blob: b65fc128fab265b7761daf912d3a3e937efc7e6f [file] [log] [blame] [edit]
/*
* Kernel-based Virtual Machine driver for Linux
*
* This module enables machines with Intel VT-x extensions to run virtual
* machines without emulation or binary translation.
*
* MMU support
*
* Copyright (C) 2006 Qumranet, Inc.
*
* Authors:
* Yaniv Kamay <yaniv@qumranet.com>
* Avi Kivity <avi@qumranet.com>
*
*/
#define DEBUG
#include <kmalloc.h>
#include <string.h>
#include <stdio.h>
#include <assert.h>
#include <error.h>
#include <pmap.h>
#include <sys/queue.h>
#include <smp.h>
#include <kref.h>
#include <atomic.h>
#include <alarm.h>
#include <event.h>
#include <umem.h>
#include <devalarm.h>
#include <arch/types.h>
#include <arch/vm.h>
#include <arch/emulate.h>
#include <arch/vmdebug.h>
#include <arch/msr-index.h>
#define pgprintk(x...) do { } while (0)
#define ASSERT(x) \
if (!(x)) { \
printd( "assertion failed %s:%d: %s\n", \
__FILE__, __LINE__, #x); \
}
#define PT64_ENT_PER_PAGE 512
#define PT32_ENT_PER_PAGE 1024
#define PT_WRITABLE_SHIFT 1
#define PT_PRESENT_MASK (1ULL << 0)
#define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT)
#define PT_USER_MASK (1ULL << 2)
#define PT_PWT_MASK (1ULL << 3)
#define PT_PCD_MASK (1ULL << 4)
#define PT_ACCESSED_MASK (1ULL << 5)
#define PT_DIRTY_MASK (1ULL << 6)
#define PT_PAGE_SIZE_MASK (1ULL << 7)
#define PT_PAT_MASK (1ULL << 7)
#define PT_GLOBAL_MASK (1ULL << 8)
#define PT64_NX_MASK (1ULL << 63)
#define PT_PAT_SHIFT 7
#define PT_DIR_PAT_SHIFT 12
#define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT)
#define PT32_DIR_PSE36_SIZE 4
#define PT32_DIR_PSE36_SHIFT 13
#define PT32_DIR_PSE36_MASK (((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT)
#define PT32_PTE_COPY_MASK \
(PT_PRESENT_MASK | PT_PWT_MASK | PT_PCD_MASK | \
PT_ACCESSED_MASK | PT_DIRTY_MASK | PT_PAT_MASK | \
PT_GLOBAL_MASK )
#define PT32_NON_PTE_COPY_MASK \
(PT_PRESENT_MASK | PT_PWT_MASK | PT_PCD_MASK | \
PT_ACCESSED_MASK | PT_DIRTY_MASK)
#define PT64_PTE_COPY_MASK \
(PT64_NX_MASK | PT32_PTE_COPY_MASK)
#define PT64_NON_PTE_COPY_MASK \
(PT64_NX_MASK | PT32_NON_PTE_COPY_MASK)
#define PT_FIRST_AVAIL_BITS_SHIFT 9
#define PT64_SECOND_AVAIL_BITS_SHIFT 52
#define PT_SHADOW_PS_MARK (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
#define PT_SHADOW_IO_MARK (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
#define PT_SHADOW_WRITABLE_SHIFT (PT_FIRST_AVAIL_BITS_SHIFT + 1)
#define PT_SHADOW_WRITABLE_MASK (1ULL << PT_SHADOW_WRITABLE_SHIFT)
#define PT_SHADOW_USER_SHIFT (PT_SHADOW_WRITABLE_SHIFT + 1)
#define PT_SHADOW_USER_MASK (1ULL << (PT_SHADOW_USER_SHIFT))
#define PT_SHADOW_BITS_OFFSET (PT_SHADOW_WRITABLE_SHIFT - PT_WRITABLE_SHIFT)
#define VALID_PAGE(x) ((x) != INVALID_PAGE)
#define PT64_LEVEL_BITS 9
#define PT64_LEVEL_SHIFT(level) \
( PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS )
#define PT64_LEVEL_MASK(level) \
(((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
#define PT64_INDEX(address, level)\
(((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
#define PT32_LEVEL_BITS 10
#define PT32_LEVEL_SHIFT(level) \
( PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS )
#define PT32_LEVEL_MASK(level) \
(((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
#define PT32_INDEX(address, level)\
(((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & PAGE_MASK)
