|  | /*	$OpenBSD: sha2.c,v 1.6 2004/05/03 02:57:36 millert Exp $	*/ | 
|  |  | 
|  | /* | 
|  | * FILE:	sha2.c | 
|  | * AUTHOR:	Aaron D. Gifford <me@aarongifford.com> | 
|  | * | 
|  | * Copyright (c) 2000-2001, Aaron D. Gifford | 
|  | * All rights reserved. | 
|  | * | 
|  | * Redistribution and use in source and binary forms, with or without | 
|  | * modification, are permitted provided that the following conditions | 
|  | * are met: | 
|  | * 1. Redistributions of source code must retain the above copyright | 
|  | *	  notice, this list of conditions and the following disclaimer. | 
|  | * 2. Redistributions in binary form must reproduce the above copyright | 
|  | *	  notice, this list of conditions and the following disclaimer in the | 
|  | *	  documentation and/or other materials provided with the distribution. | 
|  | * 3. Neither the name of the copyright holder nor the names of contributors | 
|  | *	  may be used to endorse or promote products derived from this software | 
|  | *	  without specific prior written permission. | 
|  | * | 
|  | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTOR(S) ``AS IS'' AND | 
|  | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | * ARE DISCLAIMED.	IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTOR(S) BE LIABLE | 
|  | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | 
|  | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | 
|  | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | 
|  | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | 
|  | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | 
|  | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | 
|  | * SUCH DAMAGE. | 
|  | * | 
|  | * $From: sha2.c,v 1.1 2001/11/08 00:01:51 adg Exp adg $ | 
|  | * | 
|  | * contrib/pgcrypto/sha2.c | 
|  | */ | 
|  |  | 
|  | #include <random/sha2.h> | 
|  |  | 
|  | /*** SHA-256/512 Various Length Definitions ***********************/ | 
|  | enum { SHA256ShortBlockLength = (SHA256BlockLength - 8), | 
|  | SHA512ShortBlockLength = (SHA512_block_length - 16) }; | 
|  |  | 
|  | /* | 
|  | * Macro for incrementally adding the unsigned 64-bit integer n to the | 
|  | * unsigned 128-bit integer (represented using a two-element array of | 
|  | * 64-bit words): | 
|  | */ | 
|  | #define ADDINC128(w, n)                                                        \ | 
|  | {                                                                      \ | 
|  | (w)[0] += (uint64_t)(n);                                       \ | 
|  | if ((w)[0] < (n)) {                                            \ | 
|  | (w)[1]++;                                              \ | 
|  | }                                                              \ | 
|  | } | 
|  |  | 
|  | /*** THE SIX LOGICAL FUNCTIONS ****************************************/ | 
|  | /* | 
|  | * Bit shifting and rotation (used by the six SHA-XYZ logical functions: | 
|  | * | 
|  | *   NOTE:  The naming of R and S appears backwards here (R is a SHIFT and | 
|  | *   S is a ROTATION) because the SHA-256/384/512 description document | 
|  | *   (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this | 
|  | *   same "backwards" definition. | 
|  | */ | 
|  | /* Shift-right (used in SHA-256, SHA-384, and SHA-512): */ | 
|  | #define R(b, x) ((x) >> (b)) | 
|  | /* 32-bit Rotate-right (used in SHA-256): */ | 
