| /* |
| * Kernel-based Virtual Machine driver for Linux |
| * |
| * This module enables machines with Intel VT-x extensions to run virtual |
| * machines without emulation or binary translation. |
| * |
| * MMU support |
| * |
| * Copyright (C) 2006 Qumranet, Inc. |
| * |
| * Authors: |
| * Yaniv Kamay <yaniv@qumranet.com> |
| * Avi Kivity <avi@qumranet.com> |
| * |
| */ |
| #define DEBUG |
| #include <kmalloc.h> |
| #include <string.h> |
| #include <stdio.h> |
| #include <assert.h> |
| #include <error.h> |
| #include <pmap.h> |
| #include <sys/queue.h> |
| #include <smp.h> |
| #include <kref.h> |
| #include <atomic.h> |
| #include <alarm.h> |
| #include <event.h> |
| #include <umem.h> |
| #include <devalarm.h> |
| #include <arch/types.h> |
| #include <arch/vm.h> |
| #include <arch/emulate.h> |
| #include <arch/vmdebug.h> |
| #include <arch/msr-index.h> |
| |
| #define pgprintk(x...) do { } while (0) |
| |
| #define ASSERT(x) \ |
| if (!(x)) { \ |
| printd( "assertion failed %s:%d: %s\n", \ |
| __FILE__, __LINE__, #x); \ |
| } |
| |
| #define PT64_ENT_PER_PAGE 512 |
| #define PT32_ENT_PER_PAGE 1024 |
| |
| #define PT_WRITABLE_SHIFT 1 |
| |
| #define PT_PRESENT_MASK (1ULL << 0) |
| #define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT) |
| #define PT_USER_MASK (1ULL << 2) |
| #define PT_PWT_MASK (1ULL << 3) |
| #define PT_PCD_MASK (1ULL << 4) |
| #define PT_ACCESSED_MASK (1ULL << 5) |
| #define PT_DIRTY_MASK (1ULL << 6) |
| #define PT_PAGE_SIZE_MASK (1ULL << 7) |
| #define PT_PAT_MASK (1ULL << 7) |
| #define PT_GLOBAL_MASK (1ULL << 8) |
| #define PT64_NX_MASK (1ULL << 63) |
| |
| #define PT_PAT_SHIFT 7 |
| #define PT_DIR_PAT_SHIFT 12 |
| #define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT) |
| |
| #define PT32_DIR_PSE36_SIZE 4 |
| #define PT32_DIR_PSE36_SHIFT 13 |
| #define PT32_DIR_PSE36_MASK (((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT) |
| |
| #define PT32_PTE_COPY_MASK \ |
| (PT_PRESENT_MASK | PT_PWT_MASK | PT_PCD_MASK | \ |
| PT_ACCESSED_MASK | PT_DIRTY_MASK | PT_PAT_MASK | \ |
| PT_GLOBAL_MASK ) |
| |
| #define PT32_NON_PTE_COPY_MASK \ |
| (PT_PRESENT_MASK | PT_PWT_MASK | PT_PCD_MASK | \ |
| PT_ACCESSED_MASK | PT_DIRTY_MASK) |
| |
| #define PT64_PTE_COPY_MASK \ |
| (PT64_NX_MASK | PT32_PTE_COPY_MASK) |
| |
| #define PT64_NON_PTE_COPY_MASK \ |
| (PT64_NX_MASK | PT32_NON_PTE_COPY_MASK) |
| |
| #define PT_FIRST_AVAIL_BITS_SHIFT 9 |
| #define PT64_SECOND_AVAIL_BITS_SHIFT 52 |
| |
| #define PT_SHADOW_PS_MARK (1ULL << PT_FIRST_AVAIL_BITS_SHIFT) |
| #define PT_SHADOW_IO_MARK (1ULL << PT_FIRST_AVAIL_BITS_SHIFT) |
| |
| #define PT_SHADOW_WRITABLE_SHIFT (PT_FIRST_AVAIL_BITS_SHIFT + 1) |
| #define PT_SHADOW_WRITABLE_MASK (1ULL << PT_SHADOW_WRITABLE_SHIFT) |
| |
| #define PT_SHADOW_USER_SHIFT (PT_SHADOW_WRITABLE_SHIFT + 1) |
