERNEL_MSG) |
| if (hw_tf->tf_trapno != 65) /* qemu serial tends to get this one */ |
| printd("Incoming IRQ, ISR: %d on core %d\n", hw_tf->tf_trapno, |
| core_id()); |
| /* TODO: RCU read lock */ |
| irq_h = irq_handlers[hw_tf->tf_trapno]; |
| if (!irq_h) { |
| warn_once("Received IRQ %d, had no handler registered!", |
| hw_tf->tf_trapno); |
| /* If we don't have an IRQ handler, we don't know how to EOI. Odds are, |
| * it's a LAPIC IRQ, such as I_TESTING */ |
| if (!lapic_check_spurious(hw_tf->tf_trapno)) |
| lapic_send_eoi(hw_tf->tf_trapno); |
| goto out_no_eoi; |
| } |
| if (irq_h->check_spurious(hw_tf->tf_trapno)) |
| goto out_no_eoi; |
| /* Can now be interrupted/nested by higher priority IRQs, but not by our |
| * current IRQ vector, til we EOI. */ |
| enable_irq(); |
| while (irq_h) { |
| irq_h->isr(hw_tf, irq_h->data); |
| irq_h = irq_h->next; |
| } |
| // if we're a general purpose IPI function call, down the cpu_list |
| extern handler_wrapper_t handler_wrappers[NUM_HANDLER_WRAPPERS]; |
| if ((I_SMP_CALL0 <= hw_tf->tf_trapno) && |
| (hw_tf->tf_trapno <= I_SMP_CALL_LAST)) |
| down_checklist(handler_wrappers[hw_tf->tf_trapno & 0x0f].cpu_list); |
| disable_irq(); |
| /* Keep in sync with ipi_is_pending */ |
| irq_handlers[hw_tf->tf_trapno]->eoi(hw_tf->tf_trapno); |
| /* Fall-through */ |
| out_no_eoi: |
| dec_irq_depth(pcpui); |
| if (!in_irq_ctx(pcpui)) |
| __set_cpu_state(pcpui, CPU_STATE_KERNEL); |
| } |
| |
| /* Note IRQs are disabled unless explicitly turned on. |
| * |
| * In general, we should only get trapno's >= PIC1_OFFSET (32). Anything else |
| * should be a trap. Even if we don't use the PIC, that should be the standard. |
| * It is possible to get a spurious LAPIC IRQ with vector 15 (or similar), but |
| * the spurious check should catch that. |
| * |
| * Note that from hardware's perspective (PIC, etc), IRQs start from 0, but they |
| * are all mapped up at PIC1_OFFSET for the cpu / irq_handler. */ |
| void handle_irq(struct hw_trapframe *hw_tf) |
| { |
| struct per_cpu_info *pcpui = &per_cpu_info[core_id()]; |
| |
| /* Copy out the TF for now */ |
| if (!in_kernel(hw_tf)) |
| set_current_ctx_hw(pcpui, hw_tf); |
| irq_dispatch(hw_tf); |
| /* Return to the current process, which should be runnable. If we're the |
| * kernel, we should just return naturally. Note that current and tf need |
| * to still be okay (might not be after blocking) */ |
| if (in_kernel(hw_tf)) |
| return; |
| proc_restartcore(); |
| assert(0); |
| } |
| |
| /* The irq field may be ignored based on the type of Bus. */ |
| int register_irq(int irq, isr_t handler, void *irq_arg, uint32_t tbdf) |
| { |
| struct irq_handler *irq_h; |
| int vector; |
| irq_h = kzmalloc(sizeof(struct irq_handler), 0); |
| assert(irq_h); |
| irq_h->dev_irq = irq; |
| irq_h->tbdf = tbdf; |
| vector = bus_irq_setup(irq_h); |
| if (vector == -1) { |
| kfree(irq_h); |