|  | #define S32(b, x) (((x) >> (b)) | ((x) << (32 - (b)))) | 
|  | /* 64-bit Rotate-right (used in SHA-384 and SHA-512): */ | 
|  | #define S64(b, x) (((x) >> (b)) | ((x) << (64 - (b)))) | 
|  |  | 
|  | /* Two of six logical functions used in SHA-256, SHA-384, and SHA-512: */ | 
|  | #define Ch(x, y, z) (((x) & (y)) ^ ((~(x)) & (z))) | 
|  | #define Maj(x, y, z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z))) | 
|  |  | 
|  | /* Four of six logical functions used in SHA-256: */ | 
|  | #define Sigma0_256(x) (S32(2, (x)) ^ S32(13, (x)) ^ S32(22, (x))) | 
|  | #define Sigma1_256(x) (S32(6, (x)) ^ S32(11, (x)) ^ S32(25, (x))) | 
|  | #define sigma0_256(x) (S32(7, (x)) ^ S32(18, (x)) ^ R(3, (x))) | 
|  | #define sigma1_256(x) (S32(17, (x)) ^ S32(19, (x)) ^ R(10, (x))) | 
|  |  | 
|  | /* Four of six logical functions used in SHA-384 and SHA-512: */ | 
|  | #define Sigma0_512(x) (S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x))) | 
|  | #define Sigma1_512(x) (S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x))) | 
|  | #define sigma0_512(x) (S64(1, (x)) ^ S64(8, (x)) ^ R(7, (x))) | 
|  | #define sigma1_512(x) (S64(19, (x)) ^ S64(61, (x)) ^ R(6, (x))) | 
|  |  | 
|  | /*** INTERNAL FUNCTION PROTOTYPES *************************************/ | 
|  | /* NOTE: These should not be accessed directly from outside this | 
|  | * library -- they are intended for private internal visibility/use | 
|  | * only. | 
|  | */ | 
|  | static void SHA512_Last(SHA512Ctx *); | 
|  | static void SHA256_Transform(SHA256Ctx *, const uint32_t *); | 
|  | static void SHA512_Transform(SHA512Ctx *, const uint64_t *); | 
|  |  | 
|  | /*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/ | 
|  | /* Hash constant words K for SHA-256: */ | 
|  | const uint32_t K256[64] = { | 
|  | 0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL, 0x3956c25bUL, | 
|  | 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL, 0xd807aa98UL, 0x12835b01UL, | 
|  | 0x243185beUL, 0x550c7dc3UL, 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, | 
|  | 0xc19bf174UL, 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL, | 
|  | 0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL, 0x983e5152UL, | 
|  | 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL, 0xc6e00bf3UL, 0xd5a79147UL, | 
|  | 0x06ca6351UL, 0x14292967UL, 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, | 
|  | 0x53380d13UL, 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL, | 
|  | 0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL, 0xd192e819UL, | 
|  | 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL, 0x19a4c116UL, 0x1e376c08UL, | 
|  | 0x2748774cUL, 0x34b0bcb5UL, 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, | 
|  | 0x682e6ff3UL, 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL, | 
|  | 0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL}; | 
|  |  | 
|  | /* Initial hash value H for SHA-224: */ | 
|  | const uint32_t sha224_initial_hash_value[8] = { | 
|  | 0xc1059ed8UL, 0x367cd507UL, 0x3070dd17UL, 0xf70e5939UL, | 
|  | 0xffc00b31UL, 0x68581511UL, 0x64f98fa7UL, 0xbefa4fa4UL}; | 
|  |  | 
|  | /* Initial hash value H for SHA-256: */ | 
|  | static const uint32_t sha256_initial_hash_value[8] = { | 
|  | 0x6a09e667UL, 0xbb67ae85UL, 0x3c6ef372UL, 0xa54ff53aUL, | 
|  | 0x510e527fUL, 0x9b05688cUL, 0x1f83d9abUL, 0x5be0cd19UL}; | 
|  |  | 
|  | /* Hash constant words K for SHA-384 and SHA-512: */ | 
