| /* Copyright (c) 2010 The Regents of the University of California | 
 |  * Barret Rhoden <brho@cs.berkeley.edu> | 
 |  * See LICENSE for details. | 
 |  * | 
 |  * Ext2, VFS required functions, internal functions, life, the universe, and | 
 |  * everything! */ | 
 |  | 
 | #include <vfs.h> | 
 | #include <ext2fs.h> | 
 | #include <blockdev.h> | 
 | #include <kmalloc.h> | 
 | #include <assert.h> | 
 | #include <kref.h> | 
 | #include <endian.h> | 
 | #include <error.h> | 
 | #include <pmap.h> | 
 | #include <bitmask.h> | 
 |  | 
 | /* These structs are declared again and initialized farther down */ | 
 | struct page_map_operations ext2_pm_op; | 
 | struct super_operations ext2_s_op; | 
 | struct inode_operations ext2_i_op; | 
 | struct dentry_operations ext2_d_op; | 
 | struct file_operations ext2_f_op_file; | 
 | struct file_operations ext2_f_op_dir; | 
 | struct file_operations ext2_f_op_sym; | 
 |  | 
 | /* EXT2 Internal Functions */ | 
 |  | 
 | /* Useful helper functions. */ | 
 |  | 
 | /* Returns the block group ID of the BG containing the inode.  BGs start with 0, | 
 |  * inodes are indexed starting at 1. */ | 
 | static struct ext2_block_group *ext2_inode2bg(struct inode *inode) | 
 | { | 
 | 	struct ext2_sb_info *e2sbi = (struct ext2_sb_info*)inode->i_sb->s_fs_info; | 
 | 	unsigned int bg_num = (inode->i_ino - 1) / | 
 | 	                      le32_to_cpu(e2sbi->e2sb->s_inodes_per_group); | 
 | 	return &e2sbi->e2bg[bg_num]; | 
 | } | 
 |  | 
 | /* This returns the inode's 0-index within a block group */ | 
 | static unsigned int ext2_inode2bgidx(struct inode *inode) | 
 | { | 
 | 	struct ext2_sb_info *e2sbi = (struct ext2_sb_info*)inode->i_sb->s_fs_info; | 
 | 	return (inode->i_ino - 1) % le32_to_cpu(e2sbi->e2sb->s_inodes_per_group); | 
 | } | 
 |  | 
 | /* Returns the inode number given a 0-index of an inode within a block group */ | 
 | static unsigned long ext2_bgidx2ino(struct super_block *sb, | 
 |                                     struct ext2_block_group *bg, | 
 |                                     unsigned int ino_idx) | 
 | { | 
 | 	struct ext2_sb_info *e2sbi = (struct ext2_sb_info*)sb->s_fs_info; | 
 | 	struct ext2_sb *e2sb = e2sbi->e2sb; | 
 | 	struct ext2_block_group *e2bg = e2sbi->e2bg; | 
 | 	return (bg - e2bg) * le32_to_cpu(e2sb->s_inodes_per_group) + ino_idx + 1; | 
 | } | 
 |  | 
 | /* Returns an uncounted reference to the BG in the BG table, which is pinned, | 
 |  * hanging off the sb.  Note, the BGs cover the blocks starting from the first | 
 |  * data block, not from 0.  So if the FDB is 1, BG 0 covers 1 through 1024, and | 
 |  * not 0 through 1023. */ | 
 | static struct ext2_block_group *ext2_block2bg(struct super_block *sb, | 
 |                                               uint32_t blk_num) | 
 | { | 
 | 	struct ext2_sb_info *e2sbi = (struct ext2_sb_info*)sb->s_fs_info; | 
 | 	unsigned int bg_num; | 
 | 	bg_num = (blk_num - le32_to_cpu(e2sbi->e2sb->s_first_data_block)) / | 
 | 	         le32_to_cpu(e2sbi->e2sb->s_blocks_per_group); | 
 | 	return &e2sbi->e2bg[bg_num]; | 
 | } | 
 |  | 
 | /* This returns the block's 0-index within a block group.  Note all blocks are | 
 |  * offset by FDB when dealing with BG membership. */ | 
 | static unsigned int ext2_block2bgidx(struct super_block *sb, uint32_t blk_num) | 
 | { | 
 | 	struct ext2_sb_info *e2sbi = (struct ext2_sb_info*)sb->s_fs_info; | 
 | 	return (blk_num - le32_to_cpu(e2sbi->e2sb->s_first_data_block)) % | 
 | 	       le32_to_cpu(e2sbi->e2sb->s_blocks_per_group); | 
 | } | 
 |  | 
 | /* Returns the FS block for the given BG's idx block */ | 
 | static uint32_t ext2_bgidx2block(struct super_block *sb, | 
 |                                  struct ext2_block_group *bg, | 
 |                                  unsigned int blk_idx) | 
 | { | 
 | 	struct ext2_sb_info *e2sbi = (struct ext2_sb_info*)sb->s_fs_info; | 
 | 	struct ext2_sb *e2sb = e2sbi->e2sb; | 
 | 	struct ext2_block_group *e2bg = e2sbi->e2bg; | 
 | 	return (bg - e2bg) * le32_to_cpu(e2sb->s_blocks_per_group) + blk_idx + | 
 | 	       le32_to_cpu(e2sb->s_first_data_block); | 
 | } | 
 |  | 
 | /* Slabs for ext2 specific info chunks */ | 
 | struct kmem_cache *ext2_i_kcache; | 
 |  | 
 | /* One-time init for all ext2 instances */ | 
 | void ext2_init(void) | 
 | { | 
 | 	ext2_i_kcache = kmem_cache_create("ext2_i_info", sizeof(struct ext2_i_info), | 
 | 	                                  __alignof__(struct ext2_i_info), 0, 0, 0); | 
 | } | 
 |  | 
 | /* Block management */ | 
 |  | 
 | /* TODO: pull these metablock functions out of ext2 */ | 
 | /* Makes sure the FS block of metadata is in memory.  This returns a pointer to | 
 |  * the beginning of the requested block.  Release it with put_metablock(). | 
 |  * Internally, the kreffing is done on the page. */ | 
 | void *__ext2_get_metablock(struct block_device *bdev, unsigned long blk_num, | 
 |                            unsigned int blk_sz) | 
 | { | 
 | 	return bdev_get_buffer(bdev, blk_num, blk_sz)->bh_buffer; | 
 | } | 
 |  | 
 | /* Convenience wrapper */ | 
 | void *ext2_get_metablock(struct super_block *sb, unsigned long block_num) | 
 | { | 
 | 	return __ext2_get_metablock(sb->s_bdev, block_num, sb->s_blocksize); | 
 | } | 
 |  | 
 | /* Helper to figure out the BH for any address within it's buffer */ | 
 | static struct buffer_head *ext2_my_bh(struct super_block *sb, void *addr) | 
 | { | 
 | 	struct page *page = kva2page(addr); | 
 | 	struct buffer_head *bh = (struct buffer_head*)page->pg_private; | 
 | 	/* This case is for when we try do decref a non-BH'd 'metablock'.  It's tied | 
 | 	 * to e2ii->i_block[]. */ | 
 | 	if (!bh) | 
 | 		return 0; | 
 | 	void *my_buf = (void*)ROUNDDOWN((uintptr_t)addr, sb->s_blocksize); | 
 | 	while (bh) { | 
 | 		if (bh->bh_buffer == my_buf) | 
 | 			break; | 
 | 		bh = bh->bh_next; | 
 | 	} | 
 | 	assert(bh && bh->bh_buffer == my_buf); | 
 | 	return bh; | 
 | } | 
 |  | 
 | /* Decrefs the buffer from get_metablock().  Call this when you no longer | 
 |  * reference your metadata block/buffer.  Yes, we could just decref the page, | 
 |  * but this will work if we end up changing how bdev_put_buffer() works. */ | 
 | void ext2_put_metablock(struct super_block *sb, void *buffer) | 
 | { | 
 | 	struct buffer_head *bh = ext2_my_bh(sb, buffer); | 
 | 	if (bh) | 
 | 		bdev_put_buffer(bh); | 
 | } | 
 |  | 
 | /* Will dirty the block/BH/page for the given metadata block/buffer. */ | 
 | void ext2_dirty_metablock(struct super_block *sb, void *buffer) | 
 | { | 
 | 	struct buffer_head *bh = ext2_my_bh(sb, buffer); | 
 | 	if (bh) | 
 | 		bdev_dirty_buffer(bh); | 
 | } | 
 |  | 
 | /* Helper for alloc_block.  It will try to alloc a block from the BG, starting | 
 |  * with blk_idx (relative number within the BG).   If successful, it will return | 
 |  * the FS block number via *block_num.  TODO: concurrency protection */ | 
 | static bool ext2_tryalloc(struct super_block *sb, struct ext2_block_group *bg, | 
 |                           unsigned int blk_idx, uint32_t *block_num) | 
 | { | 
 | 	uint8_t *blk_bitmap; | 
 | 	struct ext2_sb_info *e2sbi = (struct ext2_sb_info*)sb->s_fs_info; | 
 | 	unsigned int blks_per_bg = le32_to_cpu(e2sbi->e2sb->s_blocks_per_group); | 
 | 	bool found = FALSE; | 
 |  | 
 | 	/* Check to see if there are any free blocks */ | 
 | 	if (!le32_to_cpu(bg->bg_free_blocks_cnt)) | 
 | 		return FALSE; | 
 | 	/* Check the bitmap for your desired block.  We'll loop through the whole | 
 | 	 * BG, starting with the one we want first. */ | 
 | 	blk_bitmap = ext2_get_metablock(sb, bg->bg_block_bitmap); | 
 | 	for (int i = 0; i < blks_per_bg; i++) { | 
 | 		if (!(GET_BITMASK_BIT(blk_bitmap, blk_idx))) { | 
 | 			SET_BITMASK_BIT(blk_bitmap, blk_idx); | 
 | 			bg->bg_free_blocks_cnt--; | 
 | 			ext2_dirty_metablock(sb, blk_bitmap); | 
 | 			found = TRUE; | 
 | 			break; | 
 | 		} | 
 | 		/* Note: the wrap-around hasn't been tested yet */ | 
 | 		blk_idx = (blk_idx + 1) % blks_per_bg; | 
 | 	} | 
 | 	ext2_put_metablock(sb, blk_bitmap); | 
 | 	if (found) | 
 | 		*block_num = ext2_bgidx2block(sb, bg, blk_idx); | 