| return -1; |
| } |
| printk("IRQ %d, vector %d (0x%x), type %s\n", irq, vector, vector, |
| irq_h->type); |
| assert(irq_h->check_spurious && irq_h->eoi); |
| irq_h->isr = handler; |
| irq_h->data = irq_arg; |
| irq_h->apic_vector = vector; |
| /* RCU write lock */ |
| spin_lock_irqsave(&irq_handler_wlock); |
| irq_h->next = irq_handlers[vector]; |
| wmb(); /* make sure irq_h is done before publishing to readers */ |
| irq_handlers[vector] = irq_h; |
| spin_unlock_irqsave(&irq_handler_wlock); |
| /* Most IRQs other than the BusIPI should need their irq unmasked. |
| * Might need to pass the irq_h, in case unmask needs more info. |
| * The lapic IRQs need to be unmasked on a per-core basis */ |
| if (irq_h->unmask && strcmp(irq_h->type, "lapic")) |
| irq_h->unmask(irq_h, vector); |
| return 0; |
| } |
| |
| /* These routing functions only allow the routing of an irq to a single core. |
| * If we want to route to multiple cores, we'll probably need to set up logical |
| * groups or something and take some additional parameters. */ |
| static int route_irq_h(struct irq_handler *irq_h, int os_coreid) |
| { |
| int hw_coreid; |
| if (!irq_h->route_irq) { |
| printk("[kernel] apic_vec %d, type %s cannot be routed\n", |
| irq_h->apic_vector, irq_h->type); |
| return -1; |
| } |
| if (os_coreid >= MAX_NUM_CORES) { |
| printk("[kernel] os_coreid %d out of range!\n", os_coreid); |
| return -1; |
| } |
| hw_coreid = get_hw_coreid(os_coreid); |
| if (hw_coreid == -1) { |
| printk("[kernel] os_coreid %d not a valid hw core!\n", os_coreid); |
| return -1; |
| } |
| irq_h->route_irq(irq_h, irq_h->apic_vector, hw_coreid); |
| return 0; |
| } |
| |
| /* Routes all irqs for a given apic_vector to os_coreid. Returns 0 if all of |
| * them succeeded. -1 if there were none or if any of them failed. We don't |
| * share IRQs often (if ever anymore), so this shouldn't be an issue. */ |
| int route_irqs(int apic_vec, int os_coreid) |
| { |
| struct irq_handler *irq_h; |
| int ret = -1; |
| if (!vector_is_irq(apic_vec)) { |
| printk("[kernel] vector %d is not an IRQ vector!\n", apic_vec); |
| return -1; |
| } |
| irq_h = irq_handlers[apic_vec]; |
| while (irq_h) { |
| assert(irq_h->apic_vector == apic_vec); |
| ret = route_irq_h(irq_h, os_coreid); |
| irq_h = irq_h->next; |
| } |
| return ret; |
| } |
| |
| /* It's a moderate pain in the ass to put these in bit-specific files (header |
| * hell with the set_current_ helpers) */ |
| void sysenter_callwrapper(struct syscall *sysc, unsigned long count, |
| struct sw_trapframe *sw_tf) |
| { |
| struct per_cpu_info *pcpui = &per_cpu_info[core_id()]; |
| set_current_ctx_sw(pcpui, sw_tf); |
| __set_cpu_state(pcpui, CPU_STATE_KERNEL); |
| /* Once we've set_current_ctx, we can enable interrupts. This used to be |
| * mandatory (we had immediate KMSGs that would muck with cur_ctx). Now it |
