blob: 57a7c056ef191f80cb624577fa80e3ef9a1c7516 [file] [log] [blame] [edit]
/**
* vmx.c - The Intel VT-x driver for Dune
*
* This file is derived from Linux KVM VT-x support.
* Copyright (C) 2006 Qumranet, Inc.
* Copyright 2010 Red Hat, Inc. and/or its affiliates.
*
* Original Authors:
* Avi Kivity <avi@qumranet.com>
* Yaniv Kamay <yaniv@qumranet.com>
*
* This modified version is simpler because it avoids the following
* features that are not requirements for Dune:
* * Real-mode emulation
* * Nested VT-x support
* * I/O hardware emulation
* * Any of the more esoteric X86 features and registers
* * KVM-specific functionality
*
* In essence we provide only the minimum functionality needed to run
* a process in vmx non-root mode rather than the full hardware emulation
* needed to support an entire OS.
*
* This driver is a research prototype and as such has the following
* limitations:
*
* FIXME: Backward compatability is currently a non-goal, and only recent
* full-featured (EPT, PCID, VPID, etc.) Intel hardware is supported by this
* driver.
*
* FIXME: Eventually we should handle concurrent user's of VT-x more
* gracefully instead of requiring exclusive access. This would allow
* Dune to interoperate with KVM and other HV solutions.
*
* FIXME: We need to support hotplugged physical CPUs.
*
* Authors:
* Adam Belay <abelay@stanford.edu>
*/
/* Basic flow.
* Yep, it's confusing. This is in part because the vmcs is used twice, for two different things.
* You're left with the feeling that they got part way through and realized they had to have one for
*
* 1) your CPU is going to be capable of running VMs, and you need state for that.
*
* 2) you're about to start a guest, and you need state for that.
*
* So there is get cpu set up to be able to run VMs stuff, and now
* let's start a guest stuff. In Akaros, CPUs will always be set up
* to run a VM if that is possible. Processes can flip themselves into
* a VM and that will require another VMCS.
*
* So: at kernel startup time, the SMP boot stuff calls
* k/a/x86/vmm/vmm.c:vmm_init, which calls arch-dependent bits, which
* in the case of this file is intel_vmm_init. That does some code
* that sets up stuff for ALL sockets, based on the capabilities of
* the socket it runs on. If any cpu supports vmx, it assumes they all
* do. That's a realistic assumption. So the call_function_all is kind
* of stupid, really; it could just see what's on the current cpu and
* assume it's on all. HOWEVER: there are systems in the wilde that
* can run VMs on some but not all CPUs, due to BIOS mistakes, so we
* might as well allow for the chance that wel'll only all VMMCPs on a
* subset (not implemented yet however). So: probe all CPUs, get a
* count of how many support VMX and, for now, assume they all do
* anyway.
*
* Next, call setup_vmcs_config to configure the GLOBAL vmcs_config struct,
* which contains all the naughty bits settings for all the cpus that can run a VM.
* Realistically, all VMX-capable cpus in a system will have identical configurations.
* So: 0 or more cpus can run VMX; all cpus which can run VMX will have the same configuration.
*
* configure the msr_bitmap. This is the bitmap of MSRs which the
* guest can manipulate. Currently, we only allow GS and FS base.
*
* Reserve bit 0 in the vpid bitmap as guests can not use that
*
* Set up the what we call the vmxarea. The vmxarea is per-cpu, not
* per-guest. Once set up, it is left alone. The ONLY think we set in
* there is the revision area. The VMX is page-sized per cpu and
* page-aligned. Note that it can be smaller, but why bother? We know
* the max size and alightment, and it's convenient.
*
* Now that it is set up, enable vmx on all cpus. This involves
* testing VMXE in cr4, to see if we've been here before (TODO: delete
* this test), then testing MSR_IA32_FEATURE_CONTROL to see if we can
* do a VM, the setting the VMXE in cr4, calling vmxon (does a vmxon
* instruction), and syncing vpid's and ept's. Now the CPU is ready
* to host guests.
*
* Setting up a guest.
* We divide this into two things: vmm_proc_init and vm_run.
* Currently, on Intel, vmm_proc_init does nothing.
*
* vm_run is really complicated. It is called with a coreid, rip, rsp,
* cr3, and flags. On intel, it calls vmx_launch. vmx_launch is set
* up for a few test cases. If rip is 1, it sets the guest rip to
* a function which will deref 0 and should exit with failure 2. If rip is 0,
* it calls an infinite loop in the guest.
*
* The sequence of operations:
* create a vcpu
* while (1) {
* get a vcpu
* disable irqs (required or you can't enter the VM)
* vmx_run_vcpu()
* enable irqs
* manage the vm exit
* }
*
* get a vcpu
* See if the current cpu has a vcpu. If so, and is the same as the vcpu we want,
* vmcs_load(vcpu->vmcs) -- i.e. issue a VMPTRLD.
*
* If it's not the same, see if the vcpu thinks it is on the core. If it is not, call
* __vmx_get_cpu_helper on the other cpu, to free it up. Else vmcs_clear the one
* attached to this cpu. Then vmcs_load the vmcs for vcpu on this this cpu,
* call __vmx_setup_cpu, mark this vcpu as being attached to this cpu, done.
*
* vmx_run_vcpu this one gets messy, mainly because it's a giant wad
* of inline assembly with embedded CPP crap. I suspect we'll want to
* un-inline it someday, but maybe not. It's called with a vcpu
* struct from which it loads guest state, and to which it stores
* non-virtualized host state. It issues a vmlaunch or vmresume
* instruction depending, and on return, it evaluates if things the
* launch/resume had an error in that operation. Note this is NOT the
* same as an error while in the virtual machine; this is an error in
* startup due to misconfiguration. Depending on whatis returned it's
* either a failed vm startup or an exit for lots of many reasons.
*
*/
/* basically: only rename those globals that might conflict
* with existing names. Leave all else the same.
* this code is more modern than the other code, yet still
* well encapsulated, it seems.
*/
#include <kmalloc.h>
#include <string.h>
#include <stdio.h>
#include <assert.h>
#include <error.h>
#include <pmap.h>
#include <sys/queue.h>
#include <smp.h>
#include <kref.h>
#include <atomic.h>
#include <alarm.h>
#include <event.h>
#include <umem.h>
#include <bitops.h>
#include <arch/types.h>
#include <syscall.h>
#include "vmx.h"
#include "../vmm.h"
#include "cpufeature.h"
#define currentcpu (&per_cpu_info[core_id()])
/*
* Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
* away by decrementing the array size.