#define PT64_DIR_BASE_ADDR_MASK \
(PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
#define PT32_BASE_ADDR_MASK PAGE_MASK
#define PT32_DIR_BASE_ADDR_MASK \
(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
#define PFERR_PRESENT_MASK (1U << 0)
#define PFERR_WRITE_MASK (1U << 1)
#define PFERR_USER_MASK (1U << 2)
#define PT64_ROOT_LEVEL 4
#define PT32_ROOT_LEVEL 2
#define PT32E_ROOT_LEVEL 3
#define PT_DIRECTORY_LEVEL 2
#define PT_PAGE_TABLE_LEVEL 1
static int is_write_protection(void)
{
print_func_entry();
print_func_exit();
return guest_cr0() & CR0_WP_MASK;
}
static int is_cpuid_PSE36(void)
{
print_func_entry();
print_func_exit();
return 1;
}
static int is_present_pte(unsigned long pte)
{
//print_func_entry();
//print_func_exit();
return pte & PT_PRESENT_MASK;
}
static int is_writeble_pte(unsigned long pte)
{
//print_func_entry();
//print_func_exit();
return pte & PT_WRITABLE_MASK;
}
static int is_io_pte(unsigned long pte)
{
//print_func_entry();
//print_func_exit();
return pte & PT_SHADOW_IO_MARK;
}
static void litevm_mmu_free_page(struct litevm_vcpu *vcpu, hpa_t page_hpa)
{
print_func_entry();
struct litevm_mmu_page *page_head = page_header(page_hpa);
LIST_REMOVE(page_head, link);
//list_del(&page_head->link);
page_head->page_hpa = page_hpa;
//list_add(&page_head->link, &vcpu->free_pages);
LIST_INSERT_HEAD(&vcpu->link, page_head, link);
print_func_exit();
}
static int is_empty_shadow_page(hpa_t page_hpa)
{
print_func_entry();
uint32_t *pos;
uint32_t *end;
for (pos = KADDR(page_hpa), end = pos + PAGE_SIZE / sizeof(uint32_t);
pos != end; pos++)
if (*pos != 0) {
print_func_exit();
return 0;
}
print_func_exit();
return 1;
}
static hpa_t litevm_mmu_alloc_page(struct litevm_vcpu *vcpu,
uint64_t * parent_pte)
{
print_func_entry();
struct litevm_mmu_page *page;
if (LIST_EMPTY(&vcpu->link)) {
print_func_exit();
return INVALID_PAGE;
}
page = LIST_FIRST(&vcpu->link);
LIST_REMOVE(page, link);
LIST_INSERT_HEAD(&vcpu->litevm->link, page, link);
ASSERT(is_empty_shadow_page(page->page_hpa));
page->slot_bitmap = 0;
page->global = 1;
page->parent_pte = parent_pte;
print_func_exit();
return page->page_hpa;
}
static void page_header_update_slot(struct litevm *litevm, void *pte, gpa_t gpa)
{
print_func_entry();
int slot = memslot_id(litevm, gfn_to_memslot(litevm, gpa >> PAGE_SHIFT));
struct litevm_mmu_page *page_head = page_header(PADDR(pte));
SET_BITMASK_BIT_ATOMIC((uint8_t *) & page_head->slot_bitmap, slot);
print_func_exit();
}
hpa_t safe_gpa_to_hpa(struct litevm_vcpu *vcpu, gpa_t gpa)
{
print_func_entry();
hpa_t hpa = gpa_to_hpa(vcpu, gpa);
print_func_exit();
return is_error_hpa(hpa) ? bad_page_address | (gpa & ~PAGE_MASK) : hpa;
}
hpa_t gpa_to_hpa(struct litevm_vcpu * vcpu, gpa_t gpa)
{
print_func_entry();
struct litevm_memory_slot *slot;
struct page *page;
ASSERT((gpa & HPA_ERR_MASK) == 0);
slot = gfn_to_memslot(vcpu->litevm, gpa >> PAGE_SHIFT);
printk("GFN %016lx memslot %p\n", gpa>>PAGE_SHIFT, slot);
if (!slot) {
printk("GFN_TO_MEMSLOT FAILED!\n");
print_func_exit();
return gpa | HPA_ERR_MASK;
}
page = gfn_to_page(slot, gpa >> PAGE_SHIFT);
printk("Page is %p\n", page);
print_func_exit();
printk("gpa_to_hpa: return %016lx\n", ((hpa_t) page2ppn(page) << PAGE_SHIFT)
| (gpa & (PAGE_SIZE - 1)));
return ((hpa_t) page2ppn(page) << PAGE_SHIFT)