| * should only help for sanity/debugging. */ |
| enable_irq(); |
| /* Set up and run the async calls. This may block, and we could migrate to |
| * another core. If you use pcpui again, you need to reread it. */ |
| prep_syscalls(current, sysc, count); |
| disable_irq(); |
| proc_restartcore(); |
| } |
| |
| /* Declared in x86/arch.h */ |
| void send_ipi(uint32_t os_coreid, uint8_t vector) |
| { |
| int hw_coreid = get_hw_coreid(os_coreid); |
| if (hw_coreid == -1) { |
| panic("Unmapped OS coreid (OS %d)!\n", os_coreid); |
| return; |
| } |
| __send_ipi(hw_coreid, vector); |
| } |
| |
| /****************** VM exit handling ******************/ |
| |
| static bool handle_vmexit_cpuid(struct vm_trapframe *tf) |
| { |
| uint32_t eax, ebx, ecx, edx; |
| |
| /* 0x4000000 is taken from Linux; it is not documented but it signals the |
| * use of KVM. */ |
| if (tf->tf_rax == 0x40000000) { |
| /* Pretend to be KVM: Return the KVM signature by placing the following |
| * constants in RAX, RBX, RCX and RDX. RAX is set to 0, while RBX to |
| * RDX forms the string "KVMKVMKVMKVM\0\0\0". This can be placed in |
| * 0x100 offsets from 0x40000000 to 0x40010000. */ |
| eax = 0; |
| ebx = 0x4b4d564b; |
| ecx = 0x564b4d56; |
| edx = 0x0000004d; |
| } else { |
| cpuid(tf->tf_rax, tf->tf_rcx, &eax, &ebx, &ecx, &edx); |
| if (tf->tf_rax == 1) { |
| /* Set the hypervisor bit to let the guest know it is virtualized */ |
| ecx |= 1 << 31; |
| } |
| } |
| tf->tf_rax = eax; |
| tf->tf_rbx = ebx; |
| tf->tf_rcx = ecx; |
| tf->tf_rdx = edx; |
| tf->tf_rip += 2; |
| return TRUE; |
| } |
| |
| static bool handle_vmexit_ept_fault(struct vm_trapframe *tf) |
| { |
| int prot = 0; |
| int ret; |
| |
| prot |= tf->tf_exit_qual & VMX_EPT_FAULT_READ ? PROT_READ : 0; |
| prot |= tf->tf_exit_qual & VMX_EPT_FAULT_WRITE ? PROT_WRITE : 0; |
| prot |= tf->tf_exit_qual & VMX_EPT_FAULT_INS ? PROT_EXEC : 0; |
| ret = handle_page_fault(current, tf->tf_guest_pa, prot); |
| if (ret) { |
| /* TODO: maybe put ret in the TF somewhere */ |
| return FALSE; |
| } |
| return TRUE; |
| } |
| |
| static bool handle_vmexit_nmi(struct vm_trapframe *tf) |
| { |
| /* Sanity checks, make sure we really got an NMI. Feel free to remove. */ |
| assert((tf->tf_intrinfo2 & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR); |
| assert((tf->tf_intrinfo2 & INTR_INFO_VECTOR_MASK) == T_NMI); |
| /* our NMI handler from trap.c won't run. but we don't need the lock |
| * disabling stuff. */ |
| extern bool mon_verbose_trace; |
| |
| if (mon_verbose_trace) { |
| print_vmtrapframe(tf); |
| /* TODO: a backtrace of the guest would be nice here. */ |
| } |
| printk("Core %d is at %p\n", core_id(), get_vmtf_pc(tf)); |
| return TRUE; |
| } |
| |
| bool handle_vmexit_msr(struct vm_trapframe *tf) |
| { |
| bool ret; |
| |
| ret = vmm_emulate_msr(&tf->tf_rcx, &tf->tf_rdx, &tf->tf_rax, |
| (tf->tf_exit_reason == EXIT_REASON_MSR_READ |