*/
static const uint32_t vmx_msr_index[] = {
#ifdef CONFIG_X86_64
MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
#endif
MSR_EFER, MSR_TSC_AUX, MSR_STAR,
};
#define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
static unsigned long *msr_bitmap;
int x86_ept_pte_fix_ups = 0;
struct vmx_capability vmx_capability;
struct vmcs_config vmcs_config;
void ept_flush(uint64_t eptp)
{
ept_sync_context(eptp);
}
static void vmcs_clear(struct vmcs *vmcs)
{
uint64_t phys_addr = PADDR(vmcs);
uint8_t error;
asm volatile (ASM_VMX_VMCLEAR_RAX "; setna %0"
: "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
: "cc", "memory");
if (error)
printk("vmclear fail: %p/%llx\n",
vmcs, phys_addr);
}
static void vmcs_load(struct vmcs *vmcs)
{
uint64_t phys_addr = PADDR(vmcs);
uint8_t error;
asm volatile (ASM_VMX_VMPTRLD_RAX "; setna %0"
: "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
: "cc", "memory");
if (error)
printk("vmptrld %p/%llx failed\n",
vmcs, phys_addr);
}
/* Returns the paddr pointer of the current CPU's VMCS region, or -1 if none. */
static physaddr_t vmcs_get_current(void)
{
physaddr_t vmcs_paddr;
/* RAX contains the addr of the location to store the VMCS pointer. The
* compiler doesn't know the ASM will deref that pointer, hence the =m */
asm volatile (ASM_VMX_VMPTRST_RAX : "=m"(vmcs_paddr) : "a"(&vmcs_paddr));
return vmcs_paddr;
}
__always_inline unsigned long vmcs_readl(unsigned long field)
{
unsigned long value;
asm volatile (ASM_VMX_VMREAD_RDX_RAX
: "=a"(value) : "d"(field) : "cc");
return value;
}
__always_inline uint16_t vmcs_read16(unsigned long field)
{
return vmcs_readl(field);
}
static __always_inline uint32_t vmcs_read32(unsigned long field)
{
return vmcs_readl(field);
}
static __always_inline uint64_t vmcs_read64(unsigned long field)
{
#ifdef CONFIG_X86_64
return vmcs_readl(field);
#else
return vmcs_readl(field) | ((uint64_t)vmcs_readl(field+1) << 32);
#endif
}
void vmwrite_error(unsigned long field, unsigned long value)
{
printk("vmwrite error: reg %lx value %lx (err %d)\n",
field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
}
void vmcs_writel(unsigned long field, unsigned long value)
{
uint8_t error;
asm volatile (ASM_VMX_VMWRITE_RAX_RDX "; setna %0"
: "=q"(error) : "a"(value), "d"(field) : "cc");
if (error)
vmwrite_error(field, value);
}
static void vmcs_write16(unsigned long field, uint16_t value)
{
vmcs_writel(field, value);
}
static void vmcs_write32(unsigned long field, uint32_t value)
{
vmcs_writel(field, value);
}
static void vmcs_write64(unsigned long field, uint64_t value)
{
vmcs_writel(field, value);
}
/*
* A note on Things You Can't Make Up.
* or
* "George, you can type this shit, but you can't say it" -- Harrison Ford
*
* There are 5 VMCS 32-bit words that control guest permissions. If
* you set these correctly, you've got a guest that will behave. If
* you get even one bit wrong, you've got a guest that will chew your
* leg off. Some bits must be 1, some must be 0, and some can be set
* either way. To add to the fun, the docs are sort of a docudrama or,
* as the quote goes, "interesting if true."
*
* To determine what bit can be set in what VMCS 32-bit control word,
* there are 5 corresponding 64-bit MSRs. And, to make it even more
* fun, the standard set of MSRs have errors in them, i.e. report
* incorrect values, for legacy reasons, and so you are supposed to
* "look around" to another set, which have correct bits in
* them. There are four such 'correct' registers, and they have _TRUE_
* in the names as you can see below. We test for the value of VMCS
* control bits in the _TRUE_ registers if possible. The fifth
* register, CPU Secondary Exec Controls, which came later, needs no
* _TRUE_ variant.
*
* For each MSR, the high 32 bits tell you what bits can be "1" by a
* "1" in that position; the low 32 bits tell you what bit can be "0"
* by a "0" in that position. So, for each of 32 bits in a given VMCS
* control word, there is a pair of bits in an MSR that tells you what
* values it can take. The two bits, of which there are *four*
* combinations, describe the *three* possible operations on a
* bit. The two bits, taken together, form an untruth table: There are
* three possibilities: The VMCS bit can be set to 0 or 1, or it can
* only be 0, or only 1. The fourth combination is not supposed to
* happen.
*
* So: there is the 1 bit from the upper 32 bits of the msr.
* If this bit is set, then the bit can be 1. If clear, it can not be 1.
*
* Then there is the 0 bit, from low 32 bits. If clear, the VMCS bit
* can be 0. If 1, the VMCS bit can not be 0.
*
* SO, let's call the 1 bit R1, and the 0 bit R0, we have:
* R1 R0
* 0 0 -> must be 0
* 1 0 -> can be 1, can be 0
* 0 1 -> can not be 1, can not be 0. --> JACKPOT! Not seen yet.
* 1 1 -> must be one.
*
* It's also pretty hard to know what you can and can't set, and
* that's led to inadvertant opening of permissions at times. Because
* of this complexity we've decided on the following: the driver must
* define EVERY bit, UNIQUELY, for each of the 5 registers, that it wants
* set. Further, for any bit that's settable, the driver must specify
* a setting; for any bit that's reserved, the driver settings must
* match that bit. If there are reserved bits we don't specify, that's
* ok; we'll take them as is.
*
* We use a set-means-set, and set-means-clear model, i.e. we use a
* 32-bit word to contain the bits we want to be 1, indicated by one;
* and another 32-bit word in which a bit we want to be 0 is indicated
* by a 1. This allows us to easily create masks of all bits we're
* going to set, for example.
*
* We have two 32-bit numbers for each 32-bit VMCS field: bits we want
* set and bits we want clear. If you read the MSR for that field,
* compute the reserved 0 and 1 settings, and | them together, they
* need to result in 0xffffffff. You can see that we can create other
* tests for conflicts (i.e. overlap).
*
* At this point, I've tested check_vmx_controls in every way
* possible, beause I kept screwing the bitfields up. You'll get a nice
* error it won't work at all, which is what we want: a
* failure-prone setup, where even errors that might result in correct
* values are caught -- "right answer, wrong method, zero credit." If there's
* weirdness in the bits, we don't want to run.
*/
static bool check_vmxec_controls(struct vmxec const *v, bool have_true_msr,
uint32_t *result)
{
bool err = false;
uint32_t vmx_msr_low, vmx_msr_high;
uint32_t reserved_0, reserved_1, changeable_bits;
if (have_true_msr)
rdmsr(v->truemsr, vmx_msr_low, vmx_msr_high);
else
rdmsr(v->msr, vmx_msr_low, vmx_msr_high);
if (vmx_msr_low & ~vmx_msr_high)
warn("JACKPOT: Conflicting VMX ec ctls for %s, high 0x%08x low 0x%08x",
v->name, vmx_msr_high, vmx_msr_low);
reserved_0 = (~vmx_msr_low) & (~vmx_msr_high);
reserved_1 = vmx_msr_low & vmx_msr_high;
changeable_bits = ~(reserved_0 | reserved_1);
/*
* this is very much as follows:
* accept the things I cannot change,
* change the things I can,
* know the difference.
*/
/* Conflict. Don't try to both set and reset bits. */
if (v->set_to_0 & v->set_to_1) {
printk("%s: set to 0 (0x%x) and set to 1 (0x%x) overlap: 0x%x\n",
v->name, v->set_to_0, v->set_to_1, v->set_to_0 & v->set_to_1);
err = true;
}
/* coverage */
if (((v->set_to_0 | v->set_to_1) & changeable_bits) !=
changeable_bits) {
printk("%s: Need to cover 0x%x and have 0x%x,0x%x\n",
v->name, changeable_bits, v->set_to_0, v->set_to_1);
err = true;
}
if ((v->set_to_0 | v->set_to_1 | reserved_0 | reserved_1) !=
0xffffffff) {
printk("%s: incomplete coverage: have 0x%x, want 0x%x\n",
v->name, v->set_to_0 | v->set_to_1 |
reserved_0 | reserved_1, 0xffffffff);
err = true;
}
/* Don't try to change bits that can't be changed. */
if ((v->set_to_0 & (reserved_0 | changeable_bits)) != v->set_to_0) {
printk("%s: set to 0 (0x%x) can't be done\n", v->name,
v->set_to_0);
err = true;
}
if ((v->set_to_1 & (reserved_1 | changeable_bits)) != v->set_to_1) {
printk("%s: set to 1 (0x%x) can't be done\n",
v->name, v->set_to_1);
err = true;
}
/* If there's been any error at all, spill our guts and return. */
if (err) {
printk("%s: vmx_msr_high 0x%x, vmx_msr_low 0x%x, ",
v->name, vmx_msr_high, vmx_msr_low);
printk("set_to_1 0x%x,set_to_0 0x%x,reserved_1 0x%x",
v->set_to_1, v->set_to_0, reserved_1);
printk(" reserved_0 0x%x", reserved_0);
printk(" changeable_bits 0x%x\n", changeable_bits);
return false;
}
*result = v->set_to_1 | reserved_1;
printd("%s: check_vmxec_controls succeeds with result 0x%x\n",
v->name, *result);
return true;
}
/*
* We're trying to make this as readable as possible. Realistically, it will
* rarely if ever change, if the past is any guide.