| #define PT_SHADOW_USER_MASK (1ULL << (PT_SHADOW_USER_SHIFT)) |
| |
| #define PT_SHADOW_BITS_OFFSET (PT_SHADOW_WRITABLE_SHIFT - PT_WRITABLE_SHIFT) |
| |
| #define VALID_PAGE(x) ((x) != INVALID_PAGE) |
| |
| #define PT64_LEVEL_BITS 9 |
| |
| #define PT64_LEVEL_SHIFT(level) \ |
| ( PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS ) |
| |
| #define PT64_LEVEL_MASK(level) \ |
| (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level)) |
| |
| #define PT64_INDEX(address, level)\ |
| (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1)) |
| |
| #define PT32_LEVEL_BITS 10 |
| |
| #define PT32_LEVEL_SHIFT(level) \ |
| ( PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS ) |
| |
| #define PT32_LEVEL_MASK(level) \ |
| (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level)) |
| |
| #define PT32_INDEX(address, level)\ |
| (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1)) |
| |
| #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & PAGE_MASK) |
| #define PT64_DIR_BASE_ADDR_MASK \ |
| (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1)) |
| |
| #define PT32_BASE_ADDR_MASK PAGE_MASK |
| #define PT32_DIR_BASE_ADDR_MASK \ |
| (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1)) |
| |
| #define PFERR_PRESENT_MASK (1U << 0) |
| #define PFERR_WRITE_MASK (1U << 1) |
| #define PFERR_USER_MASK (1U << 2) |
| |
| #define PT64_ROOT_LEVEL 4 |
| #define PT32_ROOT_LEVEL 2 |
| #define PT32E_ROOT_LEVEL 3 |
| |
| #define PT_DIRECTORY_LEVEL 2 |
| #define PT_PAGE_TABLE_LEVEL 1 |
| |
| static int is_write_protection(void) |
| { |
| print_func_entry(); |
| print_func_exit(); |
| return guest_cr0() & CR0_WP_MASK; |
| } |
| |
| static int is_cpuid_PSE36(void) |
| { |
| print_func_entry(); |
| print_func_exit(); |
| return 1; |
| } |
| |
| static int is_present_pte(unsigned long pte) |
| { |
| //print_func_entry(); |
| //print_func_exit(); |
| return pte & PT_PRESENT_MASK; |
| } |
| |
| static int is_writeble_pte(unsigned long pte) |
| { |
| //print_func_entry(); |
| //print_func_exit(); |
| return pte & PT_WRITABLE_MASK; |
| } |
| |
| static int is_io_pte(unsigned long pte) |
| { |
| //print_func_entry(); |
| //print_func_exit(); |
| return pte & PT_SHADOW_IO_MARK; |
| } |
| |
| static void litevm_mmu_free_page(struct litevm_vcpu *vcpu, hpa_t page_hpa) |
| { |
| print_func_entry(); |
| struct litevm_mmu_page *page_head = page_header(page_hpa); |
| |
| LIST_REMOVE(page_head, link); |
| //list_del(&page_head->link); |
| page_head->page_hpa = page_hpa; |
| //list_add(&page_head->link, &vcpu->free_pages); |
| LIST_INSERT_HEAD(&vcpu->link, page_head, link); |
| print_func_exit(); |
| } |
| |
| static int is_empty_shadow_page(hpa_t page_hpa) |
| { |
| print_func_entry(); |
| uint32_t *pos; |
| uint32_t *end; |