| (gpa & (PAGE_SIZE - 1));
}
hpa_t gva_to_hpa(struct litevm_vcpu * vcpu, gva_t gva)
{
print_func_entry();
gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva);
if (gpa == UNMAPPED_GVA) {
print_func_exit();
return UNMAPPED_GVA;
}
print_func_exit();
return gpa_to_hpa(vcpu, gpa);
}
static void release_pt_page_64(struct litevm_vcpu *vcpu, hpa_t page_hpa,
int level)
{
print_func_entry();
ASSERT(vcpu);
ASSERT(VALID_PAGE(page_hpa));
ASSERT(level <= PT64_ROOT_LEVEL && level > 0);
if (level == 1)
memset(KADDR(page_hpa), 0, PAGE_SIZE);
else {
uint64_t *pos;
uint64_t *end;
for (pos = KADDR(page_hpa), end = pos + PT64_ENT_PER_PAGE;
pos != end; pos++) {
uint64_t current_ent = *pos;
*pos = 0;
if (is_present_pte(current_ent))
release_pt_page_64(vcpu,
current_ent &
PT64_BASE_ADDR_MASK, level - 1);
}
}
litevm_mmu_free_page(vcpu, page_hpa);
print_func_exit();
}
static void nonpaging_new_cr3(struct litevm_vcpu *vcpu)
{
print_func_entry();
print_func_exit();
}
static int nonpaging_map(struct litevm_vcpu *vcpu, gva_t v, hpa_t p)
{
print_func_entry();
int level = PT32E_ROOT_LEVEL;
hpa_t table_addr = vcpu->mmu.root_hpa;
printk("nonpaging_map: v %016lx, p %016lx\n", v, p);
hexdump(KADDR(p), 32);
for (;; level--) {
uint32_t index = PT64_INDEX(v, level);
uint64_t *table;
ASSERT(VALID_PAGE(table_addr));
table = KADDR(table_addr);
if (level == 1) {
mark_page_dirty(vcpu->litevm, v >> PAGE_SHIFT);
page_header_update_slot(vcpu->litevm, table, v);
table[index] = p | PT_PRESENT_MASK | PT_WRITABLE_MASK |
PT_USER_MASK;
print_func_exit();
return 0;
}
if (table[index] == 0) {
hpa_t new_table = litevm_mmu_alloc_page(vcpu, &table[index]);
if (!VALID_PAGE(new_table)) {
pgprintk("nonpaging_map: ENOMEM\n");
print_func_exit();
return -ENOMEM;
}
if (level == PT32E_ROOT_LEVEL)
table[index] = new_table | PT_PRESENT_MASK;
else
table[index] = new_table | PT_PRESENT_MASK |
PT_WRITABLE_MASK | PT_USER_MASK;
}
table_addr = table[index] & PT64_BASE_ADDR_MASK;
}
print_func_exit();
}
static void nonpaging_flush(struct litevm_vcpu *vcpu)
{
print_func_entry();
hpa_t root = vcpu->mmu.root_hpa;
++litevm_stat.tlb_flush;
pgprintk("nonpaging_flush\n");
ASSERT(VALID_PAGE(root));
release_pt_page_64(vcpu, root, vcpu->mmu.shadow_root_level);
root = litevm_mmu_alloc_page(vcpu, 0);
ASSERT(VALID_PAGE(root));
vcpu->mmu.root_hpa = root;
if (is_paging())
root |= (vcpu->cr3 & (CR3_PCD_MASK | CR3_WPT_MASK));
vmcs_writel(GUEST_CR3, root);
print_func_exit();
}
static gpa_t nonpaging_gva_to_gpa(struct litevm_vcpu *vcpu, gva_t vaddr)
{
print_func_entry();
print_func_exit();
return vaddr;
}
static int nonpaging_page_fault(struct litevm_vcpu *vcpu, gva_t gva,
uint32_t error_code)
{
print_func_entry();
int ret;
gpa_t addr = gva;
printk("nonpaging_page_fault: %016llx\n", gva);
ASSERT(vcpu);
ASSERT(VALID_PAGE(vcpu->mmu.root_hpa));
for (;;) {
hpa_t paddr;
paddr = gpa_to_hpa(vcpu, addr & PT64_BASE_ADDR_MASK);
if (is_error_hpa(paddr)) {
print_func_exit();
return 1;
}
ret = nonpaging_map(vcpu, addr & PAGE_MASK, paddr);
if (ret) {
nonpaging_flush(vcpu);
continue;
}
break;
}
print_func_exit();
return ret;
}
static void nonpaging_inval_page(struct litevm_vcpu *vcpu, gva_t addr)
{
print_func_entry();
print_func_exit();
}
static void nonpaging_free(struct litevm_vcpu *vcpu)
{
print_func_entry();
hpa_t root;
ASSERT(vcpu);