*/
static const struct vmxec pbec = {
.name = "Pin Based Execution Controls",
.msr = MSR_IA32_VMX_PINBASED_CTLS,
.truemsr = MSR_IA32_VMX_TRUE_PINBASED_CTLS,
.set_to_1 = (PIN_BASED_EXT_INTR_MASK |
PIN_BASED_NMI_EXITING |
PIN_BASED_VIRTUAL_NMIS),
.set_to_0 = (PIN_BASED_VMX_PREEMPTION_TIMER |
PIN_BASED_POSTED_INTR),
};
static const struct vmxec cbec = {
.name = "CPU Based Execution Controls",
.msr = MSR_IA32_VMX_PROCBASED_CTLS,
.truemsr = MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
.set_to_1 = (CPU_BASED_HLT_EXITING |
CPU_BASED_INVLPG_EXITING |
CPU_BASED_MWAIT_EXITING |
CPU_BASED_RDPMC_EXITING |
CPU_BASED_CR8_LOAD_EXITING |
CPU_BASED_CR8_STORE_EXITING |
CPU_BASED_MOV_DR_EXITING |
CPU_BASED_UNCOND_IO_EXITING |
CPU_BASED_USE_MSR_BITMAPS |
CPU_BASED_MONITOR_EXITING |
CPU_BASED_ACTIVATE_SECONDARY_CONTROLS),
.set_to_0 = (CPU_BASED_VIRTUAL_INTR_PENDING |
CPU_BASED_USE_TSC_OFFSETING |
CPU_BASED_RDTSC_EXITING |
CPU_BASED_CR3_LOAD_EXITING |
CPU_BASED_CR3_STORE_EXITING |
CPU_BASED_TPR_SHADOW |
CPU_BASED_VIRTUAL_NMI_PENDING |
CPU_BASED_MONITOR_TRAP |
CPU_BASED_PAUSE_EXITING |
CPU_BASED_USE_IO_BITMAPS),
};
static const struct vmxec cb2ec = {
.name = "CPU Based 2nd Execution Controls",
.msr = MSR_IA32_VMX_PROCBASED_CTLS2,
.truemsr = MSR_IA32_VMX_PROCBASED_CTLS2,
.set_to_1 = (SECONDARY_EXEC_ENABLE_EPT |
SECONDARY_EXEC_RDTSCP |
SECONDARY_EXEC_WBINVD_EXITING),
.set_to_0 = (SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
SECONDARY_EXEC_DESCRIPTOR_EXITING |
SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
SECONDARY_EXEC_ENABLE_VPID |
SECONDARY_EXEC_UNRESTRICTED_GUEST |
SECONDARY_EXEC_APIC_REGISTER_VIRT |
SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
SECONDARY_EXEC_PAUSE_LOOP_EXITING |
SECONDARY_EXEC_RDRAND_EXITING |
SECONDARY_EXEC_ENABLE_INVPCID |
SECONDARY_EXEC_ENABLE_VMFUNC |
SECONDARY_EXEC_SHADOW_VMCS |
SECONDARY_EXEC_RDSEED_EXITING |
SECONDARY_EPT_VE |
SECONDARY_ENABLE_XSAV_RESTORE)
};
static const struct vmxec vmentry = {
.name = "VMENTRY controls",
.msr = MSR_IA32_VMX_ENTRY_CTLS,
.truemsr = MSR_IA32_VMX_TRUE_ENTRY_CTLS,
/* exact order from vmx.h; only the first two are enabled. */
.set_to_1 = (VM_ENTRY_LOAD_DEBUG_CONTROLS | /* can't set to 0 */
VM_ENTRY_IA32E_MODE),
.set_to_0 = (VM_ENTRY_SMM |
VM_ENTRY_DEACT_DUAL_MONITOR |
VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL |
VM_ENTRY_LOAD_IA32_PAT |
VM_ENTRY_LOAD_IA32_EFER),
};
static const struct vmxec vmexit = {
.name = "VMEXIT controls",
.msr = MSR_IA32_VMX_EXIT_CTLS,
.truemsr = MSR_IA32_VMX_TRUE_EXIT_CTLS,
.set_to_1 = (VM_EXIT_SAVE_DEBUG_CONTROLS | /* can't set to 0 */
VM_EXIT_HOST_ADDR_SPACE_SIZE), /* 64 bit */
.set_to_0 = (VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL |
VM_EXIT_ACK_INTR_ON_EXIT |
VM_EXIT_SAVE_IA32_PAT |
VM_EXIT_LOAD_IA32_PAT |
VM_EXIT_SAVE_IA32_EFER |
VM_EXIT_LOAD_IA32_EFER |
VM_EXIT_SAVE_VMX_PREEMPTION_TIMER),
};
static void setup_vmcs_config(void *p)
{
int *ret = p;
struct vmcs_config *vmcs_conf = &vmcs_config;
uint32_t vmx_msr_high;
uint64_t vmx_msr;
bool have_true_msrs = false;
bool ok;
*ret = -EIO;
vmx_msr = read_msr(MSR_IA32_VMX_BASIC);
vmx_msr_high = vmx_msr >> 32;
/*
* If bit 55 (VMX_BASIC_HAVE_TRUE_MSRS) is set, then we
* can go for the true MSRs. Else, we ask you to get a better CPU.
*/
if (vmx_msr & VMX_BASIC_TRUE_CTLS) {
have_true_msrs = true;
printd("Running with TRUE MSRs\n");
} else {
printk("Running with non-TRUE MSRs, this is old hardware\n");
}
/*
* Don't worry that one or more of these might fail and leave
* the VMCS in some kind of incomplete state. If one of these
* fails, the caller is going to discard the VMCS.
* It is written this way to ensure we get results of all tests and avoid
* BMAFR behavior.
*/
ok = check_vmxec_controls(&pbec, have_true_msrs,
&vmcs_conf->pin_based_exec_ctrl);
ok = check_vmxec_controls(&cbec, have_true_msrs,
&vmcs_conf->cpu_based_exec_ctrl) && ok;
ok = check_vmxec_controls(&cb2ec, have_true_msrs,
&vmcs_conf->cpu_based_2nd_exec_ctrl) && ok;
ok = check_vmxec_controls(&vmentry, have_true_msrs,
&vmcs_conf->vmentry_ctrl) && ok;
ok = check_vmxec_controls(&vmexit, have_true_msrs,
&vmcs_conf->vmexit_ctrl) && ok;
if (! ok) {
printk("vmxexec controls is no good.\n");
return;
}
/* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
if ((vmx_msr_high & 0x1fff) > PGSIZE) {
printk("vmx_msr_high & 0x1fff) is 0x%x, > PAGE_SIZE 0x%x\n",
vmx_msr_high & 0x1fff, PGSIZE);
return;
}
/* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
if (vmx_msr & VMX_BASIC_64) {
printk("VMX doesn't support 64 bit width!\n");
return;
}
if (((vmx_msr & VMX_BASIC_MEM_TYPE_MASK) >> VMX_BASIC_MEM_TYPE_SHIFT)
!= VMX_BASIC_MEM_TYPE_WB) {
printk("VMX doesn't support WB memory for VMCS accesses!\n");
return;
}
vmcs_conf->size = vmx_msr_high & 0x1fff;
vmcs_conf->order = LOG2_UP(nr_pages(vmcs_config.size));
vmcs_conf->revision_id = (uint32_t)vmx_msr;
/* Read in the caps for runtime checks. This MSR is only available if
* secondary controls and ept or vpid is on, which we check earlier */
rdmsr(MSR_IA32_VMX_EPT_VPID_CAP, vmx_capability.ept, vmx_capability.vpid);
*ret = 0;
}
static struct vmcs *__vmx_alloc_vmcs(int node)
{
struct vmcs *vmcs;
vmcs = get_cont_pages_node(node, vmcs_config.order, KMALLOC_WAIT);
if (!vmcs)
return 0;
memset(vmcs, 0, vmcs_config.size);
vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
printd("%d: set rev id %d\n", core_id(), vmcs->revision_id);
return vmcs;
}
/**
* vmx_alloc_vmcs - allocates a VMCS region
*
* NOTE: Assumes the new region will be used by the current CPU.