|  | static const uint64_t K512[80] = { | 
|  | 0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL, 0xb5c0fbcfec4d3b2fULL, | 
|  | 0xe9b5dba58189dbbcULL, 0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL, | 
|  | 0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL, 0xd807aa98a3030242ULL, | 
|  | 0x12835b0145706fbeULL, 0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL, | 
|  | 0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL, 0x9bdc06a725c71235ULL, | 
|  | 0xc19bf174cf692694ULL, 0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL, | 
|  | 0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL, 0x2de92c6f592b0275ULL, | 
|  | 0x4a7484aa6ea6e483ULL, 0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL, | 
|  | 0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL, 0xb00327c898fb213fULL, | 
|  | 0xbf597fc7beef0ee4ULL, 0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL, | 
|  | 0x06ca6351e003826fULL, 0x142929670a0e6e70ULL, 0x27b70a8546d22ffcULL, | 
|  | 0x2e1b21385c26c926ULL, 0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL, | 
|  | 0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL, 0x81c2c92e47edaee6ULL, | 
|  | 0x92722c851482353bULL, 0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL, | 
|  | 0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL, 0xd192e819d6ef5218ULL, | 
|  | 0xd69906245565a910ULL, 0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL, | 
|  | 0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL, 0x2748774cdf8eeb99ULL, | 
|  | 0x34b0bcb5e19b48a8ULL, 0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL, | 
|  | 0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL, 0x748f82ee5defb2fcULL, | 
|  | 0x78a5636f43172f60ULL, 0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL, | 
|  | 0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL, 0xbef9a3f7b2c67915ULL, | 
|  | 0xc67178f2e372532bULL, 0xca273eceea26619cULL, 0xd186b8c721c0c207ULL, | 
|  | 0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL, 0x06f067aa72176fbaULL, | 
|  | 0x0a637dc5a2c898a6ULL, 0x113f9804bef90daeULL, 0x1b710b35131c471bULL, | 
|  | 0x28db77f523047d84ULL, 0x32caab7b40c72493ULL, 0x3c9ebe0a15c9bebcULL, | 
|  | 0x431d67c49c100d4cULL, 0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL, | 
|  | 0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL}; | 
|  |  | 
|  | /* Initial hash value H for SHA-384 */ | 
|  | static const uint64_t sha384_initial_hash_value[8] = { | 
|  | 0xcbbb9d5dc1059ed8ULL, 0x629a292a367cd507ULL, 0x9159015a3070dd17ULL, | 
|  | 0x152fecd8f70e5939ULL, 0x67332667ffc00b31ULL, 0x8eb44a8768581511ULL, | 
|  | 0xdb0c2e0d64f98fa7ULL, 0x47b5481dbefa4fa4ULL}; | 
|  |  | 
|  | /* Initial hash value H for SHA-512 */ | 
|  | static const uint64_t sha512_initial_hash_value[8] = { | 
|  | 0x6a09e667f3bcc908ULL, 0xbb67ae8584caa73bULL, 0x3c6ef372fe94f82bULL, | 
|  | 0xa54ff53a5f1d36f1ULL, 0x510e527fade682d1ULL, 0x9b05688c2b3e6c1fULL, | 
|  | 0x1f83d9abfb41bd6bULL, 0x5be0cd19137e2179ULL}; | 
|  |  | 
|  | /*** SHA-256: *********************************************************/ | 
|  | void SHA256_Init(SHA256Ctx *context) | 
|  | { | 
|  | if (context == NULL) | 
|  | return; | 
|  | memmove(context->state, sha256_initial_hash_value, SHA256DigestLength); | 
|  | memset(context->buffer, 0, SHA256BlockLength); | 
|  | context->bitcount = 0; | 
|  | } | 