 | 	return found; | 
 | } | 
 |  | 
 | /* This allocates a fresh block for the inode, preferably 'fetish' (name | 
 |  * courtesy of L.F.), returning the FS block number that's been allocated. | 
 |  * Note, Linux does some block preallocation here.  Consider doing the same (off | 
 |  * the in-memory inode).  Note the lack of concurrency protections here. */ | 
 | uint32_t ext2_alloc_block(struct inode *inode, uint32_t fetish) | 
 | { | 
 | 	struct ext2_sb_info *e2sbi = (struct ext2_sb_info*)inode->i_sb->s_fs_info; | 
 | 	struct ext2_block_group *fetish_bg, *bg_i = e2sbi->e2bg; | 
 | 	unsigned int blk_idx; | 
 | 	bool found = FALSE; | 
 | 	uint32_t retval = 0; | 
 |  | 
 | 	/* Get our ideal starting point */ | 
 | 	fetish_bg = ext2_block2bg(inode->i_sb, fetish); | 
 | 	blk_idx = ext2_block2bgidx(inode->i_sb, fetish); | 
 | 	/* Try to find a free block in the BG of the one we desire */ | 
 | 	found = ext2_tryalloc(inode->i_sb, fetish_bg, blk_idx, &retval); | 
 | 	if (found) | 
 | 		return retval; | 
 |  | 
 | 	warn("This part hasn't been tested yet."); | 
 | 	/* Find a block anywhere else (perhaps using the log trick, but for now just | 
 | 	 * linearly scanning). */ | 
 | 	for (int i = 0; i < e2sbi->nr_bgs; i++, bg_i++) { | 
 | 		if (bg_i == fetish_bg) | 
 | 			continue; | 
 | 		found = ext2_tryalloc(inode->i_sb, bg_i, 0, &retval); | 
 | 		if (found) | 
 | 			break; | 
 | 	} | 
 | 	if (!found) | 
 | 		panic("Ran out of blocks! (probably a bug)"); | 
 | 	return retval; | 
 | } | 
 |  | 
 | /* Inode Management */ | 
 |  | 
 | /* Helper for alloc_diskinode.  It will try to alloc a disk inode from the BG. | 
 |  * If successful, it will return the inode number in *ino_num.  TODO: | 
 |  * concurrency protection */ | 
 | static bool ext2_tryalloc_diskinode(struct super_block *sb, | 
 |                                     struct ext2_block_group *bg, | 
 |                                     unsigned long *ino_num) | 
 | { | 
 | 	uint8_t *ino_bitmap; | 
 | 	struct ext2_sb_info *e2sbi = (struct ext2_sb_info*)sb->s_fs_info; | 
 | 	unsigned int i, ino_per_bg = le32_to_cpu(e2sbi->e2sb->s_inodes_per_group); | 
 | 	bool found = FALSE; | 
 |  | 
 | 	/* Check to see if there are any free inodes */ | 
 | 	if (!le32_to_cpu(bg->bg_free_inodes_cnt)) | 
 | 		return FALSE; | 
 | 	/* Check the bitmap for the free inode */ | 
 | 	ino_bitmap = ext2_get_metablock(sb, bg->bg_inode_bitmap); | 
 | 	for (i = 0; i < ino_per_bg; i++) { | 
 | 		if (!(GET_BITMASK_BIT(ino_bitmap, i))) { | 
 | 			SET_BITMASK_BIT(ino_bitmap, i); | 
 | 			bg->bg_free_inodes_cnt--; | 
 | 			ext2_dirty_metablock(sb, ino_bitmap); | 
 | 			found = TRUE; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | 	ext2_put_metablock(sb, ino_bitmap); | 
 | 	/* Convert the i (a 0-index bit)  within the BG to a real inode number. */ | 
 | 	if (found) | 
 | 		*ino_num = ext2_bgidx2ino(sb, bg, i); | 
 | 	return found; | 
 | } | 
 |  | 
 | /* This allocates a fresh ino number for inode, given the parent's BG.  Make | 
 |  * sure you set the inode's type before calling this, since it matters if we a | 
 |  * making a directory or not.  This disk inode is reserved on disk in the bitmap | 
 |  * (at least the bitmap is changed and dirtied).  Note the lack of concurrency | 
 |  * protections here.  Consider returning the BG too. */ | 
 | unsigned long ext2_alloc_diskinode(struct inode *inode, | 
 |                                    struct ext2_block_group *dir_bg) | 
 | { | 
 | 	struct ext2_sb_info *e2sbi = (struct ext2_sb_info*)inode->i_sb->s_fs_info; | 
 | 	struct ext2_block_group *bg = dir_bg; | 
 | 	struct ext2_block_group *bg_i = e2sbi->e2bg; | 
 | 	bool found = FALSE; | 
 | 	unsigned long retval = 0; | 
 |  | 
 | 	if (S_ISDIR(inode->i_mode)) { | 
 | 		/* TODO: intelligently pick a different bg to use than the current one. | 
 | 		 * Right now, we just jump to the next one, though you should do things | 
 | 		 * like take into account the ratio of directories to files. */ | 
 | 		bg += 1; | 
 | 	} | 
 | 	/* Try to find a free inode in the chosen BG */ | 
 | 	found = ext2_tryalloc_diskinode(inode->i_sb, bg, &retval); | 
 | 	if (found) | 
 | 		return retval; | 
 |  | 
 | 	warn("This part hasn't been tested yet."); | 
 | 	/* Find an inode anywhere else (perhaps using the log trick, but for now just | 
 | 	 * linearly scanning). */ | 
 | 	for (int i = 0; i < e2sbi->nr_bgs; i++, bg_i++) { | 
 | 		if (bg_i == bg) | 
 | 			continue; | 
 | 		found = ext2_tryalloc_diskinode(inode->i_sb, bg_i, &retval); | 
 | 		if (found) | 
 | 			break; | 
 | 	} | 
 | 	if (!found) | 
 | 		panic("Ran out of inodes! (probably a bug)"); | 
 | 	return retval; | 
 | } | 
 |  | 
 | /* Helper for ino table management.  blkid is the inode table block we are | 
 |  * looking in, rel_blkid is the block we want, relative to the current | 
 |  * threshhold for a level of indirection, and reach is how many items a given | 
 |  * slot indexes.  Returns a pointer to the slot for the given block. */ | 
 | static uint32_t *ext2_find_inotable_slot(struct inode *inode, uint32_t blkid, | 
 |                                          uint32_t rel_blkid, | 
 |                                          unsigned int reach) | 
 | { | 
 | 	uint32_t *blk_buf = ext2_get_metablock(inode->i_sb, blkid); | 
 | 	assert(blk_buf); | 
 | 	return &blk_buf[rel_blkid / reach]; | 
 | } | 
 |  | 
 | /* If blk_slot is empty (no block mapped there) it will alloc and link a new | 
 |  * block.  This is only used for allocating a block to be an indirect table | 
 |  * (it's grabbing a metablock, we have no hint, and it handles the buffer | 
 |  * differently than for a file page/buffer). */ | 
 | static void ext2_fill_inotable_slot(struct inode *inode, uint32_t *blk_slot) | 
 | { | 
 | 	uint32_t new_blkid, hint_blk; | 
 | 	void *new_blk; | 
 |  | 
 | 	if (le32_to_cpu(*blk_slot)) | 
 | 		return; | 
 | 	/* Use any block in our inode's BG as a hint for the indirect block */ | 
 | 	hint_blk = ext2_bgidx2block(inode->i_sb, ext2_inode2bg(inode), 0); | 
 | 	new_blkid = ext2_alloc_block(inode, hint_blk); | 
 | 	/* Actually read in the block we alloc'd */ | 
 | 	new_blk = ext2_get_metablock(inode->i_sb, new_blkid); | 
 | 	memset(new_blk, 0, inode->i_sb->s_blocksize); | 
 | 	ext2_dirty_metablock(inode->i_sb, new_blk); | 
 | 	/* We put it, despite it getting relooked up in the next walk */ | 
 | 	ext2_put_metablock(inode->i_sb, new_blk); | 
 | 	/* Now write the new block into its slot */ | 
 | 	*blk_slot = cpu_to_le32(new_blkid); | 
 | 	ext2_dirty_metablock(inode->i_sb, blk_slot); | 
 | } | 
 |  | 
 | /* This walks a table stored at block 'blkid', returning which block you should | 
 |  * walk next in 'blkid'.  rel_inoblk is where you are given the current level of | 
 |  * indirection tables, and returns where you should be for the next one.  Reach | 
 |  * is how many items the current table's *items* can index (so if we're on a | 
 |  * 3x indir block, reach should be for the doubly-indirect entries, and | 
 |  * rel_inoblk will tell you where within that double block you want). | 
 |  * | 
 |  * This will also alloc intermediate tables if there isn't one already (TODO: | 
 |  * concurrency protection on modifying the table). */ | 
 | static void ext2_walk_inotable(struct inode *inode, uint32_t *blkid, | 
 |                                uint32_t *rel_inoblk, unsigned int reach) | 
 | { | 
 | 	uint32_t *blk_slot; | 
 | 	blk_slot = ext2_find_inotable_slot(inode, *blkid, *rel_inoblk, reach); | 
 | 	/* We could only do this based on a bool, but if we're trying to walk it, | 
 | 	 * we ought to want to alloc if there is no block. */ | 
 | 	ext2_fill_inotable_slot(inode, blk_slot); | 
 | 	*blkid = le32_to_cpu(*blk_slot); | 
 | 	*rel_inoblk = *rel_inoblk % reach; | 
 | 	ext2_put_metablock(inode->i_sb, blk_slot);	/* ref for the one looked in */ | 
 | } | 
 |  | 
 | /* Finds the slot of the FS block corresponding to a specific block number of an | 
 |  * inode.  It does this by walking the inode's tables.  The general idea is that | 
 |  * if the ino_block num is above a threshold, we'll need to go into indirect | 