*
* Returns a valid VMCS region.
*/
static struct vmcs *vmx_alloc_vmcs(void)
{
return __vmx_alloc_vmcs(node_id());
}
/**
* vmx_free_vmcs - frees a VMCS region
*/
static void vmx_free_vmcs(struct vmcs *vmcs)
{
//free_pages((unsigned long)vmcs, vmcs_config.order);
}
/*
* Set up the vmcs's constant host-state fields, i.e., host-state fields that
* will not change in the lifetime of the guest.
* Note that host-state that does change is set elsewhere. E.g., host-state
* that is set differently for each CPU is set in vmx_vcpu_load(), not here.
*/
static void vmx_setup_constant_host_state(void)
{
uint32_t low32, high32;
unsigned long tmpl;
pseudodesc_t dt;
vmcs_writel(HOST_CR0, rcr0() & ~X86_CR0_TS); /* 22.2.3 */
vmcs_writel(HOST_CR4, rcr4()); /* 22.2.3, 22.2.5 */
vmcs_writel(HOST_CR3, rcr3()); /* 22.2.3 */
vmcs_write16(HOST_CS_SELECTOR, GD_KT); /* 22.2.4 */
vmcs_write16(HOST_DS_SELECTOR, GD_KD); /* 22.2.4 */
vmcs_write16(HOST_ES_SELECTOR, GD_KD); /* 22.2.4 */
vmcs_write16(HOST_SS_SELECTOR, GD_KD); /* 22.2.4 */
vmcs_write16(HOST_TR_SELECTOR, GD_TSS); /* 22.2.4 */
native_store_idt(&dt);
vmcs_writel(HOST_IDTR_BASE, dt.pd_base); /* 22.2.4 */
asm("mov $.Lkvm_vmx_return, %0" : "=r"(tmpl));
vmcs_writel(HOST_RIP, tmpl); /* 22.2.5 */
rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
rdmsr(MSR_EFER, low32, high32);
vmcs_write32(HOST_IA32_EFER, low32);
if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
rdmsr(MSR_IA32_CR_PAT, low32, high32);
vmcs_write64(HOST_IA32_PAT, low32 | ((uint64_t) high32 << 32));
}
vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
/* TODO: This (at least gs) is per cpu */
rdmsrl(MSR_FS_BASE, tmpl);
vmcs_writel(HOST_FS_BASE, tmpl); /* 22.2.4 */
rdmsrl(MSR_GS_BASE, tmpl);
vmcs_writel(HOST_GS_BASE, tmpl); /* 22.2.4 */
}
static inline uint16_t vmx_read_ldt(void)
{
uint16_t ldt;
asm("sldt %0" : "=g"(ldt));
return ldt;
}
static unsigned long segment_base(uint16_t selector)
{
pseudodesc_t *gdt = &currentcpu->host_gdt;
struct desc_struct *d;
unsigned long table_base;
unsigned long v;
if (!(selector & ~3)) {
return 0;
}
table_base = gdt->pd_base;
if (selector & 4) { /* from ldt */
uint16_t ldt_selector = vmx_read_ldt();
if (!(ldt_selector & ~3)) {
return 0;
}
table_base = segment_base(ldt_selector);
}
d = (struct desc_struct *)(table_base + (selector & ~7));
v = get_desc_base(d);
#ifdef CONFIG_X86_64
if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
#endif
return v;
}
static inline unsigned long vmx_read_tr_base(void)
{
uint16_t tr;
asm("str %0" : "=g"(tr));
return segment_base(tr);
}
static void __vmx_setup_cpu(void)
{
pseudodesc_t *gdt = &currentcpu->host_gdt;
unsigned long sysenter_esp;
unsigned long tmpl;
/*
* Linux uses per-cpu TSS and GDT, so set these when switching
* processors.
*/
vmcs_writel(HOST_TR_BASE, vmx_read_tr_base()); /* 22.2.4 */
vmcs_writel(HOST_GDTR_BASE, gdt->pd_base); /* 22.2.4 */
rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
rdmsrl(MSR_FS_BASE, tmpl);
vmcs_writel(HOST_FS_BASE, tmpl); /* 22.2.4 */
rdmsrl(MSR_GS_BASE, tmpl);
vmcs_writel(HOST_GS_BASE, tmpl); /* 22.2.4 */
}
/**
* vmx_get_cpu - called before using a cpu
* @vcpu: VCPU that will be loaded.
*
* Disables preemption. Call vmx_put_cpu() when finished.
*/
static void vmx_get_cpu(struct vmx_vcpu *vcpu)
{
int cur_cpu = core_id();
handler_wrapper_t *w;
if (currentcpu->local_vcpu)
panic("get_cpu: currentcpu->localvcpu was non-NULL");
if (currentcpu->local_vcpu != vcpu) {
currentcpu->local_vcpu = vcpu;
if (vcpu->cpu != cur_cpu) {
if (vcpu->cpu >= 0) {
panic("vcpu->cpu is not -1, it's %d\n", vcpu->cpu);
} else
vmcs_clear(vcpu->vmcs);
ept_sync_context(vcpu_get_eptp(vcpu));
vcpu->launched = 0;
vmcs_load(vcpu->vmcs);
__vmx_setup_cpu();
vcpu->cpu = cur_cpu;
} else {
vmcs_load(vcpu->vmcs);
}
}
}
/**
* vmx_put_cpu - called after using a cpu
* @vcpu: VCPU that was loaded.