|  | static void SHA256_Transform(SHA256Ctx *context, const uint32_t *data) | 
|  | { | 
|  | uint32_t a, b, c, d, e, f, g, h, s0, s1; | 
|  | uint32_t T1, T2, *W256; | 
|  | int j; | 
|  |  | 
|  | W256 = (uint32_t *)context->buffer; | 
|  |  | 
|  | /* Initialize registers with the prev. intermediate value */ | 
|  | a = context->state[0]; | 
|  | b = context->state[1]; | 
|  | c = context->state[2]; | 
|  | d = context->state[3]; | 
|  | e = context->state[4]; | 
|  | f = context->state[5]; | 
|  | g = context->state[6]; | 
|  | h = context->state[7]; | 
|  |  | 
|  | j = 0; | 
|  | do { | 
|  | W256[j] = (uint32_t)data[3] | ((uint32_t)data[2] << 8) | | 
|  | ((uint32_t)data[1] << 16) | ((uint32_t)data[0] << 24); | 
|  | data += 4; | 
|  | /* Apply the SHA-256 compression function to update a..h */ | 
|  | T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j]; | 
|  | T2 = Sigma0_256(a) + Maj(a, b, c); | 
|  | h = g; | 
|  | g = f; | 
|  | f = e; | 
|  | e = d + T1; | 
|  | d = c; | 
|  | c = b; | 
|  | b = a; | 
|  | a = T1 + T2; | 
|  |  | 
|  | j++; | 
|  | } while (j < 16); | 
|  |  | 
|  | do { | 
|  | /* Part of the message block expansion: */ | 
|  | s0 = W256[(j + 1) & 0x0f]; | 
|  | s0 = sigma0_256(s0); | 
|  | s1 = W256[(j + 14) & 0x0f]; | 
|  | s1 = sigma1_256(s1); | 
|  |  | 
|  | /* Apply the SHA-256 compression function to update a..h */ | 
|  | T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + | 
|  | (W256[j & 0x0f] += s1 + W256[(j + 9) & 0x0f] + s0); | 
|  | T2 = Sigma0_256(a) + Maj(a, b, c); | 
|  | h = g; | 
|  | g = f; | 
|  | f = e; | 
|  | e = d + T1; | 
|  | d = c; | 
|  | c = b; | 
|  | b = a; | 
|  | a = T1 + T2; | 
|  |  | 
|  | j++; | 
|  | } while (j < 64); | 
|  |  | 
|  | /* Compute the current intermediate hash value */ | 
|  | context->state[0] += a; | 
|  | context->state[1] += b; | 
|  | context->state[2] += c; | 
|  | context->state[3] += d; | 
|  | context->state[4] += e; | 
|  | context->state[5] += f; | 
|  | context->state[6] += g; | 
|  | context->state[7] += h; | 
|  |  | 
|  | /* Clean up */ | 
|  | a = b = c = d = e = f = g = h = T1 = T2 = 0; | 
|  | } | 
|  |  | 
|  | void SHA256_Update(SHA256Ctx *context, const uint8_t *data, size_t len) | 
|  | { | 
|  | size_t freespace, usedspace; | 
|  |  | 
|  | /* Calling with no data is valid (we do nothing) */ | 
|  | if (len == 0) | 
|  | return; | 
|  |  | 
|  | usedspace = (context->bitcount >> 3) % SHA256BlockLength; | 
|  | if (usedspace > 0) { | 
|  | /* Calculate how much free space is available in the buffer */ | 
|  | freespace = SHA256BlockLength - usedspace; | 
|  |  | 
|  | if (len >= freespace) { | 
|  | /* Fill the buffer completely and process it */ | 
|  | memmove(&context->buffer[usedspace], data, freespace); | 
|  | context->bitcount += freespace << 3; | 
|  | len -= freespace; | 
|  | data += freespace; | 
|  | SHA256_Transform(context, (uint32_t *)context->buffer); | 
|  | } else { | 
|  | /* The buffer is not yet full */ | 
|  | memmove(&context->buffer[usedspace], data, len); | 
|  | context->bitcount += len << 3; | 
|  | /* Clean up: */ | 
|  | usedspace = freespace = 0; | 
|  | return; | 
|  | } | 
|  | } | 
|  | while (len >= SHA256BlockLength) { | 
|  | /* Process as many complete blocks as we can */ | 
|  | SHA256_Transform(context, (const uint32_t *)data); | 
|  | context->bitcount += SHA256BlockLength << 3; | 