 |  * tables (1x, 2x, or 3x (triply indirect) tables).  Block numbers start at 0. | 
 |  * | 
 |  * This returns a pointer within a metablock, which needs to be decref'd (and | 
 |  * possibly dirtied) when you are done.  Note, it can return a pointer to | 
 |  * something that is NOT in a metablock (e2ii->i_block[]), but put_metablock can | 
 |  * handle it for now. | 
 |  * | 
 |  * Horrendously untested, btw. */ | 
 | uint32_t *ext2_lookup_inotable_slot(struct inode *inode, uint32_t ino_block) | 
 | { | 
 | 	struct ext2_i_info *e2ii = (struct ext2_i_info*)inode->i_fs_info; | 
 |  | 
 | 	uint32_t blkid, *blk_slot; | 
 | 	/* The 'reach' is how many blocks a given table can 'address' */ | 
 | 	int ptrs_per_blk = inode->i_sb->s_blocksize / sizeof(uint32_t); | 
 | 	int reach_1xblk = ptrs_per_blk; | 
 | 	int reach_2xblk = ptrs_per_blk * ptrs_per_blk; | 
 | 	/* thresholds are the first blocks that require a level of indirection */ | 
 | 	int single_threshold = 12; | 
 | 	int double_threshold = single_threshold + reach_1xblk; | 
 | 	int triple_threshold = double_threshold + reach_2xblk; | 
 | 	/* this is the desired block num lookup within a level of indirection.  It | 
 | 	 * will need to be offset based on what level of lookups we want (try it in | 
 | 	 * your head with 12 first). */ | 
 | 	uint32_t rel_inoblk; | 
 |  | 
 | 	if (ino_block >= triple_threshold) { | 
 | 		/* ino_block requires a triply-indirect lookup */ | 
 | 		rel_inoblk = ino_block - triple_threshold; | 
 | 		/* Make sure a 14 block (3x indirect) is there */ | 
 | 		ext2_fill_inotable_slot(inode, &e2ii->i_block[14]); | 
 | 		blkid = e2ii->i_block[14]; | 
 | 		ext2_walk_inotable(inode, &blkid, &rel_inoblk, reach_2xblk); | 
 | 		ext2_walk_inotable(inode, &blkid, &rel_inoblk, reach_1xblk); | 
 | 		blk_slot = ext2_find_inotable_slot(inode, blkid, rel_inoblk, 1); | 
 | 	} else if (ino_block >= double_threshold) { | 
 | 		/* ino_block requires a doubly-indirect lookup  */ | 
 | 		rel_inoblk = ino_block - double_threshold; | 
 | 		ext2_fill_inotable_slot(inode, &e2ii->i_block[13]); | 
 | 		blkid = e2ii->i_block[13]; | 
 | 		ext2_walk_inotable(inode, &blkid, &rel_inoblk, reach_1xblk); | 
 | 		blk_slot = ext2_find_inotable_slot(inode, blkid, rel_inoblk, 1); | 
 | 	} else if (ino_block >= single_threshold) { | 
 | 		/* ino_block requires a singly-indirect lookup */ | 
 | 		rel_inoblk = ino_block - single_threshold; | 
 | 		ext2_fill_inotable_slot(inode, &e2ii->i_block[12]); | 
 | 		blkid = e2ii->i_block[12]; | 
 | 		blk_slot = ext2_find_inotable_slot(inode, blkid, rel_inoblk, 1); | 
 | 	} else { | 
 | 		/* Direct block, straight out of the inode */ | 
 | 		blk_slot = &e2ii->i_block[ino_block]; | 
 | 	} | 
 | 	return blk_slot; | 
 | } | 
 |  | 
 | /* Determines the FS block id for a given inode block id.  Convenience wrapper | 
 |  * that may go away soon. */ | 
 | uint32_t ext2_find_inoblock(struct inode *inode, unsigned int ino_block) | 
 | { | 
 | 	uint32_t retval, *buf = ext2_lookup_inotable_slot(inode, ino_block); | 
 | 	retval = *buf; | 
 | 	ext2_put_metablock(inode->i_sb, buf); | 
 | 	return retval; | 
 | } | 
 |  | 
 | /* Returns an incref'd metadata block for the contents of the ino block.  Don't | 
 |  * use this for regular files - use their inode's page cache instead (used for | 
 |  * directories for now).  If there isn't a block allocated yet, it will provide | 
 |  * a zeroed one. */ | 
 | void *ext2_get_ino_metablock(struct inode *inode, unsigned long ino_block) | 
 | { | 
 | 	uint32_t blkid, *retval, *blk_slot; | 
 | 	blk_slot = ext2_lookup_inotable_slot(inode, ino_block); | 
 | 	blkid = le32_to_cpu(*blk_slot); | 
 | 	if (blkid) { | 
 | 		ext2_put_metablock(inode->i_sb, blk_slot); | 
 | 		return ext2_get_metablock(inode->i_sb, blkid); | 
 | 	} | 
 | 	/* If there isn't a block there, alloc and insert one.  This block will be | 
 | 	 * the next big chunk of "file" data for this inode. */ | 
 | 	blkid = ext2_alloc_block(inode, ext2_bgidx2block(inode->i_sb, | 
 | 	                                                 ext2_inode2bg(inode), | 
 | 	                                                 0)); | 
 | 	*blk_slot = cpu_to_le32(blkid); | 
 | 	ext2_dirty_metablock(inode->i_sb, blk_slot); | 
 | 	ext2_put_metablock(inode->i_sb, blk_slot); | 
 | 	inode->i_blocks += inode->i_sb->s_blocksize >> 9;	/* inc by 1 FS block */ | 
 | 	inode->i_size += inode->i_sb->s_blocksize; | 
 | 	retval = ext2_get_metablock(inode->i_sb, blkid); | 
 | 	memset(retval, 0, inode->i_sb->s_blocksize);		/* 0 the new block */ | 
 | 	return retval; | 
 | } | 
 |  | 
 | /* This should help with degubbing.  In read_inode(), print out the i_block, and | 
 |  * consider manually (via memory inspection) examining those blocks.  Odds are, | 
 |  * the 2x and 3x walks are jacked up. */ | 
 | void ext2_print_ino_blocks(struct inode *inode) | 
 | { | 
 | 	printk("Inode %p, Size: %d, 512B 'blocks': %d\n-------------\n", inode, | 
 | 	       inode->i_size, inode->i_blocks); | 
 | 	for (int i = 0; i < inode->i_blocks * (inode->i_sb->s_blocksize / 512); i++) | 
 | 		printk("# %03d, Block %03d\n", i, ext2_find_inoblock(inode, i)); | 
 | } | 
 |  | 
 | /* Misc Functions */ | 
 |  | 
 | /* This checks an ext2 disc SB for consistency, optionally printing out its | 
 |  * stats.  It also will also read in a copy of the block group descriptor table | 
 |  * from its first location (right after the primary SB copy) */ | 
 | void ext2_check_sb(struct ext2_sb *e2sb, struct ext2_block_group *bg, | 
 |                    bool print) | 
 | { | 
 | 	int retval; | 
 | 	unsigned int blksize, blks_per_group, num_blk_group, num_blks; | 
 | 	unsigned int inodes_per_grp, inode_size; | 
 | 	unsigned int sum_blks = 0, sum_inodes = 0; | 
 |  | 
 | 	assert(le16_to_cpu(e2sb->s_magic) == EXT2_SUPER_MAGIC); | 
 | 	num_blks = le32_to_cpu(e2sb->s_blocks_cnt); | 
 | 	blksize = 1024 << le32_to_cpu(e2sb->s_log_block_size); | 
 | 	blks_per_group = le32_to_cpu(e2sb->s_blocks_per_group); | 
 | 	num_blk_group = num_blks / blks_per_group + (num_blks % blks_per_group ? 1 : 0); | 
 | 	 | 
 | 	if (print) { | 
 | 		printk("EXT2 info:\n-------------------------\n"); | 
 | 		printk("Total Inodes:     %8d\n", le32_to_cpu(e2sb->s_inodes_cnt)); | 
 | 		printk("Total Blocks:     %8d\n", le32_to_cpu(e2sb->s_blocks_cnt)); | 
 | 		printk("Num R-Blocks:     %8d\n", le32_to_cpu(e2sb->s_rblocks_cnt)); | 
 | 		printk("Num Free Blocks:  %8d\n", le32_to_cpu(e2sb->s_free_blocks_cnt)); | 
 | 		printk("Num Free Inodes:  %8d\n", le32_to_cpu(e2sb->s_free_inodes_cnt)); | 
 | 		printk("First Data Block: %8d\n", | 
 | 		       le32_to_cpu(e2sb->s_first_data_block)); | 
 | 		printk("Block Size:       %8d\n", | 
 | 		       1024 << le32_to_cpu(e2sb->s_log_block_size)); | 
 | 		printk("Fragment Size:    %8d\n", | 
 | 		       1024 << le32_to_cpu(e2sb->s_log_frag_size)); | 
 | 		printk("Blocks per group: %8d\n", | 
 | 		       le32_to_cpu(e2sb->s_blocks_per_group)); | 
 | 		printk("Inodes per group: %8d\n", | 
 | 		       le32_to_cpu(e2sb->s_inodes_per_group)); | 
 | 		printk("Block groups:     %8d\n", num_blk_group); | 
 | 		printk("Mount state:      %8d\n", le16_to_cpu(e2sb->s_state)); | 
 | 		printk("Rev Level:        %8d\n", le32_to_cpu(e2sb->s_minor_rev_level)); | 
 | 		printk("Minor Rev Level:  %8d\n", le16_to_cpu(e2sb->s_minor_rev_level)); | 
 | 		printk("Creator OS:       %8d\n", le32_to_cpu(e2sb->s_creator_os)); | 
 | 		printk("First Inode:      %8d\n", le32_to_cpu(e2sb->s_first_ino)); | 
 | 		printk("Inode size:       %8d\n", le16_to_cpu(e2sb->s_inode_size)); | 
 | 		printk("This block group: %8d\n", le16_to_cpu(e2sb->s_block_group_nr)); | 
 | 		printk("BG ID of 1st meta:%8d\n", le16_to_cpu(e2sb->s_first_meta_bg)); | 
 | 		printk("Volume name:      %s\n", e2sb->s_volume_name); | 
 | 		printk("\nBlock Group Info:\n----------------------\n"); | 
 | 	} | 
 | 	 | 
 | 	for (int i = 0; i < num_blk_group; i++) { | 
 | 		sum_blks += le16_to_cpu(bg[i].bg_free_blocks_cnt); | 
 | 		sum_inodes += le16_to_cpu(bg[i].bg_free_inodes_cnt); | 
 | 		if (print) { | 