*/
static void vmx_put_cpu(struct vmx_vcpu *vcpu)
{
if (core_id() != vcpu->cpu)
panic("%s: core_id() %d != vcpu->cpu %d\n",
__func__, core_id(), vcpu->cpu);
if (currentcpu->local_vcpu != vcpu)
panic("vmx_put_cpu: asked to clear something not ours");
ept_sync_context(vcpu_get_eptp(vcpu));
vmcs_clear(vcpu->vmcs);
vcpu->cpu = -1;
currentcpu->local_vcpu = NULL;
//put_cpu();
}
/**
* vmx_dump_cpu - prints the CPU state
* @vcpu: VCPU to print
*/
static void vmx_dump_cpu(struct vmx_vcpu *vcpu)
{
unsigned long flags;
vmx_get_cpu(vcpu);
vcpu->regs.tf_rip = vmcs_readl(GUEST_RIP);
vcpu->regs.tf_rsp = vmcs_readl(GUEST_RSP);
flags = vmcs_readl(GUEST_RFLAGS);
vmx_put_cpu(vcpu);
printk("--- Begin VCPU Dump ---\n");
printk("CPU %d VPID %d\n", vcpu->cpu, 0);
printk("RIP 0x%016lx RFLAGS 0x%08lx\n",
vcpu->regs.tf_rip, flags);
printk("RAX 0x%016lx RCX 0x%016lx\n",
vcpu->regs.tf_rax, vcpu->regs.tf_rcx);
printk("RDX 0x%016lx RBX 0x%016lx\n",
vcpu->regs.tf_rdx, vcpu->regs.tf_rbx);
printk("RSP 0x%016lx RBP 0x%016lx\n",
vcpu->regs.tf_rsp, vcpu->regs.tf_rbp);
printk("RSI 0x%016lx RDI 0x%016lx\n",
vcpu->regs.tf_rsi, vcpu->regs.tf_rdi);
printk("R8 0x%016lx R9 0x%016lx\n",
vcpu->regs.tf_r8, vcpu->regs.tf_r9);
printk("R10 0x%016lx R11 0x%016lx\n",
vcpu->regs.tf_r10, vcpu->regs.tf_r11);
printk("R12 0x%016lx R13 0x%016lx\n",
vcpu->regs.tf_r12, vcpu->regs.tf_r13);
printk("R14 0x%016lx R15 0x%016lx\n",
vcpu->regs.tf_r14, vcpu->regs.tf_r15);
printk("--- End VCPU Dump ---\n");
}
uint64_t construct_eptp(physaddr_t root_hpa)
{
uint64_t eptp;
/* set WB memory and 4 levels of walk. we checked these in ept_init */
eptp = VMX_EPT_MEM_TYPE_WB |
(VMX_EPT_GAW_4_LVL << VMX_EPT_GAW_EPTP_SHIFT);
if (cpu_has_vmx_ept_ad_bits())
eptp |= VMX_EPT_AD_ENABLE_BIT;
eptp |= (root_hpa & PAGE_MASK);
return eptp;
}
/**
* vmx_setup_initial_guest_state - configures the initial state of guest registers
*/
static void vmx_setup_initial_guest_state(void)
{
unsigned long tmpl;
unsigned long cr4 = X86_CR4_PAE | X86_CR4_VMXE | X86_CR4_OSXMMEXCPT |
X86_CR4_PGE | X86_CR4_OSFXSR;
uint32_t protected_mode = X86_CR0_PG | X86_CR0_PE;
#if 0
do we need it
if (boot_cpu_has(X86_FEATURE_PCID))
cr4 |= X86_CR4_PCIDE;
if (boot_cpu_has(X86_FEATURE_OSXSAVE))
cr4 |= X86_CR4_OSXSAVE;
#endif
/* we almost certainly have this */
/* we'll go sour if we don't. */
if (1) //boot_cpu_has(X86_FEATURE_FSGSBASE))
cr4 |= X86_CR4_RDWRGSFS;
/* configure control and data registers */
vmcs_writel(GUEST_CR0, protected_mode | X86_CR0_WP |
X86_CR0_MP | X86_CR0_ET | X86_CR0_NE);
vmcs_writel(CR0_READ_SHADOW, protected_mode | X86_CR0_WP |
X86_CR0_MP | X86_CR0_ET | X86_CR0_NE);
vmcs_writel(GUEST_CR3, rcr3());
vmcs_writel(GUEST_CR4, cr4);
vmcs_writel(CR4_READ_SHADOW, cr4);
vmcs_writel(GUEST_IA32_EFER, EFER_LME | EFER_LMA |
EFER_SCE | EFER_FFXSR);
vmcs_writel(GUEST_GDTR_BASE, 0);
vmcs_writel(GUEST_GDTR_LIMIT, 0);
vmcs_writel(GUEST_IDTR_BASE, 0);
vmcs_writel(GUEST_IDTR_LIMIT, 0);
vmcs_writel(GUEST_RIP, 0xdeadbeef);
vmcs_writel(GUEST_RSP, 0xdeadbeef);
vmcs_writel(GUEST_RFLAGS, 0x02);
vmcs_writel(GUEST_DR7, 0);
/* guest segment bases */
vmcs_writel(GUEST_CS_BASE, 0);
vmcs_writel(GUEST_DS_BASE, 0);
vmcs_writel(GUEST_ES_BASE, 0);
vmcs_writel(GUEST_GS_BASE, 0);
vmcs_writel(GUEST_SS_BASE, 0);
rdmsrl(MSR_FS_BASE, tmpl);
vmcs_writel(GUEST_FS_BASE, tmpl);
/* guest segment access rights */
vmcs_writel(GUEST_CS_AR_BYTES, 0xA09B);
vmcs_writel(GUEST_DS_AR_BYTES, 0xA093);
vmcs_writel(GUEST_ES_AR_BYTES, 0xA093);
vmcs_writel(GUEST_FS_AR_BYTES, 0xA093);
vmcs_writel(GUEST_GS_AR_BYTES, 0xA093);
vmcs_writel(GUEST_SS_AR_BYTES, 0xA093);
/* guest segment limits */
vmcs_write32(GUEST_CS_LIMIT, 0xFFFFFFFF);
vmcs_write32(GUEST_DS_LIMIT, 0xFFFFFFFF);
vmcs_write32(GUEST_ES_LIMIT, 0xFFFFFFFF);
vmcs_write32(GUEST_FS_LIMIT, 0xFFFFFFFF);
vmcs_write32(GUEST_GS_LIMIT, 0xFFFFFFFF);
vmcs_write32(GUEST_SS_LIMIT, 0xFFFFFFFF);
/* configure segment selectors */
vmcs_write16(GUEST_CS_SELECTOR, 0);
vmcs_write16(GUEST_DS_SELECTOR, 0);
vmcs_write16(GUEST_ES_SELECTOR, 0);
vmcs_write16(GUEST_FS_SELECTOR, 0);
vmcs_write16(GUEST_GS_SELECTOR, 0);
vmcs_write16(GUEST_SS_SELECTOR, 0);
vmcs_write16(GUEST_TR_SELECTOR, 0);
/* guest LDTR */
vmcs_write16(GUEST_LDTR_SELECTOR, 0);
vmcs_writel(GUEST_LDTR_AR_BYTES, 0x0082);
vmcs_writel(GUEST_LDTR_BASE, 0);
vmcs_writel(GUEST_LDTR_LIMIT, 0);
/* guest TSS */
vmcs_writel(GUEST_TR_BASE, 0);
vmcs_writel(GUEST_TR_AR_BYTES, 0x0080 | AR_TYPE_BUSY_64_TSS);
vmcs_writel(GUEST_TR_LIMIT, 0xff);
/* initialize sysenter */
vmcs_write32(GUEST_SYSENTER_CS, 0);
vmcs_writel(GUEST_SYSENTER_ESP, 0);
vmcs_writel(GUEST_SYSENTER_EIP, 0);
/* other random initialization */
vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
}
static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, uint32_t msr)
{
int f = sizeof(unsigned long);
/*
* See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
* have the write-low and read-high bitmap offsets the wrong way round.