root = vcpu->mmu.root_hpa;
if (VALID_PAGE(root))
release_pt_page_64(vcpu, root, vcpu->mmu.shadow_root_level);
vcpu->mmu.root_hpa = INVALID_PAGE;
print_func_exit();
}
static int nonpaging_init_context(struct litevm_vcpu *vcpu)
{
print_func_entry();
struct litevm_mmu *context = &vcpu->mmu;
context->new_cr3 = nonpaging_new_cr3;
context->page_fault = nonpaging_page_fault;
context->inval_page = nonpaging_inval_page;
context->gva_to_gpa = nonpaging_gva_to_gpa;
context->free = nonpaging_free;
context->root_level = PT32E_ROOT_LEVEL;
context->shadow_root_level = PT32E_ROOT_LEVEL;
context->root_hpa = litevm_mmu_alloc_page(vcpu, 0);
ASSERT(VALID_PAGE(context->root_hpa));
vmcs_writel(GUEST_CR3, context->root_hpa);
print_func_exit();
return 0;
}
static void litevm_mmu_flush_tlb(struct litevm_vcpu *vcpu)
{
print_func_entry();
struct litevm_mmu_page *page, *npage;
//list_for_each_entry_safe(page, npage, &vcpu->litevm->active_mmu_pages,
LIST_FOREACH_SAFE(page, &vcpu->litevm->link, link, npage) {
if (page->global)
continue;
if (!page->parent_pte)
continue;
*page->parent_pte = 0;
release_pt_page_64(vcpu, page->page_hpa, 1);
}
++litevm_stat.tlb_flush;
print_func_exit();
}
static void paging_new_cr3(struct litevm_vcpu *vcpu)
{
print_func_entry();
litevm_mmu_flush_tlb(vcpu);
print_func_exit();
}
static void mark_pagetable_nonglobal(void *shadow_pte)
{
print_func_entry();
page_header(PADDR(shadow_pte))->global = 0;
print_func_exit();
}
static inline void set_pte_common(struct litevm_vcpu *vcpu,
uint64_t * shadow_pte,
gpa_t gaddr, int dirty, uint64_t access_bits)
{
print_func_entry();
hpa_t paddr;
*shadow_pte |= access_bits << PT_SHADOW_BITS_OFFSET;
if (!dirty)
access_bits &= ~PT_WRITABLE_MASK;
if (access_bits & PT_WRITABLE_MASK)
mark_page_dirty(vcpu->litevm, gaddr >> PAGE_SHIFT);
*shadow_pte |= access_bits;
paddr = gpa_to_hpa(vcpu, gaddr & PT64_BASE_ADDR_MASK);
if (!(*shadow_pte & PT_GLOBAL_MASK))
mark_pagetable_nonglobal(shadow_pte);
if (is_error_hpa(paddr)) {
*shadow_pte |= gaddr;
*shadow_pte |= PT_SHADOW_IO_MARK;
*shadow_pte &= ~PT_PRESENT_MASK;
} else {
*shadow_pte |= paddr;
page_header_update_slot(vcpu->litevm, shadow_pte, gaddr);
}
print_func_exit();
}
static void inject_page_fault(struct litevm_vcpu *vcpu,
uint64_t addr, uint32_t err_code)
{
print_func_entry();
uint32_t vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
pgprintk("inject_page_fault: 0x%llx err 0x%x\n", addr, err_code);
++litevm_stat.pf_guest;
if (is_page_fault(vect_info)) {
printd("inject_page_fault: "
"double fault 0x%llx @ 0x%lx\n", addr, vmcs_readl(GUEST_RIP));
vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, 0);
vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
DF_VECTOR |
INTR_TYPE_EXCEPTION |
INTR_INFO_DELIVER_CODE_MASK | INTR_INFO_VALID_MASK);
print_func_exit();
return;
}
vcpu->cr2 = addr;
vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, err_code);
vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
PF_VECTOR |
INTR_TYPE_EXCEPTION |
INTR_INFO_DELIVER_CODE_MASK | INTR_INFO_VALID_MASK);
print_func_exit();
}
static inline int fix_read_pf(uint64_t * shadow_ent)
{
print_func_entry();
if ((*shadow_ent & PT_SHADOW_USER_MASK) && !(*shadow_ent & PT_USER_MASK)) {
/*
* If supervisor write protect is disabled, we shadow kernel
* pages as user pages so we can trap the write access.