 | 			printk("*** BG %d at %p\n", i, &bg[i]); | 
 | 			printk("Block bitmap:%8d\n", le32_to_cpu(bg[i].bg_block_bitmap)); | 
 | 			printk("Inode bitmap:%8d\n", le32_to_cpu(bg[i].bg_inode_bitmap)); | 
 | 			printk("Inode table: %8d\n", le32_to_cpu(bg[i].bg_inode_table)); | 
 | 			printk("Free blocks: %8d\n", le16_to_cpu(bg[i].bg_free_blocks_cnt)); | 
 | 			printk("Free inodes: %8d\n", le16_to_cpu(bg[i].bg_free_inodes_cnt)); | 
 | 			printk("Used Dirs:   %8d\n", le16_to_cpu(bg[i].bg_used_dirs_cnt)); | 
 | 		} | 
 | 	} | 
 | 	 | 
 | 	/* Sanity Assertions.  A good ext2 will always pass these. */ | 
 | 	inodes_per_grp = le32_to_cpu(e2sb->s_inodes_per_group); | 
 | 	blks_per_group = le32_to_cpu(e2sb->s_blocks_per_group); | 
 | 	inode_size = le32_to_cpu(e2sb->s_inode_size); | 
 | 	assert(le32_to_cpu(e2sb->s_inodes_cnt) <= inodes_per_grp * num_blk_group); | 
 | 	assert(le32_to_cpu(e2sb->s_free_inodes_cnt) == sum_inodes); | 
 | 	assert(le32_to_cpu(e2sb->s_blocks_cnt) <= blks_per_group * num_blk_group); | 
 | 	assert(le32_to_cpu(e2sb->s_free_blocks_cnt) == sum_blks); | 
 | 	if (blksize == 1024) | 
 | 		assert(le32_to_cpu(e2sb->s_first_data_block) == 1); | 
 | 	else | 
 | 		assert(le32_to_cpu(e2sb->s_first_data_block) == 0); | 
 | 	assert(inode_size <= blksize); | 
 | 	assert(inode_size == 1 << LOG2_UP(inode_size)); | 
 | 	assert(blksize * 8 >= inodes_per_grp); | 
 | 	assert(inodes_per_grp % (blksize / inode_size) == 0); | 
 | 	if (print) | 
 | 		printk("Passed EXT2 Checks\n"); | 
 | } | 
 |  | 
 | /* VFS required Misc Functions */ | 
 |  | 
 | /* Creates the SB.  Like with Ext2's, we should consider pulling out the | 
 |  * FS-independent stuff, if possible. */ | 
 | struct super_block *ext2_get_sb(struct fs_type *fs, int flags, | 
 |                                char *dev_name, struct vfsmount *vmnt) | 
 | { | 
 | 	struct block_device *bdev; | 
 | 	struct ext2_sb *e2sb; | 
 | 	struct ext2_block_group *e2bg; | 
 | 	unsigned int blks_per_group, num_blk_group, num_blks; | 
 |  | 
 | 	static bool ran_once = FALSE; | 
 | 	if (!ran_once) { | 
 | 		ran_once = TRUE; | 
 | 		ext2_init(); | 
 | 	} | 
 | 	bdev = get_bdev(dev_name); | 
 | 	assert(bdev); | 
 | 	/* Read the SB.  It's always at byte 1024 and 1024 bytes long.  Note we do | 
 | 	 * not put the metablock (we pin it off the sb later).  Same with e2bg. */ | 
 | 	e2sb = (struct ext2_sb*)__ext2_get_metablock(bdev, 1, 1024); | 
 | 	if (!(le16_to_cpu(e2sb->s_magic) == EXT2_SUPER_MAGIC)) { | 
 | 		warn("EXT2 Not detected when it was expected!"); | 
 | 		return 0; | 
 | 	} | 
 | 	/* Read in the block group descriptor table.  Which block the BG table is on | 
 | 	 * depends on the blocksize */ | 
 | 	unsigned int blksize = 1024 << le32_to_cpu(e2sb->s_log_block_size); | 
 | 	e2bg = __ext2_get_metablock(bdev, blksize == 1024 ? 2 : 1, blksize); | 
 | 	assert(e2bg); | 
 | 	ext2_check_sb(e2sb, e2bg, FALSE); | 
 |  | 
 | 	/* Now we build and init the VFS SB */ | 
 | 	struct super_block *sb = get_sb(); | 
 | 	sb->s_dev = 0;			/* what do we really want here? */ | 
 | 	sb->s_blocksize = blksize; | 
 | 	/* max file size for a 1024 blocksize FS.  good enough for now (TODO) */ | 
 | 	sb->s_maxbytes = 17247252480; | 
 | 	sb->s_type = &ext2_fs_type; | 
 | 	sb->s_op = &ext2_s_op; | 
 | 	sb->s_flags = flags;	/* from the disc too?  which flags are these? */ | 
 | 	sb->s_magic = EXT2_SUPER_MAGIC; | 
 | 	sb->s_mount = vmnt;	/* Kref?  also in KFS */ | 
 | 	sb->s_syncing = FALSE; | 
 | 	kref_get(&bdev->b_kref, 1); | 
 | 	sb->s_bdev = bdev; | 
 | 	strlcpy(sb->s_name, "EXT2", 32); | 
 | 	sb->s_fs_info = kmalloc(sizeof(struct ext2_sb_info), 0); | 
 | 	assert(sb->s_fs_info); | 
 | 	/* store the in-memory copy of the disk SB and bg desc table */ | 
 | 	((struct ext2_sb_info*)sb->s_fs_info)->e2sb = e2sb; | 
 | 	((struct ext2_sb_info*)sb->s_fs_info)->e2bg = e2bg; | 
 | 	/* Precompute the number of BGs */ | 
 | 	num_blks = le32_to_cpu(e2sb->s_blocks_cnt); | 
 | 	blks_per_group = le32_to_cpu(e2sb->s_blocks_per_group); | 
 | 	((struct ext2_sb_info*)sb->s_fs_info)->nr_bgs = num_blks / blks_per_group + | 
 | 	                                       (num_blks % blks_per_group ? 1 : 0); | 
 |  | 
 | 	/* Final stages of initializing the sb, mostly FS-independent */ | 
 | 	init_sb(sb, vmnt, &ext2_d_op, EXT2_ROOT_INO, 0); | 
 |  | 
 | 	printk("EXT2 superblock loaded\n"); | 
 | 	kref_put(&bdev->b_kref); | 
 | 	return sb; | 
 | } | 
 |  | 
 | void ext2_kill_sb(struct super_block *sb) | 
 | { | 
 | 	/* don't forget to kfree the s_fs_info and its two members */ | 
 | 	panic("Killing an EXT2 SB is not supported!"); | 
 | } | 
 |  | 
 | /* Every FS must have a static FS Type, with which the VFS code can bootstrap */ | 
 | struct fs_type ext2_fs_type = {"EXT2", 0, ext2_get_sb, ext2_kill_sb, {0, 0}, | 
 |                                TAILQ_HEAD_INITIALIZER(ext2_fs_type.fs_supers)}; | 
 |  | 
 | /* Page Map Operations */ | 
 |  | 
 | /* Sets up the bidirectional mapping between the page and its buffer heads.  As | 
 |  * a future optimization, we could try and detect if all of the blocks are | 
 |  * contiguous (either before or after making them) and compact them to one BH. | 
 |  * Note there is an assumption that the file has at least one block in it. */ | 
 | int ext2_mappage(struct page_map *pm, struct page *page) | 
 | { | 
 | 	struct buffer_head *bh; | 
 | 	struct inode *inode = (struct inode*)pm->pm_host; | 
 | 	assert(!page->pg_private);		/* double check that we aren't bh-mapped */ | 
 | 	assert(inode->i_mapping == pm);	/* double check we are the inode for pm */ | 
 | 	struct block_device *bdev = inode->i_sb->s_bdev; | 
 | 	unsigned int blk_per_pg = PGSIZE / inode->i_sb->s_blocksize; | 
 | 	unsigned int sct_per_blk = inode->i_sb->s_blocksize / bdev->b_sector_sz; | 
 | 	uint32_t ino_blk_num, fs_blk_num = 0, *fs_blk_slot; | 
 |  | 
 | 	bh = kmem_cache_alloc(bh_kcache, 0); | 
 | 	page->pg_private = bh; | 
 | 	for (int i = 0; i < blk_per_pg; i++) { | 
 | 		/* free_bh() can handle having a halfway aborted mappage() */ | 
 | 		if (!bh) | 
 | 			return -ENOMEM; | 
 | 		bh->bh_page = page;							/* weak ref */ | 
 | 		bh->bh_buffer = page2kva(page) + i * inode->i_sb->s_blocksize; | 
 | 		bh->bh_flags = 0;							/* whatever... */ | 
 | 		bh->bh_bdev = bdev;							/* uncounted ref */ | 
 | 		/* compute the first sector of the FS block for the ith buf in the pg */ | 
 | 		ino_blk_num = page->pg_index * blk_per_pg + i; | 
 | 		fs_blk_slot = ext2_lookup_inotable_slot(inode, ino_blk_num); | 
 | 		/* If there isn't a block there, lets get one.  The previous fs_blk_num | 
 | 		 * is our hint (or we have to compute one). */ | 
 | 		if (!*fs_blk_slot) { | 
 | 			if (!fs_blk_num) { | 
 | 				fs_blk_num = ext2_bgidx2block(inode->i_sb, | 
 | 				                              ext2_inode2bg(inode), 0); | 
 | 			} | 
 | 			fs_blk_num = ext2_alloc_block(inode, fs_blk_num + 1); | 
 | 			/* Link it, and dirty the inode indirect block */ | 
 | 			*fs_blk_slot = cpu_to_le32(fs_blk_num); | 
 | 			ext2_dirty_metablock(inode->i_sb, fs_blk_slot); | 
 | 			/* the block is still on disk, and we don't want its contents */ | 
 | 			bh->bh_flags = BH_NEEDS_ZEROED;			/* talking to readpage */ | 
 | 			/* update our num blocks, with 512B each "block" (ext2-style) */ | 
 | 			inode->i_blocks += inode->i_sb->s_blocksize >> 9; | 
 | 		} else {	/* there is a block there already */ | 
 | 			fs_blk_num = *fs_blk_slot; | 
 | 		} | 
 | 		ext2_put_metablock(inode->i_sb, fs_blk_slot); | 
 | 		bh->bh_sector = fs_blk_num * sct_per_blk; | 
 | 		bh->bh_nr_sector = sct_per_blk; | 
 | 		/* Stop if we're the last block in the page.  We could be going beyond | 
 | 		 * the end of the file, in which case the next BHs will be zeroed. */ | 
 | 		if (i == blk_per_pg - 1) { | 
 | 			bh->bh_next = 0; | 
 | 			break; | 
 | 		} else { | 
 | 			/* get and link to the next BH. */ | 
 | 			bh->bh_next = kmem_cache_alloc(bh_kcache, 0); | 
 | 			bh = bh->bh_next; | 
 | 		} | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Fills page with its contents from its backing store file.  Note that we do | 