|  | len -= SHA256BlockLength; | 
|  | data += SHA256BlockLength; | 
|  | } | 
|  | if (len > 0) { | 
|  | /* There's left-overs, so save 'em */ | 
|  | memmove(context->buffer, data, len); | 
|  | context->bitcount += len << 3; | 
|  | } | 
|  | /* Clean up: */ | 
|  | usedspace = freespace = 0; | 
|  | } | 
|  |  | 
|  | static void SHA256_Last(SHA256Ctx *context) | 
|  | { | 
|  | unsigned int usedspace; | 
|  |  | 
|  | usedspace = (context->bitcount >> 3) % SHA256BlockLength; | 
|  |  | 
|  | if (usedspace > 0) { | 
|  | /* Begin padding with a 1 bit: */ | 
|  | context->buffer[usedspace++] = 0x80; | 
|  |  | 
|  | if (usedspace <= SHA256ShortBlockLength) { | 
|  | /* Set-up for the last transform: */ | 
|  | memset(&context->buffer[usedspace], 0, | 
|  | SHA256ShortBlockLength - usedspace); | 
|  | } else { | 
|  | if (usedspace < SHA256BlockLength) { | 
|  | memset(&context->buffer[usedspace], 0, | 
|  | SHA256BlockLength - usedspace); | 
|  | } | 
|  | /* Do second-to-last transform: */ | 
|  | SHA256_Transform(context, (uint32_t *)context->buffer); | 
|  |  | 
|  | /* And set-up for the last transform: */ | 
|  | memset(context->buffer, 0, SHA256ShortBlockLength); | 
|  | } | 
|  | } else { | 
|  | /* Set-up for the last transform: */ | 
|  | memset(context->buffer, 0, SHA256ShortBlockLength); | 
|  |  | 
|  | /* Begin padding with a 1 bit: */ | 
|  | *context->buffer = 0x80; | 
|  | } | 
|  | /* Set the bit count: */ | 
|  | *(uint64_t *)&context->buffer[SHA256ShortBlockLength] = | 
|  | context->bitcount; | 
|  |  | 
|  | /* Final transform: */ | 
|  | SHA256_Transform(context, (uint32_t *)context->buffer); | 
|  | } | 
|  |  | 
|  | void SHA256_Final(uint8_t digest[], SHA256Ctx *context) | 
|  | { | 
|  | /* If no digest buffer is passed, we don't bother doing this: */ | 
|  | if (digest != NULL) { | 
|  | SHA256_Last(context); | 
|  |  | 
|  | memmove(digest, context->state, SHA256DigestLength); | 
|  | } | 
|  |  | 
|  | /* Clean up state data: */ | 
|  | memset(context, 0, sizeof(*context)); | 
|  | } | 
|  |  | 
|  | /*** SHA-512: *********************************************************/ | 
|  | void SHA512_Init(SHA512Ctx *context) | 
|  | { | 
|  | if (context == NULL) | 
|  | return; | 
|  | memmove(context->state, sha512_initial_hash_value, SHA512DigestLength); | 
|  | memset(context->buffer, 0, SHA512_block_length); | 
|  | context->bitcount[0] = context->bitcount[1] = 0; | 
|  | } | 
|  |  | 
|  | static void SHA512_Transform(SHA512Ctx *context, const uint64_t *data) | 
|  | { | 
|  | uint64_t a, b, c, d, e, f, g, h, s0, s1; | 
|  | uint64_t T1, T2, *W512 = (uint64_t *)context->buffer; | 
|  | int j; | 
|  |  | 
|  | /* Initialize registers with the prev. intermediate value */ | 
|  | a = context->state[0]; | 
|  | b = context->state[1]; | 
|  | c = context->state[2]; | 
|  | d = context->state[3]; | 
|  | e = context->state[4]; | 
|  | f = context->state[5]; | 
|  | g = context->state[6]; | 
|  | h = context->state[7]; | 
|  |  | 
|  | j = 0; | 
|  | do { | 
|  | W512[j] = | 
|  | (uint64_t)data[7] | ((uint64_t)data[6] << 8) | | 
|  | ((uint64_t)data[5] << 16) | ((uint64_t)data[4] << 24) | | 
|  | ((uint64_t)data[3] << 32) | ((uint64_t)data[2] << 40) | | 
|  | ((uint64_t)data[1] << 48) | ((uint64_t)data[0] << 56); | 
|  | data += 8; | 
|  | /* Apply the SHA-512 compression function to update a..h */ | 