| for (pos = KADDR(page_hpa), end = pos + PAGE_SIZE / sizeof(uint32_t); |
| pos != end; pos++) |
| if (*pos != 0) { |
| print_func_exit(); |
| return 0; |
| } |
| print_func_exit(); |
| return 1; |
| } |
| |
| static hpa_t litevm_mmu_alloc_page(struct litevm_vcpu *vcpu, |
| uint64_t * parent_pte) |
| { |
| print_func_entry(); |
| struct litevm_mmu_page *page; |
| |
| if (LIST_EMPTY(&vcpu->link)) { |
| print_func_exit(); |
| return INVALID_PAGE; |
| } |
| |
| page = LIST_FIRST(&vcpu->link); |
| LIST_REMOVE(page, link); |
| LIST_INSERT_HEAD(&vcpu->litevm->link, page, link); |
| ASSERT(is_empty_shadow_page(page->page_hpa)); |
| page->slot_bitmap = 0; |
| page->global = 1; |
| page->parent_pte = parent_pte; |
| print_func_exit(); |
| return page->page_hpa; |
| } |
| |
| static void page_header_update_slot(struct litevm *litevm, void *pte, gpa_t gpa) |
| { |
| print_func_entry(); |
| int slot = memslot_id(litevm, gfn_to_memslot(litevm, gpa >> PAGE_SHIFT)); |
| struct litevm_mmu_page *page_head = page_header(PADDR(pte)); |
| |
| SET_BITMASK_BIT_ATOMIC((uint8_t *) & page_head->slot_bitmap, slot); |
| print_func_exit(); |
| } |
| |
| hpa_t safe_gpa_to_hpa(struct litevm_vcpu *vcpu, gpa_t gpa) |
| { |
| print_func_entry(); |
| hpa_t hpa = gpa_to_hpa(vcpu, gpa); |
| |
| print_func_exit(); |
| return is_error_hpa(hpa) ? bad_page_address | (gpa & ~PAGE_MASK) : hpa; |
| } |
| |
| hpa_t gpa_to_hpa(struct litevm_vcpu * vcpu, gpa_t gpa) |
| { |
| print_func_entry(); |
| struct litevm_memory_slot *slot; |
| struct page *page; |
| |
| ASSERT((gpa & HPA_ERR_MASK) == 0); |
| slot = gfn_to_memslot(vcpu->litevm, gpa >> PAGE_SHIFT); |
| printk("GFN %016lx memslot %p\n", gpa>>PAGE_SHIFT, slot); |
| if (!slot) { |
| printk("GFN_TO_MEMSLOT FAILED!\n"); |
| print_func_exit(); |
| return gpa | HPA_ERR_MASK; |
| } |
| page = gfn_to_page(slot, gpa >> PAGE_SHIFT); |
| printk("Page is %p\n", page); |
| print_func_exit(); |
| printk("gpa_to_hpa: return %016lx\n", ((hpa_t) page2ppn(page) << PAGE_SHIFT) |
| | (gpa & (PAGE_SIZE - 1))); |
| return ((hpa_t) page2ppn(page) << PAGE_SHIFT) |
| | (gpa & (PAGE_SIZE - 1)); |
| } |
| |
| hpa_t gva_to_hpa(struct litevm_vcpu * vcpu, gva_t gva) |
| { |
| print_func_entry(); |
| gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva); |
| |
| if (gpa == UNMAPPED_GVA) { |
| print_func_exit(); |
| return UNMAPPED_GVA; |
| } |
| print_func_exit(); |
| return gpa_to_hpa(vcpu, gpa); |
| } |
| |
| static void release_pt_page_64(struct litevm_vcpu *vcpu, hpa_t page_hpa, |
| int level) |
| { |
| print_func_entry(); |
| ASSERT(vcpu); |
| ASSERT(VALID_PAGE(page_hpa)); |
| ASSERT(level <= PT64_ROOT_LEVEL && level > 0); |
| |
| if (level == 1) |
| memset(KADDR(page_hpa), 0, PAGE_SIZE); |
| else { |
| uint64_t *pos; |
| uint64_t *end; |
| |
| for (pos = KADDR(page_hpa), end = pos + PT64_ENT_PER_PAGE; |