 |  * the zero padding here, instead of higher in the VFS.  Might change in the | 
 |  * future.  TODO: make this a block FS generic call. */ | 
 | int ext2_readpage(struct page_map *pm, struct page *page) | 
 | { | 
 | 	int retval; | 
 | 	struct block_device *bdev = pm->pm_host->i_sb->s_bdev; | 
 | 	struct buffer_head *bh; | 
 | 	struct block_request *breq; | 
 | 	void *eobh; | 
 |  | 
 | 	atomic_or(&page->pg_flags, PG_BUFFER); | 
 | 	retval = ext2_mappage(pm, page); | 
 | 	if (retval) | 
 | 		return retval; | 
 | 	/* Build and submit the request */ | 
 | 	breq = kmem_cache_alloc(breq_kcache, 0); | 
 | 	if (!breq) | 
 | 		return -ENOMEM; | 
 | 	breq->flags = BREQ_READ; | 
 | 	breq->callback = generic_breq_done; | 
 | 	breq->data = 0; | 
 | 	sem_init_irqsave(&breq->sem, 0); | 
 | 	breq->bhs = breq->local_bhs; | 
 | 	breq->nr_bhs = 0; | 
 | 	/* Pack the BH pointers in the block request */ | 
 | 	bh = (struct buffer_head*)page->pg_private; | 
 | 	assert(bh); | 
 | 	/* Either read the block in, or zero the buffer.  If we wanted to ensure no | 
 | 	 * data is leaked after a crash, we'd write a 0 block too. */ | 
 | 	for (int i = 0; bh; bh = bh->bh_next) { | 
 | 		if (!(bh->bh_flags & BH_NEEDS_ZEROED)) { | 
 | 			breq->bhs[i] = bh; | 
 | 			breq->nr_bhs++; | 
 | 			i++; | 
 | 		} else { | 
 | 			memset(bh->bh_buffer, 0, pm->pm_host->i_sb->s_blocksize); | 
 | 			bh->bh_flags |= BH_DIRTY; | 
 | 			atomic_or(&bh->bh_page->pg_flags, PG_DIRTY); | 
 | 		} | 
 | 	} | 
 | 	retval = bdev_submit_request(bdev, breq); | 
 | 	assert(!retval); | 
 | 	sleep_on_breq(breq); | 
 | 	kmem_cache_free(breq_kcache, breq); | 
 | 	/* zero out whatever is beyond the EOF.  we could do this by figuring out | 
 | 	 * where the BHs end and zeroing from there, but I'd rather zero from where | 
 | 	 * the file ends (which could be in the middle of an FS block */ | 
 | 	uintptr_t eof_off; | 
 | 	eof_off = (pm->pm_host->i_size - page->pg_index * PGSIZE); | 
 | 	eof_off = MIN(eof_off, PGSIZE) % PGSIZE; | 
 | 	/* at this point, eof_off is the offset into the page of the EOF, or 0 */ | 
 | 	if (eof_off) | 
 | 		memset(eof_off + page2kva(page), 0, PGSIZE - eof_off); | 
 | 	/* Now the page is up to date */ | 
 | 	atomic_or(&page->pg_flags, PG_UPTODATE); | 
 | 	/* Useful debugging.  Put one higher up if the page is not getting mapped */ | 
 | 	//print_pageinfo(page); | 
 | 	return 0; | 
 | } | 
 |  | 
 | int ext2_writepage(struct page_map *pm, struct page *page) | 
 | { | 
 | 	return -1; | 
 | } | 
 |  | 
 | /* Super Operations */ | 
 |  | 
 | /* Creates and initializes a new inode.  FS specific, yet inode-generic fields | 
 |  * are filled in.  inode-specific fields are filled in in read_inode() based on | 
 |  * what's on the disk for a given i_no.  i_no and i_fop are set by the caller. | 
 |  * | 
 |  * Note that this means this inode can be for an inode that is already on disk, | 
 |  * or it can be used when creating.  The i_fop depends on the type of file | 
 |  * (file, directory, symlink, etc). */ | 
 | struct inode *ext2_alloc_inode(struct super_block *sb) | 
 | { | 
 | 	struct inode *inode = kmem_cache_alloc(inode_kcache, 0); | 
 | 	memset(inode, 0, sizeof(struct inode)); | 
 | 	inode->i_op = &ext2_i_op; | 
 | 	inode->i_pm.pm_op = &ext2_pm_op; | 
 | 	return inode; | 
 | } | 
 |  | 
 | /* FS-specific clean up when an inode is dealloced.  this is just cleaning up | 
 |  * the in-memory version, and only the FS-specific parts.  whether or not the | 
 |  * inode is still on disc is irrelevant. */ | 
 | void ext2_dealloc_inode(struct inode *inode) | 
 | { | 
 | 	kmem_cache_free(ext2_i_kcache, inode->i_fs_info); | 
 | } | 
 |  | 
 | /* Returns a pointer within a metablock for the disk inode specified by inode. | 
 |  * Be sure to 'put' your reference (and/or dirty it). */ | 
 | struct ext2_inode *ext2_get_diskinode(struct inode *inode) | 
 | { | 
 | 	uint32_t my_bg_idx, ino_per_blk, my_ino_blk; | 
 | 	struct ext2_sb_info *e2sbi = (struct ext2_sb_info*)inode->i_sb->s_fs_info; | 
 | 	struct ext2_block_group *my_bg; | 
 | 	struct ext2_inode *ino_tbl_chunk; | 
 |  | 
 | 	assert(inode->i_ino);					/* ino == 0 is a bug */ | 
 | 	/* Need to compute the blockgroup and index of the requested inode */ | 
 | 	ino_per_blk = inode->i_sb->s_blocksize / | 
 | 	              le16_to_cpu(e2sbi->e2sb->s_inode_size); | 
 | 	my_bg_idx = ext2_inode2bgidx(inode); | 
 | 	my_bg = ext2_inode2bg(inode); | 
 | 	/* Figure out which FS block of the inode table we want and read in that | 
 | 	 * chunk */ | 
 | 	my_ino_blk = le32_to_cpu(my_bg->bg_inode_table) + my_bg_idx / ino_per_blk; | 
 | 	ino_tbl_chunk = ext2_get_metablock(inode->i_sb, my_ino_blk); | 
 | 	return &ino_tbl_chunk[my_bg_idx % ino_per_blk]; | 
 | } | 
 |  | 
 | /* reads the inode data on disk specified by inode->i_ino into the inode. | 
 |  * basically, it's a "make this inode the one for i_ino (i number)" */ | 
 | void ext2_read_inode(struct inode *inode) | 
 | { | 
 | 	struct ext2_inode *my_ino; | 
 | 	my_ino = ext2_get_diskinode(inode); | 
 |  | 
 | 	/* Have the disk inode now, let's put its info into the VFS inode: */ | 
 | 	inode->i_mode = le16_to_cpu(my_ino->i_mode); | 
 | 	switch (inode->i_mode & __S_IFMT) { | 
 | 		case (__S_IFDIR): | 
 | 			inode->i_fop = &ext2_f_op_dir; | 
 | 			break; | 
 | 		case (__S_IFREG): | 
 | 			inode->i_fop = &ext2_f_op_file; | 
 | 			break; | 
 | 		case (__S_IFLNK): | 
 | 			inode->i_fop = &ext2_f_op_sym; | 
 | 			break; | 
 | 		case (__S_IFCHR): | 
 | 		case (__S_IFBLK): | 
 | 		default: | 
 | 			inode->i_fop = &ext2_f_op_file; | 
 | 			warn("[Calm British Accent] Look around you.  Unhandled filetype."); | 
 | 	} | 
 | 	inode->i_nlink = le16_to_cpu(my_ino->i_links_cnt); | 
 | 	inode->i_uid = le16_to_cpu(my_ino->i_uid); | 
 | 	inode->i_gid = le16_to_cpu(my_ino->i_gid); | 
 | 	/* technically, for large F_REG, we should | with i_dir_acl */ | 
 | 	inode->i_size = le32_to_cpu(my_ino->i_size); | 
 | 	inode->i_atime.tv_sec = le32_to_cpu(my_ino->i_atime); | 
 | 	inode->i_atime.tv_nsec = 0; | 
 | 	inode->i_mtime.tv_sec = le32_to_cpu(my_ino->i_mtime); | 
 | 	inode->i_mtime.tv_nsec = 0; | 
 | 	inode->i_ctime.tv_sec = le32_to_cpu(my_ino->i_ctime); | 
 | 	inode->i_ctime.tv_nsec = 0; | 
 | 	inode->i_blocks = le32_to_cpu(my_ino->i_blocks); | 
 | 	inode->i_flags = le32_to_cpu(my_ino->i_flags); | 
 | 	inode->i_socket = FALSE;		/* for now */ | 
 | 	/* Copy over the other inode stuff that isn't in the VFS inode.  For now, | 
 | 	 * it's just the block pointers */ | 
 | 	inode->i_fs_info = kmem_cache_alloc(ext2_i_kcache, 0); | 
 | 	struct ext2_i_info *e2ii = (struct ext2_i_info*)inode->i_fs_info; | 
 | 	for (int i = 0; i < 15; i++) | 
 | 		e2ii->i_block[i] = le32_to_cpu(my_ino->i_block[i]); | 
 | 	/* TODO: (HASH) unused: inode->i_hash add to hash (saves on disc reading) */ | 
 | 	/* TODO: we could consider saving a pointer to the disk inode and pinning | 
 | 	 * its buffer in memory, but for now we'll just free it. */ | 
 | 	ext2_put_metablock(inode->i_sb, my_ino); | 
 | } | 
 |  | 
 | /* called when an inode in memory is modified (journalling FS's care) */ | 
 | void ext2_dirty_inode(struct inode *inode) | 
 | { | 
 | 	// presumably we'll ext2_dirty_metablock(void *buffer) here | 
 | } | 
 |  | 
 | /* write the inode to disk (specifically, to inode inode->i_ino), synchronously | 
 |  * if we're asked to wait */ | 
 | void ext2_write_inode(struct inode *inode, bool wait) | 
 | { | 
 | I_AM_HERE; | 
 | } | 
 |  | 
 | /* called when an inode is decref'd, to do any FS specific work */ | 
 | void ext2_put_inode(struct inode *inode) | 
 | { | 
 | I_AM_HERE; | 
 | } | 
 |  | 
 | /* Unused for now, will get rid of this if inode_release is sufficient */ | 
 | void ext2_drop_inode(struct inode *inode) | 
 | { | 
 | I_AM_HERE; | 
 | } | 
 |  | 
 | /* delete the inode from disk (all data) */ | 
 | void ext2_delete_inode(struct inode *inode) | 
 | { | 
 | I_AM_HERE; | 
 | 	// would remove from "disk" here | 
 | 	/* TODO: give up our i_ino */ | 
 | } | 
 |  | 
 | /* unmount and release the super block */ | 
 | void ext2_put_super(struct super_block *sb) | 
 | { | 