|  | T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j]; | 
|  | T2 = Sigma0_512(a) + Maj(a, b, c); | 
|  | h = g; | 
|  | g = f; | 
|  | f = e; | 
|  | e = d + T1; | 
|  | d = c; | 
|  | c = b; | 
|  | b = a; | 
|  | a = T1 + T2; | 
|  |  | 
|  | j++; | 
|  | } while (j < 16); | 
|  |  | 
|  | do { | 
|  | /* Part of the message block expansion: */ | 
|  | s0 = W512[(j + 1) & 0x0f]; | 
|  | s0 = sigma0_512(s0); | 
|  | s1 = W512[(j + 14) & 0x0f]; | 
|  | s1 = sigma1_512(s1); | 
|  |  | 
|  | /* Apply the SHA-512 compression function to update a..h */ | 
|  | T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + | 
|  | (W512[j & 0x0f] += s1 + W512[(j + 9) & 0x0f] + s0); | 
|  | T2 = Sigma0_512(a) + Maj(a, b, c); | 
|  | h = g; | 
|  | g = f; | 
|  | f = e; | 
|  | e = d + T1; | 
|  | d = c; | 
|  | c = b; | 
|  | b = a; | 
|  | a = T1 + T2; | 
|  |  | 
|  | j++; | 
|  | } while (j < 80); | 
|  |  | 
|  | /* Compute the current intermediate hash value */ | 
|  | context->state[0] += a; | 
|  | context->state[1] += b; | 
|  | context->state[2] += c; | 
|  | context->state[3] += d; | 
|  | context->state[4] += e; | 
|  | context->state[5] += f; | 
|  | context->state[6] += g; | 
|  | context->state[7] += h; | 
|  |  | 
|  | /* Clean up */ | 
|  | a = b = c = d = e = f = g = h = T1 = T2 = 0; | 
|  | } | 
|  |  | 
|  | void SHA512_Update(SHA512Ctx *context, const uint8_t *data, size_t len) | 
|  | { | 
|  | size_t freespace, usedspace; | 
|  |  | 
|  | /* Calling with no data is valid (we do nothing) */ | 
|  | if (len == 0) | 
|  | return; | 
|  |  | 
|  | usedspace = (context->bitcount[0] >> 3) % SHA512_block_length; | 
|  | if (usedspace > 0) { | 
|  | /* Calculate how much free space is available in the buffer */ | 
|  | freespace = SHA512_block_length - usedspace; | 
|  |  | 
|  | if (len >= freespace) { | 
|  | /* Fill the buffer completely and process it */ | 
|  | memmove(&context->buffer[usedspace], data, freespace); | 
|  | ADDINC128(context->bitcount, freespace << 3); | 
|  | len -= freespace; | 
|  | data += freespace; | 
|  | SHA512_Transform(context, (uint64_t *)context->buffer); | 
|  | } else { | 
|  | /* The buffer is not yet full */ | 
|  | memmove(&context->buffer[usedspace], data, len); | 
|  | ADDINC128(context->bitcount, len << 3); | 
|  | /* Clean up: */ | 
|  | usedspace = freespace = 0; | 
|  | return; | 
|  | } | 
|  | } | 
|  | while (len >= SHA512_block_length) { | 
|  | /* Process as many complete blocks as we can */ | 
|  | SHA512_Transform(context, (const uint64_t *)data); | 
|  | ADDINC128(context->bitcount, SHA512_block_length << 3); | 
|  | len -= SHA512_block_length; | 
|  | data += SHA512_block_length; | 
|  | } | 
|  | if (len > 0) { | 
|  | /* There's left-overs, so save 'em */ | 
|  | memmove(context->buffer, data, len); | 
|  | ADDINC128(context->bitcount, len << 3); | 
|  | } | 
|  | /* Clean up: */ | 
|  | usedspace = freespace = 0; | 
|  | } | 
|  |  | 
|  | static void SHA512_Last(SHA512Ctx *context) | 
|  | { | 
|  | unsigned int usedspace; | 
|  |  | 
|  | usedspace = (context->bitcount[0] >> 3) % SHA512_block_length; | 
|  |  | 
|  | if (usedspace > 0) { | 
|  | /* Begin padding with a 1 bit: */ | 
|  | context->buffer[usedspace++] = 0x80; | 
|  |  | 
|  | if (usedspace <= SHA512ShortBlockLength) { | 
|  | /* Set-up for the last transform: */ | 
|  | memset(&context->buffer[usedspace], 0, | 