| pos != end; pos++) { |
| uint64_t current_ent = *pos; |
| |
| *pos = 0; |
| if (is_present_pte(current_ent)) |
| release_pt_page_64(vcpu, |
| current_ent & |
| PT64_BASE_ADDR_MASK, level - 1); |
| } |
| } |
| litevm_mmu_free_page(vcpu, page_hpa); |
| print_func_exit(); |
| } |
| |
| static void nonpaging_new_cr3(struct litevm_vcpu *vcpu) |
| { |
| print_func_entry(); |
| print_func_exit(); |
| } |
| |
| static int nonpaging_map(struct litevm_vcpu *vcpu, gva_t v, hpa_t p) |
| { |
| print_func_entry(); |
| int level = PT32E_ROOT_LEVEL; |
| hpa_t table_addr = vcpu->mmu.root_hpa; |
| printk("nonpaging_map: v %016lx, p %016lx\n", v, p); |
| hexdump(KADDR(p), 32); |
| |
| for (;; level--) { |
| uint32_t index = PT64_INDEX(v, level); |
| uint64_t *table; |
| |
| ASSERT(VALID_PAGE(table_addr)); |
| table = KADDR(table_addr); |
| |
| if (level == 1) { |
| mark_page_dirty(vcpu->litevm, v >> PAGE_SHIFT); |
| page_header_update_slot(vcpu->litevm, table, v); |
| table[index] = p | PT_PRESENT_MASK | PT_WRITABLE_MASK | |
| PT_USER_MASK; |
| print_func_exit(); |
| return 0; |
| } |
| |
| if (table[index] == 0) { |
| hpa_t new_table = litevm_mmu_alloc_page(vcpu, &table[index]); |
| |
| if (!VALID_PAGE(new_table)) { |
| pgprintk("nonpaging_map: ENOMEM\n"); |
| print_func_exit(); |
| return -ENOMEM; |
| } |
| |
| if (level == PT32E_ROOT_LEVEL) |
| table[index] = new_table | PT_PRESENT_MASK; |
| else |
| table[index] = new_table | PT_PRESENT_MASK | |
| PT_WRITABLE_MASK | PT_USER_MASK; |
| } |
| table_addr = table[index] & PT64_BASE_ADDR_MASK; |
| } |
| print_func_exit(); |
| } |
| |
| static void nonpaging_flush(struct litevm_vcpu *vcpu) |
| { |
| print_func_entry(); |
| hpa_t root = vcpu->mmu.root_hpa; |
| |
| ++litevm_stat.tlb_flush; |
| pgprintk("nonpaging_flush\n"); |
| ASSERT(VALID_PAGE(root)); |
| release_pt_page_64(vcpu, root, vcpu->mmu.shadow_root_level); |
| root = litevm_mmu_alloc_page(vcpu, 0); |
| ASSERT(VALID_PAGE(root)); |
| vcpu->mmu.root_hpa = root; |
| if (is_paging()) |
| root |= (vcpu->cr3 & (CR3_PCD_MASK | CR3_WPT_MASK)); |
| vmcs_writel(GUEST_CR3, root); |
| print_func_exit(); |
| } |
| |
| static gpa_t nonpaging_gva_to_gpa(struct litevm_vcpu *vcpu, gva_t vaddr) |
| { |
| print_func_entry(); |
| print_func_exit(); |
| return vaddr; |
| } |
| |
| static int nonpaging_page_fault(struct litevm_vcpu *vcpu, gva_t gva, |
| uint32_t error_code) |
| { |
| print_func_entry(); |
| int ret; |
| gpa_t addr = gva; |
| |
| printk("nonpaging_page_fault: %016llx\n", gva); |
| ASSERT(vcpu); |
| ASSERT(VALID_PAGE(vcpu->mmu.root_hpa)); |
| |
| for (;;) { |
| hpa_t paddr; |
| |
| paddr = gpa_to_hpa(vcpu, addr & PT64_BASE_ADDR_MASK); |
| |
| if (is_error_hpa(paddr)) { |
| print_func_exit(); |
| return 1; |
| } |
| |
| ret = nonpaging_map(vcpu, addr & PAGE_MASK, paddr); |