 | 	panic("Shazbot! Ext2 can't be unmounted yet!"); | 
 | } | 
 |  | 
 | /* updates the on-disk SB with the in-memory SB */ | 
 | void ext2_write_super(struct super_block *sb) | 
 | { | 
 | I_AM_HERE; | 
 | } | 
 |  | 
 | /* syncs FS metadata with the disc, synchronously if we're waiting.  this info | 
 |  * also includes anything pointed to by s_fs_info. */ | 
 | int ext2_sync_fs(struct super_block *sb, bool wait) | 
 | { | 
 | I_AM_HERE; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* remount the FS with the new flags */ | 
 | int ext2_remount_fs(struct super_block *sb, int flags, char *data) | 
 | { | 
 | 	warn("Ext2 will not remount."); | 
 | 	return -1; // can't remount | 
 | } | 
 |  | 
 | /* interrupts a mount operation - used by NFS and friends */ | 
 | void ext2_umount_begin(struct super_block *sb) | 
 | { | 
 | 	panic("Cannot abort a Ext2 mount, and why would you?"); | 
 | } | 
 |  | 
 | /* inode_operations */ | 
 |  | 
 | /* Little helper, used for initializing new inodes for file-like objects (files, | 
 |  * symlinks, etc).  We pass the dentry, since we need to up it. */ | 
 | static void ext2_init_inode(struct inode *dir, struct dentry *dentry) | 
 | { | 
 | #if 0 | 
 | 	struct inode *inode = dentry->d_inode; | 
 | 	inode->i_ino = ext2_get_free_ino(); | 
 | #endif | 
 | } | 
 |  | 
 | /* Initializes a new/empty disk inode, according to inode.  If you end up not | 
 |  * zeroing this stuff, be careful of endianness. */ | 
 | static void ext2_init_diskinode(struct ext2_inode *e2i, struct inode *inode) | 
 | { | 
 | 	assert(inode->i_size == 0); | 
 | 	e2i->i_mode = cpu_to_le16(inode->i_mode); | 
 | 	e2i->i_uid = cpu_to_le16(inode->i_uid); | 
 | 	e2i->i_size = 0; | 
 | 	e2i->i_atime = cpu_to_le32(inode->i_atime.tv_sec); | 
 | 	e2i->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec); | 
 | 	e2i->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec); | 
 | 	e2i->i_dtime = 0; | 
 | 	e2i->i_gid = cpu_to_le16(inode->i_gid); | 
 | 	e2i->i_links_cnt = cpu_to_le16(inode->i_nlink); | 
 | 	e2i->i_blocks = 0; | 
 | 	e2i->i_flags = cpu_to_le32(inode->i_flags); | 
 | 	e2i->i_osd1 = 0; | 
 | 	e2i->i_generation = 0; | 
 | 	e2i->i_file_acl = 0; | 
 | 	e2i->i_dir_acl = 0; | 
 | 	e2i->i_faddr = 0; | 
 | 	for (int i = 0; i < 15; i++) | 
 | 		e2i->i_block[i] = 0; | 
 | 	for (int i = 0; i < 12; i++) | 
 | 		e2i->i_osd2[i] = 0; | 
 | } | 
 |  | 
 | /* These should return true if foreach_dirent should stop working on the | 
 |  * dirents. */ | 
 | typedef bool (*each_func_t) (struct ext2_dirent *dir_i, long a1, long a2, | 
 |                              long a3); | 
 |  | 
 | /* Loads the buffer and performs my_work on each dirent, stopping and returning | 
 |  * 0 if one of the calls succeeded, or returning the dir block num of what would | 
 |  * be the next dir block otherwise (aka, how many blocks we went through). */ | 
 | static uint32_t ext2_foreach_dirent(struct inode *dir, each_func_t my_work, | 
 |                                     long a1, long a2, long a3) | 
 | { | 
 | 	struct ext2_dirent *dir_buf, *dir_i; | 
 | 	uint32_t dir_block = 0; | 
 | 	dir_buf = ext2_get_ino_metablock(dir, dir_block++); | 
 | 	dir_i = dir_buf; | 
 | 	/* now we have the first block worth of dirents.  We'll get another block if | 
 | 	 * dir_i hits a block boundary */ | 
 | 	for (unsigned int bytes = 0; bytes < dir->i_size; ) { | 
 | 		/* On subsequent loops, we might need to advance to the next block. | 
 | 		 * This is where a file abstraction for a dir might be easier. */ | 
 | 		if ((void*)dir_i >= (void*)dir_buf + dir->i_sb->s_blocksize) { | 
 | 			ext2_put_metablock(dir->i_sb, dir_buf); | 
 | 			dir_buf = ext2_get_ino_metablock(dir, dir_block++); | 
 | 			dir_i = dir_buf; | 
 | 			assert(dir_buf); | 
 | 		} | 
 | 		if (my_work(dir_i, a1, a2, a3)) { | 
 | 			ext2_put_metablock(dir->i_sb, dir_buf); | 
 | 			return 0; | 
 | 		} | 
 | 		/* Get ready for the next loop */ | 
 | 		bytes += dir_i->dir_reclen; | 
 | 		dir_i = (void*)dir_i + dir_i->dir_reclen; | 
 | 	} | 
 | 	ext2_put_metablock(dir->i_sb, dir_buf); | 
 | 	return dir_block; | 
 | } | 
 |  | 
 | /* Returns the actual length of a dirent, not just how far to the next entry. | 
 |  * If there is no inode, the entry is unused, and it has no length (as far as | 
 |  * users of this should care). */ | 
 | static unsigned int ext2_dirent_len(struct ext2_dirent *e2dir) | 
 | { | 
 | 	/* arguably, we don't need the le32_to_cpu */ | 
 | 	if (le32_to_cpu(e2dir->dir_inode)) | 
 | 		return ROUNDUP(e2dir->dir_namelen + 8, 4);		/* no such le8_to_cpu */ | 
 | 	else | 
 | 		return 0; | 
 | } | 
 |  | 
 | /* Helper for writing the contents of a dentry to a disk dirent */ | 
 | static void ext2_write_dirent(struct ext2_dirent *e2dir, struct dentry *dentry, | 
 |                               unsigned int rec_len) | 
 | { | 
 | 	e2dir->dir_inode = cpu_to_le32(dentry->d_inode->i_ino); | 
 | 	e2dir->dir_reclen = cpu_to_le16(rec_len); | 
 | 	e2dir->dir_namelen = dentry->d_name.len; | 
 | 	switch (dentry->d_inode->i_mode & __S_IFMT) { | 
 | 		case (__S_IFDIR): | 
 | 			e2dir->dir_filetype = EXT2_FT_DIR; | 
 | 			break; | 
 | 		case (__S_IFREG): | 
 | 			e2dir->dir_filetype = EXT2_FT_REG_FILE; | 
 | 			break; | 
 | 		case (__S_IFLNK): | 
 | 			e2dir->dir_filetype = EXT2_FT_SYMLINK; | 
 | 			break; | 
 | 		case (__S_IFCHR): | 
 | 			e2dir->dir_filetype = EXT2_FT_CHRDEV; | 
 | 			break; | 
 | 		case (__S_IFBLK): | 
 | 			e2dir->dir_filetype = EXT2_FT_BLKDEV; | 
 | 			break; | 
 | 		case (__S_IFSOCK): | 
 | 			e2dir->dir_filetype = EXT2_FT_SOCK; | 
 | 			break; | 
 | 		default: | 
 | 			warn("[Calm British Accent] Look around you: Unknown filetype."); | 
 | 			e2dir->dir_filetype = EXT2_FT_UNKNOWN; | 
 | 	} | 
 | 	assert(dentry->d_name.len <= 255); | 
 | 	strncpy((char*)e2dir->dir_name, dentry->d_name.name, dentry->d_name.len); | 
 | } | 
 |  | 
 | /* Helper for ext2_create().  This tries to squeeze a dirent in the slack space | 
 |  * after an existing dirent, returning TRUE if it succeeded (to break out). */ | 
 | static bool create_each_func(struct ext2_dirent *dir_i, long a1, long a2, | 
 |                              long a3) | 
 | { | 
 | 	struct dentry *dentry = (struct dentry*)a1; | 
 | 	unsigned int our_rec_len = (unsigned int)a2; | 
 | 	unsigned int mode = (unsigned int)a3; | 
 | 	struct ext2_dirent *dir_new; | 
 | 	unsigned int real_len = ext2_dirent_len(dir_i); | 
 | 	/* How much room is available after this dir_i before the next one */ | 
 | 	unsigned int record_slack = le16_to_cpu(dir_i->dir_reclen) - real_len; | 
 | 	/* TODO: Note that this technique will clobber any directory indexing.  They | 
 | 	 * exist after the .. entry with an inode of 0.  Check the docs for | 
 | 	 * specifics and think up a nice way to tell the diff between a reserved | 
 | 	 * entry and an unused one, when inode == 0. */ | 
 | 	if (record_slack < our_rec_len) | 
 | 		return FALSE; | 
 | 	/* At this point, there is enough room for us.  Stick our new one in right | 
 | 	 * after the real len, making sure our reclen goes to the old end.  Note | 
 | 	 * that it is possible to have a real_len of 0 (an unused entry).  In this | 
 | 	 * case, we just end up taking over the spot in the dir_blk.  Be sure to set | 
 | 	 * dir_i's reclen before dir_new's (in case they are the same). */ | 
 | 	dir_new = ((void*)dir_i + real_len); | 
 | 	dir_i->dir_reclen = cpu_to_le16(real_len); | 
 | 	ext2_write_dirent(dir_new, dentry, record_slack); | 
 | 	ext2_dirty_metablock(dentry->d_sb, dir_new); | 
 | 	return TRUE; | 
 | } | 
 |  | 
 | /* Called when creating a new disk inode in dir associated with dentry.  We need | 
 |  * to fill out the i_ino, set the type, and do whatever else we need */ | 
 | int ext2_create(struct inode *dir, struct dentry *dentry, int mode, | 
 |                struct nameidata *nd) | 
 | { | 
 | 	struct inode *inode = dentry->d_inode; | 
 | 	struct ext2_block_group *dir_bg = ext2_inode2bg(dir); | 
 | 	struct ext2_inode *disk_inode; | 
 | 	struct ext2_i_info *e2ii; | 
 | 	uint32_t dir_block; | 
 | 	unsigned int our_rec_len; | 