|  | SHA512ShortBlockLength - usedspace); | 
|  | } else { | 
|  | if (usedspace < SHA512_block_length) { | 
|  | memset(&context->buffer[usedspace], 0, | 
|  | SHA512_block_length - usedspace); | 
|  | } | 
|  | /* Do second-to-last transform: */ | 
|  | SHA512_Transform(context, (uint64_t *)context->buffer); | 
|  |  | 
|  | /* And set-up for the last transform: */ | 
|  | memset(context->buffer, 0, SHA512_block_length - 2); | 
|  | } | 
|  | } else { | 
|  | /* Prepare for final transform: */ | 
|  | memset(context->buffer, 0, SHA512ShortBlockLength); | 
|  |  | 
|  | /* Begin padding with a 1 bit: */ | 
|  | *context->buffer = 0x80; | 
|  | } | 
|  | /* Store the length of input data (in bits): */ | 
|  | *(uint64_t *)&context->buffer[SHA512ShortBlockLength] = | 
|  | context->bitcount[1]; | 
|  | *(uint64_t *)&context->buffer[SHA512ShortBlockLength + 8] = | 
|  | context->bitcount[0]; | 
|  |  | 
|  | /* Final transform: */ | 
|  | SHA512_Transform(context, (uint64_t *)context->buffer); | 
|  | } | 
|  |  | 
|  | void SHA512_Final(uint8_t digest[], SHA512Ctx *context) | 
|  | { | 
|  | /* If no digest buffer is passed, we don't bother doing this: */ | 
|  | if (digest != NULL) { | 
|  | SHA512_Last(context); | 
|  |  | 
|  | /* Save the hash data for output: */ | 
|  | memmove(digest, context->state, SHA512DigestLength); | 
|  | } | 
|  |  | 
|  | /* Zero out state data */ | 
|  | memset(context, 0, sizeof(*context)); | 
|  | } | 
|  |  | 
|  | /*** SHA-384: *********************************************************/ | 
|  | void SHA384_Init(SHA384Ctx *context) | 
|  | { | 
|  | if (context == NULL) | 
|  | return; | 
|  | memmove(context->state, sha384_initial_hash_value, SHA512DigestLength); | 
|  | memset(context->buffer, 0, SHA384BlockLength); | 
|  | context->bitcount[0] = context->bitcount[1] = 0; | 
|  | } | 
|  |  | 
|  | void SHA384_Update(SHA384Ctx *context, const uint8_t *data, size_t len) | 
|  | { | 
|  | SHA512_Update((SHA512Ctx *)context, data, len); | 
|  | } | 
|  |  | 
|  | void SHA384_Final(uint8_t digest[], SHA384Ctx *context) | 
|  | { | 
|  | /* If no digest buffer is passed, we don't bother doing this: */ | 
|  | if (digest != NULL) { | 
|  | SHA512_Last((SHA512Ctx *)context); | 
|  |  | 
|  | /* Save the hash data for output: */ | 
|  | memmove(digest, context->state, SHA384DigestLength); | 
|  | } | 
|  |  | 
|  | /* Zero out state data */ | 
|  | memset(context, 0, sizeof(*context)); | 
|  | } | 
|  |  | 
|  | /*** SHA-224: *********************************************************/ | 
|  | void SHA224_Init(SHA224Ctx *context) | 
|  | { | 
|  | if (context == NULL) | 
|  | return; | 
|  | memmove(context->state, sha224_initial_hash_value, SHA256DigestLength); | 
|  | memset(context->buffer, 0, SHA256BlockLength); | 
|  | context->bitcount = 0; | 
|  | } | 
|  |  | 
|  | void SHA224_Update(SHA224Ctx *context, const uint8_t *data, size_t len) | 
|  | { | 
|  | SHA256_Update((SHA256Ctx *)context, data, len); | 
|  | } | 
|  |  | 
|  | void SHA224_Final(uint8_t digest[], SHA224Ctx *context) | 
|  | { | 
|  | /* If no digest buffer is passed, we don't bother doing this: */ | 
|  | if (digest != NULL) { | 
|  | SHA256_Last(context); | 
|  |  | 
|  | memmove(digest, context->state, SHA224DigestLength); | 
|  | } | 
|  |  | 
|  | /* Clean up state data: */ | 
|  | memset(context, 0, sizeof(*context)); | 
|  | } |