| if (ret) { |
| nonpaging_flush(vcpu); |
| continue; |
| } |
| break; |
| } |
| print_func_exit(); |
| return ret; |
| } |
| |
| static void nonpaging_inval_page(struct litevm_vcpu *vcpu, gva_t addr) |
| { |
| print_func_entry(); |
| print_func_exit(); |
| } |
| |
| static void nonpaging_free(struct litevm_vcpu *vcpu) |
| { |
| print_func_entry(); |
| hpa_t root; |
| |
| ASSERT(vcpu); |
| root = vcpu->mmu.root_hpa; |
| if (VALID_PAGE(root)) |
| release_pt_page_64(vcpu, root, vcpu->mmu.shadow_root_level); |
| vcpu->mmu.root_hpa = INVALID_PAGE; |
| print_func_exit(); |
| } |
| |
| static int nonpaging_init_context(struct litevm_vcpu *vcpu) |
| { |
| print_func_entry(); |
| struct litevm_mmu *context = &vcpu->mmu; |
| |
| context->new_cr3 = nonpaging_new_cr3; |
| context->page_fault = nonpaging_page_fault; |
| context->inval_page = nonpaging_inval_page; |
| context->gva_to_gpa = nonpaging_gva_to_gpa; |
| context->free = nonpaging_free; |
| context->root_level = PT32E_ROOT_LEVEL; |
| context->shadow_root_level = PT32E_ROOT_LEVEL; |
| context->root_hpa = litevm_mmu_alloc_page(vcpu, 0); |
| ASSERT(VALID_PAGE(context->root_hpa)); |
| vmcs_writel(GUEST_CR3, context->root_hpa); |
| print_func_exit(); |
| return 0; |
| } |
| |
| static void litevm_mmu_flush_tlb(struct litevm_vcpu *vcpu) |
| { |
| print_func_entry(); |
| struct litevm_mmu_page *page, *npage; |
| |
| //list_for_each_entry_safe(page, npage, &vcpu->litevm->active_mmu_pages, |
| LIST_FOREACH_SAFE(page, &vcpu->litevm->link, link, npage) { |
| if (page->global) |
| continue; |
| |
| if (!page->parent_pte) |
| continue; |
| |
| *page->parent_pte = 0; |
| release_pt_page_64(vcpu, page->page_hpa, 1); |
| } |
| ++litevm_stat.tlb_flush; |
| print_func_exit(); |
| } |
| |
| static void paging_new_cr3(struct litevm_vcpu *vcpu) |
| { |
| print_func_entry(); |
| litevm_mmu_flush_tlb(vcpu); |
| print_func_exit(); |
| } |
| |
| static void mark_pagetable_nonglobal(void *shadow_pte) |
| { |
| print_func_entry(); |
| page_header(PADDR(shadow_pte))->global = 0; |
| print_func_exit(); |
| } |
| |
| static inline void set_pte_common(struct litevm_vcpu *vcpu, |
| uint64_t * shadow_pte, |
| gpa_t gaddr, int dirty, uint64_t access_bits) |
| { |
| print_func_entry(); |
| hpa_t paddr; |
| |
| *shadow_pte |= access_bits << PT_SHADOW_BITS_OFFSET; |
| if (!dirty) |
| access_bits &= ~PT_WRITABLE_MASK; |
| |
| if (access_bits & PT_WRITABLE_MASK) |
| mark_page_dirty(vcpu->litevm, gaddr >> PAGE_SHIFT); |
| |
| *shadow_pte |= access_bits; |
| |
| paddr = gpa_to_hpa(vcpu, gaddr & PT64_BASE_ADDR_MASK); |
| |
| if (!(*shadow_pte & PT_GLOBAL_MASK)) |
| mark_pagetable_nonglobal(shadow_pte); |
| |
| if (is_error_hpa(paddr)) { |
| *shadow_pte |= gaddr; |
| *shadow_pte |= PT_SHADOW_IO_MARK; |
| *shadow_pte &= ~PT_PRESENT_MASK; |