*/
*shadow_ent |= PT_USER_MASK;
*shadow_ent &= ~PT_WRITABLE_MASK;
print_func_exit();
return 1;
}
print_func_exit();
return 0;
}
static int may_access(uint64_t pte, int write, int user)
{
print_func_entry();
if (user && !(pte & PT_USER_MASK)) {
print_func_exit();
return 0;
}
if (write && !(pte & PT_WRITABLE_MASK)) {
print_func_exit();
return 0;
}
print_func_exit();
return 1;
}
/*
* Remove a shadow pte.
*/
static void paging_inval_page(struct litevm_vcpu *vcpu, gva_t addr)
{
print_func_entry();
hpa_t page_addr = vcpu->mmu.root_hpa;
int level = vcpu->mmu.shadow_root_level;
printk("paging_inval_page: addr %016lx\n", addr);
++litevm_stat.invlpg;
for (;; level--) {
uint32_t index = PT64_INDEX(addr, level);
uint64_t *table = KADDR(page_addr);
if (level == PT_PAGE_TABLE_LEVEL) {
table[index] = 0;
print_func_exit();
return;
}
if (!is_present_pte(table[index])) {
print_func_exit();
return;
}
page_addr = table[index] & PT64_BASE_ADDR_MASK;
if (level == PT_DIRECTORY_LEVEL && (table[index] & PT_SHADOW_PS_MARK)) {
table[index] = 0;
release_pt_page_64(vcpu, page_addr, PT_PAGE_TABLE_LEVEL);
//flush tlb
vmcs_writel(GUEST_CR3, vcpu->mmu.root_hpa |
(vcpu->cr3 & (CR3_PCD_MASK | CR3_WPT_MASK)));
print_func_exit();
return;
}
}
print_func_exit();
}
static void paging_free(struct litevm_vcpu *vcpu)
{
print_func_entry();
nonpaging_free(vcpu);
print_func_exit();
}
#define PTTYPE 64
#include "paging_tmpl.h"
#undef PTTYPE
#define PTTYPE 32
#include "paging_tmpl.h"
#undef PTTYPE
static int paging64_init_context(struct litevm_vcpu *vcpu)
{
print_func_entry();
struct litevm_mmu *context = &vcpu->mmu;
ASSERT(is_pae());
context->new_cr3 = paging_new_cr3;
context->page_fault = paging64_page_fault;
context->inval_page = paging_inval_page;
context->gva_to_gpa = paging64_gva_to_gpa;
context->free = paging_free;
context->root_level = PT64_ROOT_LEVEL;
context->shadow_root_level = PT64_ROOT_LEVEL;
context->root_hpa = litevm_mmu_alloc_page(vcpu, 0);
ASSERT(VALID_PAGE(context->root_hpa));
vmcs_writel(GUEST_CR3, context->root_hpa |
(vcpu->cr3 & (CR3_PCD_MASK | CR3_WPT_MASK)));
print_func_exit();
return 0;
}
static int paging32_init_context(struct litevm_vcpu *vcpu)
{
print_func_entry();
struct litevm_mmu *context = &vcpu->mmu;
context->new_cr3 = paging_new_cr3;
context->page_fault = paging32_page_fault;
context->inval_page = paging_inval_page;
context->gva_to_gpa = paging32_gva_to_gpa;
context->free = paging_free;
context->root_level = PT32_ROOT_LEVEL;
context->shadow_root_level = PT32E_ROOT_LEVEL;
context->root_hpa = litevm_mmu_alloc_page(vcpu, 0);
ASSERT(VALID_PAGE(context->root_hpa));
vmcs_writel(GUEST_CR3, context->root_hpa |
(vcpu->cr3 & (CR3_PCD_MASK | CR3_WPT_MASK)));
print_func_exit();
return 0;
}
static int paging32E_init_context(struct litevm_vcpu *vcpu)
{
print_func_entry();
int ret;
if ((ret = paging64_init_context(vcpu))) {
print_func_exit();
return ret;
}
vcpu->mmu.root_level = PT32E_ROOT_LEVEL;