* We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
*/
if (msr <= 0x1fff) {
__clear_bit(msr, msr_bitmap + 0x000 / f); /* read-low */
__clear_bit(msr, msr_bitmap + 0x800 / f); /* write-low */
} else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
msr &= 0x1fff;
__clear_bit(msr, msr_bitmap + 0x400 / f); /* read-high */
__clear_bit(msr, msr_bitmap + 0xc00 / f); /* write-high */
}
}
static void setup_msr(struct vmx_vcpu *vcpu)
{
int set[] = { MSR_LSTAR };
struct vmx_msr_entry *e;
int sz = sizeof(set) / sizeof(*set);
int i;
//BUILD_BUG_ON(sz > NR_AUTOLOAD_MSRS);
vcpu->msr_autoload.nr = sz;
/* XXX enable only MSRs in set */
vmcs_write64(MSR_BITMAP, PADDR(msr_bitmap));
vmcs_write32(VM_EXIT_MSR_STORE_COUNT, vcpu->msr_autoload.nr);
vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vcpu->msr_autoload.nr);
vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vcpu->msr_autoload.nr);
vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, PADDR(vcpu->msr_autoload.host));
vmcs_write64(VM_EXIT_MSR_STORE_ADDR, PADDR(vcpu->msr_autoload.guest));
vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, PADDR(vcpu->msr_autoload.guest));
for (i = 0; i < sz; i++) {
uint64_t val;
e = &vcpu->msr_autoload.host[i];
e->index = set[i];
__vmx_disable_intercept_for_msr(msr_bitmap, e->index);
rdmsrl(e->index, val);
e->value = val;
e = &vcpu->msr_autoload.guest[i];
e->index = set[i];
e->value = 0xDEADBEEF;
}
}
/**
* vmx_setup_vmcs - configures the vmcs with starting parameters
*/
static void vmx_setup_vmcs(struct vmx_vcpu *vcpu)
{
vmcs_write16(VIRTUAL_PROCESSOR_ID, 0);
vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
/* Control */
vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
vmcs_config.pin_based_exec_ctrl);
vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
vmcs_config.cpu_based_exec_ctrl);
if (cpu_has_secondary_exec_ctrls()) {
vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
vmcs_config.cpu_based_2nd_exec_ctrl);
}
vmcs_write64(EPT_POINTER, vcpu_get_eptp(vcpu));
vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
setup_msr(vcpu);
#if 0
if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
uint32_t msr_low, msr_high;
uint64_t host_pat;
rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
host_pat = msr_low | ((uint64_t) msr_high << 32);
/* Write the default value follow host pat */
vmcs_write64(GUEST_IA32_PAT, host_pat);
/* Keep arch.pat sync with GUEST_IA32_PAT */
vmx->vcpu.arch.pat = host_pat;
}
#endif
#if 0
for (int i = 0; i < NR_VMX_MSR; ++i) {
uint32_t index = vmx_msr_index[i];
uint32_t data_low, data_high;
int j = vmx->nmsrs;
// TODO we should have read/writemsr_safe
#if 0
if (rdmsr_safe(index, &data_low, &data_high) < 0)
continue;
if (wrmsr_safe(index, data_low, data_high) < 0)
continue;
#endif
vmx->guest_msrs[j].index = i;
vmx->guest_msrs[j].data = 0;
vmx->guest_msrs[j].mask = -1ull;
++vmx->nmsrs;
}
#endif
vmcs_config.vmentry_ctrl |= VM_ENTRY_IA32E_MODE;
vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
vmcs_writel(CR0_GUEST_HOST_MASK, ~0ul);
vmcs_writel(CR4_GUEST_HOST_MASK, ~0ul);
//kvm_write_tsc(&vmx->vcpu, 0);
vmcs_writel(TSC_OFFSET, 0);
vmx_setup_constant_host_state();
}
/**
* vmx_create_vcpu - allocates and initializes a new virtual cpu
*
* Returns: A new VCPU structure
*/
struct vmx_vcpu *vmx_create_vcpu(struct proc *p)
{
struct vmx_vcpu *vcpu = kmalloc(sizeof(struct vmx_vcpu), KMALLOC_WAIT);
if (!vcpu) {
return NULL;
}
memset(vcpu, 0, sizeof(*vcpu));
vcpu->proc = p; /* uncounted (weak) reference */
vcpu->vmcs = vmx_alloc_vmcs();
printd("%d: vcpu->vmcs is %p\n", core_id(), vcpu->vmcs);
if (!vcpu->vmcs)
goto fail_vmcs;
vcpu->cpu = -1;
vmx_get_cpu(vcpu);
vmx_setup_vmcs(vcpu);
vmx_setup_initial_guest_state();
vmx_put_cpu(vcpu);
return vcpu;
fail_vmcs:
kfree(vcpu);
return NULL;
}
/**
* vmx_destroy_vcpu - destroys and frees an existing virtual cpu
* @vcpu: the VCPU to destroy
*/
void vmx_destroy_vcpu(struct vmx_vcpu *vcpu)
{
vmx_free_vmcs(vcpu->vmcs);
kfree(vcpu);
}
/**
* vmx_current_vcpu - returns a pointer to the vcpu for the current task.
*
* In the contexts where this is used the vcpu pointer should never be NULL.
*/
static inline struct vmx_vcpu *vmx_current_vcpu(void)
{
struct vmx_vcpu *vcpu = currentcpu->local_vcpu;
if (!vcpu)
panic("Core has no vcpu!");
return vcpu;
}
/**
* vmx_run_vcpu - launches the CPU into non-root mode
* We ONLY support 64-bit guests.
* @vcpu: the vmx instance to launch
*/
static int vmx_run_vcpu(struct vmx_vcpu *vcpu)
{
asm(
/* Store host registers */
"push %%rdx; push %%rbp;"
"push %%rcx \n\t" /* placeholder for guest rcx */
"push %%rcx \n\t"
"cmp %%rsp, %c[host_rsp](%0) \n\t"
"je 1f \n\t"
"mov %%rsp, %c[host_rsp](%0) \n\t"
ASM_VMX_VMWRITE_RSP_RDX "\n\t"
"1: \n\t"
/* Reload cr2 if changed */
"mov %c[cr2](%0), %%rax \n\t"
"mov %%cr2, %%rdx \n\t"
"cmp %%rax, %%rdx \n\t"
"je 2f \n\t"
"mov %%rax, %%cr2 \n\t"
"2: \n\t"
/* Check if vmlaunch of vmresume is needed */
"cmpl $0, %c[launched](%0) \n\t"
/* Load guest registers. Don't clobber flags. */
"mov %c[rax](%0), %%rax \n\t"
"mov %c[rbx](%0), %%rbx \n\t"
"mov %c[rdx](%0), %%rdx \n\t"
"mov %c[rsi](%0), %%rsi \n\t"
"mov %c[rdi](%0), %%rdi \n\t"
"mov %c[rbp](%0), %%rbp \n\t"
"mov %c[r8](%0), %%r8 \n\t"
"mov %c[r9](%0), %%r9 \n\t"
"mov %c[r10](%0), %%r10 \n\t"
"mov %c[r11](%0), %%r11 \n\t"
"mov %c[r12](%0), %%r12 \n\t"
"mov %c[r13](%0), %%r13 \n\t"
"mov %c[r14](%0), %%r14 \n\t"
"mov %c[r15](%0), %%r15 \n\t"
"mov %c[rcx](%0), %%rcx \n\t" /* kills %0 (ecx) */
/* Enter guest mode */
"jne .Llaunched \n\t"