| ? VMM_MSR_EMU_READ : VMM_MSR_EMU_WRITE)); |
| if (ret) |
| tf->tf_rip += 2; |
| return ret; |
| } |
| |
| bool handle_vmexit_extirq(struct vm_trapframe *tf) |
| { |
| struct hw_trapframe hw_tf; |
| |
| /* For now, we just handle external IRQs. I think guest traps should go to |
| * the guest, based on our vmctls */ |
| assert((tf->tf_intrinfo2 & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_EXT_INTR); |
| /* TODO: Our IRQ handlers all expect TFs. Let's fake one. A bunch of |
| * handlers (e.g. backtrace/perf) will probably be unhappy about a user TF |
| * that is really a VM, so this all needs work. */ |
| hw_tf.tf_gsbase = 0; |
| hw_tf.tf_fsbase = 0; |
| hw_tf.tf_rax = tf->tf_rax; |
| hw_tf.tf_rbx = tf->tf_rbx; |
| hw_tf.tf_rcx = tf->tf_rcx; |
| hw_tf.tf_rdx = tf->tf_rdx; |
| hw_tf.tf_rbp = tf->tf_rbp; |
| hw_tf.tf_rsi = tf->tf_rsi; |
| hw_tf.tf_rdi = tf->tf_rdi; |
| hw_tf.tf_r8 = tf->tf_r8; |
| hw_tf.tf_r9 = tf->tf_r9; |
| hw_tf.tf_r10 = tf->tf_r10; |
| hw_tf.tf_r11 = tf->tf_r11; |
| hw_tf.tf_r12 = tf->tf_r12; |
| hw_tf.tf_r13 = tf->tf_r13; |
| hw_tf.tf_r14 = tf->tf_r14; |
| hw_tf.tf_r15 = tf->tf_r15; |
| hw_tf.tf_trapno = tf->tf_intrinfo2 & INTR_INFO_VECTOR_MASK; |
| hw_tf.tf_err = 0; |
| hw_tf.tf_rip = tf->tf_rip; |
| hw_tf.tf_cs = GD_UT; /* faking a user TF, even though it's a VM */ |
| hw_tf.tf_rflags = tf->tf_rflags; |
| hw_tf.tf_rsp = tf->tf_rsp; |
| hw_tf.tf_ss = GD_UD; |
| |
| irq_dispatch(&hw_tf); |
| /* Consider returning whether or not there was a handler registered */ |
| return TRUE; |
| } |
| |
| static bool handle_vmexit_xsetbv(struct vm_trapframe *tf) |
| { |
| // The VM's requested-feature bitmap is represented by edx:eax |
| uint64_t vm_rfbm = (tf->tf_rdx << 32) | tf->tf_rax; |
| |
| // If the VM tries to set xcr0 to a superset |
| // of Akaros's default value, kill the VM. |
| |
| // Bit in vm_rfbm and x86_default_xcr0: Ok. Requested and allowed. |
| // Bit in vm_rfbm but not x86_default_xcr0: Bad! Requested, not allowed. |
| // Bit not in vm_rfbm but in x86_default_xcr0: Ok. Not requested. |
| |
| // vm_rfbm & (~x86_default_xcr0) is nonzero if any bits |
| // are set in vm_rfbm but not x86_default_xcr0 |
| |
| if (vm_rfbm & (~__proc_global_info.x86_default_xcr0)) |
| return FALSE; |
| |
| |
| // If attempting to use vm_rfbm for xsetbv |
| // causes a fault, we reflect to the VMM. |
| if (safe_lxcr0(vm_rfbm)) |
| return FALSE; |
| |
| |
| // If no fault, advance the instruction pointer |
| // and return TRUE to make the VM resume. |
| tf->tf_rip += 3; // XSETBV is a 3-byte instruction |
| return TRUE; |
| } |
| |
| static void vmexit_dispatch(struct vm_trapframe *tf) |
| { |
| bool handled = FALSE; |
| |
| /* Do not block in any of these functions. |
| * |
| * If we block, we'll probably need to finalize the context. If we do, then |
| * there's a chance the guest pcore can start somewhere else, and then we |