 | 	struct ext2_dirent *new_dirent; | 
 | 	/* Set basic inode stuff for files, get a disk inode, etc */ | 
 | 	SET_FTYPE(inode->i_mode, __S_IFREG); | 
 | 	inode->i_fop = &ext2_f_op_file; | 
 | 	inode->i_ino = ext2_alloc_diskinode(inode, dir_bg); | 
 | 	/* Initialize disk inode (this will be different for short symlinks) */ | 
 | 	disk_inode = ext2_get_diskinode(inode); | 
 | 	ext2_init_diskinode(disk_inode, inode); | 
 | 	/* Initialize the e2ii (might get rid of this cache of block info) */ | 
 | 	inode->i_fs_info = kmem_cache_alloc(ext2_i_kcache, 0); | 
 | 	e2ii = (struct ext2_i_info*)inode->i_fs_info; | 
 | 	for (int i = 0; i < 15; i++) | 
 | 		e2ii->i_block[i] = le32_to_cpu(disk_inode->i_block[i]); | 
 | 	/* Dirty and put the disk inode */ | 
 | 	ext2_dirty_metablock(dentry->d_sb, disk_inode); | 
 | 	ext2_put_metablock(dentry->d_sb, disk_inode); | 
 | 	/* Insert it in the directory (make a dirent, might expand the dir too) */ | 
 | 	/* Note the disk dir_name is not null terminated */ | 
 | 	our_rec_len = ROUNDUP(8 + dentry->d_name.len, 4); | 
 | 	assert(our_rec_len <= 8 + 256); | 
 | 	/* Consider caching the start point for future dirent ops.  Or even using | 
 | 	 * the indexed directory.... */ | 
 | 	dir_block = ext2_foreach_dirent(dir, create_each_func, (long)dentry, | 
 | 	                                (long)our_rec_len, (long)mode); | 
 | 	/* If this returned a block number, we didn't find room in any of the | 
 | 	 * existing directory blocks, so we need to make a new one, stick it in the | 
 | 	 * dir inode, and stick our dirent at the beginning.  The reclen is the | 
 | 	 * whole blocksize (since it's the last entry in this block) */ | 
 | 	if (dir_block) { | 
 | 		new_dirent = ext2_get_ino_metablock(dir, dir_block); | 
 | 		ext2_write_dirent(new_dirent, dentry, dentry->d_sb->s_blocksize); | 
 | 		ext2_dirty_metablock(dentry->d_sb, new_dirent); | 
 | 		ext2_put_metablock(dentry->d_sb, new_dirent); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* If we match, this loads the inode for the dentry and returns true (so we | 
 |  * break out) */ | 
 | static bool lookup_each_func(struct ext2_dirent *dir_i, long a1, long a2, | 
 |                              long a3) | 
 | { | 
 | 	struct dentry *dentry = (struct dentry*)a1; | 
 | 	/* Test if we're the one (TODO: use d_compare).  Note, dir_name is not | 
 | 	 * null terminated, hence the && test. */ | 
 | 	if (!strncmp((char*)dir_i->dir_name, dentry->d_name.name, | 
 | 	             dir_i->dir_namelen) && | 
 | 	            (dentry->d_name.name[dir_i->dir_namelen] == '\0')) { | 
 | 		load_inode(dentry, (long)le32_to_cpu(dir_i->dir_inode)); | 
 | 		/* TODO: (HASH) add dentry to dcache (maybe the caller should) */ | 
 | 		return TRUE; | 
 | 	} | 
 | 	return FALSE; | 
 | } | 
 |  | 
 | /* Searches the directory for the filename in the dentry, filling in the dentry | 
 |  * with the FS specific info of this file.  If it succeeds, it will pass back | 
 |  * the *dentry you should use (which might be the same as the one you passed in). | 
 |  * If this fails, it will return 0, but not free the memory of "dentry." | 
 |  * | 
 |  * Callers, make sure you alloc and fill out the name parts of the dentry.  We | 
 |  * don't currently use the ND.  Might remove it in the future.  */ | 
 | struct dentry *ext2_lookup(struct inode *dir, struct dentry *dentry, | 
 |                            struct nameidata *nd) | 
 | { | 
 | 	assert(S_ISDIR(dir->i_mode)); | 
 | 	struct ext2_dirent *dir_buf, *dir_i; | 
 | 	if (!ext2_foreach_dirent(dir, lookup_each_func, (long)dentry, 0, 0)) | 
 | 		return dentry; | 
 | 	printd("EXT2: Not Found, %s\n", dentry->d_name.name);	 | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Hard link to old_dentry in directory dir with a name specified by new_dentry. | 
 |  * At the very least, set the new_dentry's FS-specific fields. */ | 
 | int ext2_link(struct dentry *old_dentry, struct inode *dir, | 
 |              struct dentry *new_dentry) | 
 | { | 
 | I_AM_HERE; | 
 | 	assert(new_dentry->d_op = &ext2_d_op); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Removes the link from the dentry in the directory */ | 
 | int ext2_unlink(struct inode *dir, struct dentry *dentry) | 
 | { | 
 | I_AM_HERE; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Creates a new inode for a symlink dir, linking to / containing the name | 
 |  * symname.  dentry is the controlling dentry of the inode. */ | 
 | int ext2_symlink(struct inode *dir, struct dentry *dentry, const char *symname) | 
 | { | 
 | I_AM_HERE; | 
 | 	#if 0 | 
 | 	struct inode *inode = dentry->d_inode; | 
 | 	SET_FTYPE(inode->i_mode, __S_IFLNK); | 
 | 	inode->i_fop = &ext2_f_op_sym; | 
 | 	strncpy(string, symname, len); | 
 | 	string[len] = '\0';		/* symname should be \0d anyway, but just in case */ | 
 | 	#endif | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Called when creating a new inode for a directory associated with dentry in | 
 |  * dir with the given mode.  Note, we might (later) need to track subdirs within | 
 |  * the parent inode, like we do with regular files.  I'd rather not, so we'll | 
 |  * see if we need it. */ | 
 | int ext2_mkdir(struct inode *dir, struct dentry *dentry, int mode) | 
 | { | 
 | I_AM_HERE; | 
 | 	#if 0 | 
 | 	struct inode *inode = dentry->d_inode; | 
 | 	inode->i_ino = ext2_get_free_ino(); | 
 | 	SET_FTYPE(inode->i_mode, __S_IFDIR); | 
 | 	inode->i_fop = &ext2_f_op_dir; | 
 | 	#endif | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Removes from dir the directory 'dentry.'  Ext2 doesn't store anything in the | 
 |  * inode for which children it has.  It probably should, but since everything is | 
 |  * pinned, it just relies on the dentry connections. */ | 
 | int ext2_rmdir(struct inode *dir, struct dentry *dentry) | 
 | { | 
 | I_AM_HERE; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Used to make a generic file, based on the type and the major/minor numbers | 
 |  * (in rdev), with the given mode.  As with others, this creates a new disk | 
 |  * inode for the file */ | 
 | int ext2_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t rdev) | 
 | { | 
 | I_AM_HERE; | 
 | 	return -1; | 
 | } | 
 |  | 
 | /* Moves old_dentry from old_dir to new_dentry in new_dir */ | 
 | int ext2_rename(struct inode *old_dir, struct dentry *old_dentry, | 
 |                struct inode *new_dir, struct dentry *new_dentry) | 
 | { | 
 | I_AM_HERE; | 
 | 	return -1; | 
 | } | 
 |  | 
 | /* Returns the char* for the symname for the given dentry.  The VFS code that | 
 |  * calls this for real FS's might assume it's already read in, so if the char * | 
 |  * isn't already in memory, we'd need to read it in here.  Regarding the char* | 
 |  * storage, the char* only will last as long as the dentry and inode are in | 
 |  * memory. */ | 
 | char *ext2_readlink(struct dentry *dentry) | 
 | { | 
 | I_AM_HERE; | 
 | 	struct inode *inode = dentry->d_inode; | 
 | 	if (!S_ISLNK(inode->i_mode)) | 
 | 		return 0; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Modifies the size of the file of inode to whatever its i_size is set to */ | 
 | void ext2_truncate(struct inode *inode) | 
 | { | 
 | } | 
 |  | 
 | /* Checks whether the the access mode is allowed for the file belonging to the | 
 |  * inode.  Implies that the permissions are on the file, and not the hardlink */ | 
 | int ext2_permission(struct inode *inode, int mode, struct nameidata *nd) | 
 | { | 
 | 	return -1; | 
 | } | 
 |  | 
 |  | 
 | /* dentry_operations */ | 
 | /* Determines if the dentry is still valid before using it to translate a path. | 
 |  * Network FS's need to deal with this. */ | 
 | int ext2_d_revalidate(struct dentry *dir, struct nameidata *nd) | 
 | { // default, nothing | 
 | 	return -1; | 
 | } | 
 |  | 
 | /* Compares name1 and name2.  name1 should be a member of dir. */ | 
 | int ext2_d_compare(struct dentry *dir, struct qstr *name1, struct qstr *name2) | 
 | { // default, string comp (case sensitive) | 
 | 	return -1; | 
 | } | 
 |  | 
 | /* Called when the last ref is deleted (refcnt == 0) */ | 