ASM_VMX_VMLAUNCH "\n\t"
"jmp .Lkvm_vmx_return \n\t"
".Llaunched: " ASM_VMX_VMRESUME "\n\t"
".Lkvm_vmx_return: "
/* Save guest registers, load host registers, keep flags */
"mov %0, %c[wordsize](%%rsp) \n\t"
"pop %0 \n\t"
"mov %%rax, %c[rax](%0) \n\t"
"mov %%rbx, %c[rbx](%0) \n\t"
"popq %c[rcx](%0) \n\t"
"mov %%rdx, %c[rdx](%0) \n\t"
"mov %%rsi, %c[rsi](%0) \n\t"
"mov %%rdi, %c[rdi](%0) \n\t"
"mov %%rbp, %c[rbp](%0) \n\t"
"mov %%r8, %c[r8](%0) \n\t"
"mov %%r9, %c[r9](%0) \n\t"
"mov %%r10, %c[r10](%0) \n\t"
"mov %%r11, %c[r11](%0) \n\t"
"mov %%r12, %c[r12](%0) \n\t"
"mov %%r13, %c[r13](%0) \n\t"
"mov %%r14, %c[r14](%0) \n\t"
"mov %%r15, %c[r15](%0) \n\t"
"mov %%rax, %%r10 \n\t"
"mov %%rdx, %%r11 \n\t"
"mov %%cr2, %%rax \n\t"
"mov %%rax, %c[cr2](%0) \n\t"
"pop %%rbp; pop %%rdx \n\t"
"setbe %c[fail](%0) \n\t"
"mov $" STRINGIFY(GD_UD) ", %%rax \n\t"
"mov %%rax, %%ds \n\t"
"mov %%rax, %%es \n\t"
: : "c"(vcpu), "d"((unsigned long)HOST_RSP),
[launched]"i"(offsetof(struct vmx_vcpu, launched)),
[fail]"i"(offsetof(struct vmx_vcpu, fail)),
[host_rsp]"i"(offsetof(struct vmx_vcpu, host_rsp)),
[rax]"i"(offsetof(struct vmx_vcpu, regs.tf_rax)),
[rbx]"i"(offsetof(struct vmx_vcpu, regs.tf_rbx)),
[rcx]"i"(offsetof(struct vmx_vcpu, regs.tf_rcx)),
[rdx]"i"(offsetof(struct vmx_vcpu, regs.tf_rdx)),
[rsi]"i"(offsetof(struct vmx_vcpu, regs.tf_rsi)),
[rdi]"i"(offsetof(struct vmx_vcpu, regs.tf_rdi)),
[rbp]"i"(offsetof(struct vmx_vcpu, regs.tf_rbp)),
[r8]"i"(offsetof(struct vmx_vcpu, regs.tf_r8)),
[r9]"i"(offsetof(struct vmx_vcpu, regs.tf_r9)),
[r10]"i"(offsetof(struct vmx_vcpu, regs.tf_r10)),
[r11]"i"(offsetof(struct vmx_vcpu, regs.tf_r11)),
[r12]"i"(offsetof(struct vmx_vcpu, regs.tf_r12)),
[r13]"i"(offsetof(struct vmx_vcpu, regs.tf_r13)),
[r14]"i"(offsetof(struct vmx_vcpu, regs.tf_r14)),
[r15]"i"(offsetof(struct vmx_vcpu, regs.tf_r15)),
[cr2]"i"(offsetof(struct vmx_vcpu, cr2)),
[wordsize]"i"(sizeof(unsigned long))
: "cc", "memory"
, "rax", "rbx", "rdi", "rsi"
, "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
);
vcpu->regs.tf_rip = vmcs_readl(GUEST_RIP);
vcpu->regs.tf_rsp = vmcs_readl(GUEST_RSP);
printk("RETURN. ip %016lx sp %016lx cr2 %016lx\n",
vcpu->regs.tf_rip, vcpu->regs.tf_rsp, vcpu->cr2);
/* FIXME: do we need to set up other flags? */
vcpu->regs.tf_rflags = (vmcs_readl(GUEST_RFLAGS) & 0xFF) |
X86_EFLAGS_IF | 0x2;
vcpu->regs.tf_cs = GD_UT;
vcpu->regs.tf_ss = GD_UD;
vcpu->launched = 1;
if (vcpu->fail) {
printk("failure detected (err %x)\n",
vmcs_read32(VM_INSTRUCTION_ERROR));
return VMX_EXIT_REASONS_FAILED_VMENTRY;
}
return vmcs_read32(VM_EXIT_REASON);
#if 0
vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
vmx_complete_atomic_exit(vmx);
vmx_recover_nmi_blocking(vmx);
vmx_complete_interrupts(vmx);
#endif
}
static void vmx_step_instruction(void)
{
vmcs_writel(GUEST_RIP, vmcs_readl(GUEST_RIP) +
vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
}
static int vmx_handle_ept_violation(struct vmx_vcpu *vcpu)
{
unsigned long gva, gpa;
int exit_qual, ret = -1;
page_t *page;
vmx_get_cpu(vcpu);
exit_qual = vmcs_read32(EXIT_QUALIFICATION);
gva = vmcs_readl(GUEST_LINEAR_ADDRESS);
gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
vmx_put_cpu(vcpu);
int prot = 0;
prot |= exit_qual & VMX_EPT_FAULT_READ ? PROT_READ : 0;
prot |= exit_qual & VMX_EPT_FAULT_WRITE ? PROT_WRITE : 0;
prot |= exit_qual & VMX_EPT_FAULT_INS ? PROT_EXEC : 0;
ret = handle_page_fault(current, gpa, prot);
if (ret) {
printk("EPT page fault failure GPA: %p, GVA: %p\n", gpa, gva);
vmx_dump_cpu(vcpu);
}
return ret;
}
static void vmx_handle_cpuid(struct vmx_vcpu *vcpu)
{
unsigned int eax, ebx, ecx, edx;
eax = vcpu->regs.tf_rax;
ecx = vcpu->regs.tf_rcx;
cpuid(0, 2, &eax, &ebx, &ecx, &edx);
vcpu->regs.tf_rax = eax;
vcpu->regs.tf_rbx = ebx;
vcpu->regs.tf_rcx = ecx;
vcpu->regs.tf_rdx = edx;
}
static int vmx_handle_nmi_exception(struct vmx_vcpu *vcpu)
{
uint32_t intr_info;
vmx_get_cpu(vcpu);
intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
vmx_put_cpu(vcpu);
printk("vmx (vcpu %p): got an exception\n", vcpu);
printk("vmx (vcpu %p): pid %d\n", vcpu, vcpu->proc->pid);
if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR) {
return 0;
}
printk("unhandled nmi, intr_info %x\n", intr_info);
return -EIO;
}
static void noop(void) {
__asm__ __volatile__ ("1: jmp 1b");
}
static void fail(void) {
__asm__ __volatile__ ("movq $0xdeadbeef, %rbx; movq 0, %rax");
}
static unsigned long stack[512];
/**
* vmx_launch - the main loop for a VMX Dune process
* @conf: the launch configuration
*/
int vmx_launch(uint64_t rip, uint64_t rsp, uint64_t cr3)
{
int ret;
struct vmx_vcpu *vcpu;
int i = 0;
int errors = 0;
if (rip < 4096 ) {
// testing.
switch(rip) {
default:
rip = (uint64_t)noop + 4;
break;
case 1:
rip = (uint64_t)fail + 4;
break;
}
}
if (cr3 == 0) {
cr3 = rcr3();
}
/* sanity checking. -- later
ret = ept_check_page(ept, rip);
if (ret) {
printk("0x%x is not mapped in the ept!\n", rip);
errors++;
}
ret = ept_check_page(ept, rsp);
if (ret) {
printk("0x%x is not mapped in the ept!\n", rsp);
errors++;
}
*/
if (errors) {
return -EINVAL;
}
printk("RUNNING: %s: rip %p rsp %p cr3 %p \n",
__func__, rip, rsp, cr3);
/* TODO: dirty hack til we have VMM contexts */
vcpu = current->vmm.guest_pcores[0];
if (!vcpu) {
printk("Failed to get a CPU!\n");
return -ENOMEM;
}
vmx_get_cpu(vcpu);
vmcs_writel(GUEST_RIP, rip);
vmcs_writel(GUEST_RSP, rsp);
vmcs_writel(GUEST_CR3, cr3);
vmx_put_cpu(vcpu);
vcpu->ret_code = -1;
while (1) {
vmx_get_cpu(vcpu);
// TODO: manage the fpu when we restart.