| * can't get the GPC loaded again. Plus, they could be running a GPC with |
| * an unresolved vmexit. It's just mess. |
| * |
| * If we want to enable IRQs, we can do so on a case-by-case basis. Don't |
| * do it for external IRQs - the irq_dispatch code will handle it. */ |
| switch (tf->tf_exit_reason) { |
| case EXIT_REASON_VMCALL: |
| if (current->vmm.flags & VMM_VMCALL_PRINTF) { |
| printk("%c", tf->tf_rdi); |
| tf->tf_rip += 3; |
| handled = TRUE; |
| } |
| break; |
| case EXIT_REASON_CPUID: |
| handled = handle_vmexit_cpuid(tf); |
| break; |
| case EXIT_REASON_EPT_VIOLATION: |
| handled = handle_vmexit_ept_fault(tf); |
| break; |
| case EXIT_REASON_EXCEPTION_NMI: |
| handled = handle_vmexit_nmi(tf); |
| break; |
| case EXIT_REASON_MSR_READ: |
| case EXIT_REASON_MSR_WRITE: |
| handled = handle_vmexit_msr(tf); |
| break; |
| case EXIT_REASON_EXTERNAL_INTERRUPT: |
| handled = handle_vmexit_extirq(tf); |
| break; |
| case EXIT_REASON_XSETBV: |
| handled = handle_vmexit_xsetbv(tf); |
| break; |
| default: |
| printd("Unhandled vmexit: reason 0x%x, exit qualification 0x%x\n", |
| tf->tf_exit_reason, tf->tf_exit_qual); |
| } |
| if (!handled) { |
| tf->tf_flags |= VMCTX_FL_HAS_FAULT; |
| if (reflect_current_context()) { |
| /* VM contexts shouldn't be in vcore context, so this should be |
| * pretty rare (unlike SCPs or VC ctx page faults). */ |
| printk("[kernel] Unable to reflect VM Exit\n"); |
| print_vmtrapframe(tf); |
| proc_destroy(current); |
| } |
| } |
| } |
| |
| void handle_vmexit(struct vm_trapframe *tf) |
| { |
| struct per_cpu_info *pcpui = &per_cpu_info[core_id()]; |
| |
| tf->tf_rip = vmcs_read(GUEST_RIP); |
| tf->tf_rflags = vmcs_read(GUEST_RFLAGS); |
| tf->tf_rsp = vmcs_read(GUEST_RSP); |
| tf->tf_cr2 = rcr2(); |
| tf->tf_cr3 = vmcs_read(GUEST_CR3); |
| tf->tf_guest_pcoreid = pcpui->guest_pcoreid; |
| tf->tf_flags |= VMCTX_FL_PARTIAL; |
| tf->tf_guest_intr_status = vmcs_read(GUEST_INTR_STATUS); |
| tf->tf_exit_reason = vmcs_read(VM_EXIT_REASON); |
| tf->tf_exit_qual = vmcs_read(EXIT_QUALIFICATION); |
| tf->tf_intrinfo1 = vmcs_read(GUEST_INTERRUPTIBILITY_INFO); |
| tf->tf_intrinfo2 = vmcs_read(VM_EXIT_INTR_INFO); |
| tf->tf_guest_va = vmcs_read(GUEST_LINEAR_ADDRESS); |
| tf->tf_guest_pa = vmcs_read(GUEST_PHYSICAL_ADDRESS); |
| |
| set_current_ctx_vm(pcpui, tf); |
| tf = &pcpui->cur_ctx->tf.vm_tf; |
| vmexit_dispatch(tf); |
| /* We're either restarting a partial VM ctx (vmcs was launched, loaded on |
| * the core, etc) or a SW vc ctx for the reflected trap. Or the proc is |
| * dying and we'll handle a __death KMSG shortly. */ |
| proc_restartcore(); |
| } |
| |
| void x86_finalize_vmtf(struct vm_trapframe *tf) |
| { |
| struct per_cpu_info *pcpui = &per_cpu_info[core_id()]; |
| |
| x86_vmtf_clear_partial(tf); |
| unload_guest_pcore(pcpui->cur_proc, pcpui->guest_pcoreid); |
| } |