| } else { |
| *shadow_pte |= paddr; |
| page_header_update_slot(vcpu->litevm, shadow_pte, gaddr); |
| } |
| print_func_exit(); |
| } |
| |
| static void inject_page_fault(struct litevm_vcpu *vcpu, |
| uint64_t addr, uint32_t err_code) |
| { |
| print_func_entry(); |
| uint32_t vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD); |
| |
| pgprintk("inject_page_fault: 0x%llx err 0x%x\n", addr, err_code); |
| |
| ++litevm_stat.pf_guest; |
| |
| if (is_page_fault(vect_info)) { |
| printd("inject_page_fault: " |
| "double fault 0x%llx @ 0x%lx\n", addr, vmcs_readl(GUEST_RIP)); |
| vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, 0); |
| vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, |
| DF_VECTOR | |
| INTR_TYPE_EXCEPTION | |
| INTR_INFO_DELIVER_CODE_MASK | INTR_INFO_VALID_MASK); |
| print_func_exit(); |
| return; |
| } |
| vcpu->cr2 = addr; |
| vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, err_code); |
| vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, |
| PF_VECTOR | |
| INTR_TYPE_EXCEPTION | |
| INTR_INFO_DELIVER_CODE_MASK | INTR_INFO_VALID_MASK); |
| |
| print_func_exit(); |
| } |
| |
| static inline int fix_read_pf(uint64_t * shadow_ent) |
| { |
| print_func_entry(); |
| if ((*shadow_ent & PT_SHADOW_USER_MASK) && !(*shadow_ent & PT_USER_MASK)) { |
| /* |
| * If supervisor write protect is disabled, we shadow kernel |
| * pages as user pages so we can trap the write access. |
| */ |
| *shadow_ent |= PT_USER_MASK; |
| *shadow_ent &= ~PT_WRITABLE_MASK; |
| |
| print_func_exit(); |
| return 1; |
| |
| } |
| print_func_exit(); |
| return 0; |
| } |
| |
| static int may_access(uint64_t pte, int write, int user) |
| { |
| print_func_entry(); |
| |
| if (user && !(pte & PT_USER_MASK)) { |
| print_func_exit(); |
| return 0; |
| } |
| if (write && !(pte & PT_WRITABLE_MASK)) { |
| print_func_exit(); |
| return 0; |
| } |
| print_func_exit(); |
| return 1; |
| } |
| |
| /* |
| * Remove a shadow pte. |
| */ |
| static void paging_inval_page(struct litevm_vcpu *vcpu, gva_t addr) |
| { |
| print_func_entry(); |
| hpa_t page_addr = vcpu->mmu.root_hpa; |
| int level = vcpu->mmu.shadow_root_level; |
| |
| printk("paging_inval_page: addr %016lx\n", addr); |
| ++litevm_stat.invlpg; |
| |
| for (;; level--) { |
| uint32_t index = PT64_INDEX(addr, level); |
| uint64_t *table = KADDR(page_addr); |
| |
| if (level == PT_PAGE_TABLE_LEVEL) { |
| table[index] = 0; |
| print_func_exit(); |
| return; |
| } |
| |
| if (!is_present_pte(table[index])) { |
| print_func_exit(); |
| return; |
| } |
| |
| page_addr = table[index] & PT64_BASE_ADDR_MASK; |
| |
| if (level == PT_DIRECTORY_LEVEL && (table[index] & PT_SHADOW_PS_MARK)) { |
| table[index] = 0; |
| release_pt_page_64(vcpu, page_addr, PT_PAGE_TABLE_LEVEL); |
| |
| //flush tlb |