 | int ext2_d_delete(struct dentry *dentry) | 
 | { // default, nothin | 
 | 	return -1; | 
 | } | 
 |  | 
 | /* Called when it's about to be slab-freed */ | 
 | int ext2_d_release(struct dentry *dentry) | 
 | { | 
 | 	return -1; | 
 | } | 
 |  | 
 | /* Called when the dentry loses it's inode (becomes "negative") */ | 
 | void ext2_d_iput(struct dentry *dentry, struct inode *inode) | 
 | { // default, call i_put to release the inode object | 
 | } | 
 |  | 
 |  | 
 | /* file_operations */ | 
 |  | 
 | /* Updates the file pointer.  TODO: think about locking, and putting this in the | 
 |  * VFS. */ | 
 | #include <syscall.h>	/* just for set_errno, may go away later */ | 
 | int ext2_llseek(struct file *file, off64_t offset, off64_t *ret, int whence) | 
 | { | 
 | 	off64_t temp_off = 0; | 
 | 	switch (whence) { | 
 | 		case SEEK_SET: | 
 | 			temp_off = offset; | 
 | 			break; | 
 | 		case SEEK_CUR: | 
 | 			temp_off = file->f_pos + offset; | 
 | 			break; | 
 | 		case SEEK_END: | 
 | 			temp_off = file->f_dentry->d_inode->i_size + offset; | 
 | 			break; | 
 | 		default: | 
 | 			set_errno(EINVAL); | 
 | 			warn("Unknown 'whence' in llseek()!\n"); | 
 | 			return -1; | 
 | 	} | 
 | 	file->f_pos = temp_off; | 
 | 	*ret = temp_off; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Fills in the next directory entry (dirent), starting with d_off.  Like with | 
 |  * read and write, there will be issues with userspace and the *dirent buf. | 
 |  * TODO: (UMEM) */ | 
 | int ext2_readdir(struct file *dir, struct dirent *dirent) | 
 | { | 
 | 	void *blk_buf; | 
 | 	/* Not enough data at the end of the directory */ | 
 | 	if (dir->f_dentry->d_inode->i_size < dirent->d_off + 8) | 
 | 		return -ENOENT; | 
 | 	/* Figure out which block we need to read in for dirent->d_off */ | 
 | 	int block = dirent->d_off / dir->f_dentry->d_sb->s_blocksize; | 
 | 	blk_buf = ext2_get_ino_metablock(dir->f_dentry->d_inode, block); | 
 | 	assert(blk_buf); | 
 | 	off64_t f_off = dirent->d_off % dir->f_dentry->d_sb->s_blocksize; | 
 | 	/* Copy out the dirent info */ | 
 | 	struct ext2_dirent *e2dir = (struct ext2_dirent*)(blk_buf + f_off); | 
 | 	dirent->d_ino = le32_to_cpu(e2dir->dir_inode); | 
 | 	dirent->d_off += le16_to_cpu(e2dir->dir_reclen); | 
 | 	if (dir->f_dentry->d_inode->i_size < dirent->d_off) | 
 | 		panic("Something is jacked with the dirent going beyond the dir/file"); | 
 | 	/* note, dir_namelen doesn't include the \0 */ | 
 | 	dirent->d_reclen = e2dir->dir_namelen; | 
 | 	strncpy(dirent->d_name, (char*)e2dir->dir_name, e2dir->dir_namelen); | 
 | 	assert(e2dir->dir_namelen <= MAX_FILENAME_SZ); | 
 | 	dirent->d_name[e2dir->dir_namelen] = '\0'; | 
 | 	ext2_put_metablock(dir->f_dentry->d_sb, blk_buf); | 
 | 	 | 
 | 	/* At the end of the directory, sort of.  ext2 often preallocates blocks, so | 
 | 	 * this will cause us to walk along til the end, which isn't quite right. */ | 
 | 	if (dir->f_dentry->d_inode->i_size == dirent->d_off) | 
 | 		return 0; | 
 | 	if (dir->f_dentry->d_inode->i_size < dirent->d_off) { | 
 | 		warn("Issues reaching the end of an ext2 directory!"); | 
 | 		return 0; | 
 | 	} | 
 | 	return 1;							/* normal success for readdir */ | 
 | } | 
 |  | 
 | /* This is called when a VMR is mapping a particular file.  The FS needs to do | 
 |  * whatever it needs so that faults can be handled by read_page(), and handle all | 
 |  * of the cases of MAP_SHARED, MAP_PRIVATE, whatever.  It also needs to ensure | 
 |  * the file is not being mmaped in a way that conflicts with the manner in which | 
 |  * the file was opened or the file type. */ | 
 | int ext2_mmap(struct file *file, struct vm_region *vmr) | 
 | { | 
 | 	if (S_ISREG(file->f_dentry->d_inode->i_mode)) | 
 | 		return 0; | 
 | 	return -1; | 
 | } | 
 |  | 
 | /* Called by the VFS while opening the file, which corresponds to inode,  for | 
 |  * the FS to do whatever it needs. */ | 
 | int ext2_open(struct inode *inode, struct file *file) | 
 | { | 
 | 	/* TODO: check to make sure the file is openable, and maybe do some checks | 
 | 	 * for the open mode (like did we want to truncate, append, etc) */ | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Called when a file descriptor is closed. */ | 
 | int ext2_flush(struct file *file) | 
 | { | 
 | I_AM_HERE; | 
 | 	return -1; | 
 | } | 
 |  | 
 | /* Called when the file is about to be closed (file obj freed) */ | 
 | int ext2_release(struct inode *inode, struct file *file) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Flushes the file's dirty contents to disc */ | 
 | int ext2_fsync(struct file *file, struct dentry *dentry, int datasync) | 
 | { | 
 | 	return -1; | 
 | } | 
 |  | 
 | /* Traditionally, sleeps until there is file activity.  We probably won't | 
 |  * support this, or we'll handle it differently. */ | 
 | unsigned int ext2_poll(struct file *file, struct poll_table_struct *poll_table) | 
 | { | 
 | 	return -1; | 
 | } | 
 |  | 
 | /* Reads count bytes from a file, starting from (and modifiying) offset, and | 
 |  * putting the bytes into buffers described by vector */ | 
 | ssize_t ext2_readv(struct file *file, const struct iovec *vector, | 
 |                   unsigned long count, off64_t *offset) | 
 | { | 
 | 	return -1; | 
 | } | 
 |  | 
 | /* Writes count bytes to a file, starting from (and modifiying) offset, and | 
 |  * taking the bytes from buffers described by vector */ | 
 | ssize_t ext2_writev(struct file *file, const struct iovec *vector, | 
 |                   unsigned long count, off64_t *offset) | 
 | { | 
 | 	return -1; | 
 | } | 
 |  | 
 | /* Write the contents of file to the page.  Will sort the params later */ | 
 | ssize_t ext2_sendpage(struct file *file, struct page *page, int offset, | 
 |                      size_t size, off64_t pos, int more) | 
 | { | 
 | 	return -1; | 
 | } | 
 |  | 
 | /* Checks random FS flags.  Used by NFS. */ | 
 | int ext2_check_flags(int flags) | 
 | { // default, nothing | 
 | 	return -1; | 
 | } | 
 |  | 
 | /* Redeclaration and initialization of the FS ops structures */ | 
 | struct page_map_operations ext2_pm_op = { | 
 | 	ext2_readpage, | 
 | 	ext2_writepage, | 
 | }; | 
 |  | 
 | struct super_operations ext2_s_op = { | 
 | 	ext2_alloc_inode, | 
 | 	ext2_dealloc_inode, | 
 | 	ext2_read_inode, | 
 | 	ext2_dirty_inode, | 
 | 	ext2_write_inode, | 
 | 	ext2_put_inode, | 
 | 	ext2_drop_inode, | 
 | 	ext2_delete_inode, | 
 | 	ext2_put_super, | 
 | 	ext2_write_super, | 
 | 	ext2_sync_fs, | 
 | 	ext2_remount_fs, | 
 | 	ext2_umount_begin, | 
 | }; | 
 |  | 
 | struct inode_operations ext2_i_op = { | 
 | 	ext2_create, | 
 | 	ext2_lookup, | 
 | 	ext2_link, | 
 | 	ext2_unlink, | 
 | 	ext2_symlink, | 
 | 	ext2_mkdir, | 
 | 	ext2_rmdir, | 
 | 	ext2_mknod, | 
 | 	ext2_rename, | 
 | 	ext2_readlink, | 
 | 	ext2_truncate, | 
 | 	ext2_permission, | 
 | }; | 
 |  | 
 | struct dentry_operations ext2_d_op = { | 
 | 	ext2_d_revalidate, | 
 | 	generic_dentry_hash, | 
 | 	ext2_d_compare, | 
 | 	ext2_d_delete, | 
 | 	ext2_d_release, | 
 | 	ext2_d_iput, | 
 | }; | 
 |  | 
 | struct file_operations ext2_f_op_file = { | 
 | 	ext2_llseek, | 
 | 	generic_file_read, | 
 | 	generic_file_write, | 
 | 	ext2_readdir, | 
 | 	ext2_mmap, | 
 | 	ext2_open, | 
 | 	ext2_flush, | 
 | 	ext2_release, | 
 | 	ext2_fsync, | 
 | 	ext2_poll, | 
 | 	ext2_readv, | 
 | 	ext2_writev, | 
 | 	ext2_sendpage, | 
 | 	ext2_check_flags, | 
 | }; | 
 |  | 
 | struct file_operations ext2_f_op_dir = { | 
 | 	ext2_llseek, | 
 | 	generic_dir_read, | 
 | 	0, | 
 | 	ext2_readdir, | 
 | 	ext2_mmap, | 
 | 	ext2_open, | 
 | 	ext2_flush, | 
 | 	ext2_release, | 
 | 	ext2_fsync, | 
 | 	ext2_poll, | 
 | 	ext2_readv, | 
 | 	ext2_writev, | 
 | 	ext2_sendpage, | 
 | 	ext2_check_flags, | 
 | }; | 
 |  | 
 | struct file_operations ext2_f_op_sym = { | 
 | 	ext2_llseek, | 
 | 	generic_file_read, | 
 | 	generic_file_write, | 
 | 	ext2_readdir, | 
 | 	ext2_mmap, | 
 | 	ext2_open, | 
 | 	ext2_flush, | 
 | 	ext2_release, | 
 | 	ext2_fsync, | 
 | 	ext2_poll, | 
 | 	ext2_readv, | 
 | 	ext2_writev, | 
 | 	ext2_sendpage, | 
 | 	ext2_check_flags, | 
 | }; |