// TODO: see if we need to exit before we go much further.
disable_irq();
ret = vmx_run_vcpu(vcpu);
enable_irq();
vmx_put_cpu(vcpu);
if (ret == EXIT_REASON_VMCALL) {
vcpu->shutdown = SHUTDOWN_UNHANDLED_EXIT_REASON;
printk("system call! WTF\n");
} else if (ret == EXIT_REASON_CPUID)
vmx_handle_cpuid(vcpu);
else if (ret == EXIT_REASON_EPT_VIOLATION) {
if (vmx_handle_ept_violation(vcpu))
vcpu->shutdown = SHUTDOWN_EPT_VIOLATION;
} else if (ret == EXIT_REASON_EXCEPTION_NMI) {
if (vmx_handle_nmi_exception(vcpu))
vcpu->shutdown = SHUTDOWN_NMI_EXCEPTION;
} else if (ret == EXIT_REASON_EXTERNAL_INTERRUPT) {
printk("External interrupt\n");
} else {
printk("unhandled exit: reason 0x%x, exit qualification 0x%x\n",
ret, vmcs_read32(EXIT_QUALIFICATION));
vmx_dump_cpu(vcpu);
vcpu->shutdown = SHUTDOWN_UNHANDLED_EXIT_REASON;
}
/* TODO: we can't just return and relaunch the VMCS, in case we blocked.
* similar to how proc_restartcore/smp_idle only restart the pcpui
* cur_ctx, we need to do the same, via the VMCS resume business. */
if (vcpu->shutdown)
break;
}
printk("RETURN. ip %016lx sp %016lx\n",
vcpu->regs.tf_rip, vcpu->regs.tf_rsp);
/*
* Return both the reason for the shutdown and a status value.
* The exit() and exit_group() system calls only need 8 bits for
* the status but we allow 16 bits in case we might want to
* return more information for one of the other shutdown reasons.
*/
ret = (vcpu->shutdown << 16) | (vcpu->ret_code & 0xffff);
return ret;
}
/**
* __vmx_enable - low-level enable of VMX mode on the current CPU
* @vmxon_buf: an opaque buffer for use as the VMXON region
*/
static int __vmx_enable(struct vmcs *vmxon_buf)
{
uint64_t phys_addr = PADDR(vmxon_buf);
uint64_t old, test_bits;
if (rcr4() & X86_CR4_VMXE) {
panic("Should never have this happen");
return -EBUSY;
}
rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
test_bits = FEATURE_CONTROL_LOCKED;
test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
if (0) // tboot_enabled())
test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
if ((old & test_bits) != test_bits) {
/* If it's locked, then trying to set it will cause a GPF.
* No Dune for you!
*/
if (old & FEATURE_CONTROL_LOCKED) {
printk("Dune: MSR_IA32_FEATURE_CONTROL is locked!\n");
return -1;
}
/* enable and lock */
write_msr(MSR_IA32_FEATURE_CONTROL, old | test_bits);
}
lcr4(rcr4() | X86_CR4_VMXE);
__vmxon(phys_addr);
vpid_sync_vcpu_global(); /* good idea, even if we aren't using vpids */
ept_sync_global();
return 0;
}
/**
* vmx_enable - enables VMX mode on the current CPU
* @unused: not used (required for on_each_cpu())
*
* Sets up necessary state for enable (e.g. a scratchpad for VMXON.)
*/
static void vmx_enable(void)
{
struct vmcs *vmxon_buf = currentcpu->vmxarea;
int ret;
ret = __vmx_enable(vmxon_buf);
if (ret)
goto failed;
currentcpu->vmx_enabled = 1;
// TODO: do we need this?
store_gdt(&currentcpu->host_gdt);
printk("VMX enabled on CPU %d\n", core_id());
return;
failed:
printk("Failed to enable VMX on core %d, err = %d\n", core_id(), ret);
}
/**
* vmx_disable - disables VMX mode on the current CPU
*/
static void vmx_disable(void *unused)
{
if (currentcpu->vmx_enabled) {
__vmxoff();
lcr4(rcr4() & ~X86_CR4_VMXE);
currentcpu->vmx_enabled = 0;
}
}
/* Probe the cpus to see which ones can do vmx.
* Return -errno if it fails, and 1 if it succeeds.
*/
static bool probe_cpu_vmx(void)
{
/* The best way to test this code is:
* wrmsr -p <cpu> 0x3a 1
* This will lock vmx off; then modprobe dune.
* Frequently, however, systems have all 0x3a registers set to 5,
* meaning testing is impossible, as vmx can not be disabled.
* We have to simulate it being unavailable in most cases.
* The 'test' variable provides an easy way to simulate
* unavailability of vmx on some, none, or all cpus.
*/
if (!cpu_has_vmx()) {
printk("Machine does not support VT-x\n");
return FALSE;
} else {
printk("Machine supports VT-x\n");
return TRUE;
}
}
static void setup_vmxarea(void)
{
struct vmcs *vmxon_buf;
printd("Set up vmxarea for cpu %d\n", core_id());
vmxon_buf = __vmx_alloc_vmcs(node_id());
if (!vmxon_buf) {
printk("setup_vmxarea failed on node %d\n", core_id());
return;
}
currentcpu->vmxarea = vmxon_buf;
}
static int ept_init(void)
{
if (!cpu_has_vmx_ept()) {
printk("VMX doesn't support EPT!\n");
return -1;
}
if (!cpu_has_vmx_eptp_writeback()) {
printk("VMX EPT doesn't support WB memory!\n");
return -1;
}
if (!cpu_has_vmx_ept_4levels()) {
printk("VMX EPT doesn't support 4 level walks!\n");
return -1;
}
switch (arch_max_jumbo_page_shift()) {
case PML3_SHIFT:
if (!cpu_has_vmx_ept_1g_page()) {
printk("VMX EPT doesn't support 1 GB pages!\n");
return -1;
}
break;
case PML2_SHIFT:
if (!cpu_has_vmx_ept_2m_page()) {
printk("VMX EPT doesn't support 2 MB pages!\n");
return -1;
}
break;
default:
printk("Unexpected jumbo page size %d\n",
arch_max_jumbo_page_shift());
return -1;
}
if (!cpu_has_vmx_ept_ad_bits()) {
printk("VMX EPT doesn't support accessed/dirty!\n");
x86_ept_pte_fix_ups |= EPTE_A | EPTE_D;
}
if (!cpu_has_vmx_invept() || !cpu_has_vmx_invept_global()) {
printk("VMX EPT can't invalidate PTEs/TLBs!\n");
return -1;
}
return 0;
}
/**
* vmx_init sets up physical core data areas that are required to run a vm at all.
* These data areas are not connected to a specific user process in any way. Instead,
* they are in some sense externalizing what would other wise be a very large ball of
* state that would be inside the CPU.
*/
int intel_vmm_init(void)
{
int r, cpu, ret;
if (! probe_cpu_vmx()) {
return -EOPNOTSUPP;
}
setup_vmcs_config(&ret);
if (ret) {
printk("setup_vmcs_config failed: %d\n", ret);
return ret;
}
msr_bitmap = (unsigned long *)kpage_zalloc_addr();
if (!msr_bitmap) {
printk("Could not allocate msr_bitmap\n");
return -ENOMEM;
}
/* FIXME: do we need APIC virtualization (flexpriority?) */
memset(msr_bitmap, 0xff, PAGE_SIZE);
__vmx_disable_intercept_for_msr(msr_bitmap, MSR_FS_BASE);
__vmx_disable_intercept_for_msr(msr_bitmap, MSR_GS_BASE);
if ((ret = ept_init())) {
printk("EPT init failed, %d\n", ret);
return ret;
}
printk("VMX setup succeeded\n");
return 0;
}
int intel_vmm_pcpu_init(void)
{
setup_vmxarea();
vmx_enable();
return 0;
}