| vmcs_writel(GUEST_CR3, vcpu->mmu.root_hpa | |
| (vcpu->cr3 & (CR3_PCD_MASK | CR3_WPT_MASK))); |
| print_func_exit(); |
| return; |
| } |
| } |
| print_func_exit(); |
| } |
| |
| static void paging_free(struct litevm_vcpu *vcpu) |
| { |
| print_func_entry(); |
| nonpaging_free(vcpu); |
| print_func_exit(); |
| } |
| |
| #define PTTYPE 64 |
| #include "paging_tmpl.h" |
| #undef PTTYPE |
| |
| #define PTTYPE 32 |
| #include "paging_tmpl.h" |
| #undef PTTYPE |
| |
| static int paging64_init_context(struct litevm_vcpu *vcpu) |
| { |
| print_func_entry(); |
| struct litevm_mmu *context = &vcpu->mmu; |
| |
| ASSERT(is_pae()); |
| context->new_cr3 = paging_new_cr3; |
| context->page_fault = paging64_page_fault; |
| context->inval_page = paging_inval_page; |
| context->gva_to_gpa = paging64_gva_to_gpa; |
| context->free = paging_free; |
| context->root_level = PT64_ROOT_LEVEL; |
| context->shadow_root_level = PT64_ROOT_LEVEL; |
| context->root_hpa = litevm_mmu_alloc_page(vcpu, 0); |
| ASSERT(VALID_PAGE(context->root_hpa)); |
| vmcs_writel(GUEST_CR3, context->root_hpa | |
| (vcpu->cr3 & (CR3_PCD_MASK | CR3_WPT_MASK))); |
| print_func_exit(); |
| return 0; |
| } |
| |
| static int paging32_init_context(struct litevm_vcpu *vcpu) |
| { |
| print_func_entry(); |
| struct litevm_mmu *context = &vcpu->mmu; |
| |
| context->new_cr3 = paging_new_cr3; |
| context->page_fault = paging32_page_fault; |
| context->inval_page = paging_inval_page; |
| context->gva_to_gpa = paging32_gva_to_gpa; |
| context->free = paging_free; |
| context->root_level = PT32_ROOT_LEVEL; |
| context->shadow_root_level = PT32E_ROOT_LEVEL; |
| context->root_hpa = litevm_mmu_alloc_page(vcpu, 0); |
| ASSERT(VALID_PAGE(context->root_hpa)); |
| vmcs_writel(GUEST_CR3, context->root_hpa | |
| (vcpu->cr3 & (CR3_PCD_MASK | CR3_WPT_MASK))); |
| print_func_exit(); |
| return 0; |
| } |
| |
| static int paging32E_init_context(struct litevm_vcpu *vcpu) |
| { |
| print_func_entry(); |
| int ret; |
| |
| if ((ret = paging64_init_context(vcpu))) { |
| print_func_exit(); |
| return ret; |
| } |
| |
| vcpu->mmu.root_level = PT32E_ROOT_LEVEL; |
| vcpu->mmu.shadow_root_level = PT32E_ROOT_LEVEL; |
| print_func_exit(); |
| return 0; |
| } |
| |
| static int init_litevm_mmu(struct litevm_vcpu *vcpu) |
| { |
| print_func_entry(); |
| ASSERT(vcpu); |
| ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa)); |
| |
| if (!is_paging()) { |
| print_func_exit(); |
| return nonpaging_init_context(vcpu); |
| } else if (is_long_mode()) { |
| print_func_exit(); |
| return paging64_init_context(vcpu); |
| } else if (is_pae()) { |
| print_func_exit(); |
| return paging32E_init_context(vcpu); |
| } else { |
| print_func_exit(); |
| return paging32_init_context(vcpu); |
| } |
| } |
| |
| static void destroy_litevm_mmu(struct litevm_vcpu *vcpu) |