vcpu->mmu.shadow_root_level = PT32E_ROOT_LEVEL;
print_func_exit();
return 0;
}
static int init_litevm_mmu(struct litevm_vcpu *vcpu)
{
print_func_entry();
ASSERT(vcpu);
ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
if (!is_paging()) {
print_func_exit();
return nonpaging_init_context(vcpu);
} else if (is_long_mode()) {
print_func_exit();
return paging64_init_context(vcpu);
} else if (is_pae()) {
print_func_exit();
return paging32E_init_context(vcpu);
} else {
print_func_exit();
return paging32_init_context(vcpu);
}
}
static void destroy_litevm_mmu(struct litevm_vcpu *vcpu)
{
print_func_entry();
ASSERT(vcpu);
if (VALID_PAGE(vcpu->mmu.root_hpa)) {
vcpu->mmu.free(vcpu);
vcpu->mmu.root_hpa = INVALID_PAGE;
}
print_func_exit();
}
int litevm_mmu_reset_context(struct litevm_vcpu *vcpu)
{
print_func_entry();
destroy_litevm_mmu(vcpu);
print_func_exit();
return init_litevm_mmu(vcpu);
}
static void free_mmu_pages(struct litevm_vcpu *vcpu)
{
print_func_entry();
/* todo: use the right macros */
while (!LIST_EMPTY(&vcpu->link)) {
struct litevm_mmu_page *vmpage;
vmpage = LIST_FIRST(&vcpu->link);
LIST_REMOVE(vmpage, link);
uintptr_t ppn = vmpage->page_hpa >> PAGE_SHIFT;
page_decref(ppn2page(ppn));
assert(page_is_free(ppn));
vmpage->page_hpa = INVALID_PAGE;
}
print_func_exit();
}
static int alloc_mmu_pages(struct litevm_vcpu *vcpu)
{
print_func_entry();
int i;
ASSERT(vcpu);
/* we could try to do the contiguous alloc but it's not
* necessary for them to be contiguous.
*/
for (i = 0; i < LITEVM_NUM_MMU_PAGES; i++) {
struct page *page;
struct litevm_mmu_page *page_header = &vcpu->page_header_buf[i];
if (kpage_alloc(&page) != ESUCCESS)
goto error_1;
page->pg_private = page_header;
page_header->page_hpa = (hpa_t) page2pa(page);
memset(KADDR(page_header->page_hpa), 0, PAGE_SIZE);
LIST_INSERT_HEAD(&vcpu->link, page_header, link);
}
print_func_exit();
return 0;
error_1:
free_mmu_pages(vcpu);
print_func_exit();
return -ENOMEM;
}
int litevm_mmu_init(struct litevm_vcpu *vcpu)
{
print_func_entry();
int r;
ASSERT(vcpu);
ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
ASSERT(LIST_EMPTY(&vcpu->link));
if ((r = alloc_mmu_pages(vcpu))) {
print_func_exit();
return r;
}
if ((r = init_litevm_mmu(vcpu))) {
free_mmu_pages(vcpu);
print_func_exit();
return r;
}
print_func_exit();
return 0;
}
void litevm_mmu_destroy(struct litevm_vcpu *vcpu)
{
print_func_entry();
ASSERT(vcpu);
destroy_litevm_mmu(vcpu);
free_mmu_pages(vcpu);
print_func_exit();
}
void litevm_mmu_slot_remove_write_access(struct litevm *litevm, int slot)
{
print_func_entry();
struct litevm_mmu_page *page, *link;
LIST_FOREACH(page, &litevm->link, link) {
int i;
uint64_t *pt;
if (!GET_BITMASK_BIT((uint8_t *) & page->slot_bitmap, slot))
continue;
pt = KADDR(page->page_hpa);
for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
/* avoid RMW */
if (pt[i] & PT_WRITABLE_MASK)
pt[i] &= ~PT_WRITABLE_MASK;
}
print_func_exit();
}