| { |
| print_func_entry(); |
| ASSERT(vcpu); |
| if (VALID_PAGE(vcpu->mmu.root_hpa)) { |
| vcpu->mmu.free(vcpu); |
| vcpu->mmu.root_hpa = INVALID_PAGE; |
| } |
| print_func_exit(); |
| } |
| |
| int litevm_mmu_reset_context(struct litevm_vcpu *vcpu) |
| { |
| print_func_entry(); |
| destroy_litevm_mmu(vcpu); |
| print_func_exit(); |
| return init_litevm_mmu(vcpu); |
| } |
| |
| static void free_mmu_pages(struct litevm_vcpu *vcpu) |
| { |
| print_func_entry(); |
| /* todo: use the right macros */ |
| while (!LIST_EMPTY(&vcpu->link)) { |
| struct litevm_mmu_page *vmpage; |
| vmpage = LIST_FIRST(&vcpu->link); |
| LIST_REMOVE(vmpage, link); |
| uintptr_t ppn = vmpage->page_hpa >> PAGE_SHIFT; |
| page_decref(ppn2page(ppn)); |
| assert(page_is_free(ppn)); |
| vmpage->page_hpa = INVALID_PAGE; |
| } |
| print_func_exit(); |
| } |
| |
| static int alloc_mmu_pages(struct litevm_vcpu *vcpu) |
| { |
| print_func_entry(); |
| int i; |
| |
| ASSERT(vcpu); |
| |
| /* we could try to do the contiguous alloc but it's not |
| * necessary for them to be contiguous. |
| */ |
| for (i = 0; i < LITEVM_NUM_MMU_PAGES; i++) { |
| struct page *page; |
| struct litevm_mmu_page *page_header = &vcpu->page_header_buf[i]; |
| |
| if (kpage_alloc(&page) != ESUCCESS) |
| goto error_1; |
| page->pg_private = page_header; |
| page_header->page_hpa = (hpa_t) page2pa(page); |
| memset(KADDR(page_header->page_hpa), 0, PAGE_SIZE); |
| LIST_INSERT_HEAD(&vcpu->link, page_header, link); |
| } |
| print_func_exit(); |
| return 0; |
| |
| error_1: |
| free_mmu_pages(vcpu); |
| print_func_exit(); |
| return -ENOMEM; |
| } |
| |
| int litevm_mmu_init(struct litevm_vcpu *vcpu) |
| { |
| print_func_entry(); |
| int r; |
| |
| ASSERT(vcpu); |
| ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa)); |
| ASSERT(LIST_EMPTY(&vcpu->link)); |
| |
| if ((r = alloc_mmu_pages(vcpu))) { |
| print_func_exit(); |
| return r; |
| } |
| |
| if ((r = init_litevm_mmu(vcpu))) { |
| free_mmu_pages(vcpu); |
| print_func_exit(); |
| return r; |
| } |
| print_func_exit(); |
| return 0; |
| } |
| |
| void litevm_mmu_destroy(struct litevm_vcpu *vcpu) |
| { |
| print_func_entry(); |
| ASSERT(vcpu); |
| |
| destroy_litevm_mmu(vcpu); |
| free_mmu_pages(vcpu); |
| print_func_exit(); |
| } |
| |
| void litevm_mmu_slot_remove_write_access(struct litevm *litevm, int slot) |
| { |
| print_func_entry(); |
| struct litevm_mmu_page *page, *link; |
| |
| LIST_FOREACH(page, &litevm->link, link) { |
| int i; |
| uint64_t *pt; |
| |
| if (!GET_BITMASK_BIT((uint8_t *) & page->slot_bitmap, slot)) |
| continue; |
| |
| pt = KADDR(page->page_hpa); |
| for (i = 0; i < PT64_ENT_PER_PAGE; ++i) |
| /* avoid RMW */ |
| if (pt[i] & PT_WRITABLE_MASK) |
| pt[i] &= ~PT_WRITABLE_MASK; |
| |
| } |
| print_func_exit(); |
| } |